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Abstract: The shorth plot is a tool to investigate probability mass concentration. It is a

graphical representation of the length of the shorth, the shortest interval covering a certain

fraction of the distribution, localized by forcing the intervals considered to contain a given

point x. It is easy to compute, avoids bandwidth selection problems and allows scanning

for local as well as for global features of the probability distribution. We prove functional

central limit theorems for the empirical shorth plot. The good rate of convergence of the

empirical shorth plot makes it useful already for moderate sample size.

JEL codes: C13, C14.

Key words: Data analysis, distribution diagnostics, functional central limit theorem,

probability mass concentration.

1 Introduction

Using exploratory diagnostics is one of the first steps in data analysis. Here graphical

displays are essential tools. For detecting specific features, specialized displays may be

available. For example, if there is a model distribution F to be compared with, from

a mathematical point of view the empirical distribution Fn is a key instrument, and its
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graphical representations by means of PP -plots

x 7→ (F (x) , Fn (x))

or QQ-plots

α 7→
(
F−1 (α) , F−1

n (α)
)

are tools of first choice. If we consider the overall scale and location, box & whisker plots

are a valuable tool. The limitation of box & whisker plots is that they give a global view

which ignores any local structure. In particular, they are not an appropriate tool if it

comes to analyze the modality of a distribution. More specialized tools are needed in this

case, such as the silhouette and the excess density plot, both tools being introduced in

Müller and Sawitzki (1991).

While we have some instruments for specific tasks, the situation is not satisfactory if

it comes to general purpose tools. PP -plots and QQ-plots need considerable training to

be used as diagnostic tools, as they do not highlight qualitative features.

Focussing on the density in contrast to the distribution function leads to density es-

timators and their visual representations, such as histograms and kernel density plots.

These, however, introduce another complexity, such as the choice of cut points or band-

width choice. The qualitative features revealed or suggested by density estimation based

methods may critically depend on bandwidth choice. Moreover, estimating a density is a

more specific task than understanding the shape of a density. Density estimation based

methods are prone to pay for these initial steps in terms of slow convergence or large

fluctuation, or disputable choices of smoothing.

We will use the length of the shorth to analyze the qualitative shape of a distribution.

Originally, the shorth is the shortest interval containing half of the distribution; more

generally, the α-shorth is the the shortest interval containing fraction α of the distribution.

The shorth was introduced in the Princeton robustness study as a candidate for a robust

location estimator, using the mean of a shorth as an estimator for a mode, see Andrews et

al. (1972). As a location estimator, it performs poorly; it has an asymptotic rate of only

n−1/3, with non-trivial limiting distribution, see Andrews at al. (1972), p. 50, or Shorack

and Wellner (1986), p. 767. Moreover, the shorth interval is not well defined, since there

may be several competing intervals. The length of the shorth however is a functional which

is easy to estimate and it gives a graphical representation which is easy to interpret. As

pointed out in Grübel (1988), the length of the shorth has a convergence rate of n−
1
2 with

a Gaussian limit. The critical conditions for Gaussianity are that the shorth interval is
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sufficiently pronounced, essentially this means that the shorth interval must not be in a

flat part of the density, see Section 3.3 in Grübel (1988). In Einmahl and Mason (1992) it

was shown that the good convergence of n−
1
2 is retained under much weaker conditions,

including flat-part densities, but that the limit can be non-Gaussian. We extend the

definition of the length of the shorth to supply localization. We will vary the coverage,

and hence allow for multi-scale analysis. Thus the global estimator is extended into a tool

for local and global diagnostics.

The paper is organized as follows. In the remainder of this section we present the

definition and elementary properties of the localized length of the shorth. In Section 2 we

define the shorth plot, the central object of this paper. Asymptotic results for the empirical

shorth plot are presented in Section 3. It will be shown that the rate of convergence of the

localized empirical length of the shorth to the theoretical length is n−
1
2 , uniformly in α

and the point of localization. In Section 4 we study some real data examples. The paper

is completed by a discussion section and a section containing the proofs of the results from

Section 3.

In order to be more explicit we specify our setup and notation. Let X1, . . . , Xn, n ≥ 1,

be independent random variables with common distribution function F . Let P be the

probability measure corresponding to F . Let I = {[a, b] : −∞ < a < b < ∞} be the class

of closed intervals and let Ix = {[a, b] : −∞ < a < b < ∞, x ∈ [a, b]} be the class of closed

intervals that contain x ∈ R. Define the empirical measure Pn on the Borel sets B on R
by

Pn(B) =
1

n

n∑
i=1

1B(Xi), B ∈ B,

where 1B denotes the indicator function. Let | · | denote Lebesgue measure.

Definition 1 The length of the shorth at point x ∈ R for coverage level α ∈ (0, 1) is

Sα(x) = inf{|I| : P (I) ≥ α, I ∈ Ix}.

We get the length of the shorth as originally defined by taking infx S0.5(x). The definition in

terms of a theoretical probability P has an immediate empirical counterpart, the empirical

length of the shorth

Sn,α(x) = inf{|I| : Pn(I) ≥ α, I ∈ Ix}.

To get a picture of the optimization problem behind the length of the shorth, we
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consider the bivariate function

(a, b) 7−→
(
|I| , P (I)

)
with I = [a, b], where a < b.

This is defined on the half space {(a, b) : a < b} above the diagonal. The level curves

normal distribution
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Figure 1: The length of the shorth as an optimization problem: minimize |[a, b]| under the

restriction P ([a, b]) ≥ α. Localizing at x restricts the optimization to the quadrant top

left of (x, x).

of |I| are parallel to the diagonal. The level curves of P (I) depend on the distribution.

The α-shorth minimizes |I| in the area above the level curve at level α, i.e. P(I) ≥ α.

Going to the empirical version replaces the level curves of P (I) by those of of Pn(I). The

theoretical curves for the Gaussian distribution and for a Gaussian sample are shown in

Figure 1. Localizing the α-shorth at a point x restricts optimization to the (grey) top left

quadrant anchored at (x, x).

Let the distribution function F be absolutely continuous with density f . Assume there

exist −∞ ≤ x∗ < x∗ ≤ ∞ such that f(x) > 0 on S = (x∗, x
∗) and f(x) = 0 outside S; also

assume that f is uniformly continuous on S. As a consequence we have that F is strictly

increasing on S and that f is bounded.

We have the following elementary properties concerning Sα(x).

• Minimizing intervals: For every α and x, there exists an interval I with length Sα(x)
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such that x ∈ I and P (I) = α.

• Continuity: For all α, |Sα(x)− Sα(y)| ≤ |x− y|. Moreover, the function

(x, α) 7→ Sα(x)

is continuous as a function of two variables.

• Monotonicity: For all x,

α 7→ Sα(x)

is strictly increasing in α.

• Invariance: For all α,

x 7→ Sα(x)

is invariant under shift transformations and equivariant under scale transformations, that

is when we apply a transformation u′ = cu+ d (for some constants c > 0, d), then the new

S ′
α(x′) satisfies

S ′
α(x′) = cSα(x),

with x′ = cx + d.

Denote the j-th order statistic by X(j); X(0) = −∞, X(n+1) = ∞. For computing the

empirical length of the shorth, observe that Sn,α(x) can be interpolated from Sn,α(X(j))

and Sn,α(X(j+1)) where j is such that X(j) ≤ x < X(j+1). Therefore we can focus on

computing Sn,α(Xi). Write kα = dnαe − 1, with d·e the ceiling function. Then we simply

have

Sn,α(Xi) = min{X(j+kα) −X(j) : 1 ≤ j ≤ i ≤ j + kα ≤ n}.

Using a stepwise algorithm, a further reduction of complexity is possible since we can

easily relate Sn,α(Xi) to Sn,α(Xi−1). This yields an algorithm with linear complexity in n.

2 The Shorth Plot

Definition 2 (Sawitzki, 1994) The shorth plot is the graph of the function

x 7→ Sα(x), x ∈ R

for (all or) a selection of coverages α.

The empirical shorth plot is the graph of

x 7→ Sn,α(x), x ∈ R.
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Mass concentration now can be represented by the graphs of x 7→ Sα(x) and x 7→ Sn,α(x),

see Figure 2. A small length of the shorth signals probability mass concentration, whereas
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Figure 2: Short plot and empirical shorth plot for a sample of 50 standard normal random

variables for α = 0.5. Note that different scales are used.

large values of the density indicate mass concentration. To make the interpretation of the

shorth plot easier, we will in the sequel use a downward orientation of the vertical axis so

that it is aligned with the density plot.

Figure 3 shows the shorth plots for a uniform, a normal and a log-normal distribution

for sample sizes 50 and 200 and the theoretical ones. Varying the coverage level α gives a

good impression of the mass concentration. Small levels give information about the local

behavior, in particular near modes. Higher levels give information about skewness of the

overall distribution shape. The high coverage levels show the range of the distribution.

A “dyadic” scale for α, e.g., 0.125, 0.25, 0.5, 0.75, 0.875 is a recommended choice. The

Monotonicity property (Section 1) allows the multiple scales to be displayed simultaneously

without overlaps, thus giving a multi-resolution image of the distribution.
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Figure 3: Shorth plots for a uniform, a normal, and a log-normal distribution for sample

sizes 50 and 200 and the theoretical ones, for various coverage levels α. Note that different

scales are used.
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3 Asymptotic Results

In this section we consider the asymptotic behavior of the empirical shorth plot; recall the

notation and assumptions of Section 1. For asymptotic analysis, it is more convenient to

view S as a process in α, and therefore we write in this section and the proofs section,

without confusion, Sx(α) instead of Sα(x), and so on. Let I∗ = I∪ {R, ∅}. Define for each

n ≥ 1 the empirical process indexed by intervals to be

Un(I) = n
1
2{Pn(I)− P (I)}, I ∈ I∗.

Introduce the pseudometric d0 defined on B by

d0(B1, B2) = P (B1 M B2), for B1, B2 ∈ B,

with B1 M B2 = (B1 \ B2) ∪ (B2 \ B1). Let BP be a bounded, mean zero Gaussian

process indexed by I∗, uniformly continuous in d0, with covariance function P (A1 ∩A2)−
P (A1)P (A2), A1, A2 ∈ I∗. Then, by the functional central limit theorem and the Skorohod

representation theorem, there exist B̃P
d
= BP and a sequence Ũn

d
= Un such that

sup{|Ũn(I)− B̃P (I)| : I ∈ I∗} → 0 a.s. as n →∞.(1)

Henceforth we will drop the tildes from the notation.

We will need the following assumption:

(A) There exist x1, x2 ∈ [x∗, x
∗], x1 ≤ x2, such that f is strictly increasing on (x∗, x1],

constant on [x1, x2], and strictly decreasing on [x2, x
∗); also lim

x↓x∗
f(x) = lim

x↑x∗
f(x).

We introduce some more notation. Write gx = 1/S ′
x; see Chapter 6, Lemma 3 for the

existence of gx. Set Tx,0 = {∅}, Tx,1 = {R}, x ∈ R and

Tx,α = {I ∈ Ix : |I| = Sx(α), P (I) = α} for 0 < α < 1, x ∈ R.

For any x ∈ R let

Bx(α) = sup{BP (I) : I ∈ Tx,α}, 0 ≤ α ≤ 1.

Consider the shorth plot process :

Qn,x(α) = gx(α)n
1
2 (Sn,x(α)− Sx(α)) , 0 < α < 1, x ∈ R.
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Theorem 1 Under the assumptions on F of Section 1 and assumption (A) we have for

all 0 < η < 1/2, on the probability space of (1),

sup
x∈R

sup
η≤α≤1−η

|Qn,x(α) + Bx(α)| → 0 a.s. as n →∞.(2)

We note that if Tx,α contains at least two sets I1 and I2 with P (I1 M I2) > 0, then

Bx(α) is not a normal random variable and EBx(α) > 0. Since BP is bounded, B·(·) is

a bounded process on R × [0, 1] with Bx(0) = Bx(1) = 0 almost surely. It will be shown

(Section 6) that (Bx)x∈R is a collection of uniformly equicontinuous functions on [0, 1].

We will need two additional assumptions in order to extend the convergence on [η, 1−η]

in (2) to convergence on the entire interval (0, 1). The first one is the classical Csörgő and

Révész (1978) condition.

(B) If lim
x↓x∗

f(x) = 0, then f ′ exists on S and for some 0 < M < ∞

sup
x∈S

F (x) (1− F (x))
|f ′(x)|
f 2(x)

< M.

For the second assumption, let Iα = [a, b] be a shortest interval such that P (Iα) = α,

α ∈ (0, 1); note that f(a) = f(b). If lim
x↓x∗

f(x) = 0, then for large enough α, Iα is unique.

For such an α define λα = F (a)/(1− α).

(C) If lim
x↓x∗

f(x) = 0, then 0 < lim
α↑1

λα < 1.

Theorem 2 In addition to the assumptions of Theorem 1, suppose (B) and (C) hold.

Then on the probability space of (1),

sup
x∈R

sup
0<α<1

|Qn,x(α) + Bx(α)| P→ 0 as n →∞.

It readily follows that for every interval I ∈ I, there exists an x ∈ R such that I ∈
Tx,P (I). This implies that

sup
x∈R

sup
0≤α≤1

|Bx(α)| = sup
I∈I

|BP (I)| d
= sup

0≤α,β≤1
|B(α)−B(β)|,(3)

with B a standard Brownian bridge. The right-hand side of (3) is the limiting distribution

of the Kuiper statistic, see e.g. Shorack and Wellner (1986), p. 144.
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4 Examples

While the theory presented above covers the general unimodal situation, the following ex-

amples focus on the use of the shorth plot as an exploratory tool in multimodal situations.

4.1 Old Faithful Geyser

As a first example, we use the eruption durations of the Old Faithful geyser. The data

are just one component of a bivariate time series data set. Looking at a one dimensional

marginal distribution ignores the process structure. However, these data have been used

repeatedly to illustrate smoothing algorithms like kernel density estimators (Figure 4, left)

and we reuse it to illustrate our approach (Figure 4, right). This is a good natured data set

showing two distinct nodes with sizeable observation counts, and some overall skewness.

The high coverage levels of the shorth plot (α > 50%) just show the overall range of the
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Figure 4: (left) Eruption durations of the Old Faithful geyser: density estimation

(right) Eruption durations of the Old Faithful geyser: shorth plot.

data. The 50% level indicates a pronounced skewness. The small levels reveal that we

have two modes, with a comparable coverage range. The multi-scale property of the shorth

plot allows to combine these aspects in one picture.

10



4.2 Melbourne Temperature Data

In Hyndman et al. (1996) the bifurcation to bimodality in the Melbourne temperature data

set is pointed out. We use an extended version of the data set (Melbourne temperature data

1955-2007, provided by the Bureau of Meteorology, Victorian Climate Services Centre,

Melbourne) and analyze the day by day difference in temperature at 15.00h, conditioned

on today’s temperature. The shorth plot view is in Figure 5. We indeed clearly see

the bimodality (and some skewness) when conditioning on high temperatures and the

unimodality when conditioning on the lower temperatures.
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Figure 5: Melbourne day by day temperature difference at 15:00h conditioned at today’s

temperature.

5 Discussion

The α-shorth is a well-defined concept. Its length is studied in detail in Grübel (1988).

The shorth can be extended to higher dimensions by replacing the class of intervals by a

class of sets (e.g., all ellipsoids) and length by “volume”; see Einmahl and Mason (1992) for

the asymptotic behavior of these minimal volumes. In higher dimensions, however, there

is no canonical class of sets, like the intervals in dimension one. It is an open question

whether the shorth plot can be carried over to a regression context.

The shorth plot was introduced in Sawitzki (1994), but no further analysis or theory

was provided. A closely related idea is the balloonogram in Tukey and Tukey (1981).

Their multivariate procedure reduces in dimension one to considering the shortest interval,

centered at a data point, that contains a certain number of data. In contrast to the
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balloonogram, the shorth plot avoids centering, thus reducing random fluctuation. No

theory is provided, however, and also only one coverage level is used at a time.

The shorth plot is based on the concept of mass concentration, an idea which is shared

with the excess density plot and the silhouette plot (Müller and Sawitzki, 1991). Excess

density and silhouette plots are designed to detect the modes of a density. They use

a global approach: there is no localization in x, like in the shorth plot. In Hyndman

(1996), so-called highest density regions boxplots are introduced. These boxplots use

mass concentration in a regression context.

Kernel density estimators with varying bandwidths are widely studied and somewhat

related to our approach. The coverage α of the shorth plot bears some similarity with the

bandwidth chosen for kernel estimation. The SiZer (Chaudhuri and Marron, 1999) is a

kernel-based approach which studies simultaneously a wide range of bandwidths. Another

approach that combines kernel estimation explicitly with detecting modes is that of the

mode trees (Minnotte and Scott, 1993). Here the mode locations are plotted against

the bandwidth of the density estimator with those modes. Mass concentration is a local

concept, but not, like a density, an infinitesimal concept. Therefore the shorth plot avoids

the smoothing step and can be based directly on the empirical measure.

6 Proofs

The proof of Theorem 1 is based on a number of lemmas and a proposition, which we will

state and prove below. In Lemmas 1 and 2 we present certain extensions of the conditions

(C6) and (C8) in Einmahl and Mason (1992), respectively.

Lemma 1 For every ε > 0, whenever x ∈ R, 0 ≤ α1, α2 ≤ 1 with |α1 − α2| < ε and

I1 ∈ Tx,α1, there is an I2 ∈ Tx,α2 with d0(I1, I2) < ε.

Proof: Write β = P ([x1, x2]). Observe that Tx,α contains infinitely many intervals if and

only if x ∈ (x1, x2) and α < β, otherwise it contains exactly one interval. From this it

follows that for α1 < α2, an I2 as in the lemma can be found with I2 ⊃ I1. Similarly, for

α1 > α2, we can take I2 ⊂ I1. �

Lemma 2 For every ε > 0 there exists a δ > 0 such that whenever I ∈ Ix, x ∈ R,

satisfies 0 < α − δ < P (I) < α < 1 and |I| < Sx(α), there is an I ′ ∈ Tx,S−1
x (|I|) such that

d0(I, I ′) < ε.
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Proof: The proof can be given along the same lines as in Example 2 in Einmahl and

Mason (1992). We will omit details. �

Let J be an open or closed interval and consider a function f : J → R; let δ > 0. The

modulus of continuity of f is defined by

ω(f, δ) = sup{|f(u)− f(v)| : u, v ∈ J, |u− v| ≤ δ}.

Lemma 3 For all x ∈ R, gx exists on (0, 1) and is positive. Moreover, (gx)x∈R is a

collection of uniformly equicontinuous functions on (0, 1), i.e.

lim
δ↓0

sup
x∈R

ω(gx, δ) = 0 a.s.

In addition, for any 0 < ε < 1
2
,

inf
x∈R

inf
ε≤α≤1−ε

gx(α) > 0.

Proof: Let Ix,α ∈ Tx,α. If x is on the boundary of Ix,α, then gx(α) = f(y), where y is the

other endpoint of the interval Ix,α. If x is not on the boundary of Ix,α =: [y1, y2], then,

since lim
x↓x∗

f(x) = lim
x↑x∗

f(x), gx(α) = f(y1) = f(y2). Hence we obtain

sup
x∈R

sup
|α−β|≤δ
0<α,β<1

|gx(α)− gx(β)| ≤ sup
|α′−β′|≤δ
0<α′,β′<1

∣∣f(F−1(α′))− f(F−1(β′))
∣∣ .

Now the uniform continuity of f◦F−1 on (0, 1) yields the uniform equicontinuity of (gx)x∈R.

Let 0 < ε < 1
2

and a < b such that P ([a, b]) = 1 − ε and f(a) = f(b) > 0. Then it

follows that

inf
x∈R

inf
ε≤α≤1−ε

gx(α) ≥ f(a). �

Set

P̄n,x(α) = sup{Pn(I) : |I| ≤ Sx(α), I ∈ Ix}, 0 < α < 1, x ∈ R,

P̄n,x(0) = 0 and P̄n,x(1) = 1. Consider the process

Ūn,x(α) = n
1
2 (P̄n,x(α)− α), 0 ≤ α ≤ 1, x ∈ R.

This is the right place to describe the main steps in the proofs of the theorems. First we

present in Proposition 1 the appropriate convergence result for the “uniformized” process

Ūn,x. Next we “invert” this statement to get a similar convergence result for a uniformized

quantile-type process (Corollary 1), and finally we obtain our theorems by “stretching

out” this process in the vertical direction.
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Proposition 1 On the probability space of (1),

sup
x∈R

sup
0≤α≤1

|Ūn,x(α)−Bx(α)| → 0 a.s. as n →∞.(4)

Proof: The proof follows closely the lines of that in Proposition 3.1 in Einmahl and

Mason (1992), but now the supremum over x has also to be taken into account. Clearly it

is sufficient to show that sup
x∈R

sup
0<α<1

|Ūn,x(α)− Bx(α)| → 0 almost surely as n → ∞. First

we show that

lim sup
n→∞

sup
x∈R

sup
0<α<1

(Bx(α)− Ūn,x(α)) ≤ 0 a.s.(5)

For any 0 < α < 1 and x ∈ R,

Bx(α)− Ūn,x(α) ≤ sup {BP (I) : I ∈ Tx,α}
−n

1
2 (sup {Pn(I) : |I| ≤ Sx(α), P (I) = α, I ∈ Ix} − α)

= sup {BP (I) : I ∈ Tx,α} − n
1
2 sup {Pn(I)− P (I) : I ∈ Tx,α}

≤ sup {BP (I)− Un(I) : I ∈ I} .

Now (5) follows from (1).

It remains to show that

lim sup
n→∞

sup
x∈R

sup
0<α<1

(
Ūn,x(α)−Bx(α)

)
≤ 0 a.s.

For any 0 < α < 1 and x ∈ R we have

Ūn,x(α)−Bx(α)

≤
{

n
1
2

(
sup{Pn(I) : |I| ≤ Sx(α), α− n−

1
4 < P (I) ≤ α, I ∈ Ix} − α

)
−Bx(α)

}
∨
{

n
1
2

(
sup{Pn(I) : P (I) ≤ α− n−

1
4 , I ∈ Ix} − α

)
−Bx(α)

}
.(6)

The second term in the right-hand side of (6) is bounded from above by

sup
{

n
1
2

(
Pn(I)− P (I)− n−

1
4

)
: I ∈ Ix

}
−Bx(α)

≤ sup {|Un(I)−BP (I)| : I ∈ Ix}+ sup {|BP (I)| : I ∈ Ix}
+ sup {|BP (I ′)| : I ′ ∈ Tx,α} − n

1
4

≤ sup {|Un(I)−BP (I)| : I ∈ I}+ 2 sup {|BP (I)| : I ∈ I} − n
1
4 ,

14



which, by (1) and the boundedness of BP , converges almost surely to −∞, as n →∞.

Next consider the first term in the right-hand side of (6). For any 0 < α < 1 and x ∈ R,

this term is equal to

sup
{

n
1
2 (Pn(I)− α) : |I| ≤ Sx(α), α− n−

1
4 < P (I) ≤ α, I ∈ Ix

}
−Bx(α)

≤ sup {|Un(I)−BP (I)| : I ∈ Ix}
+
{

sup
{

BP (I) : |I| ≤ Sx(α), α− n−
1
4 < P (I) ≤ α, I ∈ Ix

}
−Bx(α)

}
.

The first term tends to zero, uniformly in x ∈ R, almost surely as n → ∞ because of

Ix ⊂ I and (1), so the proof of (4) will be complete if we show

sup
x∈R

sup
0<α<1

{
sup

{
BP (I) : |I| ≤ Sx(α), α− n−

1
4 < P (I) ≤ α, I ∈ Ix

}
− sup

{
BP (I ′) : I ′ ∈ Tx,α

} }
→ 0 as n →∞.(7)

By Lemma 2 combined with Lemma 1, and uniform continuity of BP for any η > 0, we

have for all large n

sup
x∈R

sup
0<α<1

∣∣∣ sup
{

BP (I) : |I| ≤ Sx(α), α− n−
1
4 < P (I) ≤ α, I ∈ Ix

}
− sup

{
BP (I ′) : I ′ ∈ Tx,α

} ∣∣∣ ≤ η.

Since η > 0 is arbitrary, this implies (7). �

For s : [0, 1] → R, write ‖s‖ = sup{|s(α)| : 0 ≤ α ≤ 1}. If x ∈ X (some index set) and

sx : [0, 1] → R, write ‖|sx ‖| = sup{|sx(α)| : 0 ≤ α ≤ 1, x ∈ X}. Let I denote the identity

function.

Lemma 4 Let Γ be a nondecreasing function on [0, 1] with Γ(0) = 0 and Γ(1) = 1. Define

Γ−1(α) = inf{β : Γ(β) ≥ α}, 0 ≤ α ≤ 1. Then

‖Γ + Γ−1 − 2I‖ ≤ ω(Γ− I, ‖Γ− I‖).

Proof: Write S = [−‖Γ− I‖, ‖Γ− I‖]. We have

Γ−1(α)− α = inf{β − α : Γ(β) ≥ α}
= inf{β − α ∈ S : Γ(β) ≥ α}.(8)
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The second equality in (8) follows, since for β−α > ‖Γ−I‖ we have α−β < −‖Γ−I‖ ≤
Γ(β) − β and hence α < Γ(β); for β − α < −‖Γ − I‖, we have α − β > ‖Γ − I‖ and

therefore α− β ≤ Γ(β)− β or α ≤ Γ(β) is impossible. Thus

Γ−1(α)− α = inf{β − α ∈ S : β − α ≥ α− Γ(α) + β − Γ(β)− (α− Γ(α))}
≥ inf{β − α ∈ S : β − α ≥ α− Γ(α)− ω(Γ− I, ‖Γ− I‖)}
≥ α− Γ(α)− ω(Γ− I, ‖Γ− I‖).

Similarly,

Γ−1(α)− α ≤ inf{β − α ∈ S : β − α ≥ α− Γ(α) + ω(Γ− I, ‖Γ− I‖)}
≤ α− Γ(α) + ω(Γ− I, ‖Γ− I‖),

and hence

−ω(Γ− I, ‖Γ− I‖) ≤ Γ−1(α)− 2α + Γ(α) ≤ ω(Γ− I, ‖Γ− I‖). �

We will use this lemma to establish a generalization to a collection of functions of the

well-known lemma in Vervaat (1972).

Lemma 5 Let Γn,x be a collection of nondecreasing functions on [0, 1] indexed by n ∈ N
and x ∈ X. Assume for all n and x, Γn,x(0) = 0 and Γn,x(1) = 1. Moreover, let bx, x ∈ X,

be a collection of uniformly bounded (sup
x∈X

sup
0≤α≤1

|bx(α)| < ∞) and uniformly equicontinu-

ous functions on [0, 1]. Finally let (mn)n∈N be a sequence of positive numbers tending to

infinity.

If, as n →∞,

sup
x∈X

sup
0≤α≤1

|mn(Γn,x(α) − α)− bx(α)| → 0,

then

sup
x∈X

sup
0≤α≤1

|mn(Γ−1
n,x(α) − α) + bx(α)| → 0.

16



Proof: Write Dn = sup
x∈X

sup
0≤α≤1

|mn(Γn,x(α)− α)− bx(α)|. From Lemma 4 we have

‖|mn(Γ−1
n,x − I) + bx ‖|

≤ ‖|mn(Γ−1
n,x − I + Γn,x − I) ‖| + ‖| −

[
mn(Γn,x − I)− bx

]
‖|

≤ mn sup
x∈X

ω(Γn,x − I, ‖Γn,x − I‖) + Dn

≤ sup
x∈X

{
2 sup

0≤α≤1
|mn(Γn,x(α)− α)− bx(α)| + sup

|β−α|≤‖Γn,x−I‖
|bx(β)− bx(α)|

}
+ Dn

≤ sup
x∈X

ω(bx, ‖Γn,x − I‖) + 3Dn

≤ sup
x∈X

ω

(
bx,

Dn+ ‖|bx ‖|
mn

)
+ 3Dn → 0 as n →∞ . �

Define

Vn,x(β) = inf{α : P̄n,x(α) ≥ β, 0 ≤ α ≤ 1}, 0 ≤ β ≤ 1, x ∈ R,

Q̄n,x(α) = n
1
2 (Vn,x(α)− α), 0 ≤ α ≤ 1, x ∈ R.

It is immediate from Lemma 1 and the continuity of BP , that (Bx)x∈R is a collection of

uniformly equicontinuous functions on [0, 1]. Hence combining Lemma 5 and Proposition

1, we obtain the following important result.

Corollary 1 On the probability space of (1), as n →∞,

sup
x∈R

sup
0≤α≤1

|Q̄n,x(α) + Bx(α)| → 0 a.s.

and hence

sup
x∈R

sup
0≤α≤1

|Vn,x(α)− α| → 0 a.s.

Define Sx(0) = lim
α↓0

Sx(α). Similar to Lemma 3.1 in Einmahl and Mason (1992) we can

show:

Lemma 6 With probability 1, for all 0 < α < 1 and x ∈ R,

Sn,x(α) = Sx(Vn,x(α)).
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Proof of Theorem 1: For each η ≤ α ≤ 1 − η and x ∈ R we get by Lemma 6 and the

mean value theorem, that almost surely

Qn,x(α) + Bx(α) = gx(α) n
1
2 (Sx(Vn,x(α))− Sx(α)) + Bx(α)

=
gx(α)

gx(θn,x)
Q̄n,x(α) + Bx(α)

=
gx(α)

gx(θn,x)

(
Q̄n,x(α) + Bx(α)

)
− gx(α)− gx(θn,x)

gx(θn,x)
Bx(α),(9)

where θn,x lies between α and Vn,x(α). Assertion (2) follows from Corollary 1 and Lemma

3. �

For the proof of Theorem 2 we need three more auxiliary results.

Fact 1 [Lemma 1 in Csörgő and Révész (1978)] Under the assumptions of Theorem 2, in

particular condition (B), we have

f (F−1(α))

f (F−1(β))
≤
[
β ∨ α

β ∧ α

1− (β ∧ α)

1− (β ∨ α)

]M

for all 0 < α, β < 1.

Fact 2 [Lemma 3.2 in Einmahl and Mason (1992)] Let (Yn,k)n≥1, k≥1 be a double sequence

of random variables such that for each n, k ∈ N, Yn,k is Binomial(n, 2−k). Then

Yn := sup
k∈N

n−1 2k Yn,k = OP(1) as n →∞.

Lemma 7 On the probability space of (1),

sup
x∈R

sup
0<α<1

1− α

1− Vn,x(α)
= OP(1).

Proof: For k ∈ N, x ∈ R choose Ik,x ∈ Tx,1−2−k and for 1 − 2−k ≤ α < 1 − 2−k−1 set

Iα,x = Ik,x. Following the proof of Lemma 3.3 in Einmahl and Mason (1992), we can now

show that

sup
x∈R

sup
0<α<1

1− α

1− Vn,x(α)
≤ 2 ∨

{
sup
x∈R

sup
k≥1

2k+1(1− Pn(Ik,x))

}
.(10)

Write Wk := [F−1(2−k), F−1(1− 2−k)]. Then Ik,x ⊃ Wk holds for every x ∈ R. Hence the

second term of the right-hand side of (10) is bounded from above by

sup
k≥1

2k+1(1− Pn(Wk)).(11)
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Since n(1 − Pn(Wk)) is Binomial(n, 2−(k−1)), Fact 2 yields that the expression in (11) is

OP(1). �

Proof of Theorem 2: Theorem 1 states that for all 0 < η < 1/2

sup
x∈R

sup
η≤α≤1−η

|Qn,x(α) + Bx(α)| → 0 a.s. as n →∞.(12)

If lim
x↓x∗

f(x) > 0, then inf
x∈R

inf
0<α<1

gx(α) > 0 and Theorem 2 holds using the same argument

as in the proof of Theorem 1.

So in the sequel we assume lim
x↓x∗

f(x) = 0. Because of (12) we only need to consider the

supremum on the region where x ∈ R and α < η and on the region x ∈ R and α > 1− η.

We have from (9):

|Qn,x(α) + Bx(α)| ≤
∣∣∣∣ gx(α)

gx(θn,x)

(
Q̄n,x(α) + Bx(α)

)∣∣∣∣+ ∣∣∣∣( gx(α)

gx(θn,x)
− 1

)
Bx(α)

∣∣∣∣ .
Therefore it follows from a routine argument, using Corollary 1 and the equicontinuity of

(Bx)x∈R in conjunction with Bx(0) = Bx(1) = 0 for all x ∈ R almost surely, that it is

sufficient to show that for small enough η > 0, gx(α)/gx(θn,x) is bounded in probability

uniformly over both regions.

First we will show

(13) sup
α<η

sup
x∈R

gx(α)

gx(θn,x)
= OP(1).

Let δ ∈ (0, 1/2) be small. The region over which the supremum is taken will be split

up into three regions depending on x, namely α < η and F (x) < δ, δ ≤ F (x) ≤ 1 − δ,

F (x) > 1− δ, respectively. For the middle region we have for small enough η, because of

Corollary 1, that almost surely for large n, gx(θn,x) is bounded away from 0; see proof of

Lemma 3. Since gx(α) ≤ supy∈R f(y) = f(x1), we hence have

sup
α<η

sup
δ≤F (x)≤1−δ

gx(α)

gx(θn,x)
= OP(1).

In order to complete the proof of (13) we need to consider the regions α < η and

F (x) < δ, F (x) > 1 − δ, respectively. Because of symmetry we will restrict ourselves to

the region α < η and F (x) < δ. Note that from the proof of Lemma 3 it follows that

gx is nondecreasing for α ≤ |F (x1) − F (x)| and nonincreasing for α ≥ |F (x1) − F (x)|.
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Therefore for α ≥ Vn,x(α) (when α ≤ Vn,x(α) we use 1 as an upper bound), almost surely

for large n

sup
α<η

sup
F (x)<δ

gx(α)

gx(θn,x)
≤ sup

α<η
sup

F (x)<δ

gx(α)

gx(Vn,x(α))

≤ sup
α<η

sup
F (x)≤α

gx(α)

gx(Vn,x(α))
+ sup

α<η
sup

α<F (x)<δ

gx(α)

gx(Vn,x(α))
.(14)

For x and α both small enough we have gx(α) = f (F−1 (F (x) + α)). Hence the second

term in the right-hand side of (14) is equal to

sup
α<η

sup
α<F (x)<δ

f (F−1 (F (x) + α))

f (F−1 (F (x) + Vn,x(α)))
≤ sup

F (x)<δ

f (F−1 (2F (x)))

f (F−1 (F (x)))
,(15)

because f ◦F−1 is increasing on (0, F (x1)). It is immediate from Fact 1 that the right-hand

side of (15) is bounded.

Similarly, the first term in the right-hand side of (14) is bounded from above by

sup
α<η

sup
F (x)≤α

f (F−1 (2α))

f (F−1 (F (x) + Vn,x(α)))

≤ sup
α<η

sup
F (x)≤α

(
2α

F (x) + Vn,x(α)
· 1− F (x)− Vn,x(α)

1− 2α

)M

.(16)

Because the second factor in the right-hand side of (16) is clearly bounded in probability,

we need to show that

sup
α<η

sup
F (x)≤α

α

F (x) + Vn,x(α)
= OP(1).

The proof of this is based on the following crucial inequality: with probability 1

Vn,x(α) ≥ F (X(dnαe))− F (x) for all x ∈ R and 0 < α < 1.(17)

When proving this inequality, we assume F (X(dnαe)) > F (x), otherwise there is nothing

to prove. Using Lemma 6 and the Monotonicity property (Section 1), we see that we need

to show

Sn,x(α) ≥ Sx(F (X(dnαe))− F (x)).

From the definitions of Sx and Sn,x we obtain

Sx(F (X(dnαe))− F (x)) = inf{b− a : F (b)− F (a) ≥ F (X(dnαe))− F (x), x ∈ [a, b]}
≤ X(dnαe) − x ≤ Sn,x(α),
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and hence (17). Hence, almost surely,

sup
α<η

sup
F (x)≤α

α

F (x) + Vn,x(α)
≤ sup

α<η

α

F (X(dnαe))
≤ sup

0<α<1

α

F (X(dnαe))
.(18)

The denominator on the right is equal in distribution to the empirical quantile function

of a sample of n independent uniform-(0, 1) variables. Hence it is well-known that the

expression on the right in (18) is bounded in probability, see, e.g., Shorack and Wellner

(1986), p. 419. This proves (13).

The proof of Theorem 2 is complete if we show that

(19) sup
α>1−η

sup
x∈R

gx(α)

gx(θn,x)
= OP(1).

For symmetry reasons we can restrict x to (−∞, F−1(1/2)]. For large enough α, λα is

defined and we can write gx as follows:

gx(α) =

{
f(F−1(F (x) + α)) for x < F−1((1− α)λα)

f(F−1((1− α)λα)) for F−1((1− α)λα) ≤ x ≤ F−1(1/2) .

For small enough η and α ≤ Vn,x(α) (again, when α ≥ Vn,x(α) we can use 1 as an

upper bound) we obtain

sup
α>1−η

sup
F (x)≤ 1

2

gx(α)

gx(θn,x)
≤ sup

α>1−η
sup

F (x)<(1−Vn,x(α))λVn,x(α)

gx(α)

gx(Vn,x(α))
(20)

∨ sup
α>1−η

sup
(1−Vn,x(α))λVn,x(α)≤F (x)<(1−α)λα

gx(α)

gx(Vn,x(α))

∨ sup
α>1−η

sup
(1−α)λα≤F (x)≤ 1

2

gx(α)

gx(Vn,x(α))
.

The last term in the right-hand side of (20) can be bounded from above by applying Fact 1:

sup
α>1−η

sup
(1−α)λα≤F (x)≤ 1

2

gx(α)

gx(Vn,x(α))
= sup

α>1−η
sup

(1−α)λα≤F (x)≤ 1
2

f (F−1 ((1− α)λα))

f
(
F−1

(
(1− Vn,x(α)) λVn,x(α)

))
≤ sup

α>1−η
sup
x∈R

(
(1− α)λα

(1− Vn,x(α)) λVn,x(α)

1− (1− Vn,x(α)) λVn,x(α)

1− (1− α)λα

)M

,

which is easily seen to be OP(1), using Lemma 7 and condition (C).

The first term in the right-hand side of (20) is equal to

sup
α>1−η

sup
F (x)<(1−Vn,x(α))λVn,x(α)

f (F−1 (F (x) + α))

f (F−1 (F (x) + Vn,x(α)))
,

21



which is, since f is decreasing for large values and because of Fact 1, bounded from above

by

sup
α>1−η

sup
F (x)<(1−Vn,x(α))λVn,x(α)

f (F−1 (F (x) + α))

f
(
F−1

(
(1− Vn,x(α)) λVn,x(α) + Vn,x(α)

))(21)

≤ sup
α>1−η

sup
x∈R

(
(1− Vn,x(α)) λVn,x(α) + Vn,x(α)

α

1− α

(1− Vn,x(α))
(
1− λVn,x(α)

))M

.

Again, Lemma 7 and condition (C) yield that this term is OP(1).

The middle term in the right-hand side of (20), rewritten as (using f(F−1((1−β)λβ)) =

f(F−1((1− β)λβ + β)) )

sup
α>1−η

sup
(1−Vn,x(α))λVn,x(α)≤F (x)<(1−α)λα

f (F−1 (F (x) + α))

f
(
F−1

(
(1− Vn,x(α)) λVn,x(α) + Vn,x(α)

)) ,

is bounded by the right-hand side of (21). This completes the proof of (19). �
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