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Abstract

We consider model based inference in a fractionally cointegrated (or cofractional) vec-
tor autoregressive model, based on the Gaussian likelihood conditional on initial values.
We give conditions on the parameters such that the process X; is fractional of order d
and cofractional of order d — b; that is, there exist vectors 3 for which 3'X; is fractional
of order d — b, and no other fractionality order is possible. For b = 1, the model nests
the I(d — 1) VAR model. We define the statistical model by 0 < b < d, but conduct
inference when the true values satisfy 0 < dy — by < 1/2 and by # 1/2, for which B X
is (asymptotically) a stationary process. Our main technical contribution is the proof of
consistency of the maximum likelihood estimators. To this end we prove weak conver-
gence of the conditional likelihood as a continuous stochastic process in the parameters
when errors are i.i.d. with suitable moment conditions and initial values are bounded.
Because the limit is deterministic this implies uniform convergence in probability of the
conditional likelihood function. If the true value by > 1/2, we prove that the limit distri-
bution of T% (3 — ) is mixed Gaussian and for the remaining parameters it is Gaussian.
The limit distribution of the likelihood ratio test for cointegration rank is a functional of
fractional Brownian motion of type II. If by < 1/2 all limit distributions are Gaussian or
chi-squared. We derive similar results for the model with d = b allowing for a constant
term.
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LIKELIHOOD INFERENCE FOR COFRACTIONAL PROCESSES

1 Introduction and motivation

The cointegrated vector autoregressive (VAR) model for a p-dimensional nonstationary time
series, X;, is

k
AX,=a(B X +p)+ ) TidXi+e, t=1,....T, (1)
i=1
where AX;_; = X;_;—X;_;_1. This model has been widely used for analyzing long-run economic
relations given by the stationary combinations 5’ X; and for building empirical dynamic models
in macroeconomics and finance, see for instance Juselius (2006).

Fractional processes are a useful tool for describing time series with slowly decaying auto-
correlation functions and have played a prominent role in econometrics, see e.g. Henry and
Zaffaroni (2003) and Gil-Alana and Hualde (2009) for reviews and examples, and it appears
important to allow fractional orders of integration (fractionality) in time series models.

In this paper we analyze VAR models for fractional processes. The models allow X; to
be fractional of order d and 'X; to be fractional of order d — b > 0, in order to extend the
usefulness of model (1) to fractional processes. We also consider a model with d = b allowing
for a constant term.

The model can be derived in two steps. First, in (1) we replace the usual lag operator
L = 1— A and difference operator A by the fractional lag and difference operators, L, = 1 — A®
and A’ = (1—L)" defined by the binomial expansion A*Z, = 3% (~1)"(’)Z,_,. Secondly, we
apply the resulting model to Z; = A4 X,. This defines the fractional VAR model, VAR ;(k),
see Johansen (2008),

k
Mot AX, = AP Lyaf' X, + Y TALIX, +ey, t=1,....T, (2)
i=1
where ¢; is p-dimensional i.i.d.(0,2), € is positive definite, and o and 8 are p x r, 0 <
r < p. The parameter space of H, is given by the otherwise unrestricted parameters A\ =
(d,b,a, 5,11, ..., T, ). In the special case r = p, the p x p matrix Il = «f’ is unrestricted,
and if r = 0 the parameters o and 3 are not present, and finally if £ = r = 0 the model is
AYX; = ¢, so the parameters are (d, ). Note that the VARFIMA(k + 1,d — 1,0) is a special
case for b = 1.

If we model data Y; by Y; = p + Xy, where X, is given by (2), then A*Y; = A%( X, + p) =
A*X; because A*1 = 0 for a > 0, so that Y, satisfies the same equations. For the same reason,
when d > b the model (2) is invariant to a restricted constant term, p, when included in a way
similar to that in (1). Thus (2) is a model for the stochastic properties of the data and when
they have been determined one can, for example, estimate the mean of the stationary linear
combinations by the average.

Therefore, we also consider the model with d = b and a constant term,

k
Ho(d=1b): A'X, = aLy(BX, +p)) + > TALiX, +e, t=1,....T, (3)
=1

with a similar interpretation of 5'X; except now ' X; + p’ is a mean zero process of fractional
order zero. Note that Lgp’ = p’ because A%l = 0.
We show that when 0 < r < p, X; is fractional of order d and cofractional of order

d — b, that is, 5'X; is fractional of order d — b. Moreover, if d — b < 1/2 then /X, in
model (2) is asymptotically a mean zero stationary process. The model has the attractive
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feature of a straightforward interpretation of § as the cointegrating parameters in the long-run
relations, 5'X; = 0, which are stable in the sense that they are fractional of a lower order,
and of « describing adjustment towards the long-run equilibria and (through the orthogonal
complement) the common stochastic trends, which are fractional of order d.

The lag structure of models (2) and (3) admits simple criteria for fractionality and cofrac-
tionality of X; (or fractional cointegration; henceforth we use these terms synonymously). At
the same time the model is relatively easy to estimate because for fixed (d, b) the model is esti-
mated by reduced rank regression, which reduces the numerical problem to an optimization of
a function of just two variables. Finally, an appealing feature of the model is that it gives the
possibility of the usual misspecification tests based on estimated residuals, although of course
the theory for these would need to be developed in the current setting.

The purpose of this paper is to conduct (quasi) Gaussian maximum likelihood inference
in models (2) and (3), to show that the maximum likelihood estimator exists uniquely and is
consistent, and to find the asymptotic distributions of maximum likelihood estimators and some
likelihood ratio test statistics. We analyze the conditional likelihood function for (X7, ..., Xr)
given initial values X_,,, n =0,1,..., under the assumption that ¢; is i.i.d. N,(0,Q). For the
calculations of the likelihood function and the maximum likelihood estimator, we need A%X;
for a > 0. Because we do not know all initial values we assume that we have observations of
Xyt = =Ng+1,...,T, and define initial values X, = X ,,n=20,...,Ng— 1 and X, =
0,n > Ny, and base the calculations on these. Thus we set aside Ny observations for initial
values. For the asymptotic analysis we represent X, by its past values and we make suitable
assumptions about their behaviour. Apart from that we assume only that &, is i.i.d.(0, Q) with
suitable moments.

We treat (d,b) as parameters to be estimated jointly with the other parameters. Another
possibility is to impose the restriction d = d for some prespecified dy, e.g. dy = 1, and b = by,
where by = 1 yields the VARFIMA(k + 1,d — 1,0), or I(d — 1) VAR, model. We note here
that the models with d = dy and/or b = by are submodels in H,., and results for these models
can be derived by the methods developed for the general model H,. The same holds for the
restriction d = b in model H,(d = b), see (3), even though a simple modification is needed
due to the constant term. The univariate version of model (2) with a unit root was analyzed
by Johansen and Nielsen (2010), henceforth JN (2010), and we refer to that paper for some
technical results.

The inspiration for model (2) comes from Granger (1986), who noted the special role of the
fractional lag operator L, = 1 — A’ and suggested the model

A (D)AYX, = A" Lyaf X, + d(L)e, (4)

see also Davidson (2002). One way to derive the main term of this model is to assume that
we have linear combinations (v, 3) of rank p for which A%y'X; and A?°3'X; are I(0). Simple
algebra shows that AYX, = A’L,a3' X, + u,;, where « is a function of v and w; is 1(0), see
Johansen (2008, p. 652) for details.

The main technical contribution in this paper is the proof of existence and consistency of
the MLE, which allows standard likelihood theory to be applied. This involves an analysis of
the influence of initial values as well as proving tightness and uniform convergence in (d,b) of
product moments of processes that can be close to critical processes of the form A~1/2¢,.

In our asymptotic distribution results we distinguish between “weak cointegration” (when
the true value by < 1/2) and “strong cointegration” (by > 1/2), using terminology of Hualde
and Robinson (2010). Specifically, we prove that for i.i.d. errors with sufficient moments finite,
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the estimated cointegration vectors are locally asymptotically mixed normal (LAMN) when
bo > 1/2 and asymptotically Gaussian when by < 1/2, so that in either case standard (chi-
squared) asymptotic inference can be conducted on the cointegrating relations. Thus, for
Gaussian errors we get asymptotically optimal inference, but the results hold more generally.
Note that the parameter value by = 1/2 is a singular point in the sense that inference is different
for by < 1/2 and by > 1/2. Close to by = 1/2 we need many observations for the asymptotic
results to be useful, and a similar situation occurs when the true value of either « or 5 is close
to a matrix with lower rank, see Elliott (1998).

Although such LAMN results are well known from the standard (non-fractional) coin-
tegration model, e.g. Johansen (1988, 1991), Phillips and Hansen (1990), Phillips (1991),
and Saikkonen (1991) among others, they are novel for fractional models. Only recently, as-
ymptotically optimal inference procedures have been developed for fractional processes, e.g.
Jeganathan (1999), Robinson and Hualde (2003), Lasak (2008, 2010), Avarucci and Velasco
(2009), and Hualde and Robinson (2010). Specifically, in a vector autoregressive context, but
in a model with d = 1 and a different lag structure from ours, Lasak (2010) analyzes a test
for no cointegration and in Lasak (2008) she analyzes maximum likelihood estimation and
inference; in both cases assuming “strong cointegration”. In the same model as Lasak, but
assuming “weak cointegration”, Avarucci and Velasco (2009) extend the univariate test of Lo-
bato and Velasco (2007) to analyze a Wald test for cointegration rank, see also Marmol and
Velasco (2004). However, the present paper seems to be the first to develop LAMN results for
the MLE in a fractional cointegration model in a vector error correction framework and with
two fractional parameters (d and b).

The rest of the paper is laid out as follows. In the next section we describe the solution
of the fractionally cointegrated vector autoregressive model and its properties. In Section 3
we derive the likelihood function and estimators and show consistency. In Section 4 we find
the asymptotic distribution of estimators, and in Section 5 that of the likelihood ratio test for
cointegration rank. Section 6 concludes and technical material is presented in appendices.

A word on notation. We let CP(K) denote the space of continuous p-vector-valued functions
on a compact set K C R, i.e. continuous functions f : K — RP, and let D?(K) denote the
corresponding space of cadlag functions. When p = 1 the superscript is omitted. For a
symmetric matrix A we write A > 0 to mean that it is positive definite. The Euclidean norm
of a matrix, vector, or scalar A is denoted |A| = (tr(A’A))!/? and the determinant of a square
matrix is denoted det(A). Throughout, ¢ denotes a generic positive constant which may take
different values in different places.

2 Solution of the cofractional vector autoregressive model

We discuss the fractional difference operator A?, a truncated version Ai, and calculation
of AYX,;. We show how equation (2) can be solved for X; as a function of initial values,
parameters, and errors ¢;,7 = 1,...,t, and give properties of the solution in Theorem 2. We
then give assumptions for the asymptotic analysis and discuss identification of parameters, and
finally we briefly discuss initial values.

2.1 The fractional difference operator

The fractional coefficients, m,(a), are defined by the expansion

o)

(1—2)=> (-1" (_na> =) alet1). -7-;@ oo ;Wn(a)z”

n=0

4
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and satisfy m,(a) = 0,n < 0, and |m,(a)] < en® !, n > 1, see Lemma A.5. The fractional
difference operator applied to a process Z;,t = ..., —1,0,1,..., T, is defined by

A_aZt = Z ﬂ-n(a)Zt—ny
n=0

provided the right-hand side exists. Note that A7 A% = A~%7% gnd the useful relation
A" (ay) = m(ay + ag), using that m(a) = 0 for ¢t < 0. We collect a few simple results in a
lemma, where D" A®Z,; denotes the m’th derivative with respect to a.

Lemma 1 Let Z; =Y " &né—n, where &, is s X p and €, are p-dimensional i.1.d.(0,Q) and

2 im0 |&n] < 00

(1) If the initial values Z_,,, n > 0, are bounded, then D" A*Z, exists for a > 0 and is almost
surely continuous in a for a > 0.

We next consider fractional differences of Z; without fixing initial values.

(i1) If a > 0 then D™A®Z, is a stationary process with absolutely summable coefficients and
18 almost surely continuous in a > 0.
(i1i) If a > —1/2 then D"A®Z, is a stationary process with square summable coefficients.

Proof. The existence is a simple consequence of the evaluation |D™7,,(—a)| < ¢(1+logn)™n =21
for n > 1, see Lemma A.5, which implies that D7, (—a) is absolutely summable and contin-
uous in a for a > 0 and square summable for a > —1/2. For case (ii) the continuity follows
because |D™A*Z, —D™A*Z,| < cla—al Yy . (1+1logn)™ n~m"1Z,_,| for min(a,a) > n > 0.
This random variable has a finite mean and is hence finite except on a null set which depends
on 7; but not a or a. It follows that [D™A%Z, — D™A%Z,| “% 0 for a — a. m

For a < 1/2, an example of these results is the stationary linear process

A%y =(1—-L) % = Zﬂn(a)at,n.
n=0

For a > 1/2 the infinite sum does not exist, but we can define a nonstationary process by the
operator A7, defined on doubly infinite sequences, as

Thus, for a > 1/2 we do not use A~* directly but apply instead AT* which is defined for all
processes, see for instance Marinucci and Robinson (2000), who use the notation A™%¢;15>13,
where 1¢4; denotes the indicator function for the event A, and call this a “type II” process.

The idea of conditioning on initial values is used in the analysis of autoregressive models
for nonstationary processes, and we modify the definition of a fractional process to take initial
values into account.

Definition 1 Let ¢; be i.i.d.(0,92) in p dimensions and consider s X p matrices &, for which
Yo o lénl < o0, and define C(z) = > 7 &,.2", |z| < 1. Then the linear process C(L)e; =
Yoo o &n€tn 18 fractional of order 0 if C(1) # 0. A process X, is fractional of order d > 0 (de-
noted X; € F(d)) if A%X, is fractional of order zero, and X, is cofractional with cofractionality
vector (B if 5' Xy is fractional of order d — b > 0 for some b > 0.
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The same definitions hold for any d € R and b > 0 for the truncated linear process
t—1
Ci(L)er + wp = L1y Z EnEt—n + Wi, (5)
n=0
where wy 18 a deterministic term.

The main result in Theorem 2 in Section 2.3 is the representation of the solution of equation
(2) in terms of certain stationary processes, which we introduce next.

Definition 2 We define the class 2, as the set of multivariate linear stationary processes Z;
which can be represented as

Zy =g+ A Z EnEin,
n=0

o0

where b > 0 and €; is i.1.d.(0,Q) and the coefficient matrices satisfy an? &5 < o0.
We also define the corresponding truncated process Z;" = g, + Ai Zn;lo Eretn-

Definition 2 is a fractional version of the usual Beveridge-Nelson decomposition, where
Do bnetn = Qoniobn)er A (et n € 21

For the asymptotic analysis we apply the result that, when a > 1/2 and Eleg;|? < oo for
some q > 1/(a — 1/2), then for Z; € Z,,b > 0, we have

u

T PAZ G = Waa(w) =T(a)™! / (u—9)*"dW(s) on D?([0,1]), a>1/2,  (6)

Tu)
0

where I'(a) is the gamma function and W denotes p-dimensional Brownian motion (BM) gen-
erated by ;. The process W,_; is the corresponding fractional Brownian motion (fBM) of type
II, and = is used for convergence in distribution as a process on a function space (C? or D?),
see Billingsley (1968) or Kallenberg (2001). The proof of (6) is given in JN (2010, Lemma D.2)
for Z, € Z,,b > 0, see also Taqqu (1975) for Z; = ;.

We also have under the same conditions on ¢; and for Z; € Z;,,b > 0, that

T 1
T Z A;“LGZ;%?; Z /0 Wo_1dW', a > 1/2, (7)
t=1

where 2 denotes convergence in distribution on RP*P. This result is proved in JN (2010, p.
65) for univariate processes building on the result of Jakubowski, Mémin, and Pages (1989)
for the case Z;, = ¢; and L, = L;. The same proof can be applied for processes in Z,.

2.2 Solution of fractional autoregressive equations

The properties of the solution of (2) are given by the properties of the polynomial
k k
U(y)=(1—y)—afy—Y Ti(l—yy' = —afy+(1—y)>_ (1l —y), (8)
i=1 i=0
where the coefficients satisfy Zf:o U, =1, Vy=1,— Zle [';, and ¥, = (—1)*1T';. Equation
(2) can be written as I1(L)X; = A4 (L) X; = &, so that

T(z) = (1 — 2)=P0(1 — (1 — 2)b). 9)

That is, A" X, satisfies a VAR in the lag operator L, rather than the standard lag operator
L = L;. This structure means that the solution of (2) and the criteria for fractionality of order
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d and cofractionality of order d — b can be found by analyzing the polynomial ¥(y), just as for
the cointegrated VAR model.
We want to solve X; as a function of initial values X _,,n = 0,1,..., and random shocks
£1,...,&¢ A solution can be found using the two operators, see Johansen (2008),
t—1

L (L)X; = 1gz1y ) ILX and T (L)X, = > TLX,
1=0 i=t

for which II(L)X; = I1, (L)X, +1II_(L)X,. Here the operator II, (L) is defined for any sequence
as a finite sum. Because II(0) = I,, I, (L) is invertible on sequences that are zero for ¢ < 0,
and the coefficients of the inverse are found by expanding IT(z)~! around zero. The expression
IT_(L)X; is defined if we assume that the initial values of X; are bounded. Then the equations
in model (2) can be expressed as ¢, = II(L)X; = 1. (L)X; + II_(L)X;, and by applying
I, (L)' on both sides we find, for t = 1,2, ..., that

X, =T.(L) e, — T (L)' (L)X, =TI (L) ey + . (10)
The first term is the stochastic component generated by ¢4, ..., &;, and the second is a deter-
ministic component generated by initial values. An example of the solution (10) is the well
known result that y;, = vy,_1 + &; has the solution y;, = Zf;é vie,_; + vlyy for any v and
t=1,...,7. When d < 1/2 we use a representation of the solution which explicitly contains
the stationarity of X;. In the simple example y; = vy, + &; with |v| < 1 this corresponds to
using the solution y; = Y oo v'e,; for t =1,...,T.

2.3 Properties of the solution: representation theorem

The solution (10) of equation (2) is valid without any assumptions on the parameters. We
next give results which guarantee that X; is fractional of order d and cofractional from d to
d — b, that is A?X, and A?*3' X, are fractional of order zero. These results are given in terms
of an explicit condition on the roots of the polynomial det(¥(y)) and the set C,, which is the
image of the unit disk under the mapping y = 1 — (1 — 2)°, see Johansen (2008, p. 660). Note
that C; is the unit disk and that C, is increasing in b.

The following result is Granger’s Representation Theorem for the cofractional VAR models
(2) and (3), see also Johansen (2008, Theorem 8 and 2009, Theorem 3). It is related to
previous representation theorems of Engle and Granger (1987) and Johansen (1988, 1991) for
the cointegrated VAR model. Below we use the notation §, for a p x (p — r) matrix of full
rank for which 5’3, = 0, and note the orthogonal decomposition, which defines 3 and 3,

I, =B(B'B) B + BL(BLAL) AL = BB + BLBL. (11)

Theorem 2 Let I1(z) = (1 — 2)4 (1 — (1 — 2)°) be given by (8) and (9) for any 0 < b < d
and let y = 1 — (1 — 2)°. We assume that o and 3 have rank r < p and that det(¥(y)) = 0
implies that either y =1 or y ¢ Chpaxp,1), and we define I' = I, — Zle I';. Then:
(i) It holds that
(1—2)T(2) ' =C+(1-2)’C* +(1—2)*H*(1-(1—2)") = C+(1—2)"H(1—(1—-2)%), (12)
if and only if det(o/ I'81) # 0, where H*(y) is regular in a neighborhood of Cax(s1),
C=p.(a\TB) ), and B C*a = —1I,. (13)
For F*(z2) = H*(1— (1= 2)") =Y jmi2" and F(2) = H(1 — (1 — 2)®) = Y02 (1.2, |2] < 1,

n=0"n
we have

Z |7, < 00 and Z || < 0. (14)
n=0 n=0

7
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(i1) For d > 1/2 we represent the solution of (2) as
— CA ey + ALY o, t =1, T, (15)

where iy = —I1 (L) "'II_(L)X; depends on initial values of Xy and Yy = Y oo Tuern € 2
is fractional of order zero with Y ;- |E(Y;Y/ )| < co. In this case B'X; is asymptotically
stationary with mean zero. The solution of (8) with d = b and a constant term is represented
as

Xy =CA % + Y,  + e+ Capl, t=1,...,T, (16)

and (' X, + p' is asymptotically stationary with mean zero.
(i1i) For d < 1/2 we represent the solutions of (2) and (3) as

=CA %, + A"UVY, t=1,... T (17)
= CA %, + A"UVY, L Crapf, t=1,...,T. (18)
(iv) In all cases there is no «y for which v' X, € F(c) for some ¢ < d —b.

Proof. Proof of (i): The proofs of (12) and (13) are given in Johansen (2008, Theorem 8
and 2009, Theorem 3). The condition det(o/, I'81) # 0 is necessary and sufficient for the
representation of X; as an F(d) variable, because if det(o/, I'8,) = 0 then we get terms of the
form (1 — 2)~(@*+®) § > 2. corresponding to models for I(7) variables, i > 2, in the cointegrated
VAR context, see Johansen (2008, Theorem 9).

To prove (14), it is enough to prove it for 7 because 7,, = 7 — 7*_;,n > 1. We note that
because H*(y) = > o7, 7iy™ is regular in a neighborhood of C;, we can extend H*(1 — (1 — 2)?)

by continuity to |z| = 1, and define the transfer function

Be™) = H*(1— (1 - ¢)P), i = V1.
We then apply the proof in JN (2010, Lemma 1), which shows that because |d¢(e™)/0)| is
square integrable when b > 1/2, we have >~ (7,n)? < oo and hence Y o2 || < oo.

For b < 1/2 we need another proof. The assumption y ¢ Cy implies that H*(y) = >~ hiy*
is regular for |y| < 14§ for some 6 > 0, so that h; decrease exponentially. From the expansion
1—(1=2)"=>"°_ byz™ with b,, = —m,,,(—b), we find that if 0 < b < 1/2 then b,, > 0 and
> by = 1. Therefore

m=1

T
—
|
=
|
L\z/
i
NE
N
]
5
N
=
=
I
NE
NE
>

Y Hbmlz—ZT

k=0 m=1 n=0 k=0 mi+-+mp=n 1=1

P ED BB A Hbml < Z PRl o) = Z || < o0
n=0 n=0 k=0 mi+--4+mr=n i=1 =0 k=0

Proof of (ii): For d > 1/2 we define Y; = Y 02 [ Tner—n = C*er + ALY 2 7¥e,, € Z;, which
is fractional of order zero because C* # 0, see (13) and has Y > |7,| < co which implies
Yo JIEMY] )| < oo. Then (15) follows from (10), see also Johansen (2008, Theorem 8).
For p = 0 and d = b we find the solution X?, say, from (15). Then II(L)(X? + C*ap') = e+
(L)C*ap' = &;—af'C*ap’ = g;+ap’ so that X; = X2+ C*ayp’ is a solution of (3). In this case
we therefore find 5/ X; + p' = B/ X + /C*ap’ + p' = 5/ X}, which is asymptotically stationary
with mean zero and fractional of order zero.
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Proof of (iii): For d < 1/2, CA~%, + A=(@=b)Y] is stationary and represents a solution of
(2) and (3) for p = 0. We then add C*ayp’ for p # 0.
Proof of (iv): We find from (i) and (i7) that if, for some ¢ < d — b, 7' X is fractional of
order ¢ then
t—1
v X, = V/C’A;d&?t + W/C'*A:”bé?t + ATdF2 Z Ve + v 1 € Flc)
n=0
implies that v'C' = 0 and v'C* = 0. Hence v = ¢ and therefore v'C*a = &'f'C*a = —£' =0,
so that y=0. m
Thus for model (2) with 0 < r < p, X, is fractional of order d, and because 5'C = 0, X; is
cofractional since 3'X; = Al(d_b)B’Yﬁ + By for d > 1/2 and /X, = A=@=9p'Y, for d < 1/2
are fractional of order d — b, and no linear combination gives other orders of fractionality.
Ifr=0wehavea =08=p=0, ay =, =1, and C = I'"! is assumed to have full
rank, and thus X; is fractional of order d and not cofractional. Finally, if » = p then a3’ has
full rank and C' = 0 so that X; = A;(d_b)Yf + pi (the d > 1/2 representation) is fractional of
order d — b. Note, however, that the coefficients of Y, and u; depend on both d and b, so that
(d, b) is identified, see Theorem 3.
The stochastic properties of X; are given in Theorem 2 in terms of the process U; =
Ce, + AY, € Z,, see Definition 2, and it follows from Theorem 2 that also Y; € Z,.

2.4 Assumptions for the data generating process

We here formulate assumptions on the true parameter Ao = (do,bo, @0, B0, Lo1, - - - ok, Qo)
needed for identification and for the asymptotic properties of the estimators and the likelihood
function for model H,. For the model H,(d = b) with d = b and a constant term, i.e. (3), we
replace b with p in the definition of A\. We define the parameter set

N={db:0<b<d<d} (19)

for some d; > 0, which can be arbitrarily large.

Assumption 1 For k>0 and 0 < r < p the process X;, t =1,...,T, is generated by model
H, in (2) or model H,(d = b) in (3) with the parameter value \.

Assumption 2 The errors ; are i.i.d.(0, ) with Qo > 0 and E|g|® < oc.

Assumption 3 The initial values X _,,n > 0, are uniformly bounded, and X, =X_, for
n < Ny and X_,, =0 for n > Nj.

Assumption 4 The true parameter value \g satisfies (do,bg) € N, 0 < dy — by < 1/2, by #
1/2, and the identification conditions I # 0 (if k > 0), ag and [y are p X r of rank r,
aofy # —1I,, and det(ag ToBor) # 0. Thus, if r < p, then det(¥(y)) = 0 has p — r unit roots
and the remaining roots are outside Ciax(no,1)- If kK =1 =0 only 0 < dy # 1/2 is assumed.

Importantly, in Assumption 2, the errors are not assumed Gaussian for the asymptotic
analysis, but are only assumed to be i.i.d. with 8 moments, and we later specify the existence
of further moments needed for the asymptotic properties of the maximum likelihood estimator.
Assumption 3 about initial values is needed for nonstationary processes so that A?X, is defined
for any d > 0, see Lemma 1. In Assumption 4 about the true values we include the condition
that 0 < dy — by < 1/2, which appears to be perhaps the most empirically relevant range of
values for dy — by, see e.g. Henry and Zaffaroni (2003), Gil-Alana and Hualde (2009), and the
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references in the introduction, because in this case §)X; is (asymptotically) stationary with
mean zero. Assumption 4 also includes the condition for cofractionality when r > 0, which
ensures that X; is fractional of order dy and 3 X, is fractional of order dy—by. The identification
conditions in Assumption 4 guarantee that the lag length is well defined, that the parameters
are identified, see Section 2.5, and that the asymptotic distribution of the maximum likelihood
estimator is nonsingular, see Lemma 7.

2.5 Identification of parameters

In a statistical model with parameter A we say that the parameter value )\q is identified if,
for all A for which Py, = P,,, it holds that A = X\g. We say that the model is generically
identified if the set of unidentified parameter values has Lebesgue measure zero. In model (2)
the parameters o and [ enter, when r > 0, only through their product af’ so they are not
individually identified. This 1s usually solved by normalizing . We use the decomposition
(11) and define B = B(BLB) Y, & = aB' By, p = p(BiB)7Y, so that af = af3'. We assume in
the following that this normahzatlon has been performed and use the notation «, 3. Note that
BBy = I,. We define A = (d,b,a, 3,T1, ..., Q) suitably modified if r = p, r = 0, or k = 0,
see the discussion after (2), and apply the notation IT,(L).

Theorem 3 For any k>0 and 0 < r < p we let \ denote all parameters of model H, with k
lags, see (2). We assume, see Assumption 4, that for A\ and X\ it holds that Ty, #0 (if k > 0),
a and 8 are p X r of rank r, aff’ # —1I,, and det(a/ I'8,) # 0. Then Py = Py, implies A = Ao
so that X\ is identified. It follows that model H, in (2) is generically identified. A similar
result holds for model (3).

Proof. If P, = P,, the mean and variance of X; given the past are the same with respect to
P, and P,,, so that Q2 = g, and, for all z

My(2) = (1 —2)"Wy(1 - (1 - z)b) = (1= 2)%7W, (1 —(1—2)%)=1,,(2). (20)

If k> 0and r > 0 then Uy (1— (1 - 2)?) is a polynomial in (1 — 2)°, see (8), with highest order
term W, (1 — 2)**+D? and lowest order term —a/3’. Hence (20) implies that (1 — 2)=°W, (1 —
2)EHDb — (1 — 2)do=bogg, (1 — 2)*+D £ 0 and (1 — 2)4baB’ = (1 — 2)%%aB) # 0. This
evidently implies that (d,b) = (do, by) and therefore af’ = oy, and that ¥,(y) and ¥, (y)
have the same coefficients; that is A = \g. If £ > 0 and r = 0, then &« = f = 0 and
ap =p =1,and ¥y = I, — Zf_ I' =T = o/ '8, # 0 and the same conclusion holds. In
case k =0 and r >0, where the model is AYX, = AYLy,aB' X, + &, the conditions a3’ # 0
and af’ # —1I, for A and A\ imply that ), is identified. Finally, if & = » = 0 the model is
AX, =g, and \g = (dy, Qo) is identified.

Since the set of values of Ay that do not satisfy the given conditions has Lebesgue measure
zero, it follows that model (2) is generically identified. m

Identification was discussed in JN (2010, Section 2.3, Lemma 3 and Corollary 4) in the
univariate case, and an example of an indeterminacy between d, b, and k was given. Theorem
3 shows that once the lag length has been determined the model is generically identified.

2.6 Initial values

In order for A*X;,a > 0, to be well defined we assume that the initial values X_,,,n > 0, are
uniformly bounded. The theory in this paper will be developed for observations Xi,..., Xp
generated by (2) or (3) with fixed bounded initial values; that is, conditional on X_,,,n > 0,
as developed in JN (2010), and we choose the representations given in Theorem 2.

10
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The likelihood function depends on A®X; for different values of a and because we do not
observe the infinitely many past values of X; we choose initial values, X_,, for the calculations
and define A*X, = AL X, + A® X,. The first term is a function of the observations X1, ..., Xr,
but the second is a function of initial values. A possible choice is X_, = 0,n > 0, but we
derive the theory for the choice X_n = X_,,n < Ny and set X_n = 0 for n > Ny. Thus we set
aside Ny observations for initial values, as is usually done in the analysis of an AR(k) model.

We prove consistency under the assumption that X _,, is uniformly bounded for n > 0, and
derive the asymptotic distributions under the further assumption that X _,, = 0 for n > T"
for a small v.! In this way we allow the number of initial values in the representation of X, to
increase with 7', thereby approximating the situation where the representation has infinitely
many initial values.

The choice of Ny entails a small sample bias/efficiency trade-off, with fewer initial values
introducing bias, but also leaving more observations for parameter estimation. Simulations
suggest that many initial values are needed if by is close to 1/2, but for, say, by > 0.8 about a
handful of initial values are sufficient, which is also what is used in the (univariate) empirical
application in Hualde and Robinson (2011, Section 5) who assume that both X_,, and X_, are
zero in their theoretical analysis, but in their empirical application they actually condition on
non-zero initial values. Such simulations and analytical results will be reported elsewhere.

For dy > 1/2 we use the representations (15) and (16) in terms of ug; which depends on
the correct initial values, and approximate it as discussed above, and for dy < 1/2 we use the
representations (17) and (18) of X as a stationary process around its mean. The initial values
term po; plays no role in that case because the initial values have been given their invariant
distribution.

3 Likelihood function and maximum likelihood estimators

The log likelihood function log L7 () is continuous in A and we show that for the probability
measure P determined by g, 7' log Ly (\) converges as a continuous function on a compact
set. Because the limit is deterministic we get uniform continuity in the parameter )\, and we
use that to prove existence and uniqueness of the maximum likelihood estimator (MLE). We
first discuss the calculation of the MLE and then find the likelihood and profile likelihood
functions and their limits. We apply this to prove consistency of the MLE.

3.1 Calculation of MLE, profile likelihood function, and its limit
In (8) we eliminate Uy, = I, — Zf;ol U; and define AP X, = AYT X, 4 AT X, the regressors
X—l,t — (Ad—b . Ad)){t7 th — Ad+kat7 X’it _ (Ad-f—ib _ Ad+kb)Xt, (21)

fort=0,...,k — 1, and the residuals
k—1
er(\) = I (L)X, + Mo (L) Xy = Xpe — B X1+ Y WXy, (22)
i=0
where A = (d, b, a, 3, V., Q) is freely varying and ¥, = (Uy, ..., U;_1). The Gaussian likelihood
function is now
T

—2T " log Ly(A) = log det() + tr(Q7' T ) ~&,(Mei(N)). (23)

t=1

'An alternative assumption is 300 n™ /2| X_,,| < oo, see Lemma A.8.

11
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For the model with d = b we define X_;, = (1 — A%)(X, — Ciagp}) and 0, =+ B'Cianpy so
that (1 — AY)(B'X, + ') = B/ X_1, + 0, and
k-1
el(N) = Xy — af' X gy —af, + Y WXy (24)
i=0
Note that for (p, 5) = (po, fo) we find 6, = 0 because 5,Ciao = —1,, see (13).

For fixed ¢ = (d,b) the MLE based on (23) is found by reduced rank regression of Xy,
on X _;, corrected for {X;;}=, see Anderson (1951) or Johansen (1996). Note that this is
equivalent to reduced rank regression of A?X, on AL, X, corrected for {AszXt le. The
calculations are organized as follows. For fixed 1 in model H, we define in analogy with the
notation for the I(1) model, see Johansen (1996, pages 91-92), the residuals

ROt(¢) = (th|X0t7 - ,Xk—l,t) and th(w) = (Xfl,t’XOta - anfl,t)

from regressions of X, and X_;, on X, ..., Xx_14, respectively. We then define the product
moments S;; (1)) = T3 Rit(¢) R}, (1)) and the eigenvalue problem
0 = det(wS11 (1)) — S10(¥)Se0 (1) So1 (1)), (25)

which gives eigenvalues 1 > @;(¢) > -+ > @,(¢) > 0 and the maximized profile likelihood
function expressed as

by (1) = =277 og Liax(H,) = log det(Spo (1)) + Zlog (1 — (). (26)

Finally the MLE and maximized likelihood can be calculated by minimizing ¢, (1) as a func-
tion of ¢» = (d,b) by a numerical optimization procedure.

For model (3) we assume b = d and include —ap’ in the definition of £,(\), see (24),
and apply reduced rank regression of Xj; on (X, 1) corrected for {X;}= to define the
concentrated likelihood function ¢7,.(1). Below we focus on (2) and only include comments on
(3) when the results or arguments are different.

A computer package for conducting statistical inference using the procedure described in
this paper is available, see Nielsen and Morin (2012).

Using non- or semi-parametric estimates of d and b, followed by reduced rank regression
estimation of the remaining parameters, would entail an efficiency loss for the asymptotically
normal estimators, i.e. (&, Iy,...,T%) when by > 1/2 and all the estimators when by < 1/2,
because d and b are asymptotlcally correlated with those, but no efficiency loss for 3 when
bo > 1/2. In addition, we have found that using d = b = 1 as starting values in the numerical
iterations is a good choice, so there seems to be no advantage from initializing the search with
preliminary estimates. The calculation of the fractional differences in {X;;}¥_ | in each step of
the numerical optimization algorithm can be time consuming for very large samples, but the
actual optimization of ¢1,(1)) seems to be unproblematic.

Note that for r = p, f1,,(¢) is found by regression of Xj; on {Xn M

lr,(¥) = log det(SSRy(v))) = log det(T Z R.R)), (27)

where R, = (Xp|{Xi}*=1,) denotes the regression residual.
The stochastic properties of X; are given in Theorem 2 in terms of the stationary process
Uy = Cogs + AY;. We note that, for any ¢ = (d,b) for which d + ib — dy > —1/2, the

12
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process A A-D[, is stationary. On the other hand, ATPA~D B, = Ad+ibA—do+bo gy,

is stationary for all j = —1,0,...,k because d + jb — dy + by > —do + by > —1/2. Thus
corresponding to X, see (21), we define
Uiy = AT 0L, Uy = AR 0U Uy = (AT — AT A=, (28)

if they are stationary, and the class of stationary processes for a given v,
fstat(@b) = {6(/)th for all j, and Uit for d+ b — do > —1/2}
For dy < 1/2, d+ib—dy > —dy > —1/2 so in that case Fy,i (1)) contains Uy for all i.

We next want to define the probability limit, ¢,(¢), of the profile likelihood function ¢7,(1))
in (27). The limit of logdet(SSRr(¢)) is infinite if X}, is nonstationary and finite if Xy, is
(asymptotically) stationary, see Theorem 4. We therefore define the subsets of N,

Naiv(k) = N{d,b:d+ kb—dy < —1/2+ Kk}, k >0,
Neowy (k) = NN{d,b:d+kb—dy > —1/24+ K}, k>0,
Neow (0) = NN{d, b : d+ kb—dy > —1/2},
and note that N' = Ny, (k) UNeony (k) for all k > 0. The family of sets Ny, (k) decreases (as k —
0) to the set Mgy (0), which is exactly the set where X}, is nonstationary and log det(S.SRy(v))
diverges. Similarly, N.on (k) is a family of sets increasing (as k — 0) t0 Meony (0), which is the

set where X}, is stationary and log det(SSRr (1)) converges pointwise in ¢ in probability. We
therefore define the limit likelihood function, ¢,(1)), as

00 if ¢ € Ny (0),
B0 = | ogdet(Var(TiFant)) it N (0 29)
where we use the notation for any random vectors W and V' with finite variance

Var(W|V) = Var(W) — Cov(W,V)Var (V) 'Cov(V,W).
3.2 Convergence of the profile likelihood function and consistency of the MLE

For n > 0 we define the family of compact sets,
Kn) ={d,b:n<b<d<d}
which has the property that K(n) C N increases to N as n — 0.

We now show that for all A > 0 and all v > 0 there exists a kg > 0 and Ty > 0 so that
with probability larger than 1 — +, the profile likelihood ¢1,(¢) is uniformly larger than A on
K(n)NMNaiy (ko) for T > Tp. Thus the minimum of ¢, (1)) cannot be attained on K (1) N\Naiy (ko).
On the rest of K(n), however, we show that ¢r,(1¢) converges uniformly in probability as
T — oo to the deterministic limit £,(¢)) which has a strict minimum, logdet(€)), at 1. We
prove this by showing weak convergence, on a compact set, of the likelihood as a continuous
process in the parameters. Because the limit is deterministic, weak convergence implies uniform
convergence in probability, see Lemma A.4.

Theorem 4 The function ¢,(v) has a strict minimum at ¢ = vy, that is

(1Y) = Ly(ho) = log det($2), 1) € N, (30)
and equality holds if and only if 1 = 1)y.
Let Assumptions 1-4 hold, so that in particular E|e;[® < oo, and assume that (dy, by) € K(n).
Forr=0,...,p it holds that

O (1h9) 2 log det(€), (31)

and furthermore:
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(1) Suppose Ele|? < oo for some q > 1/min(n/3,(1/2 — dy + by)/2). Then the likelihood
function for H, satisfies that, for any A > 0 and v > 0, there exists a ko > 0 and a
Ty > 0 such that

P inf / S Ay ST N
<¢eNd,v7,l<rio)mc(n) rp() 2 A) 21 -7 (32)

for all T > Ty. It also holds that
lrp(Y) = L£,(1) on C(Neono(ko) NK(n)) as T — . (33)

(it) Suppose n < by =dy < dy and Ele|? < oo for ¢ > 3/n. Then, for model H,(d = b) with
a constant, the results (32) and (33) hold on the respective sets intersected with {b = d}.

The proof is given in Appendix B. Note that, in general, the larger the compact set K(n)
the more moments are needed. When consideration is restricted to the model H,(d = b) and
a parameter set defined by n > 3/8, i.e. in particular if consideration is restricted to the case
of “strong cointegration” where by > 1/2, then the moment condition reduces to E|e;® < oo
(from Assumption 2).

We now derive the important consequence of Theorem 4.

Theorem 5 Let the assumptions of Theorem 4 be satisfied and let \ denote the MLE in model
H, respectively model H,(d = b). Corresponding to Theorem 4(i)—(ii) we have:

(i) With probability converging to one, X in model H,,r = 0,...,p, exists uniquely for 1 €
K(n),n >0, and is consistent.

(ii) For model H,(d = b) with a constant, existence, uniqueness, and consistency of X hold
forde{d:0<n<d<d}.

Proof. To prove existence and consistency of the MLE we define the open neighborhood
N (o, €) = {0 : |1h — 1| < €}, and want to find a set Ay with P(Az) > 1 — 2y so that 1) exists
on Ar and R

Py € Ar NN (¢, €)) = 1= 3.

We first analyze model H,, see (2), where o and /3 are p X p. For any v > 0, (32) shows that
we can find kg = k() and Ty = Tp(7y) and define Ay = {infyens,,, (o)) Crp(¥) > 244, (¢0) }
so that P(Ayr) > 1 —~ for all T > Ty.

We find from (33) that ¢r,(¢) = logdet(SSRr(v)) = £,(v)) on the compact set Ny =
Neonv(K0) N K(n) so that £,(¢) is continuous on Njy. Because £,(¢)) is continuous and >
Cy(1o) if ) # b, see (30), and No\N (¢, €) is compact and does not contain 1)y, we have
MiNyeAL\N (o,e) Ip(1) > €p(tho) + 3¢y for some ¢y > 0. By the uniform convergence of ¢1,,(1))
to £,(1)) on Ny, see (33), we can find T} = Ti(7y) and define Ayr = {mingeny\w(wo,e) [l (1) —
0,(¢)] < co} such that P(Agr) > 1 — forall T > T3.

We now turn to the model H,,» =0,...,p. On the set Ayr we have for any r < p,

we/\/ﬁ{l/{}%wo,e) fre(0) 2 weNgAl}%woye) fral¥) 2 wer{lAlﬁwoye) &) e,
which is bounded below by ¢,(1)g) + 3co — co = £, (o) + 2c¢o, recalling £, (1) = log det () =
l,(10g), see (30). On the set Ayr we have l7,.(v)) > lr, (1) > 2+ £,(10o) and it follows that on
AT = AIT N AQT with P(AT) Z 1-— 2"}/,

min br, >4, + 2min(1, ¢g).
e o 1 V) 2 & () (1, o)
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On the other hand, at the point ¢ = 1y we have r,.(1) Rt l(1)o) = log det(€), see (31),
so that for all ' > Ty = T(y),

P(|lr,r (o) = £r(tho)| < min(co, 1)) =1 =1,

which implies that, on Ar, the minimum of ¢7,(¢) is attained inside N (tg,€). Thus the
MLE, zﬂT, of ¥ in model H, exists on Ay and is contained in the set N (¢, €), which proves
consistency, see also van der Vaart (1998, Theorem 5.7).

The estimators &(1)), 3(1), U, (1), (1)), see Section 3.1, are continuous functions of ¢ and
are therefore also consistent.

The second derivative of —27~!log Ly()\) is positive definite in the limit almost surely
at A = A, see Lemma 9. It is therefore also positive definite in a neighbourhood N (A, €)
for € small. It follows from Theorem 6 and Lemma 9 that also the second derivative of
—2Tlog L1 () is positive definite inside A (A, €) with probability converging to one, but
then —2T7'log Ly ()) is convex and the minimum is unique. m

The result in Theorem 5 on existence and consistency of the MLE involves analyzing the
likelihood function on the set of admissible values 0 < b < d. The likelihood depends on product
moments of AT X, for all such (d, b), even if the true values are fixed at some by and dy. Since
the main term in X; is A;dogt, see (15), analysis of the likelihood function leads to analysis
of A‘fib_dost, which may be asymptotically stationary, nonstationary, or it may be critical in

the sense that it may be close to the process Af/ ®¢,. The possibility that A**®X, can be
critical or close to critical, even if X; is not, implies that we have to split up the parameter
space around values where A X, is close to critical and give separate proofs of uniform
convergence of the likelihood function in each subset of the parameter space.

This is true in general for any fractional model, where the main term in X, is typically of the
form A;d%t, and analysis of the likelihood function requires analysis of A?X, and therefore of
a term like Ai_doet which may be close to critical. To the best of our knowledge, all previous
consistency results in the literature for parametric fractional models have either been of a
local nature or have covered only the set where AYX, is asymptotically stationary, due to
the difficulties in proving uniform convergence of the likelihood function when A?X, is close
to critical and hence on the whole parameter set, see the discussion in Hualde and Robinson
(2011, pp. 3153-3154).2

The consistency results in our Theorem 5 apply to admissible parameter sets so large
that they include values of (d, b) where AT X, is asymptotically stationary, nonstationary, or
critical. The inclusion of the near critical processes in the proof is made possible by a truncation
argument, allowing us to show that when v € [—1/2 — k1, —1/2 + k] for k sufficiently small,
then the appropriately normalized product moment of critical processes A} ¢, is tight in v, and
uniformly large for T sufficiently large, see (107) in Lemma A.9 below.

4 Asymptotic distribution of maximum likelihood estimators

In this section we exploit consistency of the MLE and expand the likelihood in a neighborhood
of the true parameter to find the asymptotic distribution of the conditional MLE.

In independent and concurrent work, Hualde and Robinson (2011) prove consistency for a large set of
admissible values in a fractional model with one fractional parameter and initial values equal to zero, i.e. both
X_, =0and X_,, =0 for n > 0. Also, their consistency proof applies only to the univariate case (see their
discussion on pp. 3174-3176).
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4.1 A local reparametrization and the profile likelihood function for d,b,a, VU, Q

The likelihood function for model (2) in a neighborhood of the true value is expressed in terms
of 4()), see (22) and (23).

We have identified 3 by 33 = I,., see Section 2.5, and use (11) to write 8 = Bo+50. (35, 3) =
Bo + Por¥, say. When by > 1/2 we let N (o, €) = {¢ : [0 — ¢| < €}. Then for (d,b) €
N(tpg,€) and € < 1/2 sufficiently small we have that 61 = d —b—dy = (d — b — do +
bo) — by < —by +2¢ < —1/2 and d + ib —dy > —e for i > 0. Hence, ), X_1, is the only
nonstationary process in £;(\), see (22), and this is only possible for by > 1/2. The information
for 9 is proportional to 3", (85, X 1.)(8), X_14) = Op(T~%-1), and we therefore introduce
the normalized parameter 0 = 3} (8 — Bo)T~C-17Y/2) = yT~0-1+1/2) or B = By + [y, OT°-1+1/2,
so the information for 6 is proportional to T. We have 3'X _;; = 80X 1, +T°1*V20'8) | X 14,
see (21). Let V; = (X", 80, {X},}1=, X},) and define as in (22), for ¢ = (d,b,a, ¥,),

e\ = (¢, 0) = =T V2080 X 1, + (—a, ¥, 1)V, (34)

For the model with d = b and a constant and dy > 1/2 we change the definitions in this
section and use 5 = T%~Y23! (B — ), 0, = p' + B'Cianpy, and

/
E(N) = 21(6.0) = —a(T-0+129, ) < PosX-1s > +(—a, 0., L)V,

When by > 1/2 the product moments needed to calculate the conditional likelihood function
—2T Ylog L1(9,0), see (23), are

Ar() Cr(¥) \ s T (T5_1+1/25/J_X1,t ) (T6_1+1/2ﬁ/ X, )/
(cm oy ) -7 2 v v -89

We sometimes suppress the dependence on ¢ in Ay (1), Br(v), and Cr(v)). We indicate the
values for 1) = ¢ by A}, B}, Cp, and X°, . Finally we define
T
Cor = T2 YTV 05, X0 . (36)
t=1
When by < 1/2 all processes are (asymptotically) stationary and we replace 6_; + 1/2 by
zero in the definitions of Ar, By, Cr, and C.r.
The conditional likelihood —27'log Ly(\) can now be expressed as
log det(Q2) + tr(Q (ol Arba’ + (—a, U, L)Br(—a, V., L) — 2a0'Cr(—a, ¥, 1,))). (37)

For fixed (d, b, a, ¥, Q) we estimate 6 by regression and find

00,0, U,,Q) = A7 Cr(—a, U,, L)Y Q  a(o/Q ) 2, (38)
and the profile likelihood function —27!log Lyofiie 7 (¢, o, U, Q) is then
log det(Q) + tr(Q ' (—a, Vs, L) Br(—a, U, 1)) (39)

—tr((—a, Uy, L) Cr AL Cr(—a, ., L) Q  a(a' Q7 a) " 1a/Q 7).

For (d,b) € N (¢, €),e <1/2,and i =0,1,...,k, Uy and BjU_1; and their derivatives with
respect to (d,b) are stationary because d +ib —dy > d — dy > —e > —1/2. Only fy, X_1, is
nonstationary and only when by > 1/2. When normalized by T°-1+1/2 it will converge to fBM
provided Fle|? < oo for some ¢ > 1/(by — 1/2), see (6), so that on DP~" (][0, 1]),

T671+1/263_0X—1,[Tu] — B()J_OOWdo—d—i-b—l(u) - F"/’<u) (40)

16
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We show that the deterministic term in the process can be neglected asymptotically and
that the stationary processes {yU_1, Uj¢}_ | can replace the regressors {5iX_1 ¢, Xji}5_ ;.
This means that the limit of By can be calculated as

B=Var(U., ,po,Upy,--.,Up)

For by < 1/2, all regressors X, are stationary in a neighborhood of the true value. The
various quantities Ar, Br,Cr, and C.r are defined as above without the factor 7-%-11/2_ but
their asymptotic properties are now different. The estimator of § and profile likelihood function
are given by (38) and (39).

The next theorem summarizes the asymptotic results for the product moments and their
derivatives with respect to v, denoted D™, when ¢ € N (¢g, €).

Theorem 6 Let Assumptions 1-4 be satisfied and let N (1, €) = {1 : [¢p — o| < e} C N.

(i) Suppose 1/2 < by < dy and |&|? < oo for some q > (bg — 1/2)7, and let € be chosen
so small that ¢ > (b —d + dy — 1/2)™" for all v» € N(¢bg,€). Then, for m > 0 and with
n = (p—r)*+(r+kp+p)*+(p—r)(r+kp+p), the process (D™ Ar(¢), D™ Br(¢), D"Cr(¥))
is tight on N (¢o, €), and on C*(N (1, €)) we have, see (40),

1
(Ar (1), D" Br(1).D7Cr (1)) = (| Fulw) P du. D"B(w).0),  (41)
which holds jointly with

c&ﬂé%ww,%wzmmy (42)

(i1) Suppose0 < by < 1/2 andby < dy. Then, form > 0, the process (D™ Az (), D" Br(), D"Cr (1))
is tight on N (g, €), and on C"(N (g, €)) we find

(Ar (), D"Br (), D"Cr(¢)) = (A(¥),D"B(¢),D"C(1))),
which is deterministic, and the convergence holds jointly with
Cor = Nip-r)pl0, 20 © A°). (43)

(#1i) For model H,.(d = b) with a constant the same results hold with the relevant restriction
imposed, and the relevant modifications to the definitions, e.g. Fy(u) is replaced by

(Fo(u)',1)".
Proof. Proof of (i): For dy > 1/2 it follows from Theorem 2 that for U,” = Coe, + A%V,
Adtibx, = AdFib=dorrt p Ay L ATTRX =1, T (44)
and hence the regressors satisfy, see (21),
Xoqp= (A0 — ATOUT + (AT — Ao+ (AT = AT X, = U+ Doy(), (45)
th — Ai—i—k‘b—do Ut+ + Ai—’—kbﬂ/[)t + Aci—i_kat — U]:; + Dkt(¢)7
Xip = (AL — ALY TE 4 (AT — AT gy + (AL — AT X, = U + Da(9)),
for i = 0,...,k — 1, where D;(v) is deterministic and generated by initial values, see (92).
In model (3) with d = b and a constant, we replace po; by por + Cgaopp in X for i > 0 and
subtract A‘ngaopg from X_;;. When dy < 1/2 we use the stationary representations (17)

and (18), in which case there is no initial values term involving jio; and U;" in (45) is replaced
by Ut = 00€t + AbOY;.
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It follows from Lemma A.8 that D" D (v) is uniformly small in ¢ for ¢ — oo, so that
asymptotically we can replace the regressors X;;,i > 0, and S)X_1; by the asymptotically
stationary variables U} and S;U jl,tv see (45), in the calculation of the product moments Az, Br,
and Cr. The nonstationary regressor 3, X_;, is normalized by Td-b=do+1/2 and it follows from
(95) that T¢-b=—do+1/23! D™D, (1) converges uniformly in (¢,1) to zero for T — oo. Thus
we can replace this regressor by /3, LUfu.

By Theorem 2, U; = Coe; + A®Y, € Z,,, where the class Z;, is given in Definition 2.
Lemma A.9 therefore applies directly to product moments of Ai”b*do U;", using the stationary
processes 3,U5;, j > —1, with indices u = d+jb—do+by > —1/2+4(1/2—2¢) and 3}, U; i > 0,
with indices u = d +ib —dy > d—dy > —1/2+ (1/2 —€) so k, = 1/2 — 2¢, and the
nonstationary process (), U}, with index w =d —b—dy < —bg+2¢ < —1/2— (by — 1/2 — 2¢)
SO Ky = by — 1/2 — 2¢ noting that we have chosen € so small that ¢ > (by — 1/2)~! implies
q > 1/Ky. Tightness of (D" Ar(v), D™Br (1), D™Cr(v))) and convergence in distribution of
(A7(¢), D™Br (1), D"Cr(¢))) in C*(N (¢, €)) then follows from Lemma A.9.

The proof for C%. follows from (7).

Proof of (ii): For by < 1/2 < dy the only difference in the above proof is that Gy, X_ i,
is stationary (apart from a deterministic term that converges uniformly to zero) and can be
replaced by 3, U™, ;. The limit of (Ap(v), D"Br(¢),D"Cr(1))) then follows from (102) of
Lemma A.9. In this case we find

A(ZU)ZE(B(I)LU—MU/_MBOL)- (46)

Finally, 3 LUthsg is a martingale difference sequence and the Central Limit Theorem for
martingales gives (43), see Hall and Heyde (1980, chp. 3).
If instead by < dy < 1/2 we apply the representation (17) and find

AT, — ATA B (Cye, + AWY) + AT, = 1T,

In this case pg; plays no role and the argument is as above.

Proof of (iii): The same proof as above works. m

We next want to discuss the asymptotic variance of the stationary components and define
for by > 1/2 the parameter ¢ = (d, b, o, V) and the residual g;(¢) = ,(¢,0) = (—a, ¥y, I,) V],
c.f. (34). For (d,b) close to (dy,by) we define the corresponding stationary process

k—1

ei(¢) = Upe — aBgU-1s + Y Willy = (—a, U, L) (UL, 50, UL, Uy, ). (47)

i=0
In the following we use Dy and Did) to denote first- and second-order derivatives with respect

to ¢.
Lemma 7 Let Assumptions 1-4 hold. We find for ¢ = ¢g that e;(do) = ei(po) = &; and:
(i) When by > 1/2 we find

TY al@)a(d) = Ea(d)el(d) = (—a, U, L)BW)(—a, U, L), (48)

t=1
Dy Bei(d0) Qg er(¢0) = E(Dger(d0) Qg ' er) + E(e,Q 'Dyer(¢o)) = 0, (49)
D3 Eei(00)'Q tei(do) = E(Dger(d0)' Q' Dyer(do)) = o, (50)

where g is positive definite if Wor, # 0 or equivalently Top # 0.

18
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(11) When by < 1/2 we redefine ¢ = (6,d,b, o, ¥,) and find the limits of the product moment
matrices (3’5) see (46),

T th 5~ (9’1),%,5)( ((w) g&w)))(—a(e’,fr),\y*,fp)’, (51)

where C(zZJ) = Cov(By, U1, (U4 180, Ugy - - -, Ugy)'), and (49) and (50) hold with suitably
redefined e;(¢) and

55 = D3y Ber(d0)' Qg er(do)- (52)

(#1i) For model H,.(d = b) with a constant the same results hold with the relevant restriction
imposed and the relevant modifications to the definitions.

Proof. Proof of (i): The transfer function for the stationary process Coe; + APY; is fo(2) ™1 =
(1 — 2)%T0y(2)"! = (1 — y)Pe(y) ! for y = 1 — (1 — 2)b, see (8) and (9), where subscripts
indicate that we consider the characteristic and transfer functions for the process defined by
the true parameter values. We then find the transfer function for e;(¢) to be

folz) = (1= )"0 0U(1 = (1 = 2)") | 5—g0,p- Lo(y) - (53)
For ¢ = ¢y we find f,,(2) = 1 so that e;(¢p) = &;. The result (48) follows from (41) of
Theorem 6. Differentiating the left-hand side of (48), we find the limit

E(Dger(¢0)' Qg er(d0)) = 2E(Dyer(¢o) R 'er) = 0,
because Dye:(¢p) is measurable with respect to €1, ...,e;_;. Therefore

Dy E(er(do)er(¢o)’) = E(Dger(¢o)er(¢o)’) =0
which proves (49). Differentiating twice we find (50) the same way.

Finally we prove that if Wg, # 0 then X, is positive definite. If ¥y were singular, there
would exist a linear combination of the processes Dge;(¢o) which had zero variance. We want
to show that this is not possible when Wy, # 0. The statement that ¥ is singular translates
into a statement that there is a linear combination of the derivatives of the transfer function
fs(2) which, for ¢ = ¢y, is zero. That is, for some set of values h = (dy, b1, A, G,) of the same
dimensions as ¢ = (d,b, o, ¥,,), the derivative Dy fy)+s1(2)]s=0 = 0. We find from (8) and (53)
the derivatives, where we use y = 1 — (1 — 2)* and the relation ¥;, = I, — Zk 0,

Dafs(2) =log(l — 2)I, = by ' log(1 — y)1,,

Do foo(2) = —by ' log(1 — y) (I, + [Dy Wo(y)](1 — ) To(y) ™),
Dy, foo(2) = (1 =)' = (1 =) )Wo(y) i =0,... . k=1,
Dafso(2) = =Boy%oly)

This gives the directional derivative D fy,1sn(2)|s=0 in the direction h = (dy, b1, A, G) which,
post-multiplied by Wq(y), is

by log (1 — y){(di — b1)Wo(y) — ba[DyWo(y)](1 —y)} — {ABoy — ZG y)Ht — (1 =)}

This should be zero for all y for ¥ to be singular. Because log(l—y) is not a polynomial we have
ABLy—S"5 0 Gi((1—y) "t —(1—y)**1) = 0 for all y, and hence A = 0 and G; = 0,i = 0, ..., k—1.
We therefore find that for all y the polynomial (d; — b;)Wo(y) — 01]D,¥o(y)](1 — y) has only
zero coefficients. In particular we find that the coefficients to (1 —y)",i = 0,1,k + 1, are

0 = —(dl — bl)@oﬁé, (54)
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0 = di(aofy + Poo), (55)
0= (dl + blk)\IJOk, k> 0. (56)

We want to show that d; = b; = 0. If k > 0, (56) and Wg, = (—1)*T1T;, # 0 imply di+b1k = 0.
If o8 # 0 we find from (54) that d; —b; = 0 and if apf) = 0, (55) shows that d; Uy = 0. But
in the latter case ag; = By = I, and Wyo = I, — Zle Foi =T = ay,Tobor # 0, so that in
either case dy = b; = 0. If £ =0 and r > 0 then ¥y, = I, and (55) shows that d; = 0 because
o8By # —1,, and then (54) gives d; = b; = 0. Finally, if kK = 7 = 0 the model is A?X; = ¢, and
the condition for singularity is dyd, ' log(1 — y)I, = 0 which implies d; = 0. Hence in all cases
di = by = 0 and Y, is positive definite.
Proof of (ii) and (iii): The same proof can be used as for (i) by a change of notation. m

4.2 Asymptotic distribution of the MLE

We first find asymptotic distributions of the score functions and the limit of the information
at the true value. We then expand the likelihood function in a neighborhood of the true value
and find asymptotic distributions of the MLEs. By Lemmas A.2 and A.3 we only need the
information at the true value because the estimators are consistent (by Theorem 5) and the
first- and second-order derivatives are tight on N (g, €) (by Theorem 6).

Lemma 8 Let Assumptions 1-4 be satisfied and (k,r) # (0,0). We assume that X_,, = 0 for
n>Tv for some v < 1/2.

(i) If bp > 1/2 and Ele|? < oo for some q > (bg — 1/2)7Y, the limit distribution of the
Gaussian score function for model (2) at the true value is given by

T-Y2D,4log Lr(Xo) \ b N, (0,%0)
( Tl/QDjlogLT(Ao) > - ( (vec fo Fo(dGo)'))' ) 7 o

where Yo is giwven in (50), ng = 1+ 1+ pr + kp* is the number of parameters in ¢ =
(d,b,a, W), Fy = B, CoWyy—1, Go = ahQy'W, and the two components in the limit in
(57) are independent.
(ii) If 0 < by < 1/2 then the score with respect to all parameters is asymptotically Gaussian,
Nn¢+(p*1”)7"(0a that)’ see (52)
(ii) In model H,(d = b) with a constant the same results hold with 6 replaced by (07,0),)" and
FO by (Wéo_lcéﬁm_, ].),
Proof. For A\ = \y we find
e1(Xo) = & + 1l (L>(Xt —Xi) = &+ doy,
De’ft()\o) = DH+U(L)Xt + DHO, (L)Xt = S1+ + dlta
where dy; is a linear combination of the deterministic terms DD;(¢))|y—y, and, if by > 1/2,
also TY27%3) DDy (1) y=yy, see (92) and (93). From Lemma A.8 we find that the terms
of dy; either tend to zero as t — oo or satisfy T27% max;<;<r |85, DD_1 +(1)|p=y,] — O as

T — oo, and that T—1/2 Zthl |dot| — 0 as T'— oo. These properties are enough to show that

T-1/2 Zthl |dotd1;] — 0 as T'— oo and that in product moments where dy; appears it can in
fact be ignored.
Proof of (i): For by > 1/2, T~1/?Dylog LT()\O) for ¢ = (d, b, , ¥, evaluated at \g is

T
T2 (M) Q' Dyer(Mo) = —T71/2 Z £ (1 + ) = T2 Z do/ 2t (510 + duy).

t=1

20
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The first term is a martingale with sum of conditional variances 7! ZtT::l(Slt +dy )t (51, +

dy) LN Y, see Lemma 7, because dy; can be ignored. In the second term we find that the
second moment is bounded by ¢(T~%2 3" |dy|)? — 0. The result for the first block of (57)
now follows from the Central Limit Theorem for martingales, see Hall and Heyde (1980, chp.
3).
The score function for § evaluated at the true value is
T=2Dglog L (o)
T T
= (VeC(Til/Q Z Tﬁl/zjboﬁtlqul,tg;leaO)), + (VeC(Til/Q Z T1/27b06(/)J_X91,td6tQ[;1a0))Iv
t=1 t=1
where XSM denotes X_;,; evaluated at ¢ = 1)p. The main term converges in distribution to
(vec( fol Fy(dGy)"))', see (42) in Theorem 6, and the second term converges in probability to
zero because max;<i<r [TV2 3, X%, | = Op(1) by (6) and T~/23°/ | |du| — 0 by (96).
This proves the second block of (57). The independence of the two components in the limit of
(57) follows exactly as in JN (2010, Lemma 10).
Proof of (ii): If 0 < by < 1/2, all stochastic regressors are asymptotically stationary and
we take 8 = [y + [y 0 and the score with respect to 6, evaluated at A = )¢, is

T
T~2Dylog Ly(he) = T2 "(vec(By, X0y 16:(Xo) Q' 0))-
t=1

The Central Limit Theorem for martingales gives the result.

Proof of (iii): The same methods can be used here, noting that the score with respect to
p, evaluated at A = \g, is T~ /2 Zle g(Mo)Qlag. m

Lemma 9 Let Assumptions 1-4 be satisfied and (k,r) # (0,0).

(i) If by > 1/2 and E|&;|? < oo for some q > (bg — 1/2)7, the Gaussian information per
observation in model (2) for (¢,0) = (¢o,0) converges in distribution to

Yo 0
0 a.s. o8
< 0 apQlap® fol FyF}du > =Y s (58)

where ¥y is given in (50) and Fo(u) = 5, CoWpy—1(u).

(1)) If 0 < by < 1/2 the information per observation for all parameters is convergent in
probability to the non-stochastic limit S§ given in (52).

(iii) For the model H,(d = b) with a constant the same results hold with Fy replaced by (Fj,1)'.

Proof. Proof of (i): The information matrices can be found from (37) and the deterministic

terms can be ignored due to Lemma A.8. From (41) of Theorem 6 it holds that D™C% £ o.
Using this and (50) we find using 6y = 0 that

—T_lD;(z) lOg LT<)\0) £> Zo,
1
—T'D2,log Lr(Ao) = Q5 'ap ® A% 2 a5 ag ® / FoF}du,
0

_T_ngﬁf) lOg LT<)\0) = ng) tI’(Q_IQOéQICT<—OK, ‘If*, Ip),)|)\:)\0 £> 0.
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Proof of (i): If 0 < by < 1/2 we find the information for 6§ = 3, (3 — o) to be

T
~T~'Djylog Lr(Xo) = apQq tao @ T Y (B3 X% ) (B X041 ,)',
t=1

and the cross term —T"~'Dj; log Ly (o) can be found similarly from (37). In this case the entire
information matrix converges to a non-stochastic limit by the Law of Large Numbers because
X?,, is (asymptotically) stationary when by < 1/2, see also (102).

Proof of (iii): The same methods can be applied in this case. m

We now apply the previous two lemmas in the usual expansion of the likelihood score
function to obtain the asymptotic distribution of the MLE.

Theorem 10 Let the assumptions of Theorems 4 and 5 be satisfied with (k,r) # (0,0) and
suppose (do,bg) € int(N). Assume also that X_,, =0 for n > T for some v < 1/2.

(i) If bo > 1/2 and Ele;|* < oo for some q > (by — 1/2)7", the asymptotic distribution of the
maximum likelihood estimators ¢ = (d,b, &, V,) and B for model (2) is given by

( /2 vec(izg — o) ) D ( N, (0,51 ) (59)
T% By, (B — Bo) (fy FoFgdu)™" [ Fo(dGo) (g o)™ )

where Fy = (35, CoWyy—1 and Gy = Q"W are independent, and also the two compo-

nents of (59) are independent. It follows that the asymptotic distribution of vec(T 3} (f—
Bo)) is mized Gaussian with conditional variance given by

1

() o)t @ ( / FoFydu) ™. (60)

0

(i1) If 0 < by < 1/2 the estimators for (d,b,«, 8, ¥,) are asymptotically Gaussian.

(111) In the model H,(d = b) with a constant the same results hold with the relevant restriction
imposed and with Fy replaced by (F§,1)'.

(iv) If k = r = 0 the model is A*X; = ¢; and d is asymptotically Gaussian.

Proof. Proof of (i): For by > 1/2 we find limit distributions of T%2(¢ — ¢,) and ATl/ZHA by
applying the usual expansion of the score function around ¢ = ¢q, § = 0, and €2 = €. Using
Taylor’s formula with remainder term we find for I = —27!log L that

o—  T'*Dylr(0,0.2) \ | ( Doglr(X) Doglr(A) ) (T vee(o — 60)
— \ TY2Dylr (¢, 0,2 Doglr(A*)  Dealr(X*) T2 vech '

Here asterisks indicate intermediate points between (gg, 0, Q) and (¢, 0, Q), one for each row.

We have proved tightness of the product moments as functions of ¢ in a compact set, see
Theorem 6. Here we need tightness of the second derivatives in all parameters A in a compact
neighborhood of the true value, \g, which follows from Lemma A.2 because the second deriva-
tives are continuously differentiable in the parameters («, 5, V., Q) and the product moments.

Because the second derivatives are tight and because \* Ll Ao by Theorem 5, we apply Lemma
A.3 to replace \* by Ag. The limit of the information per observation is then given in Lemma
9.

The score functions normalized by 7"/? are given in the proof of Lemma 8, and because 2
only acts as a scaling factor on a term that converges in distribution (and therefore is tight),
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tightness as a function of Q follows. Hence we replace (¢, 0, Q) by Ag in the normalized score
functions, and their weak limits are given in Lemma 8.

This yields the asymptotic distribution of TV/2((vec(¢—¢y))', (vec0)'). We then prove (59)
using 7—dotbotd=b — (OP(T™1/*108T) — 1 4 5,(1) and the relation

Tbofl/zgéu(g — By) = T—do+bo+cZ—BT1/2é.

The stochastic component of the process Fy is a function of o, W, see (13) and (42), whereas
Go = Q' W, so that Fyy and G are independent and the limit distribution of 7/ 2 is mixed
Gaussian. Finally, the independence of the two components of (59) follows from Lemma 8 and
the block-diagonality in (58), see also Johansen (1991, p. 1573).

Proof of (ii): If 0 < by < 1/2 the result follows from the results about score and information
by the same type of proof and the asymptotic variance is (3§%)~1, see (52).

Proof of (iii): In the model H,(d = b) with by > 1/2 the same results hold by the same
type of proof. For 0 < by < 1/2 we find the asymptotic distribution of 3 and p jointly with
the other parameters from

< T'2By, (5 = o) ) _ < Ipr 0 ) < 'G5 )
T'2(p — po) 0GB I V24, )°
which shows how the asymptotic variance can be calculated from X5, see (52).

Proof of (iv): Follows by the same methods. m

The results in Theorem 10 show under i.i.d. errors with suitable moments conditions, that
quS is asymptotically Gaussian, while the estimated cointegration vectors 3 are locally asymp-
totically mixed normal (LAMN) when by > 1/2. Results like these are well known from the
standard (non-fractional) cointegration model, but are much less developed for fractional mod-
els, see the references in Section 1. These are important results, which allow (i) inference on
¢ to be conducted as if 3 were known and vice versa, and (ii) asymptotically standard (chi-
squared) inference on all parameters of the model — including the cointegrating relations and
orders of fractionality — using Gaussian likelihood ratio tests.

Furthermore, this result has optimality implications for the estimation of 3 in the fraction-
ally cointegrated VAR. In the LAMN case with stochastic information matrix, B is asymp-
totically optimal under the additional assumption of Gaussian errors in the sense that it has
asymptotic maximum concentration probability, see, e.g., Phillips (1991) and Saikkonen (1991)
for the precise definitions in the context of the standard cointegration model.

5 Likelihood ratio test for cofractional rank

We consider the model

k
My AYX, =TIAT DX, + ) TiAYLX, + & (61)
i=1
and want to test the hypothesis H, : rank(Il) < r against the alternative H, : rank(II) < p.
For model H,,r = 0,1,...,p, let ¢1,(¢)) be the profile likelihood function, where «, 3,T',,

have been concentrated out by regression and reduced rank regression, see (26) in Section 3.1,
and let ¢, be the MLE of 4. The likelihood ratio (LR) statistic is

det(Soo(ﬁzr)) [[-. (- d’l(ﬁf‘)) ]

—2log LR(H,|H,) = Tlog et S [ (=) T(lr () = brp(p)).  (62)

23
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Theorem 11 Let the assumptions of Theorem 10 hold with (k,r) # (0,0).

(i) If by > 1/2 the likelihood ratio statistic for Il = af’, that is H, in H,, has asymptotic
distribution
1

1 1
~210g LR(H,[H,) 2 tx( | BB, o( [ BuaBiy adu) ™ [ Bua@sy), (63
0 0 0
where B(u) is (p — r)-dimensional standard BM and By, 1(u) is the corresponding fBM.
The limit distribution is continuous in bgy.
(i1) If 0 < by < 1/2 then
~2log LR(H,[H,) = x*((p = 1)) (64)
(111) Let Py be the probability measure under the alternative 11} = ay 3] = aff’ + o**, where
a; = (a,a*) and By = (B,5%) are p X (r +1*) of rank r1 = r +r* > r, and hence
rank(Il;) > r. Assume that Assumption 1 is satisfied under the alternative. Then

—2log LR(H,|H,) 2 . (65)

(iv) In the model H,(d = b) with a constant the results (i)—(iii) hold for k > 0,r > 0 and
Bbo—l(u) Teplaced by (Bdo—l(u)la 1)/

Proof. We give the proofs only for model (2) without the constant. The proofs for part (iv) are
the same but with different notation and with the extended fBM replacing the fBM, reflecting
the reduced rank regression of Xj; on (X', ,,1)". For parts (i)-(ii) note that (k,r) # (0,0)
ensures that b is identified under the null, but for part (iv) this is not a problem because b = d
is identified also when k = r = 0.

Proof of (i): We assume that rank(II) = r and that IIy = apf3), where o and Sy are p x r
of rank r. It is convenient to introduce the extra hypothesis that II = a8’ and 5 = Sy, see
Lawley (1956) and Johansen (2002) for an application to the cointegrated VAR model.

Then LR(H,|H,) is

maxp—og L MaXn—ag L maxn—asy L LR(H, and § = fBo|H,)
max L max L max—qp L LR(B = Bo|H,)

The statistic LR(H, and 8 = [y|H,) is the test that II = af (with rank r) against II
unrestricted, and LR(S = [(y|H,) is the test that 8 = [y in the model with II = «f" and
rank(IT) = r. We next find a first order approximation to each statistic and subtract them.
For T' — oo we find the asymptotic distribution.

In both cases we apply the result that when, in a statistical problem with vector valued
parameters ¢ and 7, the limiting observed information per observation is block diagonal and
tight as a continuous process in a neighborhood of the true value, then a Taylor expansion of
the log likelihood ratio statistic and the score function shows that

—2log LR(§ = &) = D¢log Ly (&0, 70)(DZe log Ly (&0, m0)) ™' De log Ly (€0, m0) + op(1),  (66)

see JN (2010, Theorem 14) for a detailed discussion of the univariate case.

A first order approximation to —2log LR(S = (o|H,) : It follows from Lemma 9 that, for
=0, n=(d,b,a,V,, Q) the asymptotic information per observation is block diagonal at the
true value, and Theorem 6 and Lemma A.2 show that the information is tight as a process in
the parameters. Thus we have that

~2l0g LR(B = folH,) = (vec(C Q% "a0)) (g a0 © A%) " vee(Co Ry o) +0p(1)  (67)
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= tr((ap ' ao) gy ' Cor (A7) T C2r Qg ) + op (1),
using the relation tr(ABCD) = (vec B') (A’ ® C') vec D.
A first order approximation to —2log LR(H, and 8 = [3|H,) : In model (61) we introduce

a convenient reparametrization by a = II53,,& = T9-1"'2[I5,,, so that by (11) we have

1 = aB} + TO-1T1/2¢'3) . The equations are, see (34),
k-1

X = X1y + ETT0 0280 X1y =) WXy + &0

i=0

The likelihood function —27 ! log L7 (£,n) conditional on initial values becomes

log det(Q) + tr(Q (' Aré + (—a, Uy, L) Br(—a, ., 1) — 26'Cr(—a, U, 1,))),

where n = (d, b, o, U, 2). This expression is the same as the conditional likelihood (37) except
that af’ is replaced by &’. The properties of the likelihood function and its derivatives can be
derived from those of Ar, By, and Cr, and it is seen that the second derivative as a function
of the parameters is tight and the limit is block diagonal. It follows as above that

—2log LR(H, and 3 = fo|H,,) = tr(Q ' C%(A)Co) + op(1). (68)

A first order approzimation to —2log LR(H,|H,) : Subtracting (67) from (68) and applying
the identity
Q5" — Q5 ao (g o) gyt = ao (g Qoaor) Mg
we find that —2log LR(H,|H,) has the same limit as

tr(cor (g, Qocor) e Cop(AF)'Co) (69)
1 1
2, tr(as (o Qoavor) My, / (W) FY( / FyFjdu)™ / Fo(dWY) = DF (i),
0 0 0

say, which is the desired result if we define B = (a, Qo1 )~/2a, W and note that By, ; is
a linear transformation of Fj,.

The continuity of the limit distribution can be seen by noticing that the matrices fol Fy(dB)
and fol FwF{ﬁdu, and hence also DF(1), are continuous in Ly as functions of ¢ and that is
enough for convergence in distribution so that if ¢, — 1 then DF(1),,) 2 DR (¢).

Proof of (i1): In this case the result follows from the usual expansion of the LR test statistic
and the asymptotic distribution in Theorem 10.

Proof of (iii): The test for H, in H, is given in (62). We choose a small neighborhood
N (g, €) = {0 : [) — 1ho| < €} and find for fixed ¥ € N (¢, €) that

D _log(1 —@i(w)) = > log(1 —@i(v)) + 3 log(1 - i(¥))

i=r+1

< log(1 — @ + log(1 — i Oy :

< D _log(1—ai(v) +log(l— min ()

Adding log det(Sg(¢)) on both sides and minimizing over ¢ we find £7,(1,) < £y, (¢,) +
log(1 — minyepr(po,e) @r+1(1)), so that

—2log LR(H,.|H,) > —Tlog(1 — %ﬁl )wm(%/})) (70)

We now show that the right hand side diverges to infinity under P;, the probability
measure described in (iii), or equivalently that for some ¢ > 0,6 > 0, and any £ > 0

25
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there is a Ty = T'(¢,&,0) so that Pj(mingen (g, @rr1(¥) > 6) > 1 =& for all T > Ty,
The eigenvalues are continuous functions of the product moments Ar(v), Br(v),Cr(v), see
(35). It therefore follows from Theorem 6 that, under P;, @&,1(-) is tight on N (¢, €) and
Ory1 (1) = w1 () on C(N (Yo, €)) as T — oo, see (41), where w,;1(¢)) is given by the so-
lution of (138). This implies that w,;1(¢’) > 0 is continuous in 1. Therefore we can choose
€ so small that mingep(yg,e) wr+1(¥)) > 0, say, for some small 6 > 0. Because the function
Wr1(+) = MiNger(yo,e) Wr1(?) is continuous in the uniform topology on N (¢, €) we get that

~

. Py .
min = @W,4q —  min Wy >0
pomin G (%) o Wy () >4,

such that for any £ > 0 we can find 7} so that

Pl(weﬁ(i&’e) Ory1() > 0) > 1 —¢ for all T > T, (71)
which completes the proof of (iii). m

We note that in model H, with & = 0 we can test r = 0 by testing IT = 0, see (61), but then b
is not identified under the null. For fixed b this LR statistic is denoted LR(b) = —2log LR(II =
0|b) and it is possible to consider a sup-type test, sup, LR(b), where the supremum is taken
either over stationary or non-stationary values of the index b, see Hansen (1996) for the general
theory and Lasak (2010) for a cointegration test. Note that in model H,.(d = b) the parameter
b = d is identified and (63) applies also for k = r = 0.

The distribution (63) of the LR test for cointegration rank is a fractional version of the
distribution of the trace test in the cointegrated I(1) VAR model, see Johansen (1988, 1991).
Note that it is only the parameter by, describing the “strength” of the cofractional relations,
which determines the order of the fBMs in the limit distribution. For given hypothesized by or
estimated b,, the distribution (63) can be simulated to obtain critical values on a case-by-case
basis. Alternatively, numerical CDFs have been simulated as functions of by by MacKinnon
and Nielsen (2011), and their computer programs can be used to immediately obtain critical
values or P-values for the tests, including that in part (iv) for model H,(d = b) with a constant.
In either case, the continuity of the limit distribution (63) in by ensures asymptotic validity of
the approach.

We estimate the cofractional rank by conducting a sequence of tests, for a given size J: test
H, for r = 0,1, ... until rejection, and the estimated rank  is the last non-rejected value of
r. If the true rank is rp, then consistency of the LR rank test in Theorem 11 (i) shows that
any test of r < ry will reject with probability one as T — oo. Thus, Py(7 < r9) — 0. Since
the asymptotic size of the test for rank is ¢ we have that Py(7 > ry) — ¢ and it follows that
Py(7 = 19) — 1 —§. This shows that 7 is almost consistent, in the sense that it attains the
true value with probability 1 — 4 as T' — oo.

6 Conclusion

In this paper well known likelihood based inference results for the cointegrated VAR model (1)
have been generalized to the cointegrated fractional VAR, ;(k) models,

k
AYXy = ALy X, + Y TiALX, 46, 0<b<d, (72)
=1
k
A'Xy = Laa(B X+ p) + > TN LIX, + ey (73)

=1
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For model (72) we have analyzed the conditional Gaussian likelihood given initial values.
We have shown existence and consistency of the maximum likelihood estimators, and derived
the asymptotic distribution of the maximum likelihood estimator as well as the asymptotic
distribution of the LR test for the rank of a3’. In the asymptotic analysis we assumed i.i.d.
errors with suitable moment conditions. For the proof of consistency we assumed that initial
values, X_,,,n > 0, are bounded, and for the asymptotic distribution theory we assumed that
initial values are zero for n > T for some v < 1/2. If by > 1/2 inference on 3 is asymptotically
mixed Gaussian while the estimators of the remaining parameters are asymptotically Gaussian,
and the LR test for rank is expressed in terms of fractional Brownian motion By,_q(u). If
bo < 1/2 the estimators are all asymptotically Gaussian and the test for rank is asymptotically
x2. The same type of results hold for the model with d = d,, a prespecified value. For the
model H,(d = b) with a constant, i.e. (73), the same results hold except the test for rank
involves (Bg,—1(u)’, 1)

The main technical contribution in this paper is the proof of existence and consistency of
the maximum likelihood estimator, which allows standard likelihood theory to be applied. This
involves an analysis of the influence of initial values as well as proving tightness and uniform
convergence of product moments of processes that can be critical and nearly critical, and this
was made possible by a truncation argument.

Appendix A Product moments

In this appendix we evaluate product moments of stochastic and deterministic terms and find

their limits based on results for convergence in distribution of probability measures on C?(K)
and D?(K).

A.1 Results on convergence in distribution

For a multivariate random variable Z with F|Z|? < oo the L, norm is ||Z||, = (E|Z|7)/4.

Lemma A.1 If X1(s) is a sequence of p-dimensional continuous processes on a compact set
K C R?, i.e. Xp(-) € CP(K), with
IX7(s)lls < ¢ and || X7(s1) = Xp(s2)lla < cfs1 = 52f, 51,80 €K, (74)

for some constant ¢ > 0, which does not depend on T, s1, or sz, then Xr(s) is tight on K.
Proof. This is a consequence of Kallenberg (2001, Corollary 16.9). m

Lemma A.2 If the sequence of p-dimensional continuous processes Xr(s) is tight on K C RY,
the vector u € R*, and the function F' : RF x R? —— R™ is continuously differentiable, then
Zr(u,8) = F(u, X1(s)) is tight on RF x K.

Proof. JN (2010, Lemma A.2). =

Lemma A.3 Assume that St EiR so € K C R? and that the p X p matriz-valued continuous
process Xr(s) is tight on K. Then Xr(St) — X7(so) Lo.

Proof. See JN (2010, Lemma A.3) for the vector-valued result. m

Lemma A.4 Let Xr(s) be a sequence of p-dimensional continuous processes on a compact set
K C R? and suppose Xr(s) = X(s) on CP(K) as T — oo. If X(s) is deterministic then

Xr(s) il X(s) uniformly in s € K.

27
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Proof. If X1(s) = X (s) and X (s) is deterministic then Xr(s)—X(s) = 0. By the Continu-
ous Mapping Theorem it follows that sup,x | X7(s) — X (s)| 2 0 and therefore Supeg | Xr(s)—
Xs) Lo w

A.2 Bounds on product moments

We begin with some bounds on the fractional coefficients.

Lemma A.5 (i) For|u| < wy and all j > 1 it holds uniformly in u that

D™ (—u)| < c(uo) (1 + log )™j ", (75)
07wy ()| < e(uo)T™(1 + | log )" ™. (76)
(ii) Let j > 1 and let K denote any compact subset of R\Nq. Then it holds that
L
m=0) = el 6 (0) )
where max,ex |€;(v)| — 0 as j — oo. Thus mj(—v) > ¢j~" " uniformly in v € K and all

J =1L

Proof. For (i), see JN (2010, Lemma B.3). To prove (ii) we apply Stirling’s formula,

_ I(—v+ j) I
ﬂ-j(_v> - F(—U)F(] + 1) - F(—U)j (1 + 6j<v))>

where max,ck |€;(v)] — 0 as j — oo. This proves the result and shows that the constant in
the lower bound does not depend on v. m

Our proof of tightness applies the result of Kallenberg (2001) in Lemma A.1 and involves
evaluation of the fourth moment of linear processes and their product moments. For real

coefficients (i, (o, n=0,1..., we give evaluations of such moments in terms of the quantity
T+min(n,m)
= —nCot—ml- 78
&r(Gr, &) oo hax > G—noiem] (78)

Lemma A.6 Fori=1,2, let ¢ be 4.i.d.(0,0?%) with Eley|® < co. Assume that {(in}2, and
{&n}2 are real coefficients satisfying S°° o || < 00. Define Zf = S°0"1 &ineiv—n and, for
t > N >0, also the processes 75\]) = Zi_:lN CmZ;;_n and Zg\]) = Zfl\:ol CmZ;ﬁ_n- Then, for
0<N<T,

T
- —(N)=(N

|71 Z th )Z;t )||4 < c€r(C1, Ga), (79)

t=N-+1

T

|1 Z Zﬁ“z&f’m < N (G Ca), (80)

t=N+1

T

1770 > 28025 — B2 25011 < o(N/T)en (G, ), (81)

t=N+1

T
77 30 280757l < (NI en (G ) Per (@ ) (82)

t=N+1
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Proof. We find Y0 oCinZiy_n = Z_:l (Gi % &)nEi—n, where (G &;)n = ZZ:O Gi.h—nSin, and
T+min(ni,n2) h—ny h—na

Er((Gr =), (G*&)) < max Z Z [Cm—— Z [C——3

1<ni,no<T
h=max(ni,n2) n=0

<e) &l Z [E1nl&7(C1y G2) < (G G2) (83)
m=0 n=0

because Y oo |&in| < co. Thus, it is enough to prove the results for Z; = &, or &, = Lin—oy-
Proof of (79): Using the notation vy = t; — ng, where s=1,2 and i = 1,...,4, we find

4
T_ Z Z(N)Z(N) =T" Z H Cl t;—v14q CQ t; —1)21 (H 51,1)“52,1)21-)7 (84)
i=1

t=N-+1

where Z(l) is the sum over N < ny; = t;, —wvy,ne =t —vy < t; < T, 1 = 1,....4.
We first sum over ¢; for fixed (vy;,vs;). Note that ¢; > N + vy;,t; > N + v and hence
t; > N+max(vy;, vg;) > max(vy;, vy;). Similarly ¢; < T+min(vy;, v9;). This gives the summation

T+min(vi;,v2;) T+min(v1;,v2;)
Z |C1=ti_U1iC27ti_'U2i| < Z |C17ti_U1iC27ti_U2i| < ST(CD CQ)?
ti=N+maX(’U1i,’U2i) ti:maX(U1i7U2i)

and summing over vy;, vy; we get the bound

4
€T(<17 <2)4T_4 Z |E(H 51,”1152,1)21')
@ =1

where 2(2) is the summation over 1 < vy;,v9; < T — N, i = 1,...,4. The expectation is zero

unless for each (I,7) there is a (k, j) for which v; = vy, so the indices are equal in groups. The
smallest number of restrictions, and hence the largest number of summations, occurs if the
indices are equal in pairs. This leaves four summations from 1 to 7' — /N and hence a factor of
(T — N)*, and therefore the bound c&7((y, (o).

Proof of (80): For N = 0 we get from (79) that ||T1 ZtT V2875 |4 < (G, Co). We apply
this for coefficients for which Cln = (o, = 0, n > N, so that ST(Q,CQ) = &n(Gr,C2). We also
have ZF = S0 Cuern = SN Cugron = 24 for t > N. Thus from

T N
I ZZEZJt =7 Z 23028 + (NJT)N'Y” 2473,
t=N+1 t=1

we find
|7 Z 2250 < e(en (G G) + (N/T)En (G G) < cén(Gr, Go).

t=N+1
Proof of (81): The expression (84) now becomes

4 4
T Z(H Clati_vliC27ti_U2i)E H(€17U1i€2ﬂ)2i - 0121{v1¢=02¢})7
(1) =1 i=1

where 2(1) is the sum over 0 < ny; =t —vy,n9 =1, —vy; < N<t; <T,1=1,...,4. In this
case the bounds for t; are ¢; > max(vy;,vy;) and t; < N + min(vy,, v9;) and ¢; < T. Summing
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over t; we therefore get the factor
min(T,N+min(v1;,v2;)) N+min(v14,v2;)

Z |<17ti*171i<27ti*’02i < Z Kl,tifvlz‘g?,ti*vm

t;=max(v14,v2;) t;=max(v1;,v2;)

= &N (G, G2),s

that is, a factor £x (1, ()* when summing over all ¢;. For the contribution from the expectation
we only consider v, equal in pairs. Note that if vy; = vy; for all ¢ the contribution is zero
because of the centering. Thus there exists ¢ so that vy; # vg; belong to different pairs and
satisfy 0 < |vg; — vy;] = | — ng; + ;| < N. Hence we sum over 1 < vy;,v9; <T,i=1,...,4,in
pairs with at least one restriction of the form |vg; — v1;| < N, so we get at most N T3 terms.
We therefore find the bound (N/T)&n (¢, ¢2)* which proves (81).
Proof of (82): In this case we write (84) as
T 4 4
E<T71 Z Zg?)zé]t\[)))zl =T Z(H Cl,nuC?,n%)E(H 61:%*”118271‘/1‘*”22’)7
t=N+1 (1) i=1 i=1

where the summation 2(1) isover 0 <ny < N<ngyu<t;<T,i=1,...,4.

We consider t; — ng; equal in pairs, which gives the fewest restrictions. Note, however, that
ny < N < no; implies that t; — ny; > t; — ng; for all 4, which means that there must exist a
J # i such that ¢; — ny; = t; — ny; and therefore |t; — ¢;| = |ny; — ny;| < N, and another k # [
for which ¢, — ng, = t; — ng with no restriction on (t,t;). We eliminate ny; = t; —t; +ny; and
ng = t; — ti + noi, and consider

N-1 T-1
| Z C17n1iC1,tj—ti+n1i|| Z C27n2kc2atl_tk+n2k| < SN(Ch Cl)gT(CQ’ CQ)
n1;=0 nagp=0
Summing over the two other pairs gives either the same factor or the mixed case,
N-1

N-1 N-1
O GnCotyten) <D Gn D Giptgin < (G C)EN(G, G),
n=0 n=0 n=0

where the first inequality is Cauchy-Schwarz. Finally the summation over ¢;,7 = 1,...,4, with
at least one restriction |t; — ;| < N gives at most NT? terms and we find the bound (82). m

The next lemma is the key result on the evaluation of {7((;,(2) and hence the empirical
moments for a class of processes defined by coefficients ((i,,, (2,,). We assume that ¢; and (
satisfy conditions of the type

G591 < 1, 1G] < ef1 +logm)™n ™, n > 1, (85)
G <1, 16| < e 21+ [log )™ m 2 1, (86)

where ¢ does not depend on a or n. We use superscript (a) to indicate the order of magnitude
of the bound, but sometimes omit it when that should cause no confusion, and an asterisk to
indicate the normalization by T%"1/2, Note that (85) and (86) are satisfied by the fractional
coefficients and their derivatives, see Lemma A.5.
We repeatedly use the elementary inequalities, for 0 < k < 1,
T T 1
Zn_“_l <1 +/ My =140 (1-T") <1+ " <2k u >k, (87)
n=1 1

T T
K1 T <u'(1-T% = / x4 e < Zn’“’l, u < K. (88)
1 n=1

30
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Lemma A.7 Fori=1,2, let CZ»(ZZ') and CZ(Z’)* satisfy (85) and (86) with |a;| < ag. Then:
(1) Uniformly for min(a; + 1,as + 1,a; + a2 + 1) > a we have
(1 +logT)mtmetip=a ¢ <0,

.y <ef U “=0 (59)
(i1) Uniformly for max(ay,as, a1 + as + 1) < —k for some k > 0,
En(G™ M) < en . (90)
(i1i) Uniformly for a; > —1/2 +a and ay < —1/2 — Kk for any a > —1/2 and any k < 1/2,
(™, () < e(1 + log Tym+ma L min(aw), (91)

Proof. In evaluating (78) we focus on terms with ¢ > max(m,n), because the analysis with
t = m or t = n is straightforward.

Proof of (89): For t > max(m,n) we first apply (85) and therefore bound the summation
T+min(n,m) (a1) r(a2)
IS | by

t=max(n,m)+1 151,t—n>2;{—m
T+min(n,m)
> eI +log(t —n)™ (t —n) " le(1+ log(t — m))™ (¢ — m) "
t=max(n,m)+1
For a < 0, we bound the log factors by (1 4+ logT). If a; < —1,i = 1,2, we bound (¢ —
n) "t — m)Te"l < Tramee=2 < Toaml gnd the result follows. If a; < —1,a; > —1 we
bound (t —n)~®~! < T~~! and find

T+min(n,m) T+min(n,m)
Yo t=n)y i t—m)y et < Y (t=m) @ < e(log T)T,
t=max(n,m)+1 t=max(n,m)+1

and similarly if a; > —1,a9 < —1. If a; > —1,4 = 1,2, then (t — n) @7 (t —m)~ 271 <
(t — max(n,m))~(@Fe+)-1 and the bound for & (¢\™ C(a2 ) follows because

T-min(n,m)

Z (t — max(n,m))”"* ! < c(logT)T~* for a < 0.
t=max(n,m)+1
For a > 0 we bound (1 + log(t — n))™ (t —n)~%? and (1 + log(t —m))™2(t — m)~%/3 by a
constant. Then &7(¢“Y, ¢4} is by (87) bounded by
T-min(n,m)
Jnax Z (t — max(n,m)) 42371 < ¢q7L,

t=max(n,m)+1

Proof of (90): We find that &p(¢\**, ¢{**) is bounded by a constant times the maximum
(over 0 < |n—m| <T) of
T+min(n,m)
t—m

T (U os( M ) T log(F e () e

t=max(n,m)+1

1+min(z,y)
- (1 +[log(s — x)[)™ (s — )" V(1 + [log(s — y)|)"* (s — )~ Vds

max(z,y)

as T — oo. This is uniformly bounded by cx~! if max(ay,as,a; +as + 1) < —k.
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Proof of (91): We evaluate the log factors by (1 +logT) and T%+Y/2(t — m)~(a2+1/248) <
T2 t1/2—(a2+1/24K) — T=% Because a; +1 > 0 and 1/2 — k > 0 we find that the remaining
terms in the summation are bounded as

(t —n)~ 7t — m)"VHR < (t — max(n, m)) "IV < (t — max(n, m)) T4,

where the last inequality follows from —a; < 1/2 — a. Summing over ¢ gives the bound
T*ﬁTmax(faJrn,O) — T min(a,n). m

A.3 Limit theory for product moments of deterministic terms

The next lemma gives results for the impact of deterministic terms generated by initial values
and the constant term, see (44), in the models considered, using the bounds in JN (2010,
Lemma C.1). For the product moments in the proof of consistency we define, for dy > 1/2,

(AP — AD) X, + (AT — Aoy, i=—1,
Di(¢) = § (AT — AT X, + (AT — AT gy, =0,k =1, (92)
Ati+kat + Ai+kb/ub0t, i = k.
In model (3) with d = b and a constant, we replace j: by por + Cianpy in D;i(1)) for i >0
and subtract AL Cgagp) from D_y (). For dy < 1/2 we leave out the terms involving AL g,

because we use the representations (17) and (18). For the analysis of the score function we
define the deterministic terms

doy = Ty (L) (X, — X;) and dy; = DIo, (L) o, + DIy (L) Xy, (93)

where D™ denotes derivatives with respect to d + ib and DIIp_(L) denotes the derivative of
IT_(L) evaluated at the true value. Note that the expression for dy, is the same for models (2)
and (3) because for the latter model we find from &, = IIo(L) X} + agpj that

e1(No) = Moy (L) X+ (L) Xy +aopy = Ho(L) Xi+aopy+ o (L)(X;—X,) = e+ (L) (X;—X,).
The expression for dy; is found as a linear combination of DD;(v))|y=y,, See (92), and also
TY2%80 DD _1 ()| pmy, if bo > 1/2.
Lemma A.8 Weletn > 0 and ky > 0, where k1 < 1/2ifdy < 1/2 and k1 < min(1/2,dy—1/2)
if dy > 1/2. It then holds that:

(i) For 0; = d+ib—dy and b > n the functions D™Dy (1) are continuous in 1 and

D™ D, 0 as t — oo, 4
e ] ()] = 0 ast— oo (94)
max max |D™T% 260 Dy(1)] — 0 as T — oo. (95)

—u0§§i§—1/2—n1 1St§T

(i1) In model H,(d = b) with a constant the same results hold.
(i) If X_,, = 0,n > TV, then for both H, and for H,.(d = b) with a constant,

T
T2 " |doe| — 0 for v < 1/2. (96)
t=1
Proof. From (10) we have that pe = —Ilp. (L) 'TI,_(L)X;, and from Theorem 2 and
Coap3y = 0 we get
k
por = —(CoAT® + ATPTOF (L)) (—apBHA®r +) " Wg; ALt X, (97)

J=0
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k
= F (L)agBAT T AP0 X, — 3 " (CoWg; AT + Fi (L) Tg; A0 0) At X,
=0
From JN (2010, Lemma C.1) we have the evaluations
am .
|5 LAY X < (14 log)m e mnltvatio), (98)
um
am :
|5 T ALALXG] < o1 + log T)m - min(vlo—u—w) (99)
um
We see that differentiating the fractional coefficients gives an extra factor of the order (14log T'),
and it is seen from the proof that such a factor does not change the results, so we continue
setting m = 0. o
Proof for A™*X, in (i) and (ii): To prove (94) we find from (75) of Lemma A.5 that
because d + b > d — b > 0 we have

No—1 No—1
IALDT,| = | Z Ti(—d —ib) X _,| < ¢ Z (j 4 £) @O < Nyt @-h -1 (100)
J=0 J=0

which proves (i) and (i) because maxo<gsip<a, | A% X,| < ct~1. The proof of (95) for AT X,
follows from (100) because max_,,<s<_1/2-x, 1°7/2 — 0.

Proof for A$+1)dC’§a0p6 for i >0 in (i) and (i1): We find A$+1)d1 = Al+Dd] _ AUFDdy

— A" which is bounded by ¢> 07, n~ "1 < ¢t~ uniformly for (i 4 1)d > d > 1 > 0 which
proves both (94) and (95).

Proof for A% g, in (i) and (ii): This term is only present if dy > 1/2 and we only apply
the condition d — b > 0. We first prove (94). The term A%y, contains terms of the form
G (L)AYAY X, with G(2) = Y07 2™ and Y 2 |gn| < 00, and where u = d 4 ib — 7y and
v = do+ jby > Yo with 79 = do or v = do — by, see (97). Because 6; = d+ib—dy > —1/2 — Kk
in (94), then for both choices of vy we find u +v > d+ib > dy — 1/2 — K1,v > 7, and
u+1>dy+1/2— k1 —79 > 1/2 — k1 so that from (98) we get for dy > by that

|Ai+ib—’yoAC£0+jboXt’ < C(l + lOg t)t_ min(do—1/2—k1,1/2—kK1,do—bo) 0.

The Dominated Convergence Theorem shows the same result for G+(L)Ai+ib_7° A%t X, and
(94) follows for AL i5, when dy > by.
If dy = by then AA% X, = 0 and (97) implies
k
Ati—&-ib'u()t _ Z(OO\IJOin+ib_dO + F_}_(L)\I"oin—Hb)Aio—’_jboXt.
=0
To prove (94) with dy = by we take u = d + ib — vy where vy = dy or 0 and v = dy + jby > dy
and find from (98) for d +ib > dy — 1/2 — k1 > 0 that
|Ai+ib*70AC£0+jboXt| < C(l + log t)ti min(do—1/2—r1—v0+do,do+1/2=r1—0,d0) _, ().

0 prove we take [ > ¢ and apply with v = d + (0 — v and v = dg + J0p >
T 95 ke | > 7 and ly (99) with d—+1b d d b >
Yo = 0. Because u+v > d—5b > 0and v > 0 imply v > —u and v — u > —u we have
min(v, 1,v — u, —u) = min(1, —u) and thus

’Td-i-ib—do—&-l/onf—lb—vo ACEO_'_jbOXt’ _ T(i—l)b+1/2—d0+’yo ’Td—i-lb—’yo Ai—i-lb—vo Atio+jboXt|

< ¢(1 + log T)Tmax(=1/2+(=b=do+y0,d+ibt1/2=do)

33



LIKELIHOOD INFERENCE FOR COFRACTIONAL PROCESSES

< ¢(1 + log T)T™ax(=1/2=r1) _, ()

using d + ib — dy + 1/2 < —k;. If we apply this for [ =i = —1 and ¢ = —1,] = 0 then we
find the result for (AT — A4)ug,.. With [ = i,l = k and [ = i = k we find the result for
(AL — AT 1o, and ATH 6., respectively.

Proof of (#11): The determlmstlc term do; = I1g_ (L)(Xt X;) only depends on X _,,,n > N,
because X_,, = X_,,n < Ny. We find the terms AP X, i > —1, which are bounded by
Tt (d=b) see (100). It follows that T-2 37 |dy| — 0 for v < 1/2. =

A.4 Limit theory for product moments of stochastic terms

We analyze product moments of processes that are either asymptotically stationary, near crit-
ical, or nonstationary, and we first define the corresponding fractional indices.

Definition A.1 We define S(ky, Ky, Fv, ku) aS the set where the three fractional indices w, v,
and u are in the intervals

[_w07 _1/2 - Hw]> [_1/2 — KBy _1/2 + /_iv]a [_1/2 + Kus uO]a (101)
respectively, and where we assume 0 <&, < k, and 0 < k, < min(by/3, Kk /2, Ku/2,1/6).

In the following we assume these bounds on (u, v, w). Thus for Z; € Z;,,b > 0, see Definition
2, and indices (w,v,u) as in Definition A.1, AfZ;“ is nonstationary, AiZ;r is asymptotically
stationary, and A" Z;" is close to a critical process of the form Af/ %c,. In the applications
we always choose fixed values of k,, K, and k,, but we shall sometimes choose small values
(— 0) of &,.

In the subsequent lemmas we derive results for product moments of fractional differences
of processes in the class Zj,,, see Definition 2, or the deterministic term. For m = my + mqy we
define the product moments

T
D" Mr(a1,a) = T~ (D™ A4 Z1)(D™ AR Z5)',
t=1
ADZE A1 ZE
MT((al>a2) (alaa2 Z ( Aazzg ) ( A%ZZ ) )

MT(ab a2|a3) = MT(ab az) - MT(ab as)MT_l(G& GS)MT(CLS» a2),

where a1, as, as can be u, w, and v in the intervals in Definition A.1, or they can be the constant
one, in which case the notation Mz (1, az) means that A% Z}, has been replaced by 1. Let Ny
be a normalizing sequence and define Mr(aq,as) = Op(Nr) on a compact set K to mean that
Nz ' Mr(ay,as) is tight on K and My (a1, as) = op(Nr) to mean that NT_lMT(al, as) = 0 on
K. Finally, we introduce the notation M;*(wy,ws) = T T2 Mp(wy, wy) and Mi(w,a) =
Tw+Y2Mp(w, a), where a can be u, v, or 1, to indicate that the nonstationary processes have
been normalized by T%i*1/2,

3Under the alternative assumption > oo n™/2|X_,| < oo (replacing X_,, = 0 for n > T"?) the argument is
o0 o0
|Ai0+ib0Xt‘ <c Z(n + t)—l—(do—bo) ‘X7n| < Ct—1/2—(d0—b0) Z n_l/Q\X,n| < 015—1/2—(0139—%)7
n=0 n=0

such that T—1/2 37 $=1/2=(do=bo) < ¢p=(do=bo) _, () for dy > by. If dy = by then AT~ X, = A® X, = 0 for
¢ > 1 and the dominating term becomes T-1/2 5T |A% X,| < ¢qmax(=1/2,~do) _, (),
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Lemma A.9 Let Z;; = &gy + AP Yoo &tEten € 2y, i = 1,2, and define Mr(aq, as) as above
and assume that Ele,|! < oo for some q > k' and ¢ > 8. Then it holds jointly that:
(1) Uniformly for —wo < w < —1/2 — Ky, and —1/2 + k, < u < ug we find that
D™ My (uy,us) => D" E(A" Z14) (A" Zy,), (102)
D™ MZz* (w1, we) is tight, and

1
M (wn, ) = €1 [ Woa ()W a (5 ds (103)
0
D™ M (w,u) = Op((1 4 log T)>Hm— min(kurw)), (104)
Uniformly for —wy < w < —1/2 — Ky, —1/2 — k, < v < g, and —1/2 + K, < u < ug,
Mi(w,0) = Op((1 + log TPT=), (105)
Mr(v,u) = Op(1). (106)

(i1) If we choose N =T* with 0 < o < 1/4, and (&1,&}) has full rank, then for —1/2 — K, <
v; < —1/2+ %, we find

1— N2
Mr((v1,v2), (v1,v2)) > CT

where Ry = op(1) uniformly for |v; +1/2| < k,,.

Proof. A matrix valued process D™ Mr(aq, az) is tight if the coordinate processes are tight, and
the (4, 7)’th coordinate is a finite sum of univariate processes constructed the same way, so it is
enough to prove the result for univariate processes. We prove tightness by checking condition
(74) of Lemma A.1 for D" Myp(ay,as). The moments are evaluated by &r((y, (2), see Lemma
A.6, for suitable coefficients satisfying (85) and (86). We give the proofs for m; = mq = 0, as
the extra factors of (1 + log7")™ do not change the evaluations.

Proof of (102): We define the coefficients (; ¢, = m—n(—u;), which satisfy condition (85).
The assumption that u; > —1/2 + k,, implies min(u; +ug + 1,u; + 1, us + 1) > 2k, so we can
apply (79) with N = 0 and (89) which shows that ||[Mr(uy,us)|]s < c.

Next we consider || Mr(uq,ug) — Mrp(ty, Uz)||4 which we bound by

T T
1771 (AP Zf = AP ZE) AR ZE) |+ T Y (AP Zi) (AL Zyy — AL Z5) |4 (108)
t=1 t=1
We apply (79) with N = 0 to the first term with (14—, = (T—n(—u1) — m—n(—01)) and
Cot—n = Tt—n(—ug) bounded by (85), see also JN (2010, Lemma B.3), and it follows from (89)
with a = 2k, that the first term of (108) is bounded by c|u; — @1]. A similar proof works for
the other term of (108), and tightness then follows from (74).

Notice that the second condition of (74) follows in the same way as the first using the
inequalities in Lemma A.7. The only difference is an extra log factor and the factor (u; — ).

We next apply the Law of Large Numbers to identify the limit as an expectation. From
AV ZE = Z;B(W(—ui) #&)ner—p, and A% Zy =50 (m(—w;) * &) per—n we see that it is enough
that the variance of the difference converges uniformly to zero,

Var(A“Zy — AV Z7) = Z(ﬂ(—ul) % &)U (—u;) * &)p — 0 as t — oo.
h=t
We proved above that My (uy,us) is tight and therefore My (uq, ug) = E(A" Z14) (A" Zy;)'.
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Proof of (103): We define ¢},_,(w;) = T ?m_,(—w;) for w; < —1/2 — £k, so that
max(wy, we, w; +ws + 1) < =2k, < 0. We then apply (79) with N = 0 and (90) with x = 2k,,
and find that (74) holds and M3*(w,ws) is tight. Because —1/(w; +1/2) < k' < q we get
the limit

wi+1/2 A w;
TUHPAYZE

= W_,,—1(s) on D?(]0,1]), i = 1,2,
see (6) and also JN (2010, Lemma D.2) for a few more details. The Continuous Mapping
Theorem gives the result (103).

Proof of (104): We apply (79) with N = 0 and (91) for (1 —n(u) = m—p(—u) and (5, (w) =

T2m, ., (—w) and find for w < —1/2 — Ky, u > —1/2 + Ky, a = Ky, and K = K, that
Y —)
[ M (w,w) — M0, @) |5 < e (w, ) — (0, @)|(1 + log )27~ min(ruru)

and (74) implies that M (w,u) = Op((1 + log T)*T~™in(kwrw)) The extra (1 +logT) in the
increment is due to JN (2010, Lemma B.3, eqn (56)).

Proof of (105): We first apply (79) with N = 0, 14— = m—p(—v), and (5,_,, = T /21, (—w)
and find from (91) with @« = —k,, Kk = K, that for v > —1/2 — s, w < —1/2 — K, we get

[| M7 (w,v)||s < e(1+logT)T", (109)
||M7 (w,v) — My (w,9)|]a < c|(w,v) — (@, 0)|(1 + log T)*T*

and (74) then shows that M} (w,v) = Op((1 + log T')?T%).

Proof of (106): We define (14—, = m—pn(—u) and (oy—p = m—n(—v) where v > —1/2 — K,
and u > —1/24 Ky, so that min(u+1,v+1,u+v+1) > min(k,, 1/2) — k, > 0, see Definition
A.1. Tt then follows from (79) with N = 0 and (89) that (74) is satisfied and hence that
Mr(u,v) is tight.

Proof of (107): Because we need to decompose the processes we use the notation

T
Pr(Uy, Up) = ZUUU;; and Pry(Up,Up) =T Y ULUS/

t=1 t=N+1

for product moments of any processes Uy; and Us;. We define Z:{ by Z:{ fzst—i—AbO Z:t“ ,i=1,2,
& = blockdiag(&1,6), AL ZS = (AL ZY, ARZS), Al A (A”lng’,A”Z;g’), and A%e; =
(Ate}, A?e;)’, and find the evaluation

Pr(AYZ, A7) > EPr(AYe, AYe)¢ + Pr(AY T Z, AYe)¢ + EPp(Ale, A7), (110)

where the inequality means that the difference is positive semi-definite.

We define the index u; = v; + by > —1/2 + (by — k,,) for AbOHZZt so that k, — Kk, =
by — 2#, > 0. Tt follows that we can use (106) for the components of Pr(A%™Z, Al¢) and its
transposed which are therefore Op(1).

We next consider Pr(A'le, Ale) > Pr N(Aﬂ’rs A" e) and decompose, for t > N =T*,

V;;r = Av—i-igt + Vlt Z 7Tn Uz Et—n T Z 7Tn Uz Et—n- (111)

We define V (Vﬁt / ,thv)/)', VEN) = (Vlt ,V;t ) and evaluate the product moment

Pry(Ale, AVe) > Pry (VY V) 4+ pry(v®™ VY 4 pr oy (7, @), (112)
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Analysis of PT7N(K(N),V(N)): It follows from (89) for a; = v; > —1/2—k, that {7((o, () <
c(1+1logT)T"% and En(Cr, Gr) < ¢(1+log N)N*=, so that (82) implies

1Pr (V. V™) s < 1+ log TYT~(-2s)/tat 2/ (113)

which converges to zero for a < 1/4 and k, < 1/6 because —(1 — 2k,)/4 4+ a(1 + 2k,)/4 < 0.

To prove tightness we check condition (74). We take two points (v1,vs) and (9y,02). For

convenience we introduce the notation My n(vi,v2) = Pr, N(K(N ),V(N)) to emphasize the de-
pendence on (v, v2). Then the difference My n(vy,v2) — My (01, 72) contains differences like
Ty (—01) Ty (—2) — Ty (—01)Tpy (—02), which we can write as

(7ny (= 01) = Ty (=01)) Ty (=02) + T, (=01) (T, (= 02) = Ty (=02)),
where the first term is, by the Mean Value Theorem,
Ty (—02) (T, (—01) = 0y (=01)) = Ty (—T2) (01 — 01) D7, (—07) = (v1 — 01)C1ny Conmo

for some intermediate value vj. Here (y,,, and (s, satisfy (85) with a; = v; > —1/2 — K, and
my = 1,mg = 0. Therefore we have from (82) and (89) that

T
1Y D (mul=vn) = (80 (= B2)er p-mEa-malla < erfon — B,

t=N+11<n1,na<N
where ¢ — 0, see (113), and a similar expression for the other term. This shows that
|| My n(v1,v2) — My N (D1, 02)|]4 < er|v — 0] < c|lv — 0,
and hence that My y(vy,v2) = PT7N(K(N),V(N)) is tight and therefore op(1) by (113).
Analysis of PT,N(K(N),K( )): We define for —1/2 — k, < v; < —1/2 + R, the coefficient
N-1 N—(vitv+1) _ 1 1 — N—2F

Fynij = n(— )T (—v;) > 1 > 1+ c—FF-,
Nij Zﬂ( V)0 (—0;) +C—(vi+vj+1) +c o

n=0

where the dependence on %, appears for the first time, see Lemma A.5(%i) and (88). Note that
Fyij — 00 as (Ry, N) — (0,00). We find that

T
E(PT,N(K(N),K(N))) — 71 Z E(K(N),K(N)) _ T_l(T . N) ( Fnit Fnio ) ® Q.
Mot Fnia Fnaz

The difference Rp(vq,v3) = PT,N(K(N),K(N)) — E(PT7N(Z(N),K(N))) = 0 uniformly for |v; +
1/2| < k, by (81) of Lemma A.6 and (89) because

||Rp(v1,v2)|la < e(N/T) 4N (C1, &) < T Y41 + log N)NV4+E —

for « < 1/4 and k,, < 1/6 because —1/44a(1/4+k,) < 0. Tightness follows as for My y(v1, v2)
in the analysis of Pry (V™ V™), Hence
1— N-%v
EPry (VI V) > (1, &) (&, &) +or(D),

where the remainder term is uniformly small for |v; + 1/2| < k, independently of %,. From
(110) and multiplying (112) by £ and &’ we find (107). =

We apply the results of Lemma A.9 and Corollary A.10 in the analysis of ¢1,(1) and {1, (1))
to show that they converge, which is the key ingredient in the proof of consistency of the MLE
and in the test for rank. The results for m = 0,1,2 in Lemma A.9 are used to show that the
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information matrix is tight in a neighborhood of the true value and the results are summarized
for Ar(v), Br(¢), and Cr(¢)) in Theorem 6.
For the proof of existence and consistency of the MLE we need the product moments that

enter the likelihood function ¢7 (1)), which are analyzed in Corollaries A.10 and A.12 to follow.

Corollary A.10 If the assumptions of Lemma A.9 hold, then uniformly for (w,v,u) € S(Kuw, Ky, Fos Ku),
see (101) of Definition A.1:

(i) It holds that

M7T* (wy, wa|ws, w) = M7 (wy, we|ws) + op(1), (114)
My (uy, us|w, uz) = Var(A" Zyy, A" Zo | A3 Z3;), (115)
Mr(v,ui|w,us) = Op(1). (116)
(1)) If N =T with 0 < a < 1/4, and (£],&5) has full rank, then
—2R,

MT((Ula 02)7 (Ula UQ)‘wa ’LL) >c (517 gé)/90(€17 gé) + RT? (117)

2K,
where Ry = Op(1) uniformly for |v; + 1/2| < k,,.

Proof. Proof of (i): The proofs of (114), (115), and (116) are the same, so we give only the
latter. We decompose Mr (v, ui|w, uy) as

M (v,ur) — ( Mj(w,v) ) ( My (w,w) - Mi(w, ) ) ( M (w,ur) >
ne My (ug,v) M7 (ug, w) My (ug, us) Mrp(ug,uy) )’
where the second term is
M (v, w) Mg (w, w) ™ My (w, uy) 4 My (v, ug) My (ug, ug) ™ My (ug, u1) + 0p(1)

because M7 (w,uy) => 0 by (104). The result follows by application of Lemma A.9.

Proof of (ii): The proof is similar to that of (107) except for conditioning on a stationary
and a nonstationary variable. We start by eliminating the stationary variable and find that
Mr((v1,v2), (v1, vo)|w, u) is

Mr((v1,v2), (vi,v2)[w) — Mr((v1, v), ulw) My (u, ufw) ™ My (u, (01, v2) [w),
where My (u,u|w)™ = Op(1) by (115) and Mz((vi,vs),ulw) = Op(1) by (116), and we
therefore continue with Mz ((v1,v2), (v1,v2)|w).
_ We decompose A% Z; = §AYe, + AT 7Y
Zt = (Zy, Z})'. Then we have the evaluation
My ((v1,v2), (v1, v2)|w) > EPr(A%, A"| A" Z3)E

+ EPp(A%, AP ZIAY Z3)E 4 EPp(AY T Z AVe| A Z5)E'.
It follows from (116) for u; = v; + by > —1/2 + by — kK,
w < —1/2 — k,, that the last two terms are Op(1).

We next evaluate Pr(Ave, AVe|AYZs) > Prn(Ave, AVe|A"Z3) and decompose Alie;, =
ng) + VEtN), see (111), and stack them into V™) and 7™, We bound Pr n(Ave, AVe| AV Z3)
from below by

Pra(V™ VM|AY Zy) + Pry(V) VY| A" 2,) + P (T

= PT,N(K(N)aK(N)> — Rir + Ror + Ry,

i = 1,2, and define Z;" = (Z;, Z})’ and

(i.e., ky = by — K, > 2k,) and

N)

VA Z,)
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where
Rir = Pp y (VY A Z3) P (A" Zy, AV Z3) 7 Py (AY Z5, VIV,
Ror = Prn (V) V) = pr (V) A Zy) P (A Zy, A Z) ™ P (A 25, V),

and asterisks denote that nonstationary processes have been normalized as for M7 and M7*.
We next show that, for N =T,

Py (VI AV Z3) = Op((1 4 log T)? (T35 250 4 -1/ 4ro(lt2s,)/4), (118)
Ppy (V™Y A% Z3) = Op((1 +log T)*T=). (119)

If these were proved and o < 1/4 and k, < 1/6, it follows that Ryr and Ror are op(1), see
also (113). Thus, proving (118) and (119) completes the proof of (i), see (107) for the main
term PT,N(K(N),K(N)).

Proof of (118): We decompose AY Z3 = w —|—W§N) =y Wn(—w)ngt_n—l—Zf;lN Tn(—w) Z5 s
and evaluate

* w * * _(N)
1P (VI A Zg) g < 1P p (VI W)y o+ [P (V) )]

From (80) and (91) with a = —k, and k = k,, we find that ||P7’57N(K(N),E(N))||4 is bounded
by

cEn (¢, ST 2 < o(N/T) e (™, ¢57)
< C(l + log T>T—nw+a(nw+@v) < C(l + log T)T—2Qv+3aﬁv’

using ko > 2%, and where &y (¢, ¢$*) denotes & (¢, ¢{*?) normalized by Nv*+Y/2. Simi-
larly [|P5 (V) 7)1y is, by (82), (90), and (91), bounded by

e(NJT) (G, ) 26n(67" )2 < (1 4 log T)T /et 2/t
Proof of (119): Because A'e;, = vy VEN) for t > N =T we have
Pin (VY A0 Z5) = P(A%e, A" Zg) — Py (V) A" Zg) — (N/T)V27" Py(A, A" Zs).
The first term is Op((1 + logT)*T%) by (105), the second is Op((1 + log T)? (T35 250 4
T—1/4+a(l+25,)/4)) By (118), and the last term is Op((1 + log N)2N&+iFreT=1=ru) By (105).
The first term dominates which proves the result. m
Lemma A.11 If the assumptions of Lemma A.9 hold, then:
(i) Uniformly for —1/2 4+ k, < u < ug it holds that
D™ Mp(1,u) = Op((1 4 log T)*™T~"). (120)
Uniformly for —wy < w < —1/2 — Ky, it holds that D™ M;(1,w) = Op(1) and

Mr(1,w) = 5/01 W_y—1(s)ds. (121)

Uniformly in —1/2 — k,, < v < vy it holds that
My(1,v) = Op((1 4 log T)*T=). (122)
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(i1) Uniformly for (w,v,u) € S(Kuw, Ky, Fu, ku), see (101) of Definition A.1, it holds that
MT(ul,’LLQ‘l) — Var(A“lth, AU2Z2t), (123)
M (wy, up|1) = Op((1 + log T)?T~mintkurw)) 4 gp(1), (124)
1
My (o ual1) = 6 [ (Vo s DOV a1, (125)
My (v, ul1) = Op(1), (126)
M3 (v,w|1) = Op((1 +log T)>T%), (127)
Mz ((v1,v2), (v1,02)[1) = My ((v1,02), (01, 02)) + 0p(1), (128)
where (W_y_1(8)|1) = W_yoi(s) — [ Weyoi(s)ds.

Proof. Proof of (i): The variable My (1,a) = T~' ], A% Zy; is a linear process in &y with
mean zero, so that it follows from JN (2010, Lemma B.1) that ||M7(1,a)|ls < ¢||Mr(1,a)l|s.
As in the proof of Lemma A.6 it is enough to prove the result for Zs; = €94, and as in Lemma
A.9 we give only the proof for m = 0 because the additional (logT)-factors do not change the
proof. We find because |, (—a)| < cn™*"! that
T ot-1
| Mr(L,a)|[3 < T2 1> 0 "' < c(1+1og T)* T HH2mex-e0), (129)
t=1 n=1
Fora=u> —1/2+ K, we find ||M7p(1,u)||s < c¢(1+1ogT)T " and fora =v > —1/2 — K, we
get ||Mr(1,0)|]s < ¢(1 4 logT)T"5. For a = w we get ||M;(1,w)||s < ¢ by the same method
as in the proof of (90). We also find from (6) that

T 1
TN Tt RAYZ P e /0 W1 (s)ds.
t=1

Proof of (ii): To prove (123)-(127) we use decompositions like My (uy, us|l) = Mr(u1,ug) —
My (uy, 1)Mz(1,1)" ' Mp(1, ug) and apply Lemmas A.9 and A.11(7), and note that Mp(1,1)! =
1.

To prove (128) we follow the proof of (107) and write Z;} = &g, + A®Z} and the same
argument shows that we only need to consider &;e;, and it is then enough to prove the result

for Z;; = &;. We decompose A" e, = v 4 V,EN) as in (111) and find, as in (112), that

Mr((v1,09), (v1,02)|1) = Proy (V™ V1) 4 Pry (V) V1) 4 Py (P, 1)
= Pry(VW VY)Y — Rir + Ror + Riy,
where
Rir = Pry(V™) 1) Mp(1,1) 7 Proy(1, V),
Ror = Pry(V®, 7YY = Py (V) 1) My (1, 1) Py (1, 7).
For N =T and a = vy > —1/2 — k,, we get from (129) that
| Prn (1, V)| |y < (1 + log T)T—/2Hel/245,), (130)
1Prn (L V)| |4 < (1 + log T)T™. (131)

This shows that Ry = op(1) for @ < 1/4 and k, < 1/6 because —1/2 4+ «(1/2 + k,) < 0, and
also that Ror = op(1) because —1/2 + a(1/2 + k,)) + £, < 0 and because (113) shows that

PT,N(K(N),V(N)) =op(l)fora<1/4and k, < 1/6. =

40
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Corollary A.12 If the assumptions of Lemma A.9 hold, then uniformly for (w,v,u) € S(Kuw, Ky, v, Ku),
see (101) of Definition A.1:

(i) It holds that

M7 (wy, walws, u, 1) = M7F (wy, we|ws, 1) + op(1), (132)

My (uy, ugw, ug, 1) == Var(A" Zy,, A" Zy | A" Zs;), (133)

Mr (v, ui|w, uz, 1) = Op(1). (134)

(i) If N = T* with o < 1/4, and (&}, &) has full rank, then for —1/2 — k, <v; < —1/2+F,

we find

1— N-%
o,

where Ry = Op(1) uniformly for |v; +1/2| < k,.

MT((Ula 02)7 (Ula UQ)‘wa u, 1) >c (517 Sé)/QO(giv fé) + RT? (135)

Proof. Proof of (i): The proofs are identical to those of (114), (115), and (116) except
Mr(ay, ay) are replaced by My (aq, as|1) and the results follow by application of Lemma A.11 (7).

Proof of (ii): The proof is identical to that of Corollary A.10(%i) except all product moments
are also conditional on a constant, 1, such that the remainder terms are now

Rip = Pp (VN A Z3|1) Pyt (A" Zs, A” Zs|1) ' Py oy (AY Z3, V1),
Ror = Pra(V), T™1) = Pr (V) A% 2| 1) P (A Zg, A Z5) 1)~ Py (A Z3, V1),
We thus need to show that, for N =T,
Py (VI AY Z5[1) = Op((1 + log T)? (T3 28 T 1/4eli428m,)/4) (136)
Ppy (VY AV Z3|1) = Op((1 +1og T)°T=). (137)
)

If these were proved and o < 1/4 and k, < 1/6, it follows that R;7 and Ry are op(1), see
also (113), (130), and (131). Thus, proving (136) and (137) completes the proof of part (i),
see (107) and (128) for the main term Ppn (V™ VV|1).

Proof of (156): We find

Py (VI AP Z5(1) = Py (VI AV Z5) — Pry (VN 1) Mp(1,1) 7 Py (A Z3, 1).

The first term is considered in (118). Next, Py y(A%Z3,1) = My (w,1) — (N/T)Y2= M (w, 1)
such that

Pry (VN 1) Mp(1,1)7 Py g (AY Z5, 1) = Op((1 4 log T)*T—1/2Tel/24m))

by (121) and (130). The right-hand side is dominated by Op((1 + log T)?T 25135 for
Kk < 1/6, and summing up we thus find (136).

Proof of (137): The proof is identical to that of (119) except we refer to (127) and (136)
instead of (105) and (118). m

Appendix B Proof of Theorem 4

By Lemma A.8 deterministic terms generated by initial values are uniformly small. Note that
(94) is formulated for index > —1/2 — k;, which covers not only the asymptotically stationary
By X and ), X;; but also the nearly critical ones, whereas (95) deals with the nonstationary
By, Xit. Hence deterministic terms in the processes do not influence the limit behavior of
product moments, and in the remainder of the proof of Theorem 4 we therefore assume that
they are zero and replace the regressors X;; by their stochastic component U}, see (45).



LIKELIHOOD INFERENCE FOR COFRACTIONAL PROCESSES 42

B.1 Proof of (30): unique minimum of /,(1)

On Ny, (0) the inequality is trivially satisfied and on Mo, (0) we have that Uy, = A% =0 (Ce,+
AbY}) is stationary. The transfer function for U, = Cye; + A®Y; is fo(2)7t, where fo(z) =
(1 — 2)"%TIh(2) = (1 — 2)"%Wy(1 — (1 — 2)°) for |z| < 1, see (8).

For given ¢ let us assume that {ﬁo Ui}k are stationary and {3}, U;;}7! are nonsta-
tionary, so that Fia (1) = o ({Us}io, {B5Us} 1= ). We define, see also (22),

St(m Ut + Z ;Ui + Z U;B0B5Uj — TBoByU—14 = g™ (L)(Cogy + A™Y)),

k—1
g"(L) = ATRIAR T, 43 T (AT — AR +Z\I/]ﬁ0 (AP — ARG TIB, B0 (A™" — 1)].

i=m

The transfer function of the stationary linear process St is g™ (2)fo(2)~", which has

g™ (0)fo(0)~t = I, so that S s of the form S = &, + &eiq + ... It follows that
Var(S'™) > Q and equality holds only for 5™ = &, or ¢(™ (2 2) = fo(2) for all [2[ < 1, which
implies that (d,b) = (dy, by), m = 0, and that ¥; = W, and I153; = ay.

Note that Var(St(m)) is quadratic in the parameters {¥;}=1 {\IIJBO}J “,T1Bp, and that
minimizing over these, the residual variance satisfies the same inequality,

Var (Ug| Faa (1) = Var(S™ | Faa (1)) > Q for all ¢.
Equality holds only for 1) = 1)y so this completes the proof of (30).
B.2 Proof of (31): convergence in probability of /1, (i)

We find from (34) that the matrices in the reduced rank regression can be expressed in terms
of Az, Br, and Cr, see (35). The eigenvalues in (25) are continuous functions of the product
moment matrices, so that (41) shows that {@;(¥)}_; = {wi(¥)}r_; on C"(N (¢, €)) as T —
oo. It follows that {w;(¢)}7_, are continuous in ¢ and given as solutions of

det(ngg 2502 205) = O (138)

where Yoo = Var(Ug|Ft), Yo = Cov(Ug, ByU—1:|Fr), and Xgg = Var(B U-14|F:), and where
Fi = o(Uoty - .., Uk—14), see Johansen (1996, chapter 11) for the detailed proof for the I(1)
model. For ¢ = 1, 1,,-(1)p) is given by

log det(Soo(t0)) + Y log(1 — @i(t)n)) — log det(Var(Uy| 7)) + > log(1 — wi(t))
i=1 i=1
= log det(Xg0 — ZopX5 205) log det(Xgg3) = log det ().
This completes the proof of (31).
B.3 Proof of (i): model H,

In the following we use the result that if we regress a stationary variable on stationary and
nonstationary variables, the limit of the normalized residual sum of squares is the same as
if we leave out the nonstationary variables from the regression. Similarly if we regress a
nonstationary variable on stationary and nonstationary variables, the limit of the normalized
residual sums of squares is the same as if we leave out the stationary variables from the
regression. Special problems arise if the regression contains processes that are nearly critical.
These results are made precise in Appendix A.4 and especially Lemma A.9 and Corollary
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& 3 -1/2 Figure 1: The parameter space N is the set

bounded by b > 0, b < d, and d < d;. The
sets NP = NY(r,, k), where a process is
close to being critical, and the sets N =
N (rkq, k) are illustrated assuming k = 1.
If £ > 2 there would be more lines.
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A.10, which we apply repeatedly below to show weak convergence of the profile likelihood as
a process indexed by the parameters d and b.

The behavior of the processes depends on d and b. Note that 3), AT™ X, € F(dy—d—mb)
and B{ATT X, € F(dyg — by — d — nb), and it is convenient to define the fractional indices
0m = d — do + mb. Thus the fractional order is the negative fractional index. For notational
reasons in Definition B.2 below we define §_s = —o0 and 0,11 = oc.

The process AT 30 X, is critical if §,, = d + mb — dy = —1/2, see Figure 1, and we
partition the parameter space into “interiors” and “boundaries” given as follows.

Definition B.2 We take 0 < k < k1 and define the (K1, k)—interiors,
Nk k) ={p EN 101 < —1/2— k1 and —1/2+ Kk <8,}, —1<m<k+1, (139)

and the (K1, k)—boundaries,

Nk, r)={YpEN:=1/2 =k <0, < —1/24 K}, -1 <m <k (140)
Note (recalling 0541 = c0) that Nt (k1, k) = Nt (k1) does not depend on £ and

Naiv (k) = N (k1) UNPH Ry, k) = {0 €N 2 6, < —1/2 + K}

In (139) we define the (kq, k)—interior N™(ky, r) as the set of ¢ for which all processes are
either clearly stationary or clearly nonstationary in the sense that their fractional index is
either > —1/2 + k or < —1/2 — k;. The (k1, x)—boundary N (k;, k) is the set where the
process [, X, has an index which is close to the critical value of —1/2, see Figure 1.

The profile likelihood for model H,, is derived by regressing X;; = A% X, on the other
variables, which can be either asymptotically stationary, nonstationary, or near critical. We
apply the expression ¢7,(1)) = logdet(SSRr(v)), see (27), and Lemma A.9 and Corollary
A.10 to find the asymptotic properties of det(SSRr()). We use the notation ky, k,, Ky, and
Ku, see (101) in Definition A.1, and note that for (d,b) € N all indices are bounded. The
assumptions in Theorem 4 imply that ¢~' < min(n/3,(1/2 — (do — bg))/2) and ¢! < 1/8,
so ¢! < min(1/6,7n/3,(1/2 — (doy — bo))/2). We can therefore choose a r; in the interval
g ' < Kk <min(1/6,n/3,(1/2 — (dy — by))/2), and apply this fixed x; in the proof below.

Neone () = UE L (N ()1, 1) UNPY Ky, K)) UN (K, k) = {p €N 2 0 > —1/2 4 K},
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B.3.1 Analysis of N(ky, k)

In order to apply Corollary A.10 we need to define the indices Kk, k,, Ky, and k,. For 1 €
NP4(ky1, k) the process (35, X, is near critical with index v = §,, € [~1/2 — k1, —1/2 + K], so
we define k, = k; and %, = x. The nonstationary processes {3y, X;;}:*~} are collected in a
vector with largest fractional index w = §,, 1 = 0,, —b < —1/24+ Kk —b < —1/2—2n/3, because
b>mnand k < k1 < n/3, so we define k,, = 2n/3 > ¢~', so we have enough moments for
weak convergence of the nonstationary processes to fBM, c.f. the moment condition needed
for (103) of Lemma A.9. Finally the asymptotically stationary processes {3y, X }¥_,,., have
smallest index 6,41 = 0, +b > —1/2 — k1 + 1 > —1/2 + 21/3 because b > n and K1 < 1/3,
and {3, X }%__| have smallest index d_y 4 by > —do + by = —1/2 + (1/2 — (do — by)), so we
choose K, = min(2n/3,1/2 — (dy — by)).

With these choices &, satisfies the conditions in Definition A.1 for the application of Corol-
lary A.10, because by > 1 implies that

K, =K1 <min(1/6,1/3,(1/2 — (do — b))/2) < min(by/3, K /2, Ky /2,1/6).
We can now prove that, for m = k£ and any A > 0 and v > 0, there is a Ky > 0 and T > 0

so that for T" > Ty,

P inf l >A)>1—7. 141
o™ o) 2 4) 217 (141)

For the rest of the proof we let kg be fixed at this value. Furthermore, for m < k, we can prove
that for this fixed value of kg,

sup |07, (1)) — £, (1)] 5 0 as T — . (142)
YENDE(r1,k0)NK(n)
Proof of (141): For v € N} (1, k), 3y X} is stationary with index uy = 0 + by and By, Xp
is near critical with index v; = (5;6_. A_pplying the decomposition Xy, = o8 Xkt + Lo o Xt =
Bo(X}, 00, X},80.) where By = (o, Bo1), see (11), we decompose the determinant

det(SSRy (1)) = det(Bo My ((uy, v1), (ug, v1)|w, u)B))
= det( Mz (uy, ur|w, w)) det(Mrp(vy, vi|w, u, up))(det(By))?.

Uniformly in ¢ € N(ky, k) the first factor converges in distribution by (115).
For the second factor we apply (117) for N = T:
1_T72Eva 1IN OY=1 (¢ ¢!
(66 (%) + Br, (143)
where max|,, 41/2/<x, || is bounded with probability > 1 — ~ for 7" > Tj. Thus, the smallest
eigenvalue of My (vy,v1|w,u,u;) is bounded below by a constant times (1—7-2%)/(2%,). This
factor is increasing in 7" from zero to 1/(2r%,) and decreasing in 2%, from alogT to zero. It
follows that for any A > 0 we can find (kg, 7o) so that for &, < kg and T' > T} it holds that
c(1 =T /2%, > A. Using &, = k = ko we then find that inf e nrva ey moyric () (r.p (V) i large
with probability > 1 — ~ for 7" > Ty. This proves (141).
Proof of (142): For ¢ € N (1, ko) with m < k, B, Xy is stationary with index u; and
B, X¢ is stationary with index us. Then SSRy(¢) = BoMr((u1, u2), (u1, uz)|w, v, w)Bj, and

SSRr(¢) — Var(U| Fear (V) (144)
= BoMr((ua, ), (ur, up)|w, u) By — Var (Ure| Farat (¢))
— BoMy((uy, us), v|w, w) My (v, v|w, ) Mrp(v, (ug, ug)|w, u) B,

Mp(vy, vi|w, u,uy) > ¢

44
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For fixed ko > 0, we find from (115) that on C(N*(k1, ko) N K(n)),
BoMr((uq,uz), (u1, ug)|w, u) By — Var(Uy| Fsar (V) = 0 as T — oo.

We then apply Lemma A.4 which shows that weak convergence to a deterministic limit implies
uniform convergence in probability.
For the last term of (144) we apply (116) to see that on C(N?(ky, ko) N K (7)),

My (u;,vjlw,u) = Op(l) as T — oo,

and (143) shows that the factor (1 — T2%%)/2kq can be chosen so large that the smallest
eigenvalue of Mp(v,v|w,u) is large with probability > 1 — ~ for 7' > Ty. This implies that
My (v, v|w,u)~t is small uniformly on N (k, ko) N K(n), which proves (142).

B.3.2 Analysis of N™(ky, ko)
For 1 € Ni™(ky, ko) the asymptotically stationary processes {f3), Xi:}io! and {85 X},

have indices greater than —1/2 4+ kg and —1/2 4 (1/2 — (dy — bg)), respectively, so we collect
them in a vector with lowest index v > —1/2 4 k, for k, = min(kg, 1/2 — dy + by). The
nonstationary processes {03 L Xy L are collected in a vector with largest fractional index
W= 0pm_1 < —1/2 — Ky, so that Kk, = k1.

We can then prove that for m = k+1, where N/, (k1, ko) = Nt (k1), and any A > 0,7 > 0
there is a Ty > 0 so that for T > Ty,

P inf 14 >A)>1—1. 145
o e o) 2 ) 217 (145)

For m < k we can prove that (for ko > 0 fixed at the value determined in (141))

sup |1 p(Y) — ()] L0asT — oo. (146)
PEN T (K1,k0)NK(n)
Proof of (145): For ¢ € N, (K1), By X is stationary with index uy and ), Xy is nonsta-
tionary with index w; < —1/2 — k1. We decompose

det(SSRy (1)) = det(BoMp((uy, wr), (ug, wy)|w, u)B))
= det( Mg (wy, wi|w, v)) det( Mg (ur, up|wy, w, w)) det(By)?.

The second factor is Op(1) uniformly in ¢ € N/" (k1) N K(n) by (115). In the first factor we
normalize T2 My (wy, wi|w, u) to convergence to an almost surely positive limit, see (114),
so that the first factor is proportional to 7311 > T2 — oo, which proves (145).

Proof of (146): For ¢ € N™ (k) and m < k, 3, X}, is stationary with index u; and 3}, Xy,
is stationary with index uy, and SSRy(v) = BoMr((u1,u2), (u1, us)|w, w)Bj. It follows from
(115) and Lemma A.4, see also (29), that for fixed 1, ko, (146) holds.

Finally, (32) follows from (141) and (145), and (33) follows from (142) and (146). This
completes the proof of Theorem 4 (7).

B.4 Proof of (ii): model H,(d = b)

The proof for model (3) in part (i) is identical to that for model (2) given in part (i) with two
modifications. First, the definitions of “interiors” and “boundaries” in Definition B.2 need to
be simplified to take into account the restriction d = b, that is the 45° line in Figure 1. Second,
all references to results in Lemma A.9 and Corollary A.10 need to be replaced with references
to Lemma A.11 and Corollary A.12.

45
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