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GENERALIZED METHOD OF TRIMMED MOMENTS

PAVEL ČÍŽEK1

Department of Econometrics and Operation Research

Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands1

Abstract. High breakdown-point regression estimators protect against large errors and

data contamination. We adapt and generalize the concept of trimming used by many of

these robust estimators so that it can be employed in the context of the generalized method

of moments. The proposed generalized method of trimmed moments (GMTM) offers a

globally robust estimation approach (contrary to existing only locally robust estimators)

applicable in econometric models identified and estimated using moment conditions. We

derive the consistency and asymptotic distribution of GMTM in a general setting, propose a

robust test of overidentifying conditions, and demonstrate the application of GMTM in the

instrumental variable regression. We also compare the finite-sample performance of GMTM

and existing estimators by means of Monte Carlo simulation.

Keywords: asymptotic normality, generalized method of moments, instrumental variables

regression, robust estimation, trimming

JEL codes: C13, C20, C30, C12

1. Introduction

The generalized method of moments (GMM; Hansen, 1982) and related procedures are

important econometric tools for estimation and inference in models based on moment condi-

tions. During last two decades, the estimation by GMM has been enhanced in many areas,

which include primarily its behavior in small and moderate samples (e.g., Altonji and Segal,

1996; Imbens et al., 1998; Newey and Smith, 2004) and its robustness against small devi-

ations from the assumed model (e.g., Ronchetti and Trojani, 2001; Honore and Hu, 2004;

Lo and Ronchetti, 2006). In this paper, we concentrate on the second area and propose the

generalized method of trimmed moments that is, contrary to most existing methods, robust

to large deviations from the model and that can achieve practically the same variance of esti-

mates as the original GMM in many situations. By being robust to small or large deviations

from the model, we mean how large is the smallest fraction of a sample that, if modified in
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some way (e.g., by data contamination or heterogeneity not presumed by the model), can

arbitrarily change the estimates under consideration. This measure is called breakdown point

(see Rousseeuw and Leroy, 1987, for the standard definition and Genton and Lucas, 2003, for

a discussion of the breakdown point under dependence) and it is asymptotically equal to zero

for the majority of typically used GMM estimators (see Ronchetti and Trojani, 2001, for a

discussion of the robust properties of GMM).

The need for robust estimation methods have been demonstrated in various contexts

both theoretically by Krasker and Welsch (1985), Hampel et al. (1986), Peracchi (1990),

Hubert and Rousseeuw (1997), Krishnakumar and Ronchetti (1997), Ferretti et al. (1999),

Cantoni and Ronchetti (2001), Genton and Ronchetti (2003), Bramati and Croux (2007),

and Čı́žek (2008b), for instance, and in real (GMM) applications by Knez and Ready (1997),

Temple (1998), Sakata and White (1998), Dell’Aquila et al. (2003), and Czellar et al. (2007),

for instance. In the case of GMM and its particular applications such as the linear instru-

mental variable (IV) regression, existing research concentrates on the quantile-based GMM

estimation (e.g., see Amemiya, 1982, Honore and Hu, 2004, and Chernozhukov and Hansen,

2008, in IV regression) and on the M-estimation (e.g., see Krasker, 1986, Peracchi, 1991, and

Krishnakumar and Ronchetti, 1997, in simultaneous equation models; Müller and Kim, 2005,

and Wagenvoort and Waldmann, 2002, in linear panel data; and Ronchetti and Trojani, 2001,

and Ortelli and Trojani, 2005, for general GMM estimation). All mentioned robust methods

applicable in models estimated by IV or GMM are however only locally robust and usu-

ally cannot withstand large deviations from the model (see He et al., 1990, Čı́žek, 2008c,

and Section 4 for the methods based on quantile regression and Maronna et al., 1979, and

Ronchetti and Trojani, 2001, for the GMM based on M-estimation). Even though the M-

estimators can be made more robust by means of one-step estimation (Simpson et al., 1992)

as in Wagenvoort and Waldmann (2002), such a procedure nevertheless requires an initial

highly robust estimator, which is not available for general method-of-moments estimation so

far.

Hence, we aim to propose a high breakdown-point estimator for models based on gen-

eral nonlinear moment conditions. Motivated by the least trimmed squares (Rousseeuw,

1985), maximum trimmed likelihood (Hadi and Luceno, 1997), and general trimmed ex-

tremum (Čı́žek, 2008a) regression estimators, which eliminate the influence of deviating ob-

servations on estimates by trimming the observations from estimators’ objective functions,
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we propose the generalized method of trimmed moments (GMTM). For a given model, the

GMTM method relies on the moment conditions characterizing the model that are extended

in order to include trimming of observations inconsistent with the original moment conditions.

Because GMTM represents a very general concept, we demonstrate several ways to create

trimmed moment conditions in the case of linear IV regression and discuss a data-dependent

choice of trimming designed to minimize the number of trimmed observations. Furthermore,

since the proposed trimming of observations in the moment conditions depends implicitly on

the underlying parameter values and is thus endogenous, GMTM requires new asymptotic

theory. We therefore study the consistency and asymptotic distribution of GMTM, discuss

its implications for the estimation, and propose a GMTM analog of the test of overidentify-

ing conditions (Hansen, 1982). On the other hand, the breakdown properties of GMTM will

not be derived in general because they are model- and data-dependent in nonlinear models

or under dependence (Genton and Lucas, 2003); we discuss the robust properties of GMTM

only in the linear IV regression. Finally, we also do not address here questions concerning

weak identification in the context of (robust) GMM estimation, although the extension of the

current results along the lines of Stock and Wright (2000) is relatively straightforward.

In the rest of the paper, we first propose the GMTM estimator in Section 2, where we

also provide various examples of GMTM in linear IV regression and discuss how the number

of trimmed observations can be chosen in a data-dependent way. Assumptions needed for

studying the asymptotic properties of GMTM as well as the main asymptotic results are

summarized in Section 3. Later, the proposed and some existing estimators are studied by

means of Monte Carlo simulations in Section 4. The proofs are provided in Appendix.

2. Generalized method of trimmed moments

Let us now introduce the generalized method of trimmed moments (Section 2.1) and demon-

strate its use in the context of linear IV regression (Section 2.2). Later, a data-dependent

choice of the trimming amount is discussed (Section 2.3).

2.1. Generalized method of trimmed moments estimator. To introduce the idea of

trimming, let us consider data {di}n
i=1 = {(yi, xi)}n

i=1 and a linear regression model with

intercept

(2.1) yi = x>
i β + εi,
3



where β ∈ R
p denotes the vector of unknown parameters. Assuming E(εi|xi) = 0 and

E(xix
>
i ) > 0, the standard least squares (LS) estimator β̂

(LS)
n is consistent, but very non-

robust: being a linear function of yi, a single outlying observation can arbitrarily change the

value of β̂
(LS)
n and its breakdown point is thus at most 1/n and equals asymptotically zero

(He et al., 1990).

To achieve a high breakdown point, many robust methods exclude (or downweight) obser-

vations unlikely under a model from their objective functions (e.g., Hadi and Luceno, 1997;

Stromberg et al., 2000; and Čı́žek, 2008a). A well-known alternative to LS is, for example,

the least trimmed squares (LTS) estimator (Rousseeuw, 1985), which minimizes the trimmed

sum of the hn smallest squared residuals:

(2.2) β̂(LTS)
n = arg min

β∈B

hn
∑

j=1

e2
(j)(β),

where e2
(j)(β) represents the jth smallest order statistics of squared residuals e2

i (β) = (yi −
x>

i β)2, i = 1, . . . , n, and n/2 < hn ≤ n is the trimming amount. By (endogenously) excluding

n − hn observations from the objective function, LTS becomes insensitive to the presence of

data inconsistent with the linear model. In general, n/2 < hn because we cannot distinguish

which part of the data should be fit by the model and which one should be rejected if

hn ≤ n/2. Thus for the maximum amount of trimming, (n−hn)/n → 1/2 as n → ∞ and the

breakdown point of LTS then converges asymptotically to 1/2, the maximum possible value

for affine-equivariant estimators (Rousseeuw and Leroy, 1987).

The LTS estimator can be alternatively expressed also by means of moment conditions. If

ei(β) is continuously distributed, Čı́žek (2006) showed that (2.2) can be expressed as

β̂(LTS)
n = arg min

β∈B

n
∑

i=1

e2
i (β) · I{e2

i (β) ≤ e2
(hn)(β)}

and that the corresponding first-order conditions for the LTS estimator are

(2.3) 2
n
∑

i=1

ei(β)xi · I{e2
i (β) ≤ e2

(hn)(β)} = 0,

where I(·) is the indicator function. Note that the normal equations (2.3) consist of two

parts: one corresponding to the LS moment conditions,
∑n

i=1 ei(β)xi = 0, and another one

performing trimming of observations with large squared residuals, I{e2
i (β) ≤ e2

(hn)(β)} = 0,

where e2
(hn)(β) approximates a quantile of the distribution of squared residuals e2

i (β).
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To generalize, let us now consider a stationary data sequence {di}n
i=1, di ∈ R

k, and a

function s : R
k × B → R

M that imposes a set of unconditional moment conditions

(2.4) E s(di;β
0) = 0

on the underlying model. We also assume that β0 ∈ B ⊂ R
p is the unique solution of (2.4)

and that the number M of conditions is equal to or larger than the number p of parameters.

The GMM estimator proposed by Hansen (1982) is then defined by

(2.5) β̂(GMM)
n = arg min

β∈B
QW

n (β) = arg min
β∈B

[

1

n

n
∑

i=1

s(di;β)

]>

W

[

1

n

n
∑

i=1

s(di;β)

]

,

where W is a positive definite M × M matrix and
∑n

i=1 s(di;β)/n represents the sample

equivalent of (2.4).

Typically relying on an unbounded moment function s, the GMM estimator is not ro-

bust as a single data point can have an arbitrarily large influence of the GMM estimates

(Ronchetti and Trojani, 2001). To improve robust properties of GMM, trimming of observa-

tions similar to (2.3) could be employed. Therefore, we now propose to base the estimation

on the trimmed moment conditions

(2.6) E

[

s(di;β
0) · I{r(di;β

0) ≤ G−1
β0 (λ)}

]

= 0

instead of conditions (2.4), where function s(di;β) represents the original moment condition,

r(di;β) : R
k×R

p → R is a general trimming function that ranks observations and determines

their inclusion in or trimming from the objective function, and G−1
β (λ) denotes the λ-quantile

of the distribution of r(di;β), 1/2 < λ ≤ 1; λ is referred here as the trimming constant. For

example in the case of linear regression (2.1), the LTS estimator (2.2) corresponds to setting

s(di;β) = (yi − x>
i β)xi = ei(β)xi and r(di;β) = (yi − x>

i β)2 = e2
i (β), see equation (2.3). In

general, the trimming function r(di;β) should be designed so that its small values indicate

likely observations (“good fit”, small squared residuals, high likelihood) and its large values

indicate unlikely observations (“bad fit”, large squared residuals, low likelihood) in a given

model (Čı́žek, 2008a). Apart from weak regularity assumptions, the only other requirement

on r(di;β) is that the trimmed moment equation (2.6) holds.

To construct a sample equivalent of (2.6), G−1
β (λ) is replaced by the [λn]th smallest order

statistics of r(di;β), where [t] represents t rounded to the closest integer value. Consequently,
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the generalized method of trimmed moments can be defined by

(2.7) β̂(GMTM,λ)
n = arg min

β∈B
QW,λ

n (β),

where

(2.8)

QW,λ
n (β) =

[

1

n

n
∑

i=1

s(di;β)I{r(di;β) ≤ r([λn])(β)}
]>

W

[

1

n

n
∑

i=1

s(di;β)I{r(di;β) ≤ r([λn])(β)}
]

.

Although this definition is analogous to the standard GMM, the use of trimmed moments

(2.6), which trim observations depending on the values of all variables di and model pa-

rameters β, requires a new asymptotic theory and results that establish the behavior of the

proposed GMTM method (see Section 3). Further note that, for the asymptotic analysis

of GMTM, we can assume λ ∈ (0, 1〉, whereas the robustness and equivariance properties

of GMTM impose λ ∈ 〈1/2, 1〉, λ = 1/2 being the most robust choice in many continuous-

response models (e.g., see Müller and Neykov, 2003, for the case of generalized linear models).

Thus, λ close to 1/2 can produce very robust consistent estimates, but on the other hand, it

will probably lead to much larger variances of estimates than λ = 1, that is, the original GMM

(2.5) without any trimming. A data-dependent choice of λ, which combines high robustness

and small variances of estimates, is discussed later in Section 2.3.

2.2. Linear IV regression. To demonstrate possible implementations and uses of trimming,

let us consider the linear IV regression model with yi = x>
i β + εi as in (2.1), E(εi|xi) 6= 0,

and E(εi|zi) = 0, where zi represents a vector of instrumental variables; the data vector

di equals then to di = (yi, x
>
i , z>i )>. The standard IV and GMM estimators are based on

the identification condition E(εi|zi) = 0 (together with other assumptions such as dim(zi) ≥
dim(xi) and xi and zi being correlated), which implies the unconditional moment conditions

E(εizi) = 0 and

(2.9) E sIV (di;β) = E[(yi − x>
i β)zi] = 0.

In the case of exact identification, dim(zi) = dim(xi), β = {E(zix
>
i )}−1

E(ziyi), and the

sample analog is

β̂(IV )
n =

(

1

n

n
∑

i=1

zix
>
i

)−1(

1

n

n
∑

i=1

ziyi

)

.
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Being a linear function of responses yi like LS, the IV estimator is obviously very sensitive to

outliers as even a single large observation can arbitrarily change the estimate β̂
(IV )
n as noted

already by Krasker and Welsch (1985).

A robust alternative can be provided by the proposed GMTM estimator (2.7), which solves

the trimmed moment equations (2.6):

(2.10) E

[

sIV (di;β) · I{r(di;β) ≤ G−1
β (λ)}

]

= E

[

(yi − x>
i β)zi · I{r(di;β) ≤ G−1

β (λ)}
]

= 0.

This trimmed instrumental variable (TIV) estimator however requires a choice of the trim-

ming function r(di;β). Analogously to LTS in (2.3), a (seemingly) straightforward protection

against outliers in the dependent variable yi could be implemented by setting r(di;β) ≡
re(di;β) = (yi − x>

i β)2 in (2.10). The corresponding GMTM estimator using s ≡ sIV and

r ≡ re will be denoted TIV-TE and corresponds to the linear IV method by Vı́̌sek (2006).

Before analyzing the robust properties of TIV-TE, let us discuss the parameter identi-

fication. Similarly to the linear regression case and LTS, the standard (2.9) and trimmed

(2.10) moment conditions identify the same set of parameters if the distribution function of

εi = yi − x>
i β0 is symmetric because the trimming by re(di;β

0) = ε2
i is symmetric around

zero (Čı́žek, 2006). If the underlying distribution of εi is not symmetric, the slope estimates

are still identified and consistently estimated, see Marazzi and Yohai (2004). On the other

hand, the trimmed equation for intercept β0 identifies instead of the usual mean value β0 =

E yi − (β1, . . . βp−1)E(x1i, . . . , xp−1i)
> a different value β̃0 = β0 + E{εiI(εi ≤ G−1

β0 (λ)} 6= β0,

where β = (β0, . . . , βp−1)
> and xi = (1, x1i, . . . , xp−1i)

>. The lack of “mean identification”

is a common feature of practically all positive breakdown-point regression estimators appli-

cable under asymmetric errors: for example, the median regression (Bassett and Koenker,

1978) estimates medians rather than means and generalized S-estimators (Croux et al., 1994;

Stromberg et al., 2000) do not identify intercept at all. If the intercept estimate is needed,

one can use β̃0, use some other intercept estimate such as the median, or compute β0 by

evaluating E{εiI(εi ≤ G−1
β0 (λ)} for an assumed parametric family of εi distributions as in

Marazzi and Yohai (2004).

Returning to the robust properties of the TIV-TE estimator, it protects against the extreme

influence of observations with large residuals re(di, β) on the estimates by trimming them from

the moment equation (2.10). This mechanism is similar in spirit to the IV estimators based
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on the median conditions (Med-IV) such as

(2.11) E{sgn(yi − x>
i β)zi} = 0

(Honore and Hu, 2004) in the sense that sgn(yi − x>
i β) is not influenced by large values of

residuals (only by their signs). In both cases, the protection against large values of residuals

however does not guarantee that estimates cannot be arbitrarily changed, for example, if

additionally atypical or erroneous values of instruments zi occur in data: a large value of a

particular instrument value zi gives a disproportionally large weight to the residual yi − x>
i β

in (2.9), (2.10), or (2.11), which can lead to an estimation bias and possible breakdown of an

estimator even in the presence of a single contaminated observation (cf. He et al., 1990, and

Wagenvoort and Waldmann, 2002).

On the other hand, the results of He et al. (1990) for the quantile-regression and M-

estimators indicate that the estimators can reach a positive (although design-dependent)

breakdown point if the values of the instruments zi in (2.10) for r ≡ re or in (2.11) are

bounded. Since transforming the instruments zi does not invalidate the consistency of GMM

as long as the employed moment conditions stay valid, one way to add protection against

atypical values in zi is their standardization. Specifically, we propose replacing zi by zi/‖zi‖
and using sSIV (di;β) = (yi − x>

i β)zi/‖zi‖ to obtain trimmed moment conditions

(2.12)

E

[

sSIV (di;β) · I{re(di;β) ≤ G−1
β (λ)}

]

= E

[

(yi − x>
i β)zi/‖zi‖ · I{re(di;β) ≤ G−1

β (λ)}
]

= 0.

The corresponding GMTM estimator using s ≡ sSIV and r ≡ re will be denoted TIV-TESZ.

While normalizing instruments can make the TIV-TE and Med-IV estimators globally ro-

bust (although the size of the breakdown point generally depends on the design of zi), the

generality of GMTM also allows for another protection against observations “incompatible”

with the moment conditions (2.9). For example, we can trim observations with large con-

tributions to the moment conditions (because a single large value can arbitrarily change the

sample average). Defining r(di;β) ≡ rez(di;β) = ‖(yi − x>
i β)zi‖2 as the Euclidean norm of

the moment contribution (yi − x>
i β)zi, we can use the trimmed moment conditions based on

the original moments sIV (di;β) = (yi − x>
i β)zi with the unmodified instruments:

(2.13)

E

[

sIV (di;β)I{rez(di;β) ≤ G−1
β (λ)}

]

= E

[

(yi − x>
i β)zi · I{rez(di;β) ≤ G−1

β (λ)}
]

= 0.
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The corresponding GMTM estimator using s ≡ sIV and r ≡ rez will be denoted TIV-TETZ.

The main advantage of this approach is its generality compared to TIV-TESZ or Med-IV.

Whereas the robustness of TIV-TESZ achieved by standardizing the instruments relies on

the linearity of the moment conditions sIV (di;β), the trimming by the norm of the moment

contribution ‖sIV (di;β)‖ is applicable in general nonlinear models. On the other hand, note

that the previous discussion of the intercept and slopes identification also applies to (2.13)

because trimming rez(di;β
0) is symmetric with respect to εi = yi − x>

i β0 conditional on zi.

More detailed comparison of the proposed robust IV estimators is in Section 4.

2.3. Adaptive choice of trimming. While trimming 30% or 50% observations can well

protect estimates against the influence of outliers, erroneous, and atypical observations, elim-

inating many observations from an estimator’s objective function will intuitively lead to

a worse performance of the estimator: less observations imply a higher variance. On the

other hand, the moment conditions (2.4) usually depend on the (unobservable) error term

expressed as a function of observables, εi = e(di;β
0), and trimming will typically protect

against observations unlikely in a given model, that is, observations with large values of

regression residuals e(di;β). For example in the linear IV regression, the moment condi-

tions (2.9) equal E{e(di;β)zi} = E{(yi − x>
i β)zi} = 0 and trimming in the TIV estimators

depends on e2(di;β) = (yi−x>
i β)2. Therefore, the choice of the trimming constant λ in (2.6)–

(2.8) can be made data-dependent by looking at the tail behavior of e(di;β) as proposed by

Gervini and Yohai (2002).

Specifically, even though GMM estimators do not typically require the error term εi to be

from a specific parametric family of distributions, GMM for a given model often performs

optimally under some specific parametric distribution εi ∼ Fθ, θ ∈ Θ. For example, LS in the

standard linear regression (2.1) require only E(εi|xi) = 0, but LS perform optimally if the

error term is normally distributed, εi ∼ N(0, θ), θ ∈ R+. Consequently, we can determine the

fraction λ̂n of sample observations having residuals consistent with the assumption εi ∼ Fθ

(in its tail) and trim only remaining n − [λ̂nn] observations in GMTM.

Such an adaptive choice of trimming was proposed by Gervini and Yohai (2002) in linear

regression. Let us assume that we obtain initial robust estimates β̂0
n and θ̂0

n of the regression

parameters β and distribution parameters θ, for example, by using GMTM with λ = 1/2

and θ̂0
n = 1.4826 · MADi=1,...,n ei(di; β̂

0
n) if Fθ ≡ N(0, θ), where MAD denotes the median

9



absolute deviation. The choice of trimming is then done by comparing the empirical distribu-

tion function F̂ 0
n of the absolute residuals |e(di; β̂

0
n)| and the estimated optimal distribution

function F̂|·|(z) = Fθ̂0
n
(z) − Fθ̂0

n
(−z) of |εi| under the assumption εi ∼ Fθ, where Fθ is sym-

metric (equivalently, squared residuals can be used). The two distributions are compared by

measuring the largest difference between F̂ 0
n and F̂|·| in the tail of the distributions,

(2.14) dn = sup
t≥c

max{0, F̂|·|(t) − F̂ 0
n(t)},

where the cut-off point c equals 99% or 99.5% quantile of F̂|·|. Using this measure, the

data-dependent choice of trimming is determined by λ̂n = 1 − dn. In the linear regression

(2.1), GMTM with this data-dependent choice of trimming corresponds to LTS with the

same choice of trimming, is asymptotically equivalent to LS under normality, and at the

same time, it preserves the breakdown point of the initial estimator β̂0
n (Gervini and Yohai,

2002). It also performs very well under various light- and heavy-tailed distributions and

under heteroscedasticity despite“assuming”the same distribution for all data in (2.14) (Čı́žek,

2007a).

Finally, let us note that the comparison of the empirical and optimal distributions in (2.14)

was done for the absolute values of residuals, |e(di;β)|, as proposed by Gervini and Yohai

(2002) because the trimming by the TIV estimators in Section 2.2 depends on e2(di;β),

which is symmetric around 0 and is equivalent to trimming using |e(di;β)|. In a general case

with a possibly asymmetric distribution Fθ and trimming, we can construct λ̂n by comparing

the empirical distribution function F̂ 0
n of the residuals e(di; β̂

0
n) and the distribution function

F̂ (z) = Fθ̂0
n
(z) of εi under the assumption εi ∼ Fθ in both tails, for example:

(2.15) dn = sup
t≤c

max{0, F̂ 0
n (t) − F̂ (t)} + sup

t≥c
max{0, F̂ (t) − F̂ 0

n(t)},

where c and c represent the 0.5% and 99.5% quantiles of F̂ , respectively.

3. Asymptotic properties of GMTM

In this section, we introduce the assumptions for the asymptotic analysis of GMTM (Sec-

tion 3.1), derive the main asymptotic properties of GMTM (Section 3.2), and propose a test

of overidentifying conditions (Section 3.3).
10



3.1. Assumptions. Let us now complement the GMTM definition first by some notation

and definitions and later by assumptions on the random variables and moment and trimming

functions needed for further analysis.

First, we refer to the distribution function of r(di;β) in (2.6) as Gβ(z) and to the corre-

sponding probability density function as gβ(z) if it exists. We also use a simpler notation

G ≡ Gβ0 and g ≡ gβ0 at the true parameter value β0. Whenever we need to refer to the

quantile function corresponding to Gβ, notation G−1
β is used. Next, because the derivatives of

functions s(d;β) and r(d;β) are taken only with respect to β here, we denote them simply by

s′(d;β), r′(d;β), . . . meaning ∂s(d;β)/∂β>, ∂r(d;β)/∂β, . . .. We also need a notation for an

open δ-neighborhood of a point x in a Euclidean space R
l: U(x, δ) =

{

z ∈ R
l
∣

∣ ‖z − x‖ < δ
}

.

Second, let us introduce the concept of β-mixing, which is central to the distributional

assumptions made in this paper. A sequence of random variables {Xi}i∈N is said to be

absolutely regular (or β-mixing) if βm = supt∈N E sup
B∈σf

t+m
|P (B|σp

t ) − P (B)| → 0 as m →
∞, where the σ-algebras σp

t = σ(Xt,Xt−1, . . .) and σf
t = σ(Xt,Xt+1, . . .); see Davidson (1994)

or Arcones and Yu (1994) for details. Numbers βm,m ∈ N, are called mixing coefficients.

Now, I specify all the assumptions necessary to derive the consistency and asymptotic

normality of GMTM (a smaller subset of assumptions sufficient for the consistency of GMTM

is discussed at the end of the section). They form three groups: distributional Assumptions D

for random variables di, Assumptions F concerning properties of the moment function s(d;β)

and auxiliary trimming function r(d;β), and finally, identification Assumptions I.

Assumptions D.

D1: Random variables {di}i∈N form a strongly stationary absolutely regular sequence of

random vectors with mixing coefficients satisfying mrβ/(rβ−2) (log m)2(rβ−1)/(rβ−2) βm →
0 as m → +∞ for some rβ > 2.

D2: The distribution function Gβ of r(di;β) is absolutely continuous for any β ∈ B.

D3: Assume that for mG = infβ∈B G−1
β (λ) and MG = supβ∈B G−1

β (λ), it holds that

Mgg = sup
β∈B

sup
z∈(mG−δg,MG+δg)

gβ(z) < ∞

and

mgg = inf
β∈B

inf
z∈(−δg,δg)

gβ

(

G−1
β (λ) + z

)

> 0

for some δg > 0.
11



Having a general moment function s(d;β), Assumption D1 is one of relatively weak condi-

tions for the uniform central limit theorem used by Andrews (1993) and Arcones and Yu

(1994), for instance. Assumption D2 indicates that at least one random variable has to be

continuously distributed so that trimming by r(di;β) is well defined (note though that the

absolute continuity of Gβ is really necessary only in a neighborhood of its λ-quantile G−1
β (λ)

as used in Assumption D3; see its discussion below for more details). Moreover, Assumption

D2 is purposely formulated in a simple way, which however seem to exclude distributional

variation such as heteroscedasticity across observations. That is not the case: for example, if

di includes both observable and unobservable random variables ui driving heteroscedasticity

in data, then the distribution of r(di;β) conditional on ui changes across different realizations

(observations) of ui even though r(di;β) as a function of observables does not explicitly refer

to unobservables ui contained in di. Nevertheless, we do not need the conditional distribu-

tions of r(di;β) at each i ∈ N to study the behavior of trimmed moments, but rather the

unconditional univariate distribution function of r(di;β), which “averages out” all differences

in distribution across observations (there is one common trimming point for all r(di;β)).

Alternatively, if di contains only observed quantities and the distribution of r(di;β) varies

with i ∈ N, we could define Gβ = limn→∞ Gn
β , where Gn

β denotes the distribution function of

r(dUn ;β) and Un is the random variable attaining all values 1, . . . , n with probability 1/n.

Further, Assumption D3 formalizes two things. First, the density function gβ has to be

bounded uniformly in β ∈ B, which prevents distribution Gβ to become or to be arbitrarily

close to a discrete or singular one for some β ∈ B. Second, the density function has to be

positive in a neighborhood of the λ-quantile of Gβ , that is, around the chosen“trimming”point

of the r(di;β) distribution. In a less general setting when the structure of a model is known

and r(di;β) is differentiable, Assumption D3 is usually implied by G ≡ Gβ0 being absolutely

continuous with a density function g ≡ gβ0 positive, bounded, and differentiable around

G−1(λ); see Čı́žek (2006) for nonlinear regression. Let us recall here that differentiability

of the density function g is a standard condition needed for the asymptotic analysis of rank

statistics (e.g., see Hössjer, 1994, and Zinde-Walsh, 2002).

Next, several conditions on the moment function s(d;β) and auxiliary trimming function

r(d;β) have to be specified. The GMTM concept aims to add robust qualities to moment

estimators that lack robustness, but preferably possess other desirable properties such as

asymptotic normality and some kind of optimality. Since an estimator’s objective function

12



typically has to be smooth to guarantee such properties, we will assume that both functions

s(d;β) and r(d;β) are differentiable, at least in a neighborhood U(β0, δ) of β0. Similarly to

the GMM estimator, the asymptotic variance of GMTM will then depend on the expectations

of the moment function and its derivatives (cf. Manski, 1988). Specifically, it will depend on

the variance of the trimmed moment equations (cf. Hansen, 1982, p. 1042),

(3.1)

Vs(λ) = E

[

∞
∑

k=−∞

s(di;β
0)s(di−k;β

0)> · I{r(di;β
0) ≤ G−1(λ)}I{r(di−k ;β0) ≤ G−1(λ)}

]

,

and on the expected value of the derivative of the moment equations with respect to pa-

rameters β, which, by the product rule, consists of the trimmed derivative of the moment

function,

(3.2) Js(λ) = E
[

s′(di;β
0) · I{r(di;β

0) ≤ G−1(λ)}
]

,

and the derivative of the expectation of the trimming indicator in the moment equations,

(3.3) JI(λ) =
∂

∂β>
E

[

s(di;β
0) · I{r(di;β) ≤ G−1

β (λ)}
]

∣

∣

∣

∣

β=β0

.

Assumptions F. Let us assume that there are a positive constant δ > 0, a neighborhood

U(β0, δ), and an integer n0 ∈ N such that the following assumptions hold.

F1: Let s(di;β) and r(di;β) be continuous (uniformly over any compact subset of the

support of (x, y)) in β ∈ B, r(di;β) be differentiable in β on U(β0, δ) almost surely,

and s(di;β) be twice differentiable in β on U(β0, δ) almost surely.

F2: Let {s(di;β)|β ∈ U(β0, δ)}, {s′(di;β)|β ∈ U(β0, δ)}, and {r(di;β)|β ∈ U(β0, δ)}
form VC classes of functions. Moreover, let us assume that the trimmed envelopes

Ek
s (x) = supβ∈U(β0,δ) supn≥n0

‖s(k)(di;β) · I{r(di;β) ≤ r([λn])(β)})‖ have finite rβ-th

moments for k ∈ {0, 1}.
F3: Expectations E supβ∈B |r([λn])(β)|, E supβ∈B supn≥n0

‖s(di;β)·I{r(di;β) ≤ r([λn])(β)}‖,
E supβ∈U(β0,δ) supn≥n0

‖∂s(di;β)/∂βk ·I{r(di;β) ≤ r([λn])(β)}‖, and E supn≥n0

‖∂2s(di;β
0)/∂βk∂βl · I{r(di;β

0) ≤ r([λn])(β
0)}‖ exist and are finite for k, l = 1, . . . , p.

Moreover, assume that Js(λ) and Js(λ) + JI(λ) are full-rank matrices and Vs(λ) is a

non-singular positive definite matrix.
13



F4: Conditional expectation

(3.4) E

{

sup
β∈U(β0,δ)

∥

∥s(di;β
0) · I{r(di;β) ∈ I(β)}

∥

∥

∣

∣

∣

∣

∣

∃β ∈ U(β0, δ) :r(di;β) ∈ I(β)

}

,

where I(β) = {z : |z − G−1(λ)| ≤ |z − r([λn])(β)|}, is uniformly bounded for n ≥ n0.

As already discussed, the differentiability of the moment and trimming functions are standard

assumptions. On the other hand, Assumption F2, which facilitates deriving the convergence

rate of the order statistics in this general framework, limits the class of functions s(d;β),

s′(d;β), and r(d;β) to VC classes (see Powell, 1984, and Van der Vaart and Wellner, 1996,

for a definition). Although limited, they cover many common functions including polynomial,

logarithmic, and exponential functions, their sums, products, maxima and minima, monotonic

transformations, and so on. For example, trimming functions having a single-index form

τk(x>
i β) with a monotonic link function τ and k ∈ N are covered by Assumption F2.

Further, let us discuss Assumptions F2 and F3 concerning the existence of various expec-

tations. First, the expectations Vs(λ), Js(λ), and JI(λ) are trimmed forms of the standard

expectations (variances) that appear in the asymptotic variances of extremum estimators

(e.g., see Pakes and Pollard, 1989, and Čı́žek, 2008a). Next, we assume that the trimmed

derivatives of the moment function s(d;β) have an integrable majorant in some small neigh-

borhood U(β0, δ). This is not very restrictive given that those expectation have to exist at

β0, that is for δ = 0, and the derivatives are continuous. Additionally, we have to assume the

existence of integrable majorants of the trimming function and trimmed moment function

on the whole parametric space B. The identification assumptions presented below however

require that the parametric space B is compact and thus bounded, which makes Assumption

F3 much less strict (alternatively, one can assume that supβ∈B E |r(di;β)|1+ε is finite for some

ε > 0). The assumptions of the bounded parametric space and the existence of the integrable

majorants of r(d;β) and trimmed s(d;β) can be relaxed only if the moment conditions are

linear in the parameters, at least conditionally (cf. Manski, 1988).

Additionally, the proof of
√

n consistency requires an unusual regularity assumption As-

sumption F4, which is one of the (weak) links between the moment function s(d;β) and

auxiliary trimming function r(d;β). This assumption is however not very restrictive and

would usually follow from the fact that the moment conditions have finite expectations, see

Čı́žek (2008a) for a discussion.

Finally, we introduce the identification conditions.
14



Assumptions I.

I1: B is a compact parametric space.

I2: W is a positive definite matrix.

I3: For any n ∈ N, it holds that E
[

s(di;β) · I{r(di;β) ≤ r([λn])(β)}
]

= 0 if and only if

β = β0, and for any δ > 0, that

inf
β∈B\U(β0,δ)

∥

∥E
[

s(di;β) · I{r(di;β) ≤ r([λn])(β)}
]
∥

∥ > 0

While Assumptions I2 and I3 guarantee that the GMTM objective function (2.8) has a

global minimum at β0, Assumption I3 primarily states that the employed trimming does

not invalidate the moment equations under consideration, see (2.4) and (2.6). Note that the

identification Assumption I3 can be relaxed by allowing for more solutions of equation (2.6);

the GMTM estimate β̂n will then converge to one of the solutions rather than to a unique

one.

To close this section, let us note that Assumptions D, F, and I are sufficient to prove the

asymptotic normality of GMTM. If only consistency is required, one can omit all assumptions

concerning the derivatives of the functions s(di;β) and r(di;β) (Assumptions F), Assumption

F2 on VC classes, Assumption F4, and also weaken Assumption D1, since centered s(di;β)

can form an L1+δ-mixingale in the most general case (Andrews, 1988).

3.2. Consistency and asymptotic normality. Let us now present the main asymptotic

results concerning GMTM: its consistency and asymptotic distribution. In all cases, we split

the sample trimmed moment conditions to two parts:

Sλ
n(β) =

1

n

n
∑

i=1

s(di;β) · I{r(di;β) ≤ r([λn])(β)}

=
1

n

n
∑

i=1

s(di;β) ·
[

I{r(di;β) ≤ r([λn])(β)} − I{r(di;β) ≤ G−1
β (λ)}

]

(3.5)

+
1

n

n
∑

i=1

s(di;β) · I{r(di;β) ≤ G−1
β (λ)}.(3.6)

Whereas the first term (3.5) on the right-hand side will be shown to be small because of the

convergence of order statistics to quantiles, r([λn])(β) → G−1
β (λ), the second term (3.6) on the

right-hand side will be dealt with by standard asymptotic tools and shown to converge to

Sλ(β) = E

[

s(di;β) · I{r(di;β) ≤ G−1
β (λ)}

]

.
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First, using the uniform law of large numbers for trimmed sums, we prove the consistency

of the GMTM estimator β̂
(GMTM,λ)
n minimizing (2.8) on the parametric space B.

Theorem 1. Let s(di;β) and r(di;β) be continuous functions with integrable majorants as

specified in Assumptions F1 and F3 and let Assumptions D and I hold. Then the GMTM

estimator β̂
(GMTM,λ)
n is weakly consistent, that is, β̂

(GMTM,λ)
n → β0 in probability as n → +∞.

Proof: See the Appendix. �

Next, the asymptotic distribution of GMTM will be studied. To derive it, one has to study

the behavior of the moment equations Sλ
n(β) in a neighborhood of β0 and to prove their

asymptotic linearity, that is, the linearity of Sλ
n(β0 − n− 1

2 t) − Sλ
n(β0) as a function of t for

n → ∞. Once the
√

n consistency of GMTM is established (Lemma 5 in the Appendix),

the asymptotic linearity of GMTM and the decomposition (3.5)–(3.6) allow us to apply the

central limit theorem, which results in the asymptotic normality of GMTM.

Theorem 2. Let Assumptions D, F, and I hold. Then the GMTM estimator β̂
(GMTM,λ)
n is

asymptotically normal, that is,
√

n
(

β̂
(GMTM,λ)
n − β0

)

F→ N(0, V (λ)) as n → +∞, where

V (λ) =
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1

·Js(λ)>WVs(λ)WJs(λ)·
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1>

.

Proof: See the Appendix. �

Comparing the asymptotic variances of GMTM and GMM, we see that the variance matrix

V (λ) of GMTM depends on JI(λ) in an asymmetric way. Consequently, it is not possible to

find a generally optimal choice of the weighting matrix W as in the case of GMM (Hansen,

1982). Moreover, while the other matrices Vs(λ) and Js(λ) needed to evaluate V (λ) for an

estimate β̂n can be estimated by the corresponding sample means, for example by

(3.7) Vs(λ) =
1

n

n
∑

i=1

s(di; β̂n)s(di; β̂n)> · I{r(di; β̂n) ≤ r([λn])(β̂n)}

and

(3.8) Js(λ) =
1

n

n
∑

i=1

s′(di; β̂n) · I{r(di; β̂n) ≤ r([λn])(β̂n)}

for independent observations (see Hansen, 1982, and Newey and West, 1987, for a general

discussion of the Vs(λ) estimation), the matrix JI(λ) defined in (3.3) is difficult to estimate,

which limits the use of the formula for V (λ) derived in Theorem 2. To facilitate the variance

estimation in typical situations such as the IV estimation discussed in Section 2.2, we impose
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additional restrictions on the random variables entering the trimming function, for example,

that the dependent variable conditionally on the explanatory variables is continuously dis-

tributed, and derive a practically relevant expression for JI(λ). Without loss of generality,

we will also assume that the trimming function r(di;β) is a square of some function h(di;β)

because r(di;β), measuring a norm of random variables, is typically non-negative and any

monotonic transformation of r(di;β) does not affect ordering of r(d1;β), . . . , r(dn;β).

Lemma 3. Consider the assumptions of Theorem 2 and let us assume that r(di, β) =

h2(di;β) = {h1(di) + h2(vi;β)}2
, where vi denotes a subset of variables di such that h1(di)|vi

is absolutely continuously distributed with density fvi
and independent of parameters β. The

density function fvi
is assumed to be uniformly bounded and differentiable on U(

√

G−1(λ), δf )

for some δf > 0. Additionally, we normalize h2(vi;β
0) = 0 and assume that h2(vi;β) is

twice differentiable in β on U(β0, δ), h
′′

2 (vi;β
0) = 0, and possesses derivatives with uniformly

bounded expectations, supβ∈U(β0,δ) E |h(k)
2 (vi;β)|η < Kh ∈ R for k = 1, 2 and η > 1. The final

assumption is

(3.9) E

{

s(di;β
0)
∣

∣ sgn h1(di), |h1(di)| =
√

G−1(λ), vi

}

= sgn h1(di) · s̃(vi)

and ‖s(di;β
0)−sgn h1(di) · s̃(vi)‖ ≤ d{|h1(di)|−

√

G−1(λ)}s̄(vi), where d is a locally Lipschitz

norm on R and s̄(vi) has the finite first moment. Then it holds that

(3.10) JI(λ) = −E
v

{

s̃(vi)h
′

2(vi;β
0)> ·

[

fvi

(

−
√

G−1(λ)
)

+ fvi

(

√

G−1(λ)
)]}

.

Proof: See the Appendix. �

Lemma 3 covers, for example, the linear IV regression and TIV estimators introduced in

Section 2.2: TIV-TE(SZ) corresponds to

(3.11) r(di;β) = (yi − x>
i β)2 = {[yi − x>

i β0] + [x>
i (β0 − β)]}2 = {εi + x>

i (β0 − β)}2

and TIV-TETZ corresponds to

r(di;β) = ‖(yi −x>
i β)zi‖2 = {[yi −x>

i β0]+ [x>
i (β0−β)]}2‖zi‖2 = {εi‖zi‖+x>

i (β0−β)‖zi‖}2.

To discuss the assumptions of Lemma 3, let us consider the TIV-TE estimator, see (3.11):

vi = (x>
i , z>i )>, s(di;β

0) = (yi − x>
i β0)zi = εizi, h1(di) = yi − x>

i β0 = εi, h2(vi;β) =

x>
i (β0−β), h

′′

2(vi;β
0) = 0, and the density function fvi

describes the conditional distribution

εi|vi. Assumption (3.9) just means that s(di;β
0) = εizi depends on h1(di) = εi only by
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means of sgn εi once we fix the value of trimming function at β0: r(di;β
0) = h2

1(di) = ε2
i =

G−1(λ). This is however trivially satisfied in this case and s̃(vi) =
√

G−1(λ)zi. Consequently,

|s(di;β
0) − sgn h1(di) · s̃(vi)| ≤ ||εi| −

√

G−1(λ)|‖zi‖ and the existence of assumed moments

follows from Assumptions D1 and F3. Under these assumptions and for εi being identically

distributed with a density function f for simplicity, Lemma 3 implies that

JI(λ) =
√

G−1(λ)
{

f
[

−
√

G−1(λ)
]

+ f
[

√

G−1(λ)
]}

· E(zix
>
i ),

where G denotes the distribution of ε2
i . The matrix JI(λ) can be estimated in this case using

any consistent nonparametric density estimator for the density f at points ±
√

G−1(λ), which

are in turn consistently estimated by ±
√

r([λn])(β̂
(GMTM,λ)
n ) (Čı́žek, 2008a, Lemma A.2).

In a general case, the estimation of the GMTM asymptotic variance V (λ) has to be done

by bootstrap. Theoretically, bootstrap can be used for GMTM in the same situations as

for the original GMM estimator. However to preserve the robust properties of GMTM

also in the case of variance estimation, a weighted bootstrap has to be used to prevent

bootstrap samples containing an improportionally large share of contaminated observations

(Salibian-Barrera and Zamar, 2002) unless a parametric bootstrap can be employed.

3.3. Test of overidentifying conditions. Similarly to the seminal paper by Hansen (1982),

we also design a test for the validity of overidentifying trimmed conditions if the number

of moment restrictions M is greater than the number p of the estimated parameters β.

Specifically, we consider the statistics of the form Tn = nSλ
n(β̂n)>Θ−1

n Sλ
n(β̂n) and find a

matrix Θn such that Tn asymptotically follows the χ2
M−p distribution with M − p degrees of

freedom. Contrary to the standard GMM case, the matrix Θn will require the computation of

all elements of the GMTM variance matrix because there is no optimal choice of the weighting

matrix W resulting in a simple form of V (λ) and Θn. On the other hand, let us note that

the proposed test will be robust to outliers and atypical values of instruments because Θn

will depend only Vs(λ), Js(λ), JI(λ), and W . Hence, the test statistics Tn is related to

data only by means of the trimmed moment conditions Sλ
n and matrices Vs(λ), Js(λ), JI(λ),

that is, only via quantities containing the trimming indicators I{r(di;β) ≤ r([λn])(β)} and

I{r(di;β) ≤ G−1
β (λ)}.

Theorem 4. Under the assumptions of Theorem 2 and M > p ≥ 1, let

Π(λ) = {Js(λ) + JI(λ)}
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1

Js(λ)>W

18



and let Π̂n(λ) and V̂sn(λ) be consistent estimates of Π(λ) and Vs(λ), respectively. Then the

test statistics Tn,

Tn = nSλ
n(β̂n)>

{

[I − Π̂n(λ)]V̂sn(λ)[I − Π̂n(λ)]>
}−

Sλ
n(β̂n),

converges in distribution to the χ2 distribution with M − p degrees of freedom, Tn ∼ χ2
M−p,

where the notation A− means the Moore-Penrose generalized inverse of matrix A.

Proof: See the Appendix. �

Theorem 4 is straightforward to apply if all matrices Js(λ), JI(λ), and Vs(λ) can be directly

estimated, for example, using Lemma 3. Otherwise, the variance matrix V (λ) of GMTM is

estimated by some resampling method and Js(λ) + JI(λ) has to be “reconstructed” from the

knowledge of estimates V̂n(λ), Ĵs(λ), and V̂s(λ). In particular, if A1/2 denotes the square

root of a positive semidefinite matrix A, one can employ the variance formula derived in

Theorem 2 and show that

(3.12) Js(λ)>W{Js(λ) + JI(λ)} = [Js(λ)>WVs(λ)WJs(λ)]1/2V −1/2(λ).

(The square roots of matrices can be obtained by the Choleski decomposition, for instance.)

If Js(λ) + JI(λ) itself is needed, one can solve the joint system of linear equations (3.12)

obtained for at least dM/pe different values of W (such that a sufficient number of equations

for Js(λ) + JI(λ) is generated).

4. Monte Carlo Simulations

In this section, we study and compare performance of some existing GMM and proposed

GMTM estimators by means of simulations. We will first discuss the models and estimators

used in the comparison (Section 4.1). Later, we compare all methods using data with and

without aberrant observations (Sections 4.2 and 4.3).

4.1. Simulated models and estimation methods. Various existing and proposed esti-

mators will be compared in the context of the linear IV model. Let us first discuss the

estimation methods compared in simulations. We compare the standard estimators including

LS and GMM with the methods proposed in Section 2.2: TIV-TE, TIV-TESZ, and TIV-

TETZ both with the fixed trimming λ = 0.55 and the data-dependent amount of trimming

λ̂n using N(0, σ2) as the reference distribution, see Section 2.3; the choice of trimming is
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indicated in brackets, for example, TIV-TE(0.55). Because we study here the robust prop-

erties of GMM estimators, we also include two median IV estimators: the Med-IV estimator

by Honore and Hu (2004) and the instrumental variable quantile estimator (IV-Quant) intro-

duced by Chernozhukov and Hansen (2008) at τ = 0.5 quantile. Finally, the robust properties

of Med-IV could benefit from the standardization of instruments introduced for TIV-TESZ

in Section 2.2, and therefore, we also propose and use Med-IV using instruments normalized

to have a unit Euclidean norm (IV-Quant cannot benefit from such a transformation); this

method is referred to as Med-IV-SZ. Please note that all presented estimates are one-step

GMM estimates using the identity weighting matrix W = I because: (i) the two-stage least

squares weighting matrix converges to the identity matrix in our setup; (ii) this choice im-

proves robustness of all methods (even standard ones) in simulations as weights cannot be

influenced by atypical values of instruments; and (iii) the two-step GMM estimates with esti-

mated optimal weighting matrix Ŵ do not improve estimation results except for two models

containing heteroscedasticity, where this improvement is rather limited (at most 7% decrease

in the median squared error) and does not influence the qualitative results of the study.

All methods are compared using the linear regression model with an endogenous variable.

As the results do not qualitatively depend on the number of included variables, we use here

the following simple model:

yi = 1 + x1i − x2i + εi,(4.1)

x2i = (1 + z1i + z2i)/
√

2 + νi,(4.2)

where yi is the dependent variable and x2i represents the endogenous variable because error

terms εi ∼ F and νi ∼ N(0, 1) are correlated, cor(εi, νi) = ρ = 0.5 (the results are insensitive

to the value of ρ). The distribution function F of εi can be normal N(0, σ2
ε ) with a constant

variance or variance depending of other variables (heteroscedasticity), Student Std(d) with d

degrees of freedom, or double exponential DExp(λ) with a rate λ. The remaining variables

x1i ∼ N(0, 1) and z1i, zi2 ∼ N(0, 1) are exogenous, independent of each other, and represent

the exogenous and instrumental variables, respectively. Furthermore, data are contaminated

by erroneous observations in some cases. Then α denotes the fraction of sample being con-

taminated. For the corresponding [αn] observations, an additional error term εi following the

uniform distribution on (−30, 30), εi ∼ U(−30, 30), is added to yi: yi = 1+x1i −x2i + εi + εi.

(Note that this definition does not invalidate the moment conditions used by standard IV

20



Table 1. The MSE of estimates for the linear IV regression model with nor-
mally distributed errors, εi ∼ N(0, 1), and sample sizes n = 50, 100, 200, and
400.

MSE Sample size
Estimator n = 50 n = 100 n = 200 n = 400
GMM 0.056 0.025 0.013 0.007

IV-Quant 0.120 0.053 0.028 0.014
Med-IV 0.094 0.040 0.023 0.012
Med-IV-SZ 0.106 0.044 0.025 0.011

TIV-TE(0.55) 0.343 0.174 0.098 0.055

TIV-TE(λ̂n) 0.068 0.028 0.016 0.007
TIV-TESZ(0.55) 0.325 0.183 0.105 0.054

TIV-TESZ(λ̂n) 0.073 0.030 0.016 0.008
TIV-TETZ(0.55) 0.361 0.177 0.118 0.071

TIV-TETZ(λ̂n) 0.073 0.029 0.015 0.008

estimators yet.) In some setups, the values of explanatory or instrumental variables x1i, x2i,

z1i, or z2i are additionally shifted by ∆ = 10 for contaminated observations so that the model

(4.1)–(4.2) does not hold anymore for these observations. This is referred to as contamination

with leverage points in x1i, x2i, z1i, or z2i, respectively.

The results presented in the following sections were obtained for samples sizes n = 50, . . . , 400

and are based on 1000 simulated samples. To summarize the estimation results, we use the

median of squared errors (MSE).

4.2. Clean data. The first discussed experiment concerns the model (4.1)–(4.2) using nor-

mally distributed errors εi ∼ N(0, 1) and no contamination. Results for sample sizes n =

50, 100, 200, and 400 are summarized in Table 1. First of all, all estimators are consistent

in this setting. Comparing various quantile IV estimators, they all perform similarly with

Med-IV being the best one and they exhibit approximately two times higher MSEs than the

standard GMM estimator. Looking at the trimmed estimators TIV with the fixed amount

of trimming λ = 0.55, they perform poorly in terms of MSEs since they neglect almost half

of all observations. On the other hand, all trimmed estimators with the adaptive choice of

trimming λ̂n outperform the quantile IV estimators and can match the standard GMM at

the large sample size n = 400. Finally, one can observe that the qualitative results, that is,

the ordering of methods by their MSEs, do not significantly change for different samples. For

the sake of brevity, we therefore restrict to n = 200 in what follows.

Next, let us consider the IV model with other error distributions such as normal, Student,

and double exponential, and additionally, with heteroscedastic normally distributed errors.
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Table 2. The MSE of estimates for the linear IV regression model with errors
following the Gaussian, Student, and double exponential distributions and
sample size n = 200. The random variable u follows the uniform distribution,
u ∼ U(0.25, 4), and wz = z1 + z2.

MSE Distribution of εi

Estimator N(0, 1) N(0, eu) N(0, ewz ) Std(5) DExp(1)
GMM 0.013 0.166 0.034 0.021 0.027

IV-Quant 0.028 0.178 0.019 0.030 0.022
Med-IV 0.023 0.130 0.015 0.022 0.017
Med-IV-SZ 0.025 0.151 0.016 0.025 0.018

TIV-TE(0.55) 0.098 0.313 0.053 0.068 0.041

TIV-TE(λ̂n) 0.016 0.165 0.025 0.019 0.025
TIV-TESZ(0.55) 0.105 0.356 0.060 0.076 0.045

TIV-TESZ(λ̂n) 0.016 0.168 0.024 0.020 0.027
TIV-TETZ(0.55) 0.118 0.416 0.064 0.084 0.054

TIV-TETZ(λ̂n) 0.015 0.166 0.018 0.020 0.025

The estimation results for n = 200 are presented in Table 2. The first three columns compare

the performance of all estimators for normally distributed homoscedastic and heteroscedastic

errors. The presence of heteroscedasticity leads to a worse results for GMM: the Med-IV(-SZ)

method now exhibits the smallest MSE. Although the TIV estimates are usually worse than

Med-IV in this scenario, the TIV estimators using adaptively chosen trimming match (the

second column) or outperform (the third column) the standard GMM estimator. Further-

more, comparing all methods under the Student distribution (the fourth column), all TIV

variants with adaptively chosen trimming are slightly better than the GMM and quantile

IV estimators. The role reverses for the errors following the double exponential distribution

(the fifth column), where the quantile IV estimators outperform GMM and TIV estimators

in terms of MSE. Additionally, notice that both the absolute and relative differences between

MSEs of the TIV estimates with the fixed and adaptive trimming are quite smaller in the

last two cases than in the case of normal errors.

4.3. Contaminated data. We will now consider contaminated data with contamination

levels α = 0.10, 0.25, and 0.40, where there are either no leverage points (Table 3) or lever-

age points in the direction of the endogenous explanatory variable x2 (Table 3), exogenous

explanatory variable x1 (Table 4), or instrumental variables z1 and z2 (Table 4).

Let us first discuss the simulation results summarized in Table 3. If there are no leverage

points, the GMM moment conditions are correctly specified for all observations from the

model (4.1)–(4.2) and only some observations exhibit a very large variance. All estimates are
22



Table 3. The MSE of estimates for contaminated data originating from the
linear IV regression model with Gaussian errors and sample size n = 200.
Contamination levels are α = 0.10, 0.25, and 0.40 with no leverage points or
leverage in the endogenous variable x2.

MSE Contamination, no leverage Contamination, leverage in x2

Estimator α = 0.10 α = 0.25 α = 0.40 α = 0.10 α = 0.25 α = 0.40
GMM 0.356 0.969 1.617 0.991 8.347 27.68

IV-Quant 0.034 0.047 0.076 0.037 0.071 0.170
Med-IV 0.024 0.040 0.060 0.032 0.060 0.247
Med-IV-SZ 0.027 0.041 0.066 0.031 0.067 0.234

TIV-TE(0.55) 0.072 0.059 0.042 0.087 0.058 0.044

TIV-TE(λ̂n) 0.016 0.021 0.047 0.018 0.023 0.058
TIV-TESZ(0.55) 0.080 0.070 0.042 0.093 0.060 0.042

TIV-TESZ(λ̂n) 0.018 0.023 0.051 0.018 0.025 0.058
TIV-TETZ(0.55) 0.095 0.072 0.044 0.103 0.075 0.046

TIV-TETZ(λ̂n) 0.017 0.021 0.046 0.018 0.025 0.051

thus consistent, but high variability of observations with errors εi +U(−30, 30) leads to large

MSEs of GMM estimates. The MSEs of GMM obviously increase with α, but unreported

results confirm that they decrease as the sample size n grows. All other estimates exhibit

small MSEs, where TIV with fixed trimming is worst unless α is very high, TIV with the

data-dependent trimming is best unless α = 0.40, and the quantile IV estimates have about

1.5 larger MSEs than the best TIV estimates.

If we simulate data from model (4.1)–(4.2) and the values of the endogenous variable

are shifted for contaminated data points, the model no longer holds for the contaminated

data. The GMM estimates then exhibit a large bias and MSE, which increase with the level

of contamination α, but do not decrease with a sample size (as unreported results show).

The quantile IV estimators are influenced by contamination only to a small extent since the

leverage does not occurs in any variable used as an instrument. An exception is the case

with the α = 0.40 level of contamination as the levels α above 0.30 are generally beyond the

breakdown capabilities of the L1 estimators (cf. He et al. 1990). The smallest MSEs can be

attributed to TIV estimators, all of which outperform quantile IV estimators for α ≥ 0.25

(for α = 0.10, only TIV with the data-dependent triming are better than the quantile IV

estimators). Similarly to the previous simulation, the TIV estimators with fixed trimming

λ = 0.55 are worse than those with the adaptive trimming λ̂n unless α = 0.40. The reason is

that there is practically no benefit of the adaptive choice of trimming for α = 0.40 because

the initial estimator with fixed trimming excludes 100(1 − λ) = 45 percent of observations

from the GMTM objective function, which is almost the optimal amount of trimming.
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Table 4. The MSE of estimates for contaminated data originating from the
linear IV regression model with Gaussian errors and sample size n = 200. Con-
tamination levels are α = 0.10, 0.25, and 0.40 with leverage in the exogenous
variable x1 and in instrumental variables z1 and z2.

MSE Contamination, leverage in x1 Contamination, leverage in z1, z2

Estimator α = 0.10 α = 0.25 α = 0.40 α = 0.10 α = 0.25 α = 0.40
GMM 1.014 1.471 1.577 3.483 4.178 3.046

IV-Quant 0.181 0.510 0.794 7.301 5.717 4.645
Med-IV 0.164 0.470 0.738 2.453 52.12 56.31
Med-IV-SZ 0.036 0.090 0.216 0.030 0.047 0.092

TIV-TE(0.55) 0.094 0.116 0.134 0.100 0.156 0.605

TIV-TE(λ̂n) 0.029 0.122 0.455 0.053 0.958 4.715
TIV-TESZ(0.55) 0.093 0.072 0.047 0.079 0.070 0.058

TIV-TESZ(λ̂n) 0.018 0.026 0.039 0.016 0.028 0.073
TIV-TETZ(0.55) 0.095 0.072 0.033 0.091 0.079 0.035

TIV-TETZ(λ̂n) 0.024 0.081 0.287 0.031 0.252 0.526

Next, we will study contaminated data with leverage in the space of exogenous variable

x1, see Table 4. In this case, the variables with the values shifted by ∆ enter both the

regression residuals and the set of instruments. The MSEs of GMM are large even for 10%

contamination and increase with an increasing level α of contamination. Additionally, the

IV-Quant and Med-IV are substantially affected by any level of contamination as well (though

less than GMM) given that many robust estimators have MSEs below 0.1 in all experiments

with contaminated normal data. The only exception to this is the proposed Med-IV-SZ

estimator, which normalizes all instruments and is thus insensitive to leverage points at least

for α ≤ 0.25. Considering TIV-TE, which is not protected anyhow against atypical values

of instruments similarly to Med-IV, we see its MSE increase significantly with α, especially

for the adaptive choice of trimming and α = 0.40, where it is no longer reliable. On the

other hand, the TIV variants that protect against atypical values of instruments, TIV-TESZ

and TIV-TETZ, exhibit the same behavior as in previous experiments: the most stable and

smallest MSEs of all methods irrespective of the level of contamination. The only exception

to the rule is the TIV-TETZ method with the adaptive trimming for α = 0.40 probably

because the data-dependent choice of trimming proposed in Section 2.3 is designed only with

the residual-trimming in mind, not with trimming by the moment values.

Finally, contaminated data with leverage in the space of instrumental variables z1 and

z2 are considered (which technically satisfy the moment conditions for model (4.1)–(4.2)).

The results summarized in Table 4 are structurally similar to those using leverage in x1,

but are more pronounced since more instrumental variables are affected while the residuals
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are not affected in the case of consistent (robust) estimators. Hence, GMM, IV-Quant,

and Med-IV show very large MSEs and only the proposed Med-IV-SZ is not influenced by

contamination. Similarly, TIV-TE protecting only against large residuals is substantially

influenced by contamination, whereas TIV-TESZ with both trimmings and TIV-TETZ with

fixed trimming provide stable estimates with small MSEs. TIV-TETZ with the adaptive

trimming is biased by contamination because of the adaptive choice based on residuals only.

Summarizing all results for the IV regression, there is only one method which always has

the smallest or close to the smallest MSE and which is not influenced by contaminated data

in any considered setup: TIV-TESZ with the adaptive choice of trimming. It matches or

outperforms GMM for non-contaminated data, it is not significantly influenced by any com-

bination of large residuals and large values of regression variables, and it always outperforms

Med-IV-SZ in contaminated samples. Another candidate and successful method is TIV-

TETZ, which represents a more generally applicable method than TIV-TESZ or Med-IV-SZ

(see Section 2.2) because it does not rely on the normalization of instruments, which can

be effectively applied only in linear models. TIV-TETZ would however require a different

procedure to achieve good results both in clean and contaminated data. This could be a

different adaptive-trimming procedure or a one-step M-estimator combining TIV-TETZ and

the robust GMM of Ronchetti and Trojani (2001).

5. Conclusion

Complementing locally robust GMM methods by Ronchetti and Trojani (2001) and oth-

ers, we proposed a globally robust generalized method of trimmed moments, which extends

the applicability of high breakdown-point methods to a wide range of econometric models,

including time series, panel data, and limited dependent variable models. We derived the

asymptotic distribution of GMTM as well as an analogy of the Sargan test of overidentify-

ing restrictions. Moreover, we also show in simulations that the data-dependent choice of

trimming can make GMTM performing as well as the standard GMM estimator in a variety

of situations, while being preferable for its robust properties. An alternative approach to

efficient robust GMM estimation could combine GMTM as a starting estimator with one

iteration step of the robust M-estimation-based GMM by Ronchetti and Trojani (2001).

On the other hand, we discussed only the most basic form of trimmed estimation, where

observations are either included in or excluded from the GMTM objective function. Nev-

ertheless, various weighted trimmed estimators as in Vı́̌sek (2006) and Čı́žek (2007a) are
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straightforward to apply. Furthermore, we argued that the breakdown properties will be

analogous to existing results concerning existing trimmed estimators such as LTS, for in-

stance, which are typically studied and applied in the context of location or linear regression

models. Although this applies in simple linear regression models, possible applications of

GMTM can involve rather complex (non)linear models under dependency. Hence, the robust

properties of GMTM in such models have to be further studied.

Finally, we did not address and left for further research recent developments of GMM and

related methods that address, for example, improving finite-sample performance (e.g., the

generalized empirical likelihood methods, see Newey and Smith, 2004) or inference in the

presence of weak identification (e.g., Stock and Wright, 2000; Chao and Swanson, 2005).

Appendix

Here we present the proofs of lemmas and theorems presented in the paper. Addi-

tional notation is used: the moment and trimming functions are written as si(β) = s(di;β)

and ri(β) = r(di;β), respectively; the sample trimmed moment conditions are denoted

Sλ
n(β) = n−1

∑n
i=1 s(di;β) · I{r(di;β) ≤ r([λn])(β)} and their asymptotic counterpart is

Sλ(β) = E[s(di;β) · I{r(di;β) ≤ G−1
β (λ)}]. Similarly, the limit of the GMTM objective

function QW,λ
n (β) = Sλ

n(β)>WSλ
n(β) is denoted QW,λ(β) = Sλ(β)>WSλ(β). Finally, since we

extensively study and use the indicators I{r(di;β) ≤ r([λn])(β)}, I{r(di;β) ≤ G−1
β (λ)}, and

their differences, we define ιλin(β) = I{r(di;β) ≤ r([λn])(β)}, νλ
i (β) = I{r(di;β) ≤ G−1

β (λ)},
and

δλ
in(β) = ιλin(β) − ιλin(β0) = I{r(di;β) ≤ r([λn])(β)} − I{r(di;β

0) ≤ r([λn])(β
0)}.

Then Sλ
n(β) = n−1

∑n
i=1 s(di;β) · ιλin(β) and Sλ(β) = E{s(di;β) · νλ

i (β)}. Note that Sλ
n and

Sλ correspond to the symbols S
′

nn = S
′

n/n and S
′

in the notation of Čı́žek (2008a) whose

results for trimmed sums are used in the proofs.

We first present the proof of the consistency of GMTM.

Proof of Theorem 1: This is a standard proof of consistency based on the uniform law

of large numbers and the convergence of the order statistics r([λn])(β) to the corresponding
26



quantile G−1
β (λ). By definition, P

(

QW,λ
n

(

β̂
(GMTM,λ)
n

)

< QW,λ
n

(

β0
)

)

= 1. For any δ > 0,

1 = P
(

QW,λ
n

(

β̂(GMTM,λ)
n

)

< QW,λ
n

(

β0
)

)

= P
(

QW,λ
n

(

β̂(GMTM,λ)
n

)

< QW,λ
n

(

β0
)

and β̂(GMTM,λ)
n ∈ U(β0, δ)

)

+ P
(

QW,λ
n

(

β̂(GMTM,λ)
n

)

< QW,λ
n

(

β0
)

and β̂(GMTM,λ)
n ∈ B\U(β0, δ)

)

≤ P
(

β̂(GMTM,λ)
n ∈ U(β0, δ)

)

+ P

(

inf
β∈B\U(β0,δ)

QW,λ
n (β) < QW,λ

n

(

β0
)

)

.

Hence, P
(

infβ∈B\U(β0,δ) QW,λ
n (β) < QW,λ

n

(

β0
)

)

→ 0 as n → +∞ implies P (β̂
(GMTM,λ)
n ∈

U(β0, δ)) → 1 as n → +∞, that is, the consistency of β̂
(GMTM,λ)
n , because δ is an arbitrary

positive number. To verify P
(

infβ∈B\U(β0,δ) QW,λ
n (β) < QW,λ

n

(

β0
)

)

→ 0 note that

P

(

inf
β∈B\U(β0,δ)

[

QW,λ
n (β) − QW,λ(β) + QW,λ(β)

]

< QW,λ
n

(

β0
)

)

≤ P

(

inf
β∈B\U(β0,δ)

[

QW,λ
n (β) − QW,λ(β)

]

< QW,λ
n (β0) − inf

β∈B\U(β0,δ)
QW,λ(β)

)

≤ P

(

sup
β∈B

∣

∣

∣
QW,λ

n (β) − QW,λ(β)
∣

∣

∣
> inf

β∈B\U(β0,δ)
QW,λ(β) − QW,λ

n (β0)

)

≤ P

(

2 sup
β∈B

∣

∣

∣
QW,λ

n (β) − QW,λ(β)
∣

∣

∣
> inf

β∈B\U(β0,δ)
QW,λ(β) − QW,λ(β0)

)

.

Since Assumptions I2 and I3 imply for any δ > 0 that there is α > 0 such that infβ∈B\U(β0,δ)

QW,λ(β)−QW,λ(β0) > α, it is enough to show that P
(

supβ∈B

∣

∣

∣
QW,λ

n (β) − QW,λ(β)
∣

∣

∣
> α

)

→
0 as n → +∞ for all α > 0.

To prove this, let us first note that it holds for the trimmed moment conditions

Sλ
n (β) − Sλ(β) =

1

n

n
∑

i=1

si(β)
{

ιλin(β) − νλ
i (β)

}

(.1)

+
1

n

n
∑

i=1

{

si(β)νλ
i (β) − E

[

si(β)νλ
i (β)

]}

.(.2)

Using Assumptions D and F, we can apply Čı́žek (2008a, Corollary A.6) to the term (.1)

and Čı́žek (2008a, Lemma A.1) to the term (.2) to show that both terms are asymptotically

negligible in probability, that is, for n → +∞ and any α > 0

(.3) P

(

sup
β∈B

∣

∣

∣
Sλ

n (β) − Sλ(β)
∣

∣

∣
> α

)

→ 0.
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Next, the objective function of GMTM is a quadratic form t>Wt in moment conditions

t = Sλ
n(β) (cf. QW,λ

n (β) = Sλ
n(β)>WSλ

n(β)). Moreover, the function t>Wt is locally Lipschitz:

for ‖t1‖ ≤ K, ‖t2‖ ≤ K, and K > 0, it holds that (t1, t2 ∈ R
M and W is symmetric)

|t>1 Wt1 − t>2 Wt2| = |(t1 − t2)
>W (t1 + t2)| ≤ 2KW |t1 − t2|.

Because Sλ
n(β) → Sλ(β) in probability uniformly on B by (.3), Sλ(β) is continuous on

compact B by Assumptions F1 and I1, and thus Sλ(β) is bounded, we can find for any ε > 0

some n0 ∈ N and K > supβ∈B Sλ(β) such that P (|Sλ
n(β)| > K) < ε/2 and P (2KW supβ∈B

∣

∣Sλ
n (β) − Sλ(β)

∣

∣ > α) < ε/2 for all n ≥ n0. Thus,

P

(

sup
β∈B

∣

∣

∣
QW,λ

n (β) − QW,λ(β)
∣

∣

∣
> α

)

= P

(

sup
β∈B

∣

∣

∣
Sλ

n (β)> WSλ
n(β) − Sλ(β)>WSλ(β)

∣

∣

∣
> α

)

≤ P

(

2KW sup
β∈B

∣

∣

∣
Sλ

n(β) − Sλ(β)
∣

∣

∣
> α

)

+ P (|Sλ
n(β)| > K)

≤ ε/2 + ε/2 = ε,

which concludes the proof as ε > 0 can be arbitrarily small. �

After proving the consistency of GMTM, we aim to derive its asymptotic distribution

using the asymptotic linearity of moment conditions. To do so, we have to show first that

the GMTM estimates converge at rate n− 1

2 .

Lemma 5. Let Assumptions D, F, and I hold. Then β̂
(GMTM,λ)
n is

√
n-consistent, that is,

√
n
(

β̂
(GMTM,λ)
n − β0

)

= Op(1) as n → +∞.

Proof : We already know that β̂
(GMTM,λ)
n is consistent and P

(

‖β̂(GMTM,λ)
n − β0‖ > ρ

)

→ 0

as n → +∞ for any ρ > 0 (Theorem 1). Moreover, we showed in the proof of Theorem 1

that Sλ
n(β) → Sλ(β) uniformly in probability as n → ∞. The same argument can be now

used also for the derivatives of the moment conditions. Since si(β) is twice differentiable in

β ∈ U(β0, δ) and

(.4)
∂kSλ

n(β)

∂βk
=

1

n

n
∑

i=1

∂ksi(β)

∂βk
ιλin(β)
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almost surely for k ∈ {0, 1, 2}, see Čı́žek (2008a, Lemma 2.1), we can apply the decomposition

(.1)–(.2) used for Sλ
n(β) in the proof of Theorem 1 to derivatives ∂kSλ

n(β)/∂βk:

∂kSλ
n(β)

∂βk
− E

{

∂ksi(β)

∂βk
νλ

i (β)

}

=
1

n

n
∑

i=1

∂ksi(β)

∂βk

{

ιλin(β) − νλ
i (β)

}

(.5)

+
1

n

n
∑

i=1

{

∂ksi(β)

∂βk
νλ

i (β) − E

[

∂ksi(β)

∂βk
νλ

i (β)

]}

.(.6)

Subsequently, we again apply Čı́žek (2008a, Corollary A.6) and Čı́žek (2008a, Lemma A.1)

to these terms to show that, as n → +∞, it holds uniformly on U(β0, δ) in probability

(.7)
∂kSλ

n(β)

∂βk
→ E

{

∂ksi(β)

∂βk
νλ

i (β)

}

= Sλ,k(β).

Because the GMTM objective function QW,λ
n (β) is a quadratic form in Sλ

n(β) and U(β0, δ)

is bounded, the uniform convergence of QW,λ
n (β) to QW,λ(β) follows. The same applies to the

derivatives of QW,λ
n (β), which are quadratic forms in ∂kSλ

n(β)/∂βk, k ∈ {0, 1, 2}, and where

we use notation QW,λ,k(β) = p limn→∞ ∂kQW,λ
n (β)/∂βk for k ∈ {1, 2}. Specifically, denoting

Hλ
jn(β) = ∂2Sλ

jn(β)/∂β∂β> and Πλ
jn(β) = WSλ

jn(β), j = 1, . . . ,M ,

∂2QW,λ
n (β0)

∂β∂β>
= 2

∂Sλ
n(β0)

∂β>

>

W
∂Sλ

n(β0)

∂β>
+

M
∑

j=1

Πλ
jn(β0)Hλ

jn(β0)

see Abadir and Magnus (2005, p. 382), and we can conclude that

∂2QW,λ
n (β0)

∂β∂β>
→ 2E

{

s
′

i(β
0)νλ

i (β0)
}>

W
{

s
′

i(β
0)νλ

i (β0)
}

= Js(λ)>WJs(λ)

because Hλ
jn(β0) → E[∂2Sλ

jn(β0)/∂β∂β>] is bounded by Assumption F3 and Πλ
jn(β0) →

WSλ
j (β0) = 0 by Assumption I3 (Sλ

j (β) denotes the jth component of vector Sλ(β)).

Consequently, ∂2QW,λ
n (β0)/∂β∂β> converges to a positive definite matrix QW,λ,2(β0) =

Js(λ)>WJs(λ) > 0 by Assumption F3 and I2, and therefore, there exists a constant ρ, δ >

ρ > 0, such that
∥

∥QW,λ,1(β)
∥

∥ ≥ C
∥

∥β − β0
∥

∥ for all β ∈ U(β0, ρ) and some C > 0. Due

to the consistency of β̂
(GMTM,λ)
n , this implies that for any ε > 0 there is some n0 ∈ N

such that β̂
(GMTM,λ)
n ∈ U(β0, ρ) and subsequently ‖QW,λ,1(β̂

(GMTM,λ)
n )‖ ≥ C‖β̂(GMTM,λ)

n −
β0‖ for all n > n0 with probability at least 1 − ε. Therefore, it is sufficient to show that
√

n‖QW,λ,1(β̂
(GMTM,λ)
n )‖ = Op(1) to prove the lemma.
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Since QW,λ,1(β) = 2Sλ,1(β)>WSλ(β), we can analyze

√
nSλ,1(β̂(GMTM,λ)

n )>WSλ(β̂(GMTM,λ)
n )(.8)

=
√

nSλ,1(β̂(GMTM,λ)
n )>W

{

Sλ(β̂(GMTM,λ)
n ) − Sλ

n(β̂(GMTM,λ)
n )

}

(.9)

+
√

n

{

Sλ,1(β̂(GMTM,λ)
n ) − ∂Sλ

n(β̂
(GMTM,λ)
n )

∂β>

}>

WSλ
n(β̂(GMTM,λ)

n )(.10)

(recall that the first-order conditions imply ∂Sλ
n(β̂

(GMTM,λ)
n )/∂β>WSλ

n(β̂
(GMTM,λ)
n ) = 0). We

now verify that both terms on the right hand side of (.8)–(.10) are bounded in probability.

Since the verification follows exactly the same steps for both terms, we will do it just for

(.10). First, β̂
(GMTM,λ)
n ∈ U(β0, ρ) with probability higher than 1 − ε for n ≥ n0. As we

have shown that Sλ
n(β) → Sλ(β) in probability uniformly on U(β0, δ), |Sλ

n(β̂
(GMTM,λ)
n )| ≤

supβ∈U(β0,ρ) |Sλ
n(β)| is bounded in probability by Assumption F3. The other part of the

expression can be bounded as follows. It holds with an arbirtarily high probability that

√
n

∣

∣

∣

∣

∣

Sλ,1(β̂(GMTM,λ)
n ) − ∂Sλ

n(β̂
(GMTM,λ)
n )

∂β>

∣

∣

∣

∣

∣

≤ √
n sup

β∈U(β0,ρ)

∣

∣

∣

∣

Sλ,1(β) − ∂Sλ
n(β)

∂β>

∣

∣

∣

∣

≤

≤ 1√
n

sup
β∈U(β0,ρ)

∣

∣

∣

∣

∣

n
∑

i=1

{

E

[

s
′

i(β)νλ
i (β)

]

− s
′

i(β)νλ
i (β)

}

∣

∣

∣

∣

∣

(.11)

+
1√
n

sup
β∈U(β0,ρ)

∣

∣

∣

∣

∣

n
∑

i=1

s
′

i(β)
[

νλ
i (β) − ιλin(β)

]

∣

∣

∣

∣

∣

.(.12)

The second term (.12) is bounded in probability due to Čı́žek (2008a, Corrolary A.6) under

Assumptions D and F. The other part (.11) on the right-hand side can be bounded in prob-

ability by the following argument. Assumption F2 together with Van der Vaart and Wellner

(1996, Lemma 2.6.18) imply that Fn,δ =
{

s
′

i(β)νλ
i (β) : β ∈ U(β0, δ)

}

forms a VC class of

functions. Therefore, Assumptions D1 and F2 permit the use of the uniform central limit

theorem of Arcones and Yu (1994), which implies that Fn,δ converges in distribution to a

Gaussian process with uniformly bounded and continuous paths and confirms that (.11) is

bounded in probability, which concludes the proof. �

The proof of the asymptotic normality of GMTM follows.

Proof of Theorem 2: The asymptotic normality of GMTM is a direct consequence of its
√

n consistency (Lemma 5) and the asymptotic linearity of the trimmed moment equations
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following from Čı́žek (2008a, Lemma A.7) who proved under Assumptions D and F that

(.13) n− 1

2 sup
t∈TM

|nSλ
n(β0 − n− 1

2 t) − nSλ
n(β0) + n{Js(λ) + JI(λ)}n− 1

2 t| = op(1),

where TM = {t ∈ R
p|‖t‖ ≤ M} and M > 0.

Since tn =
√

n(β̂
(GMTM,λ)
n − β0) = Op(1) as n → +∞ by Lemma 5, we can write

(.14) Sλ
n(β0 − n− 1

2 tn) − Sλ
n(β0) + n− 1

2 {Js(λ) + JI(λ)} tn = op

(

n− 1

2

)

with a probability arbitrarily close to one uniformly in tn ∈ TM. Moreover, ∂Sλ
n(β0 −

n− 1

2 tn)/∂β> → Js(λ) in probability as n → ∞, see (.7) in the proof of Lemma 5 (n− 1

2 tn =

op(1)). Hence, the first order conditions of GMTM (see also (.4)),

∂QW,λ
n (β̂

(GMTM,λ)
n )

∂β
=

[

∂Sλ
n(β̂GMTM,λ

n )

∂β>

]>

WSλ
n(β̂(GMTM,λ)

n ) = 0,

imply after substituting for Sλ
n(β̂

(GMTM,λ)
n ) = Sλ

n(β0 − n− 1

2 tn) from equation (.14) and sub-

stituting ∂Sλ
n(β̂

(GMTM,λ)
n )/∂β> = ∂Sλ

n(β0 − n− 1

2 tn)/∂β> = Js(λ) + op(1) that

[Js(λ) + op(1)]
> W

[

Sλ
n(β0) − n− 1

2 {Js(λ) + JI(λ)} tn + op

(

n− 1

2

)]

= 0.

Expressing now tn from this equation results in

(.15) tn =
√

n(β̂(GMTM,λ)
n −β0) =

√
n
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1

Js(λ)>WSλ
n(β0)+op(1)

(note that Js(λ), Js(λ)+JI (λ), and W are non-singular matrices by Assumptions F3 and I2).

To find the asymptotic distribution of the GMTM estimate, we thus have to analyze the

asymptotic behavior of
√

nSλ
n(β0) as all other terms on the right hand side of (.28) are

constants (except for op(1), of course). By definition, it follows that

√
nSλ

n(β0) = n− 1

2

n
∑

i=1

si(β
0)ιλin(β0)

= n− 1

2

n
∑

i=1

si(β
0)
{

ιλin(β0) − νλ
i (β0)

}

(.16)

+ n− 1

2

n
∑

i=1

si(β
0)νλ

i (β0).(.17)

First, we show that (.16) is asymptotically negligible in probability. Expectations

E

∥

∥

∥
n

1

4 si(β
0)
{

ιλin(β0) − νλ
i (β0)

}
∥

∥

∥

l
= E

{

n
l
4

∥

∥si(β
0)
∥

∥

l
∣

∣

∣
ιλin(β0) − νλ

i (β0)
∣

∣

∣

}

= O(1)
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are bounded for l = 1, 2 due to Assumption F2 and Čı́žek (2008a, Corollary A.5). Assump-

tions D1, F2, and I3 further indicate that the summands in (.16) multiplied by n
1

4 form a

stationary sequence of random variables with zero means and finite variances (νλ
i (β0) is the

probability limit of ιλin(β0), see the proof of Theorem 1 or Čı́žek, 2008a, Lemma A.1). Thus,

the law of large numbers for mixingales (Davidson, 1994, Corollary 20.16) leads to

n− 3

4

n
∑

i=1

n
1

4 si(β
0)
{

ιλin(β0) − νλ
i (β0)

}

→ 0,

which implies that (.16) is negligible in probability as n → ∞.

Second, the summands in (.17), si(β
0)νλ

i (β0), form a stationary sequence of absolutely

regular random variables with zero mean and finite second moments (Assumptions D1, F2,

and I3). We can thus employ the central limit theorem for (.17) (e.g., Arcones and Yu,

1994, by Assumptions D1 and F2). This results directly in the asymptotic normality of
√

nSλ
n(β0) ∼ N(0, Vs(λ)) (cf. Davidson, 1994, Theorem 25.3).

Using equation (.15), the asymptotic normality of β̂
(GMTM,λ)
n follows with the asymptotic

variance given by (Davidson, 1994, Theorem 22.8)

V (λ) =
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1

Js(λ)>W ·Vs(λ)·WJs(λ)
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1>

.

�

Next, we attempt to derive an analytic form of JI(λ) in order to be able compute the

asymptotic variance matrix V (λ). To achieve this, we have to study probability that the

trimming indicator ιλin(β) changes if we use β = β̂
(GMTM,λ)
n instead of β = β0.

Lemma 6. Under the assumptions of Lemma 3, it holds for any β ∈ U(β0, n− 1

2M) and

M > 0 that

P
(

I
(

ri(β) ≤ r([λn])(β)
)

6= I
(

ri(β
0) ≤ r([λn])(β

0)
)
∣

∣ vi

)

=
∣

∣

∣
h

′

2(vi;β
0)>(β − β0)

∣

∣

∣
·
{

fvi

(

−
√

G−1(λ)
)

+ fvi

(

√

G−1(λ)
)}

+ op

(

n− 1

2

)

in probability as n → ∞ and

E
{

sgn h(di;β
0) ·
[

I
(

ri(β) ≤ r([λn])(β)
)

− I
(

ri(β
0) ≤ r([λn])(β

0)
)]∣

∣ vi

}

= −h
′

2(vi;β
0)>(β − β0) ·

{

fvi

(

−
√

G−1(λ)
)

+ fvi

(

√

G−1(λ)
)}

+ op

(

n− 1

2

)

.
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Proof: To simplify notation, let us first denote qλ =
√

G−1(λ) and recall that δλ
in(β) =

ιλin(β) − ιλin(β0). Our aim is then to compute P (|δλ
in(β)| = 1|vi).

Consider first P (δλ
in(β) = −1|vi). Apparently, δλ

in(β) = −1 if and only if

ri(β) = h2(di;β) > r([λn])(β) and ri(β
0) = h2

i (di;β
0) ≤ r([λn])(β

0),

which implies

(.18)

h(di;β) ∈
(

−∞, r
1/2
([λn])(β)

)

∪
(

r
1/2
([λn])(β),∞

)

and h(di;β
0) ∈

〈

−r
1/2
([λn])(β

0), r
1/2
([λn])(β

0)
〉

.

By means of the Taylor expansion we can write (h2(vi;β
0) = 0)

h(di;β) = h1(di) + h2(vi;β) = h1(di) + h
′

2(vi; ξ1)
>(β − β0),

where h(di;β
0) = h1(di), ξ1 ∈

[

β0, β
]

κ
, and

[

β0, β
]

κ
denotes a convex span of β and β0.

Combining this result with (.18) and denoting ∆h(vi;β) = h
′

2(vi; ξ1)
>(β − β0), we see that

(.19) h1(di) ∈
〈

−r
1/2
([λn])(β

0),−r
1/2
([λn])(β) − ∆h(vi;β)

)

∪
(

r
1/2
([λn])(β) − ∆h(vi;β), r

1/2
([λn])(β

0)
〉

,

where the convention (a, b) = ∅ if b < a is used. For δλ
in(β) = 1, it is possible to analogously

derive that

(.20) h1(di) ∈
〈

−r
1/2
([λn])(β) − ∆h(vi;β),−r

1/2
([λn])(β

0)
)

∪
(

r
1/2
([λn])(β

0), r
1/2
([λn])(β) − ∆h(vi;β)

〉

.

Next, combining (.19) and (.20) allows us to express P (|δλ
in(β)| = 1|vi) as

P
(

h1(di) ∈
[

−r
1/2
([λn])(β

0),−r
1/2
([λn])(β) − ∆h(vi;β)

]

κ

∪
[

r
1/2
([λn])(β

0), r
1/2
([λn])(β) − ∆h(vi;β)

]

κ

∣

∣

∣
vi

)

.

This can be further simplified using Čı́žek (2004, Lemma A.4) to

P
(

h1(di) ∈
[

−r
1/2
([λn])(β

0),−r
1/2
([λn])(β

0) − ∆h(vi;β)
]

κ

∪
[

r
1/2
([λn])(β

0), r
1/2
([λn])(β

0) − ∆h(vi;β)
]

κ

∣

∣

∣
vi

)

+op

(

n− 1

2

)

(.21)

as fvi
is uniformly bounded. At this point, let us note that, conditionally on vi, δλ

in(β) 6= 0

implies δλ
in(β) · sgn h(di;β

0) = − sgn ∆h(vi;β) with probability approaching 1 as 1−O
(

n− 1

2

)

with n → ∞. We prove it as follows. On the one hand, ∆h(vi;β) is (conditionally on vi)

bounded and converges to zero as n → ∞ because β ∈ U(β0, n− 1

2M). We can thus choose

n0 ∈ N such that |∆h(vi;β)| < qλ/
√

2 for all n ≥ n0. On the other hand, P (r
1/2
([λn])(β

0) <

33



qλ/
√

2) = O
(

n− 1

2

)

by Čı́žek (2008a, Lemma A.3). Hence, it follows that we can write for

∆h(vi;β) < 0 and n ≥ n0 with probability 1 −O
(

n− 1

2

)

, see (.19) and (.20):

δλ
in(β) = 1 =⇒ h(di, β

0) = h1(di) ∈
(

r
1/2
([λn])(β

0), r
1/2
([λn])(β) − ∆h(vi;β)

)

⊂ (0,+∞),

δλ
in(β) = −1 =⇒ h(di, β

0) = h1(di) ∈
(

−r
1/2
([λn])(β

0),−r
1/2
([λn])(β) − ∆h(vi;β)

)

⊂ (−∞, 0).

A similar discussion can be made for the case of ∆h(vi;β) > 0.

Now, let us return to the analysis of (.21). Because the density function fvi
of h1(di)|vi is

bounded and differentiable in a neighborhood of qλ, we can rewrite probability (.21) as

(.22) P (h1(di) ∈ [−qλ − ξ2,−qλ − ξ2 − ∆h(vi;β)]
κ
∪ [qλ + ξ2, qλ + ξ2 − ∆h(vi;β)]

κ
| vi),

where ξ2 = r
1/2
([λn])(β

0)− qλ = Op

(

n− 1

2

)

as n → ∞ by Čı́žek (2008a, Lemma A.2). The mean

value theorem and Taylor expansion for the distribution function fvi
further lead to

P (h1(di) ∈ [−qλ − ξ2,−qλ − ξ2 − ∆h(vi;β)]
κ
∪ [qλ + ξ2, qλ + ξ2 − ∆h(vi;β)]

κ
| vi)

= |∆h(vi;β)| · {fvi
(−qλ) + fvi

(qλ) + f
′

vi
(ξ3)[ξ2 + ∆h(vi;β)] + f

′

vi
(ξ4)[ξ1 + ∆h(vi;β)]

=
∣

∣

∣
h

′

2(vi; ξ1)
>(β − β0)

∣

∣

∣
· {fvi

(−qλ) + fvi
(qλ)} + op

(

n− 1

2

)

because of β ∈ U(β0, n− 1

2M) and the assumptions of the lemma. The first conclusion of the

lemma now follows from

h
′

2(vi; ξ1) = h
′

2(vi;β
0) + h

′′

2(vi; ζ)(ξ1 − β0) = h
′

2(vi;β
0) + op

(

n− 1

2

)

since max{‖ξ1−β0‖, ‖ζ−β0‖} ≤ ‖β−β0‖ = O
(

n− 1

2

)

as n → ∞ and h
′′

2(vi; ζ) → h
′′

2(vi;β
0) =

0 in probability. The second conclusion is a direct consequence of the note explaining δλ
in(β) ·

sgn h(di;β
0) = − sgn ∆h(vi;β). �

The derivation of an analytic form of JI(λ) follows.

Proof of Lemma 3: Using the definition of partial derivatives and Čı́žek (2008a, Lemma

A.3), we can write (see Čı́žek, 2007b, Lemma A.7)

(.23)

JI(λ) =
∂

∂βj
E

[

si(β
0)νλ

i (β0)
]

β=β0
= lim

n→∞

1

n− 1

2 T
E

[

si(β
0)
{

ιλin(β0 − n− 1

2 tj) − ιλin(β0)
}]

,

where ej = (0, . . . , 0, 1, 0, . . . , 0)> represent the jth basis vector of R
p, tj = Tej and T ∈ R,

and j = 1, . . . , p. Thus, we can employ the results of Lemma 6 to derive JI(λ). To do so, let
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us express for any t ∈ R
p

E

[

si(β
0)
{

ιλin(β0 − n− 1

2 t) − ιλin(β0)
}]

= E
v

E

[

si(β
0)δλ

in(β0 − n− 1

2 t)
∣

∣

∣
vi

]

.

If, conditional on vi, δλ
in(β0 − n− 1

2 t) 6= 0 for some value of t, the proof of Lemma 6, equation

(.22), implies (‖ξ1 − β0‖ ≤ ‖t‖)

(.24)
∣

∣

∣
h1(di) −

√

G−1(λ)
∣

∣

∣
≤
∣

∣

∣
h

′

2(vi; ξ1)
>n− 1

2 t
∣

∣

∣
+ Op

(

n−1/2
)

.

This motivates the following decomposition:

E
v

E

[

si(β
0)δλ

in(β0 − n− 1

2 t)
∣

∣

∣
vi

]

= E
v

E

[(

si(β
0) − E

{

s(di, β
0)
∣

∣ sgn h1(di), |h1(di)| =
√

G−1(λ), vi

})

δλ
in(β0 − n− 1

2 t)
∣

∣

∣
vi

]

(.25)

+ E
v

E

[

E

{

s(di, β
0)
∣

∣ sgn h1(di), |h1(di)| =
√

G−1(λ), vi

}

δλ
in(β0 − n− 1

2 t)
∣

∣

∣
vi

]

.(.26)

The first term (.25) will be shown to behave like to o(n− 1

2 ). We can namely bound the

absolute value of (.25) using (.24) and Lemma 6 by

E
v

E

[∣

∣

∣
si(β

0) − E

{

s(di, β
0)
∣

∣ sgn h1(di), |h1(di)| =
√

G−1(λ), vi

}∣

∣

∣

∣

∣

∣
δλ
in(β0 − n− 1

2 t)
∣

∣

∣

∣

∣

∣
vi

]

≤ E
v

[

d
{
∣

∣

∣
h

′

2(vi; ξ1)
>n− 1

2 t
∣

∣

∣
+ Op

(

n−1/2
)}

s̄(vi)E

{
∣

∣

∣
δλ
in(β0 − n− 1

2 t)
∣

∣

∣

∣

∣

∣
vi

}]

≤ O
(

n− 1

2

)

E
v

[

d
(
∣

∣

∣
h

′

2(vi; ξ1)
>n− 1

2 t
∣

∣

∣
+ Op

(

n− 1

2

))

s̄(vi)
{
∣

∣

∣
h

′

2(vi;β
0)>t

∣

∣

∣
+ Op(1)

}]

.

The last expectation is asymptotically negligible since supβ∈U(β0,δ) E |h′

2(vi;β)|1+δ < Kh ∈ R,
∣

∣

∣
h

′

2(vi; ξ1)
>n− 1

2 t
∣

∣

∣
+Op

(

n−1/2
)

is uniformly integrable (Davidson, 1994, Theorem 12.10), and

thus asymptotically negligible both in probability and expectation (d is a locally Lipschitz

norm).

Hence, we now have to deal only with term (.26), which by the assumptions of the lemma

can be written as Ev E[sgn h1(di)s̃(vi)δ
λ
in(β0 − n− 1

2 t)|vi]. Using Lemma 6 and the uniform

integrability of the moment and trimming functions and their derivatives (Assumption F3

and Davidson, 1994, Theorem 12.10), it follows that

E
v

{

s̃(vi) · E
[

sgn h1(di)δ
λ
in(β0 − n− 1

2 t)
∣

∣

∣
vi

]}

= −n− 1

2 t E
v

{

s̃(vi)h
′

2(vi;β
0)> ·

[

fvi

(

−
√

G−1(λ)
)

+ fvi

(

√

G−1(λ)
)]}

.
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Substituting back to (.23) results in the claim of the lemma:

JI(λ) = −E
v

{

s̃(vi)h
′

2(vi;β
0)> ·

[

fvi

(

−
√

G−1(λ)
)

+ fvi

(

√

G−1(λ)
)]}

. �

Finally, the test of overidentifying restrictions is derived.

Proof of Theorem 4: We showed in the proof of Theorem 2 for tn = Op(1) that

(.27) Sλ
n(β0 − n− 1

2 tn) − Sλ
n(β0) + n− 1

2 {Js(λ) + JI(λ)} tn = op

(

n− 1

2

)

,

see equation (.14), and that

(.28)

tn =
√

n(β̂(GMTM,λ)
n − β0) =

√
n
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1

Js(λ)>WSλ
n(β0) + op(1),

see equation (.15). Substituting tn from (.28) to (.27), multiplying the whole equation by
√

n, and using tn =
√

n(β̂
(GMTM,λ)
n − β0), we obtain that

√
nSλ

n(β̂(GMTM,λ)
n ) =

√
n

[

I − {Js(λ) + JI(λ)}
[

Js(λ)>W{Js(λ) + JI(λ)}
]−1

Js(λ)>W

]

Sλ
n(β0)

+op(1)

= [I − Π(λ)]
√

nSλ
n(β0) + op(1).

At the same time, we showed in the proof of Theorem 2 that
√

nSλ
n(β0) converges in

distribution to a normally distributed random variable with variance Vs(λ), see the discus-

sion of (.16)–(.17). Consequently, we see that
√

nSλ
n(β̂

(GMTM,λ)
n ) is asymptotically normally

distributed with its asymptotic variance matrix equal to

Σ(λ) = [I − Π(λ)] Vs(λ) [I − Π(λ)]> ,

which can be consistently estimated by Σ̂n(λ) =
[

I − Π̂n(λ)
]

V̂sn(λ)
[

I − Π̂n(λ)
]>

by the

assumptions of the theorem. Hence, the test statistics

Tn =
√

nSλ
n(β̂(GMTM,λ)

n )>Σ̂−
n (λ)

√
nSλ

n(β̂(GMTM,λ)
n )

has asymptotically the same distribution as Z>Σ−(λ)Z, where Z ∼ N(0,Σ(λ)) and the

generalized inverses Σ̂−
n (λ) and Σ−(λ) are defined in the same way in order to Σ̂−

n (λ) → Σ−(λ)

in probability. The distribution of the quadratic form Z>Σ−(λ)Z is the χ2 distribution with

the degrees of freedom equal to the rank of Σ(λ). Due to Assumption F3, the rank of Σ(λ)

equals to the rank of I − Π(λ) and thus to M − rank{Π(λ)}. Since Π(λ) is idempotent, the
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rank of an idempotent matrix equals its trace, and

tr{Π(λ)} = tr

[

[

Js(λ)>W{Js(λ) + JI(λ)}
]−1

Js(λ)>W {Js(λ) + JI(λ)}
]

= Ip×p,

it follows that rank{Σ(λ)} = M − p and thus asymptotically Tn ∼ χ2
M−p. �
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