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Abstract

We consider model based inference in a fractionally cointegrated (or cofractional) vec-
tor autoregressive model, based on the Gaussian likelihood conditional on initial values.
We give conditions on the parameters such that the process Xt is fractional of order d
and cofractional of order d− b; that is, there exist vectors β for which β′Xt is fractional
of order d − b, and no other fractionality order is possible. For b = 1, the model nests
the I(d − 1) VAR model. We define the statistical model by 0 < b ≤ d, but conduct
inference when the true values satisfy 0 ≤ d0 − b0 < 1/2 and b0 6= 1/2, for which β′0Xt

is (asymptotically) a stationary process. Our main technical contribution is the proof of
consistency of the maximum likelihood estimators. To this end we prove weak conver-
gence of the conditional likelihood as a continuous stochastic process in the parameters
when errors are i.i.d. with suitable moment conditions and initial values are bounded.
Because the limit is deterministic this implies uniform convergence in probability of the
conditional likelihood function. If the true value b0 > 1/2, we prove that the limit distri-
bution of T b0(β̂−β0) is mixed Gaussian and for the remaining parameters it is Gaussian.
The limit distribution of the likelihood ratio test for cointegration rank is a functional of
fractional Brownian motion of type II. If b0 < 1/2 all limit distributions are Gaussian or
chi-squared. We derive similar results for the model with d = b allowing for a constant
term.
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1 Introduction and motivation
The cointegrated vector autoregressive (VAR) model for a p-dimensional nonstationary time
series, Xt, is

∆Xt = α(β′Xt−1 + ρ′) +

k∑
i=1

Γi∆Xt−i + εt, t = 1, . . . , T, (1)

where∆Xt−i = Xt−i−Xt−i−1. This model has been widely used for analyzing long-run economic
relations given by the stationary combinations β′Xt and for building empirical dynamic models
in macroeconomics and finance, see for instance Juselius (2006).
Fractional processes are a useful tool for describing time series with slowly decaying auto-

correlation functions and have played a prominent role in econometrics, see e.g. Henry and
Zaffaroni (2003) and Gil-Alana and Hualde (2009) for reviews and examples, and it appears
important to allow fractional orders of integration (fractionality) in time series models.
In this paper we analyze VAR models for fractional processes. The models allow Xt to

be fractional of order d and β′Xt to be fractional of order d − b ≥ 0, in order to extend the
usefulness of model (1) to fractional processes. We also consider a model with d = b allowing
for a constant term.
The model can be derived in two steps. First, in (1) we replace the usual lag operator

L = 1−∆ and difference operator ∆ by the fractional lag and difference operators, Lb = 1−∆b

and∆b = (1−L)b defined by the binomial expansion∆bZt =
∑∞

n=0(−1)n
(
b
n

)
Zt−n. Secondly, we

apply the resulting model to Zt = ∆d−bXt. This defines the fractional VAR model, VARd,b(k),
see Johansen (2008),

Hr : ∆dXt = ∆d−bLbαβ
′Xt +

k∑
i=1

Γi∆
dLibXt + εt, t = 1, . . . , T, (2)

where εt is p-dimensional i.i.d.(0,Ω), Ω is positive definite, and α and β are p × r, 0 ≤
r ≤ p. The parameter space of Hr is given by the otherwise unrestricted parameters λ =
(d, b, α, β,Γ1, . . . ,Γk,Ω). In the special case r = p, the p × p matrix Π = αβ′ is unrestricted,
and if r = 0 the parameters α and β are not present, and finally if k = r = 0 the model is
∆dXt = εt, so the parameters are (d,Ω). Note that the VARFIMA(k + 1, d− 1, 0) is a special
case for b = 1.
If we model data Yt by Yt = µ + Xt, where Xt is given by (2), then ∆aYt = ∆a(Xt + µ) =

∆aXt because ∆a1 = 0 for a > 0, so that Yt satisfies the same equations. For the same reason,
when d > b the model (2) is invariant to a restricted constant term, ρ, when included in a way
similar to that in (1). Thus (2) is a model for the stochastic properties of the data and when
they have been determined one can, for example, estimate the mean of the stationary linear
combinations by the average.
Therefore, we also consider the model with d = b and a constant term,

Hr(d = b) : ∆dXt = αLd(β
′Xt + ρ′) +

k∑
i=1

Γi∆
dLidXt + εt, t = 1, . . . , T, (3)

with a similar interpretation of β′Xt except now β′Xt + ρ′ is a mean zero process of fractional
order zero. Note that Ldρ′ = ρ′ because ∆d1 = 0.
We show that when 0 < r < p, Xt is fractional of order d and cofractional of order

d − b, that is, β′Xt is fractional of order d − b. Moreover, if d − b < 1/2 then β′Xt in
model (2) is asymptotically a mean zero stationary process. The model has the attractive
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feature of a straightforward interpretation of β as the cointegrating parameters in the long-run
relations, β′Xt = 0, which are stable in the sense that they are fractional of a lower order,
and of α describing adjustment towards the long-run equilibria and (through the orthogonal
complement) the common stochastic trends, which are fractional of order d.
The lag structure of models (2) and (3) admits simple criteria for fractionality and cofrac-

tionality of Xt (or fractional cointegration; henceforth we use these terms synonymously). At
the same time the model is relatively easy to estimate because for fixed (d, b) the model is esti-
mated by reduced rank regression, which reduces the numerical problem to an optimization of
a function of just two variables. Finally, an appealing feature of the model is that it gives the
possibility of the usual misspecification tests based on estimated residuals, although of course
the theory for these would need to be developed in the current setting.
The purpose of this paper is to conduct (quasi) Gaussian maximum likelihood inference

in models (2) and (3), to show that the maximum likelihood estimator exists uniquely and is
consistent, and to find the asymptotic distributions of maximum likelihood estimators and some
likelihood ratio test statistics. We analyze the conditional likelihood function for (X1, . . . , XT )
given initial values X−n, n = 0, 1, . . . , under the assumption that εt is i.i.d. Np(0,Ω). For the
calculations of the likelihood function and the maximum likelihood estimator, we need ∆aXt

for a > 0. Because we do not know all initial values we assume that we have observations of
Xt, t = −N0 + 1, . . . , T, and define initial values X̃−n = X−n, n = 0, . . . , N0 − 1 and X̃−n =
0, n ≥ N0, and base the calculations on these. Thus we set aside N0 observations for initial
values. For the asymptotic analysis we represent Xt by its past values and we make suitable
assumptions about their behaviour. Apart from that we assume only that εt is i.i.d.(0,Ω) with
suitable moments.
We treat (d, b) as parameters to be estimated jointly with the other parameters. Another

possibility is to impose the restriction d = d0 for some prespecified d0, e.g. d0 = 1, and b = b0,
where b0 = 1 yields the VARFIMA(k + 1, d − 1, 0), or I(d − 1) VAR, model. We note here
that the models with d = d0 and/or b = b0 are submodels in Hr, and results for these models
can be derived by the methods developed for the general model Hr. The same holds for the
restriction d = b in model Hr(d = b), see (3), even though a simple modification is needed
due to the constant term. The univariate version of model (2) with a unit root was analyzed
by Johansen and Nielsen (2010), henceforth JN (2010), and we refer to that paper for some
technical results.
The inspiration for model (2) comes from Granger (1986), who noted the special role of the

fractional lag operator Lb = 1−∆b and suggested the model

A∗(L)∆dXt = ∆d−bLbαβ
′Xt−1 + d(L)εt, (4)

see also Davidson (2002). One way to derive the main term of this model is to assume that
we have linear combinations (γ, β) of rank p for which ∆dγ′Xt and ∆d−bβ′Xt are I(0). Simple
algebra shows that ∆dXt = ∆d−bLbαβ

′Xt + ut, where α is a function of γ and ut is I(0), see
Johansen (2008, p. 652) for details.
The main technical contribution in this paper is the proof of existence and consistency of

the MLE, which allows standard likelihood theory to be applied. This involves an analysis of
the influence of initial values as well as proving tightness and uniform convergence in (d, b) of
product moments of processes that can be close to critical processes of the form ∆−1/2εt.
In our asymptotic distribution results we distinguish between “weak cointegration”(when

the true value b0 < 1/2) and “strong cointegration”(b0 > 1/2), using terminology of Hualde
and Robinson (2010). Specifically, we prove that for i.i.d. errors with suffi cient moments finite,
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the estimated cointegration vectors are locally asymptotically mixed normal (LAMN) when
b0 > 1/2 and asymptotically Gaussian when b0 < 1/2, so that in either case standard (chi-
squared) asymptotic inference can be conducted on the cointegrating relations. Thus, for
Gaussian errors we get asymptotically optimal inference, but the results hold more generally.
Note that the parameter value b0 = 1/2 is a singular point in the sense that inference is different
for b0 < 1/2 and b0 > 1/2. Close to b0 = 1/2 we need many observations for the asymptotic
results to be useful, and a similar situation occurs when the true value of either α or β is close
to a matrix with lower rank, see Elliott (1998).
Although such LAMN results are well known from the standard (non-fractional) coin-

tegration model, e.g. Johansen (1988, 1991), Phillips and Hansen (1990), Phillips (1991),
and Saikkonen (1991) among others, they are novel for fractional models. Only recently, as-
ymptotically optimal inference procedures have been developed for fractional processes, e.g.
Jeganathan (1999), Robinson and Hualde (2003), Lasak (2008, 2010), Avarucci and Velasco
(2009), and Hualde and Robinson (2010). Specifically, in a vector autoregressive context, but
in a model with d = 1 and a different lag structure from ours, Lasak (2010) analyzes a test
for no cointegration and in Lasak (2008) she analyzes maximum likelihood estimation and
inference; in both cases assuming “strong cointegration”. In the same model as Lasak, but
assuming “weak cointegration”, Avarucci and Velasco (2009) extend the univariate test of Lo-
bato and Velasco (2007) to analyze a Wald test for cointegration rank, see also Marmol and
Velasco (2004). However, the present paper seems to be the first to develop LAMN results for
the MLE in a fractional cointegration model in a vector error correction framework and with
two fractional parameters (d and b).
The rest of the paper is laid out as follows. In the next section we describe the solution

of the fractionally cointegrated vector autoregressive model and its properties. In Section 3
we derive the likelihood function and estimators and show consistency. In Section 4 we find
the asymptotic distribution of estimators, and in Section 5 that of the likelihood ratio test for
cointegration rank. Section 6 concludes and technical material is presented in appendices.
A word on notation. We let Cp(K) denote the space of continuous p-vector-valued functions

on a compact set K ⊆ Rq, i.e. continuous functions f : K → Rp, and let Dp(K) denote the
corresponding space of cadlag functions. When p = 1 the superscript is omitted. For a
symmetric matrix A we write A > 0 to mean that it is positive definite. The Euclidean norm
of a matrix, vector, or scalar A is denoted |A| = (tr(A′A))1/2 and the determinant of a square
matrix is denoted det(A). Throughout, c denotes a generic positive constant which may take
different values in different places.

2 Solution of the cofractional vector autoregressive model
We discuss the fractional difference operator ∆d, a truncated version ∆d

+, and calculation
of ∆dXt. We show how equation (2) can be solved for Xt as a function of initial values,
parameters, and errors εi, i = 1, . . . , t, and give properties of the solution in Theorem 2. We
then give assumptions for the asymptotic analysis and discuss identification of parameters, and
finally we briefly discuss initial values.

2.1 The fractional difference operator

The fractional coeffi cients, πn(a), are defined by the expansion

(1− z)−a =

∞∑
n=0

(−1)n
(
−a
n

)
zn =

∞∑
n=0

a(a+ 1) · · · (a+ n− 1)

n!
zn =

∞∑
n=0

πn(a)zn
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and satisfy πn(a) = 0, n < 0, and |πn(a)| ≤ cna−1, n ≥ 1, see Lemma A.5. The fractional
difference operator applied to a process Zt, t = . . . ,−1, 0, 1, . . . , T, is defined by

∆−aZt =
∞∑
n=0

πn(a)Zt−n,

provided the right-hand side exists. Note that ∆−a1∆−a2 = ∆−a1−a2 and the useful relation
∆−a1πt(a2) = πt(a1 + a2), using that πt(a) = 0 for t < 0. We collect a few simple results in a
lemma, where Dm∆aZt denotes the m’th derivative with respect to a.

Lemma 1 Let Zt =
∑∞

n=0 ξnεt−n, where ξn is s × p and εt are p-dimensional i.i.d.(0,Ω) and∑∞
n=0 |ξn| <∞.

(i) If the initial values Z−n, n ≥ 0, are bounded, then Dm∆aZt exists for a ≥ 0 and is almost
surely continuous in a for a > 0.

We next consider fractional differences of Zt without fixing initial values.

(ii) If a ≥ 0 then Dm∆aZt is a stationary process with absolutely summable coeffi cients and
is almost surely continuous in a > 0.

(iii) If a > −1/2 then Dm∆aZt is a stationary process with square summable coeffi cients.

Proof. The existence is a simple consequence of the evaluation |Dmπn(−a)| ≤ c(1+log n)mn−a−1

for n ≥ 1, see Lemma A.5, which implies that Dmπn(−a) is absolutely summable and contin-
uous in a for a > 0 and square summable for a > −1/2. For case (ii) the continuity follows
because |Dm∆aZt−Dm∆ãZt| ≤ c|a− ã|

∑∞
n=1(1+log n)m+1n−η1−1|Zt−n| for min(a, ã) ≥ η1 > 0.

This random variable has a finite mean and is hence finite except on a null set which depends
on η1 but not a or ã. It follows that |Dm∆aZt − Dm∆ãZt|

a.s.→ 0 for a→ ã.
For a < 1/2, an example of these results is the stationary linear process

∆−aεt = (1− L)−aεt =
∞∑
n=0

πn(a)εt−n.

For a ≥ 1/2 the infinite sum does not exist, but we can define a nonstationary process by the
operator ∆−a+ , defined on doubly infinite sequences, as

∆−a+ εt =
t−1∑
n=0

πn(a)εt−n, t = 1, . . . , T.

Thus, for a ≥ 1/2 we do not use ∆−a directly but apply instead ∆−a+ which is defined for all
processes, see for instance Marinucci and Robinson (2000), who use the notation ∆−aεt1{t≥1},
where 1{A} denotes the indicator function for the event A, and call this a “type II”process.
The idea of conditioning on initial values is used in the analysis of autoregressive models

for nonstationary processes, and we modify the definition of a fractional process to take initial
values into account.

Definition 1 Let εt be i.i.d.(0,Ω) in p dimensions and consider s × p matrices ξn for which∑∞
n=0 |ξn| < ∞, and define C(z) =

∑∞
n=0 ξnz

n, |z| < 1. Then the linear process C(L)εt =∑∞
n=0 ξnεt−n is fractional of order 0 if C(1) 6= 0. A process Xt is fractional of order d > 0 (de-

noted Xt ∈ F(d)) if ∆dXt is fractional of order zero, and Xt is cofractional with cofractionality
vector β if β′Xt is fractional of order d− b ≥ 0 for some b > 0.



Likelihood inference for cofractional processes 6

The same definitions hold for any d ∈ R and b > 0 for the truncated linear process

C+(L)εt + ωt = 1{t≥1}

t−1∑
n=0

ξnεt−n + ωt, (5)

where ωt is a deterministic term.

The main result in Theorem 2 in Section 2.3 is the representation of the solution of equation
(2) in terms of certain stationary processes, which we introduce next.

Definition 2 We define the class Zb as the set of multivariate linear stationary processes Zt
which can be represented as

Zt = ξεt + ∆b

∞∑
n=0

ξ∗nεt−n,

where b > 0 and εt is i.i.d.(0,Ω) and the coeffi cient matrices satisfy
∑∞

n=0 |ξ∗n| <∞.
We also define the corresponding truncated process Z+

t = ξεt + ∆b
+

∑t−1
n=0 ξ

∗
nεt−n.

Definition 2 is a fractional version of the usual Beveridge-Nelson decomposition, where∑∞
n=0 ξnεt−n = (

∑∞
n=0 ξn)εt + ∆

∑∞
n=0 ξ

∗
nεt−n ∈ Z1.

For the asymptotic analysis we apply the result that, when a > 1/2 and E|εt|q < ∞ for
some q > 1/(a− 1/2), then for Zt ∈ Zb, b > 0, we have

T−a+1/2∆−a+ Z+
[Tu] =⇒ Wa−1(u) = Γ(a)−1

∫ u

0

(u− s)a−1dW (s) on Dp([0, 1]), a > 1/2, (6)

where Γ(a) is the gamma function and W denotes p-dimensional Brownian motion (BM) gen-
erated by εt. The processWa−1 is the corresponding fractional Brownian motion (fBM) of type
II, and =⇒ is used for convergence in distribution as a process on a function space (Cp or Dp),
see Billingsley (1968) or Kallenberg (2001). The proof of (6) is given in JN (2010, Lemma D.2)
for Zt ∈ Zb, b > 0, see also Taqqu (1975) for Zt = εt.
We also have under the same conditions on εt and for Zt ∈ Zb, b > 0, that

T−a
T∑
t=1

∆−a+ LaZ
+
t ε
′
t
D→
∫ 1

0

Wa−1dW
′, a > 1/2, (7)

where D→ denotes convergence in distribution on Rp×p. This result is proved in JN (2010, p.
65) for univariate processes building on the result of Jakubowski, Mémin, and Pages (1989)
for the case Zt = εt and La = L1. The same proof can be applied for processes in Zb.
2.2 Solution of fractional autoregressive equations

The properties of the solution of (2) are given by the properties of the polynomial

Ψ(y) = (1− y)Ip − αβ′y −
k∑
i=1

Γi(1− y)yi = −αβ′y + (1− y)
k∑
i=0

Ψi(1− y)i, (8)

where the coeffi cients satisfy
∑k

i=0 Ψi = Ip, Ψ0 = Ip−
∑k

i=1 Γi, and Ψk = (−1)k+1Γk. Equation
(2) can be written as Π(L)Xt = ∆d−bΨ(Lb)Xt = εt, so that

Π(z) = (1− z)d−bΨ(1− (1− z)b). (9)

That is, ∆d−bXt satisfies a VAR in the lag operator Lb rather than the standard lag operator
L = L1. This structure means that the solution of (2) and the criteria for fractionality of order
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d and cofractionality of order d− b can be found by analyzing the polynomial Ψ(y), just as for
the cointegrated VAR model.
We want to solve Xt as a function of initial values X−n, n = 0, 1, . . . , and random shocks

ε1, . . . , εt. A solution can be found using the two operators, see Johansen (2008),

Π+(L)Xt = 1{t≥1}

t−1∑
i=0

ΠiXt−i and Π−(L)Xt =

∞∑
i=t

ΠiXt−i,

for which Π(L)Xt = Π+(L)Xt+Π−(L)Xt. Here the operator Π+(L) is defined for any sequence
as a finite sum. Because Π(0) = Ip, Π+(L) is invertible on sequences that are zero for t ≤ 0,
and the coeffi cients of the inverse are found by expanding Π(z)−1 around zero. The expression
Π−(L)Xt is defined if we assume that the initial values of Xt are bounded. Then the equations
in model (2) can be expressed as εt = Π(L)Xt = Π+(L)Xt + Π−(L)Xt, and by applying
Π+(L)−1 on both sides we find, for t = 1, 2, . . ., that

Xt = Π+(L)−1εt − Π+(L)−1Π−(L)Xt = Π+(L)−1εt + µt. (10)

The first term is the stochastic component generated by ε1, . . . , εt, and the second is a deter-
ministic component generated by initial values. An example of the solution (10) is the well
known result that yt = vyt−1 + εt has the solution yt =

∑t−1
i=0 v

iεt−i + vty0 for any v and
t = 1, . . . , T . When d < 1/2 we use a representation of the solution which explicitly contains
the stationarity of Xt. In the simple example yt = vyt−1 + εt with |v| < 1 this corresponds to
using the solution yt =

∑∞
i=0 v

iεt−i for t = 1, . . . , T .

2.3 Properties of the solution: representation theorem

The solution (10) of equation (2) is valid without any assumptions on the parameters. We
next give results which guarantee that Xt is fractional of order d and cofractional from d to
d− b, that is ∆dXt and ∆d−bβ′Xt are fractional of order zero. These results are given in terms
of an explicit condition on the roots of the polynomial det(Ψ(y)) and the set Cb, which is the
image of the unit disk under the mapping y = 1− (1− z)b, see Johansen (2008, p. 660). Note
that C1 is the unit disk and that Cb is increasing in b.
The following result is Granger’s Representation Theorem for the cofractional VAR models

(2) and (3), see also Johansen (2008, Theorem 8 and 2009, Theorem 3). It is related to
previous representation theorems of Engle and Granger (1987) and Johansen (1988, 1991) for
the cointegrated VAR model. Below we use the notation β⊥ for a p × (p − r) matrix of full
rank for which β′β⊥ = 0, and note the orthogonal decomposition, which defines β̄ and β̄⊥,

Ip = β(β′β)−1β′ + β⊥(β′⊥β⊥)−1β′⊥ = ββ̄′ + β⊥β̄
′
⊥. (11)

Theorem 2 Let Π(z) = (1 − z)d−bΨ(1 − (1 − z)b) be given by (8) and (9) for any 0 < b ≤ d
and let y = 1 − (1 − z)b. We assume that α and β have rank r ≤ p and that det(Ψ(y)) = 0
implies that either y = 1 or y /∈ Cmax(b,1), and we define Γ = Ip −

∑k
i=1 Γi. Then:

(i) It holds that

(1−z)dΠ(z)−1 = C+(1−z)bC∗+(1−z)2bH∗(1− (1−z)b) = C+(1−z)bH(1− (1−z)b), (12)

if and only if det(α′⊥Γβ⊥) 6= 0, where H∗(y) is regular in a neighborhood of Cmax(b,1),

C = β⊥(α′⊥Γβ⊥)−1α′⊥, and β
′C∗α = −Ir. (13)

For F ∗(z) = H∗(1− (1− z)b) =
∑∞

n=0 τ
∗
nz

n and F (z) = H(1− (1− z)b) =
∑∞

n=0 τnz
n, |z| < 1,

we have
∞∑
n=0

|τn| <∞ and
∞∑
n=0

|τ ∗n| <∞. (14)
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(ii) For d ≥ 1/2 we represent the solution of (2) as

Xt = C∆−d+ εt + ∆
−(d−b)
+ Y +

t + µt, t = 1, . . . , T, (15)

where µt = −Π+(L)−1Π−(L)Xt depends on initial values of Xt and Yt =
∑∞

n=0 τnεt−n ∈ Zb
is fractional of order zero with

∑∞
h=−∞ |E(YtY

′
t−h)| < ∞. In this case β′Xt is asymptotically

stationary with mean zero. The solution of (3) with d = b and a constant term is represented
as

Xt = C∆−d+ εt + Y +
t + µt + C∗αρ′, t = 1, . . . , T, (16)

and β′Xt + ρ′ is asymptotically stationary with mean zero.
(iii) For d < 1/2 we represent the solutions of (2) and (3) as

Xt = C∆−dεt + ∆−(d−b)Yt, t = 1, . . . , T, (17)

Xt = C∆−dεt + ∆−(d−b)Yt + C∗αρ′, t = 1, . . . , T. (18)

(iv) In all cases there is no γ for which γ′Xt ∈ F(c) for some c < d− b.

Proof. Proof of (i): The proofs of (12) and (13) are given in Johansen (2008, Theorem 8
and 2009, Theorem 3). The condition det(α′⊥Γβ⊥) 6= 0 is necessary and suffi cient for the
representation of Xt as an F(d) variable, because if det(α′⊥Γβ⊥) = 0 then we get terms of the
form (1− z)−(d+ib), i ≥ 2, corresponding to models for I(i) variables, i ≥ 2, in the cointegrated
VAR context, see Johansen (2008, Theorem 9).
To prove (14), it is enough to prove it for τ ∗n because τn = τ ∗n − τ ∗n−1, n ≥ 1. We note that

because H∗(y) =
∑∞

n=0 τ
∗
ny

n is regular in a neighborhood of Cb we can extend H∗(1− (1− z)b)
by continuity to |z| = 1, and define the transfer function

φ(eiλ) = H∗(1− (1− eiλ)b), i =
√
−1.

We then apply the proof in JN (2010, Lemma 1), which shows that because |∂φ(eiλ)/∂λ| is
square integrable when b > 1/2, we have

∑∞
n=0(τ ∗nn)2 <∞ and hence

∑∞
n=0 |τ ∗n| <∞.

For b ≤ 1/2 we need another proof. The assumption y 6∈ C1 implies thatH∗(y) =
∑∞

k=0 h
∗
ky

k

is regular for |y| < 1+ δ for some δ > 0, so that h∗k decrease exponentially. From the expansion
1− (1− z)b =

∑∞
m=1 bmz

m with bm = −πm(−b), we find that if 0 ≤ b ≤ 1/2 then bm ≥ 0 and∑∞
m=1 bm = 1. Therefore

H∗(1− (1− z)b) =

∞∑
k=0

h∗k(

∞∑
m=1

bmz
m)k =

∞∑
n=0

∞∑
k=0

h∗k(
∑

m1+···+mk=n

k∏
i=1

bmi)z
n =

∞∑
n=0

τ ∗nz
n,

so that τ ∗n satisfies
∞∑
n=0

|τ ∗n| ≤
∞∑
n=0

∞∑
k=0

|h∗k|(
∑

m1+···+mk=n

k∏
i=1

bmi) ≤
∞∑
k=0

|h∗k|(
∞∑
m=1

bm)k =
∞∑
k=0

|h∗k| <∞.

Proof of (ii): For d ≥ 1/2 we define Yt =
∑∞

n=0 τnεt−n = C∗εt+∆b
∑∞

n=0 τ
∗
nεt−n ∈ Zb which

is fractional of order zero because C∗ 6= 0, see (13), and has
∑∞

n=0 |τn| < ∞ which implies∑∞
h=−∞ |E(YtY

′
t−h)| < ∞. Then (15) follows from (10), see also Johansen (2008, Theorem 8).

For ρ = 0 and d = b we find the solution X0
t , say, from (15). Then Π(L)(X0

t + C∗αρ′) = εt+
Π(L)C∗αρ′ = εt−αβ′C∗αρ′ = εt+αρ′ so that Xt = X0

t +C∗αρ′ is a solution of (3). In this case
we therefore find β′Xt + ρ′ = β′X0

t + β′C∗αρ′ + ρ′ = β′X0
t , which is asymptotically stationary

with mean zero and fractional of order zero.
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Proof of (iii): For d < 1/2, C∆−dεt + ∆−(d−b)Yt is stationary and represents a solution of
(2) and (3) for ρ = 0. We then add C∗αρ′ for ρ 6= 0.
Proof of (iv): We find from (i) and (ii) that if, for some c < d − b, γ′Xt is fractional of

order c then

γ′Xt = γ′C∆−d+ εt + γ′C∗∆−d+b
+ εt + ∆−d+2b

t−1∑
n=0

γ′τ ∗nεt−n + γ′µt ∈ F(c)

implies that γ′C = 0 and γ′C∗ = 0. Hence γ = βξ and therefore γ′C∗α = ξ′β′C∗α = −ξ′ = 0,
so that γ = 0.
Thus for model (2) with 0 < r < p, Xt is fractional of order d, and because β′C = 0, Xt is

cofractional since β′Xt = ∆
−(d−b)
+ β′Y +

t + β′µt for d ≥ 1/2 and β′Xt = ∆−(d−b)β′Yt for d < 1/2
are fractional of order d− b, and no linear combination gives other orders of fractionality.
If r = 0 we have α = β = ρ = 0, α⊥ = β⊥ = Ip, and C = Γ−1 is assumed to have full

rank, and thus Xt is fractional of order d and not cofractional. Finally, if r = p then αβ′ has
full rank and C = 0 so that Xt = ∆

−(d−b)
+ Y +

t + µt (the d ≥ 1/2 representation) is fractional of
order d− b. Note, however, that the coeffi cients of Y +

t and µt depend on both d and b, so that
(d, b) is identified, see Theorem 3.
The stochastic properties of Xt are given in Theorem 2 in terms of the process Ut =

Cεt + ∆bYt ∈ Zb, see Definition 2, and it follows from Theorem 2 that also Yt ∈ Zb.
2.4 Assumptions for the data generating process

We here formulate assumptions on the true parameter λ0 = (d0, b0, α0, β0,Γ01, . . . ,Γ0k,Ω0)
needed for identification and for the asymptotic properties of the estimators and the likelihood
function for model Hr. For the model Hr(d = b) with d = b and a constant term, i.e. (3), we
replace b with ρ in the definition of λ. We define the parameter set

N = {d, b : 0 < b ≤ d ≤ d1} (19)

for some d1 > 0, which can be arbitrarily large.

Assumption 1 For k ≥ 0 and 0 ≤ r ≤ p the process Xt, t = 1, . . . , T , is generated by model
Hr in (2) or model Hr(d = b) in (3) with the parameter value λ0.

Assumption 2 The errors εt are i.i.d.(0,Ω0) with Ω0 > 0 and E|εt|8 <∞.
Assumption 3 The initial values X−n, n ≥ 0, are uniformly bounded, and X̃−n = X−n for
n < N0 and X̃−n = 0 for n ≥ N0.

Assumption 4 The true parameter value λ0 satisfies (d0, b0) ∈ N , 0 ≤ d0 − b0 < 1/2, b0 6=
1/2, and the identification conditions Γ0k 6= 0 (if k > 0), α0 and β0 are p × r of rank r,
α0β

′
0 6= −Ip, and det(α′0⊥Γ0β0⊥) 6= 0. Thus, if r < p, then det(Ψ(y)) = 0 has p− r unit roots

and the remaining roots are outside Cmax(b0,1). If k = r = 0 only 0 < d0 6= 1/2 is assumed.

Importantly, in Assumption 2, the errors are not assumed Gaussian for the asymptotic
analysis, but are only assumed to be i.i.d. with 8 moments, and we later specify the existence
of further moments needed for the asymptotic properties of the maximum likelihood estimator.
Assumption 3 about initial values is needed for nonstationary processes so that ∆dXt is defined
for any d ≥ 0, see Lemma 1. In Assumption 4 about the true values we include the condition
that 0 ≤ d0 − b0 < 1/2, which appears to be perhaps the most empirically relevant range of
values for d0 − b0, see e.g. Henry and Zaffaroni (2003), Gil-Alana and Hualde (2009), and the
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references in the introduction, because in this case β′0Xt is (asymptotically) stationary with
mean zero. Assumption 4 also includes the condition for cofractionality when r > 0, which
ensures thatXt is fractional of order d0 and β′0Xt is fractional of order d0−b0. The identification
conditions in Assumption 4 guarantee that the lag length is well defined, that the parameters
are identified, see Section 2.5, and that the asymptotic distribution of the maximum likelihood
estimator is nonsingular, see Lemma 7.

2.5 Identification of parameters

In a statistical model with parameter λ we say that the parameter value λ0 is identified if,
for all λ for which Pλ = Pλ0 , it holds that λ = λ0. We say that the model is generically
identified if the set of unidentified parameter values has Lebesgue measure zero. In model (2)
the parameters α and β enter, when r > 0, only through their product αβ′ so they are not
individually identified. This is usually solved by normalizing β. We use the decomposition
(11) and define β̃ = β(β̄′0β)−1, α̃ = αβ′β̄0, ρ̃ = ρ(β̄′0β)−1, so that αβ′ = α̃β̃′. We assume in
the following that this normalization has been performed and use the notation α, β. Note that
β′β̄0 = Ir. We define λ = (d, b, α, β,Γ1, . . . ,Γk,Ω) suitably modified if r = p, r = 0, or k = 0,
see the discussion after (2), and apply the notation Πλ(L).

Theorem 3 For any k ≥ 0 and 0 ≤ r ≤ p we let λ denote all parameters of model Hr with k
lags, see (2). We assume, see Assumption 4, that for λ and λ0 it holds that Γk 6= 0 (if k > 0),
α and β are p× r of rank r, αβ′ 6= −Ip, and det(α′⊥Γβ⊥) 6= 0. Then Pλ = Pλ0 implies λ = λ0

so that λ0 is identified. It follows that model Hr in (2) is generically identified. A similar
result holds for model (3).

Proof. If Pλ = Pλ0 the mean and variance of Xt given the past are the same with respect to
Pλ and Pλ0 , so that Ω = Ω0, and, for all z,

Πλ(z) = (1− z)d−bΨλ(1− (1− z)b) = (1− z)d0−b0Ψλ0(1− (1− z)b0) = Πλ0(z). (20)

If k > 0 and r > 0 then Ψλ(1− (1− z)b) is a polynomial in (1− z)b, see (8), with highest order
term Ψk(1 − z)(k+1)b and lowest order term −αβ′. Hence (20) implies that (1 − z)d−bΨk(1 −
z)(k+1)b = (1 − z)d0−b0Ψ0k(1 − z)(k+1)b0 6= 0 and (1 − z)d−bαβ′ = (1 − z)d0−b0α0β

′
0 6= 0. This

evidently implies that (d, b) = (d0, b0) and therefore αβ′ = α0β
′
0 and that Ψλ(y) and Ψλ0(y)

have the same coeffi cients; that is λ = λ0. If k > 0 and r = 0, then α = β = 0 and
α⊥ = β⊥ = Ip and Ψ0 = Ip −

∑k
i=1 Γi = Γ = α′⊥Γβ⊥ 6= 0 and the same conclusion holds. In

case k = 0 and r > 0, where the model is ∆dXt = ∆d−bLbαβ
′Xt + εt, the conditions αβ′ 6= 0

and αβ′ 6= −Ip for λ and λ0 imply that λ0 is identified. Finally, if k = r = 0 the model is
∆dXt = εt and λ0 = (d0,Ω0) is identified.
Since the set of values of λ0 that do not satisfy the given conditions has Lebesgue measure

zero, it follows that model (2) is generically identified.
Identification was discussed in JN (2010, Section 2.3, Lemma 3 and Corollary 4) in the

univariate case, and an example of an indeterminacy between d, b, and k was given. Theorem
3 shows that once the lag length has been determined the model is generically identified.

2.6 Initial values

In order for ∆aXt, a > 0, to be well defined we assume that the initial values X−n, n ≥ 0, are
uniformly bounded. The theory in this paper will be developed for observations X1, . . . , XT

generated by (2) or (3) with fixed bounded initial values; that is, conditional on X−n, n ≥ 0,
as developed in JN (2010), and we choose the representations given in Theorem 2.
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The likelihood function depends on ∆aXt for different values of a and because we do not
observe the infinitely many past values of Xt we choose initial values, X̃−n, for the calculations
and define ∆̃aXt = ∆a

+Xt + ∆a
−X̃t. The first term is a function of the observations X1, . . . , XT ,

but the second is a function of initial values. A possible choice is X̃−n = 0, n ≥ 0, but we
derive the theory for the choice X̃−n = X−n, n < N0 and set X̃−n = 0 for n ≥ N0. Thus we set
aside N0 observations for initial values, as is usually done in the analysis of an AR(k) model.
We prove consistency under the assumption that X−n is uniformly bounded for n ≥ 0, and

derive the asymptotic distributions under the further assumption that X−n = 0 for n ≥ T υ

for a small υ.1 In this way we allow the number of initial values in the representation of Xt to
increase with T, thereby approximating the situation where the representation has infinitely
many initial values.
The choice of N0 entails a small sample bias/effi ciency trade-off, with fewer initial values

introducing bias, but also leaving more observations for parameter estimation. Simulations
suggest that many initial values are needed if b0 is close to 1/2, but for, say, b0 ≥ 0.8 about a
handful of initial values are suffi cient, which is also what is used in the (univariate) empirical
application in Hualde and Robinson (2011, Section 5) who assume that both X−n and X̃−n are
zero in their theoretical analysis, but in their empirical application they actually condition on
non-zero initial values. Such simulations and analytical results will be reported elsewhere.
For d0 ≥ 1/2 we use the representations (15) and (16) in terms of µ0t which depends on

the correct initial values, and approximate it as discussed above, and for d0 < 1/2 we use the
representations (17) and (18) of Xt as a stationary process around its mean. The initial values
term µ0t plays no role in that case because the initial values have been given their invariant
distribution.

3 Likelihood function and maximum likelihood estimators
The log likelihood function logLT (λ) is continuous in λ and we show that for the probability
measure P determined by λ0, T−1 logLT (λ) converges as a continuous function on a compact
set. Because the limit is deterministic we get uniform continuity in the parameter λ, and we
use that to prove existence and uniqueness of the maximum likelihood estimator (MLE). We
first discuss the calculation of the MLE and then find the likelihood and profile likelihood
functions and their limits. We apply this to prove consistency of the MLE.

3.1 Calculation of MLE, profile likelihood function, and its limit

In (8) we eliminate Ψk = Ip−
∑k−1

i=0 Ψi and define ∆̃d+ibXt = ∆d+ib
+ Xt+∆d+ib

− X̃t, the regressors

X−1,t = (∆̃d−b − ∆̃d)Xt, Xkt = ∆̃d+kbXt, Xit = (∆̃d+ib − ∆̃d+kb)Xt, (21)

for i = 0, . . . , k − 1, and the residuals

εt(λ) = Π+(L)Xt + Π0−(L)X̃t = Xkt − αβ′X−1,t +
k−1∑
i=0

ΨiXit, (22)

where λ = (d, b, α, β,Ψ∗,Ω) is freely varying andΨ∗ = (Ψ0, . . . ,Ψk−1). The Gaussian likelihood
function is now

−2T−1 logLT (λ) = log det(Ω) + tr(Ω−1T−1

T∑
t=1

εt(λ)εt(λ)′). (23)

1An alternative assumption is
∑∞
n=1 n

−1/2|X−n| <∞, see Lemma A.8.
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For the model with d = b we define X−1,t = (1− ∆̃d)(Xt −C∗0α0ρ
′
0) and θ′ρ = ρ′ + β′C∗0α0ρ

′
0 so

that (1− ∆̃d)(β′Xt + ρ′) = β′X−1,t + θ′ρ and

εt(λ) = Xkt − αβ′X−1,t − αθ′ρ +

k−1∑
i=0

ΨiXit. (24)

Note that for (ρ, β) = (ρ0, β0) we find θρ = 0 because β′0C
∗
0α0 = −Ir, see (13).

For fixed ψ = (d, b) the MLE based on (23) is found by reduced rank regression of Xkt

on X−1,t corrected for {Xit}k−1
i=0 , see Anderson (1951) or Johansen (1996). Note that this is

equivalent to reduced rank regression of ∆dXt on ∆d−bLbXt corrected for {∆dLibXt}ki=1. The
calculations are organized as follows. For fixed ψ in model Hr we define in analogy with the
notation for the I(1) model, see Johansen (1996, pages 91-92), the residuals

R0t(ψ) = (Xkt|X0t, . . . , Xk−1,t) and R1t(ψ) = (X−1,t|X0t, . . . , Xk−1,t)

from regressions of Xkt and X−1,t on X0t, . . . , Xk−1,t, respectively. We then define the product
moments Sij(ψ) = T−1

∑T
t=1Rit(ψ)R′jt(ψ) and the eigenvalue problem

0 = det(ωS11(ψ)− S10(ψ)S−1
00 (ψ)S01(ψ)), (25)

which gives eigenvalues 1 > ω̂1(ψ) > · · · > ω̂p(ψ) > 0 and the maximized profile likelihood
function expressed as

`T,r(ψ) = −2T−1 logLmax(Hr) = log det(S00(ψ)) +
r∑
i=1

log(1− ω̂i(ψ)). (26)

Finally the MLE and maximized likelihood can be calculated by minimizing `T,r(ψ) as a func-
tion of ψ = (d, b) by a numerical optimization procedure.
For model (3) we assume b = d and include −αρ′ in the definition of εt(λ), see (24),

and apply reduced rank regression of Xkt on (X ′−1,t, 1) corrected for {Xit}k−1
i=0 to define the

concentrated likelihood function `T,r(ψ). Below we focus on (2) and only include comments on
(3) when the results or arguments are different.
A computer package for conducting statistical inference using the procedure described in

this paper is available, see Nielsen and Morin (2012).
Using non- or semi-parametric estimates of d and b, followed by reduced rank regression

estimation of the remaining parameters, would entail an effi ciency loss for the asymptotically
normal estimators, i.e. (α̂, Γ̂1, . . . , Γ̂k) when b0 > 1/2 and all the estimators when b0 < 1/2,
because d̂ and b̂ are asymptotically correlated with those, but no effi ciency loss for β̂ when
b0 > 1/2. In addition, we have found that using d = b = 1 as starting values in the numerical
iterations is a good choice, so there seems to be no advantage from initializing the search with
preliminary estimates. The calculation of the fractional differences in {Xit}ki=−1 in each step of
the numerical optimization algorithm can be time consuming for very large samples, but the
actual optimization of `T,r(ψ) seems to be unproblematic.
Note that for r = p, `T,p(ψ) is found by regression of Xkt on {Xit}k−1

i=−1

`T,p(ψ) = log det(SSRT (ψ)) = log det(T−1

T∑
t=1

RtR
′
t), (27)

where Rt = (Xkt|{Xit}k−1
i=−1) denotes the regression residual.

The stochastic properties of Xt are given in Theorem 2 in terms of the stationary process
Ut = C0εt + ∆b0Yt. We note that, for any ψ = (d, b) for which d + ib − d0 > −1/2, the
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process ∆d+ib∆−d0Ut is stationary. On the other hand, ∆d+jb∆−d0β′0Ut = ∆d+jb∆−d0+b0β′0Yt
is stationary for all j = −1, 0, . . . , k because d + jb − d0 + b0 ≥ −d0 + b0 > −1/2. Thus
corresponding to Xit, see (21), we define

U−1,t = ∆d−b−d0LbUt, Ukt = ∆d+kb−d0Ut, Uit = (∆d+ib −∆d+kb)∆−d0Ut, (28)

if they are stationary, and the class of stationary processes for a given ψ,

Fstat(ψ) = {β′0Ujt for all j, and Uit for d+ ib− d0 > −1/2}.
For d0 < 1/2, d+ ib− d0 ≥ −d0 > −1/2 so in that case Fstat(ψ) contains Uit for all i.
We next want to define the probability limit, `p(ψ), of the profile likelihood function `T,p(ψ)

in (27). The limit of log det(SSRT (ψ)) is infinite if Xkt is nonstationary and finite if Xkt is
(asymptotically) stationary, see Theorem 4. We therefore define the subsets of N ,

Ndiv(κ) = N∩{d, b : d+ kb− d0 ≤ −1/2 + κ}, κ ≥ 0,

Nconv(κ) = N∩{d, b : d+ kb− d0 ≥ −1/2 + κ}, κ > 0,

Nconv(0) = N∩{d, b : d+ kb− d0 > −1/2},
and note thatN = Ndiv(κ)∪Nconv(κ) for all κ ≥ 0. The family of setsNdiv(κ) decreases (as κ→
0) to the set Ndiv(0), which is exactly the set where Xkt is nonstationary and log det(SSRT (ψ))
diverges. Similarly, Nconv(κ) is a family of sets increasing (as κ→ 0) to Nconv(0), which is the
set where Xkt is stationary and log det(SSRT (ψ)) converges pointwise in ψ in probability. We
therefore define the limit likelihood function, `p(ψ), as

`p(ψ) =

{
∞
log det(V ar(Ukt|Fstat(ψ)))

if ψ ∈ Ndiv(0),
if ψ ∈ Nconv(0),

(29)

where we use the notation for any random vectors W and V with finite variance

V ar(W |V ) = V ar(W )− Cov(W,V )V ar(V )−1Cov(V,W ).

3.2 Convergence of the profile likelihood function and consistency of the MLE

For η > 0 we define the family of compact sets,

K(η) = {d, b : η ≤ b ≤ d ≤ d1},
which has the property that K(η) ⊂ N increases to N as η → 0.
We now show that for all A > 0 and all γ > 0 there exists a κ0 > 0 and T0 > 0 so that

with probability larger than 1− γ, the profile likelihood `T,p(ψ) is uniformly larger than A on
K(η)∩Ndiv(κ0) for T ≥ T0. Thus the minimum of `T,p(ψ) cannot be attained onK(η)∩Ndiv(κ0).
On the rest of K(η), however, we show that `T,p(ψ) converges uniformly in probability as
T → ∞ to the deterministic limit `p(ψ) which has a strict minimum, log det(Ω0), at ψ0. We
prove this by showing weak convergence, on a compact set, of the likelihood as a continuous
process in the parameters. Because the limit is deterministic, weak convergence implies uniform
convergence in probability, see Lemma A.4.

Theorem 4 The function `p(ψ) has a strict minimum at ψ = ψ0, that is

`p(ψ) ≥ `p(ψ0) = log det(Ω0), ψ ∈ N , (30)

and equality holds if and only if ψ = ψ0.
Let Assumptions 1-4 hold, so that in particular E|εt|8 <∞, and assume that (d0, b0) ∈ K(η).

For r = 0, . . . , p it holds that
`T,r(ψ0)

P→ log det(Ω0), (31)

and furthermore:
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(i) Suppose E|εt|q < ∞ for some q > 1/min(η/3, (1/2 − d0 + b0)/2). Then the likelihood
function for Hp satisfies that, for any A > 0 and γ > 0, there exists a κ0 > 0 and a
T0 > 0 such that

P ( inf
ψ∈Ndiv (κ0)∩K(η)

`T,p(ψ) ≥ A) ≥ 1− γ (32)

for all T ≥ T0. It also holds that

`T,p(ψ) =⇒ `p(ψ) on C(Nconv(κ0) ∩ K(η)) as T →∞. (33)

(ii) Suppose η ≤ b0 = d0 ≤ d1 and E|εt|q <∞ for q > 3/η. Then, for model Hp(d = b) with
a constant, the results (32) and (33) hold on the respective sets intersected with {b = d}.

The proof is given in Appendix B. Note that, in general, the larger the compact set K(η)
the more moments are needed. When consideration is restricted to the model Hr(d = b) and
a parameter set defined by η > 3/8, i.e. in particular if consideration is restricted to the case
of “strong cointegration”where b0 > 1/2, then the moment condition reduces to E|εt|8 < ∞
(from Assumption 2).
We now derive the important consequence of Theorem 4.

Theorem 5 Let the assumptions of Theorem 4 be satisfied and let λ̂ denote the MLE in model
Hr respectively model Hr(d = b). Corresponding to Theorem 4(i)—(ii) we have:

(i) With probability converging to one, λ̂ in model Hr, r = 0, . . . , p, exists uniquely for ψ ∈
K(η), η > 0, and is consistent.

(ii) For model Hr(d = b) with a constant, existence, uniqueness, and consistency of λ̂ hold
for d ∈ {d : 0 < η ≤ d ≤ d1}.

Proof. To prove existence and consistency of the MLE we define the open neighborhood
N (ψ0, ε) = {ψ : |ψ−ψ0| < ε}, and want to find a set AT with P (AT ) ≥ 1− 2γ so that ψ̂ exists
on AT and

P (ψ̂ ∈ AT ∩N (ψ0, ε)) ≥ 1− 3γ.

We first analyze model Hp, see (2), where α and β are p×p. For any γ > 0, (32) shows that
we can find κ0 = κ0(γ) and T0 = T0(γ) and define A1T = {infψ∈Ndiv (κ0)∩K(η) `T,p(ψ) ≥ 2+`p(ψ0)}
so that P (A1T ) ≥ 1− γ for all T ≥ T0.
We find from (33) that `T,p(ψ) = log det(SSRT (ψ)) =⇒ `p(ψ) on the compact set N0 =

Nconv(κ0) ∩ K(η) so that `p(ψ) is continuous on N0. Because `p(ψ) is continuous and >
`p(ψ0) if ψ 6= ψ0, see (30), and N0\N (ψ0, ε) is compact and does not contain ψ0, we have
minψ∈N0\N (ψ0,ε) `p(ψ) ≥ `p(ψ0) + 3c0 for some c0 > 0. By the uniform convergence of `T,p(ψ)
to `p(ψ) on N0, see (33), we can find T1 = T1(γ) and define A2T = {minψ∈N0\N (ψ0,ε) |`T,p(ψ)−
`p(ψ)| ≤ c0} such that P (A2T ) ≥ 1− γ for all T ≥ T1.
We now turn to the model Hr, r = 0, . . . , p. On the set A2T we have for any r ≤ p,

min
ψ∈N0\N (ψ0,ε)

`T,r(ψ) ≥ min
ψ∈N0\N (ψ0,ε)

`T,p(ψ) ≥ min
ψ∈N0\N (ψ0,ε)

`p(ψ)− c0,

which is bounded below by `p(ψ0) + 3c0 − c0 = `r(ψ0) + 2c0, recalling `r(ψ0) = log det(Ω0) =
`p(ψ0), see (30). On the set A1T we have `T,r(ψ) ≥ `T,p(ψ) ≥ 2 + `p(ψ0) and it follows that on
AT = A1T ∩ A2T with P (AT ) ≥ 1− 2γ,

min
ψ∈K(η)\N (ψ0,ε)

`T,r(ψ) ≥ `r(ψ0) + 2 min(1, c0).
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On the other hand, at the point ψ = ψ0 we have `T,r(ψ0)
P→ `r(ψ0) = log det(Ω0), see (31),

so that for all T ≥ T2 = T2(γ),

P (|`T,r(ψ0)− `r(ψ0)| ≤ min(c0, 1)) ≥ 1− γ,
which implies that, on AT , the minimum of `T,r(ψ) is attained inside N (ψ0, ε). Thus the
MLE, ψ̂r, of ψ in model Hr exists on AT and is contained in the set N (ψ0, ε), which proves
consistency, see also van der Vaart (1998, Theorem 5.7).
The estimators α̂(ψ), β̂(ψ), Ψ̂∗(ψ), Ω̂(ψ), see Section 3.1, are continuous functions of ψ and

are therefore also consistent.
The second derivative of −2T−1 logLT (λ) is positive definite in the limit almost surely

at λ = λ0, see Lemma 9. It is therefore also positive definite in a neighbourhood N (λ0, ε)
for ε small. It follows from Theorem 6 and Lemma 9 that also the second derivative of
−2T−1 logLT (λ) is positive definite inside N (λ0, ε) with probability converging to one, but
then −2T−1 logLT (λ) is convex and the minimum is unique.
The result in Theorem 5 on existence and consistency of the MLE involves analyzing the

likelihood function on the set of admissible values 0 < b ≤ d. The likelihood depends on product
moments of ∆d+ibXt for all such (d, b), even if the true values are fixed at some b0 and d0. Since
the main term in Xt is ∆−d0+ εt, see (15), analysis of the likelihood function leads to analysis
of ∆d+ib−d0

+ εt, which may be asymptotically stationary, nonstationary, or it may be critical in
the sense that it may be close to the process ∆

−1/2
+ εt. The possibility that ∆d+ibXt can be

critical or close to critical, even if Xt is not, implies that we have to split up the parameter
space around values where ∆d+ibXt is close to critical and give separate proofs of uniform
convergence of the likelihood function in each subset of the parameter space.
This is true in general for any fractional model, where the main term inXt is typically of the

form ∆−d0+ εt, and analysis of the likelihood function requires analysis of ∆dXt and therefore of
a term like ∆d−d0

+ εt which may be close to critical. To the best of our knowledge, all previous
consistency results in the literature for parametric fractional models have either been of a
local nature or have covered only the set where ∆dXt is asymptotically stationary, due to
the diffi culties in proving uniform convergence of the likelihood function when ∆dXt is close
to critical and hence on the whole parameter set, see the discussion in Hualde and Robinson
(2011, pp. 3153-3154).2

The consistency results in our Theorem 5 apply to admissible parameter sets so large
that they include values of (d, b) where ∆d+ibXt is asymptotically stationary, nonstationary, or
critical. The inclusion of the near critical processes in the proof is made possible by a truncation
argument, allowing us to show that when v ∈ [−1/2 − κ1,−1/2 + κ] for κ suffi ciently small,
then the appropriately normalized product moment of critical processes ∆v

+εt is tight in v, and
uniformly large for T suffi ciently large, see (107) in Lemma A.9 below.

4 Asymptotic distribution of maximum likelihood estimators
In this section we exploit consistency of the MLE and expand the likelihood in a neighborhood
of the true parameter to find the asymptotic distribution of the conditional MLE.

2In independent and concurrent work, Hualde and Robinson (2011) prove consistency for a large set of
admissible values in a fractional model with one fractional parameter and initial values equal to zero, i.e. both
X−n = 0 and X̃−n = 0 for n ≥ 0. Also, their consistency proof applies only to the univariate case (see their
discussion on pp. 3174-3176).
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4.1 A local reparametrization and the profile likelihood function for d, b, α,Ψ∗,Ω

The likelihood function for model (2) in a neighborhood of the true value is expressed in terms
of εt(λ), see (22) and (23).
We have identified β by β̄′0β = Ir, see Section 2.5, and use (11) to write β = β0+β0⊥(β̄′0⊥β) =

β0 + β0⊥ϑ, say. When b0 > 1/2 we let N (ψ0, ε) = {ψ : |ψ − ψ0| ≤ ε}. Then for (d, b) ∈
N (ψ0, ε) and ε < 1/2 suffi ciently small we have that δ−1 = d − b − d0 = (d − b − d0 +
b0) − b0 ≤ −b0 + 2ε < −1/2 and d + ib − d0 ≥ −ε for i ≥ 0. Hence, β′0⊥X−1,t is the only
nonstationary process in εt(λ), see (22), and this is only possible for b0 > 1/2. The information
for ϑ is proportional to

∑T
t=1(β′0⊥X−1,t)(β

′
0⊥X−1,t)

′ = OP (T−2δ−1), and we therefore introduce
the normalized parameter θ = β̄′0⊥(β−β0)T−(δ−1+1/2) = ϑT−(δ−1+1/2) or β = β0 +β0⊥θT

δ−1+1/2,
so the information for θ is proportional to T . We have β′X−1,t = β′0X−1,t +T δ−1+1/2θ′β′0⊥X−1,t,
see (21). Let Vt = (X ′−1,tβ0, {X ′it}k−1

i=0 , X
′
kt)
′ and define as in (22), for φ = (d, b, α,Ψ∗),

εt(λ) = εt(φ, θ) = −αT δ−1+1/2θ′β′0⊥X−1,t + (−α,Ψ∗, Ip)Vt. (34)

For the model with d = b and a constant and d0 > 1/2 we change the definitions in this
section and use θβ = T d0−1/2β̄′0⊥(β − β0), θ′ρ = ρ′ + β′C∗0α0ρ

′
0, and

εt(λ) = εt(φ, θ) = −α(T−d0+1/2θ′β, θ
′
ρ)

(
β′0⊥X−1,t

1

)
+ (−α,Ψ∗, Ip)Vt.

When b0 > 1/2 the product moments needed to calculate the conditional likelihood function
−2T−1 logLT (φ, θ), see (23), are(

AT (ψ) CT (ψ)
CT (ψ)′ BT (ψ)

)
= T−1

T∑
t=1

(
T δ−1+1/2β′0⊥X−1,t

Vt

)(
T δ−1+1/2β′0⊥X−1,t

Vt

)′
. (35)

We sometimes suppress the dependence on ψ in AT (ψ),BT (ψ), and CT (ψ). We indicate the
values for ψ = ψ0 by A0

T ,B0
T , C0

T , and X
0
−1,t. Finally we define

C0
εT = T−1/2

T∑
t=1

T 1/2−b0β′0⊥X
0
−1,tε

′
t. (36)

When b0 < 1/2 all processes are (asymptotically) stationary and we replace δ−1 + 1/2 by
zero in the definitions of AT , BT , CT , and CεT .
The conditional likelihood −2T−1 logLT (λ) can now be expressed as

log det(Ω) + tr(Ω−1(αθ′AT θα′ + (−α,Ψ∗, Ip)BT (−α,Ψ∗, Ip)′ − 2αθ′CT (−α,Ψ∗, Ip)′)). (37)

For fixed (d, b, α,Ψ∗,Ω) we estimate θ by regression and find

θ̂(ψ, α,Ψ∗,Ω) = A−1
T CT (−α,Ψ∗, Ip)′Ω−1α(α′Ω−1α)−1, (38)

and the profile likelihood function −2T−1 logLprofile,T (ψ, α,Ψ∗,Ω) is then

log det(Ω) + tr(Ω−1(−α,Ψ∗, Ip)BT (−α,Ψ∗, Ip)′) (39)

− tr((−α,Ψ∗, Ip)C ′TA−1
T CT (−α,Ψ∗, Ip)′Ω−1α(α′Ω−1α)−1α′Ω−1).

For (d, b) ∈ N (ψ0, ε), ε < 1/2, and i = 0, 1, . . . , k, Uit and β′0U−1,t and their derivatives with
respect to (d, b) are stationary because d + ib − d0 ≥ d − d0 ≥ −ε > −1/2. Only β′0⊥X−1,t is
nonstationary and only when b0 > 1/2. When normalized by T δ−1+1/2, it will converge to fBM
provided E|εt|q <∞ for some q > 1/(b0 − 1/2), see (6), so that on Dp−r([0, 1]),

T δ−1+1/2β′⊥0X−1,[Tu] =⇒ β′0⊥C0Wd0−d+b−1(u) = Fψ(u). (40)
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We show that the deterministic term in the process can be neglected asymptotically and
that the stationary processes {β′0U−1,t, Ujt}kj=−1 can replace the regressors {β′0X−1,t, Xjt}kj=−1.
This means that the limit of BT can be calculated as

B = V ar(U ′−1,tβ0, U
′
0t, . . . , U

′
kt)
′.

For b0 < 1/2, all regressors Xit are stationary in a neighborhood of the true value. The
various quantities AT ,BT , CT , and CεT are defined as above without the factor T−δ−1+1/2, but
their asymptotic properties are now different. The estimator of θ and profile likelihood function
are given by (38) and (39).
The next theorem summarizes the asymptotic results for the product moments and their

derivatives with respect to ψ, denoted Dm, when ψ ∈ N (ψ0, ε).

Theorem 6 Let Assumptions 1-4 be satisfied and let N (ψ0, ε) = {ψ : |ψ − ψ0| ≤ ε} ⊂ N .
(i) Suppose 1/2 < b0 < d0 and |εt|q < ∞ for some q > (b0 − 1/2)−1, and let ε be chosen

so small that q > (b − d + d0 − 1/2)−1 for all ψ ∈ N (ψ0, ε). Then, for m ≥ 0 and with
n = (p−r)2+(r+kp+p)2+(p−r)(r+kp+p), the process (DmAT (ψ),DmBT (ψ),DmCT (ψ))
is tight on N (ψ0, ε), and on Cn(N (ψ0, ε)) we have, see (40),

(AT (ψ),DmBT (ψ),DmCT (ψ)) =⇒ (

∫ 1

0

Fψ(u)Fψ(u)′du,DmB(ψ), 0), (41)

which holds jointly with

C0
εT

D→
∫ 1

0

F0(dW )′, F0(u) = Fψ0(u). (42)

(ii) Suppose 0 < b0 < 1/2 and b0 < d0. Then, form ≥ 0, the process (DmAT (ψ),DmBT (ψ),DmCT (ψ))
is tight on N (ψ0, ε), and on Cn(N (ψ0, ε)) we find

(AT (ψ),DmBT (ψ),DmCT (ψ)) =⇒ (A(ψ),DmB(ψ),DmC(ψ)),

which is deterministic, and the convergence holds jointly with

C0
εT

D→ N(p−r)×p(0,Ω0 ⊗A0). (43)

(iii) For model Hr(d = b) with a constant the same results hold with the relevant restriction
imposed, and the relevant modifications to the definitions, e.g. Fψ(u) is replaced by
(F0(u)′, 1)′.

Proof. Proof of (i): For d0 > 1/2 it follows from Theorem 2 that for U+
t = C0εt + ∆b0

+Y
+
t ,

∆̃d+ibXt = ∆d+ib−d0
+ U+

t + ∆d+ib
+ µ0t + ∆d+ib

− X̃t, t = 1, . . . , T, (44)

and hence the regressors satisfy, see (21),

X−1,t = (∆d−b−d0
+ −∆d−d0

+ )U+
t + (∆d−b

+ −∆d
+)µ0t + (∆d−b

− −∆d
−)X̃t = U+

−1,t +D−1,t(ψ), (45)

Xkt = ∆d+kb−d0
+ U+

t + ∆d+kb
+ µ0t + ∆d+kb

− X̃t = U+
kt +Dkt(ψ),

Xit = (∆d+ib−d0
+ −∆d+kb−d0

+ )U+
t + (∆d+ib

+ −∆d+kb
+ )µ0t + (∆d+ib

− −∆d+kb
− )X̃t = U+

it +Dit(ψ),

for i = 0, . . . , k − 1, where Dit(ψ) is deterministic and generated by initial values, see (92).
In model (3) with d = b and a constant, we replace µ0t by µ0t + C∗0α0ρ

′
0 in Xit for i ≥ 0 and

subtract ∆d
+C
∗
0α0ρ

′
0 from X−1,t. When d0 < 1/2 we use the stationary representations (17)

and (18), in which case there is no initial values term involving µ0t and U+
t in (45) is replaced

by Ut = C0εt + ∆b0Yt.
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It follows from Lemma A.8 that DmDit(ψ) is uniformly small in ψ for t → ∞, so that
asymptotically we can replace the regressors Xit, i ≥ 0, and β′0X−1,t by the asymptotically
stationary variables U+

it and β
′
0U

+
−1,t, see (45), in the calculation of the product momentsAT ,BT ,

and CT . The nonstationary regressor β′0⊥X−1,t is normalized by T d−b−d0+1/2 and it follows from
(95) that T d−b−d0+1/2β′0⊥D

mD−1,t(ψ) converges uniformly in (t, ψ) to zero for T → ∞. Thus
we can replace this regressor by β′0⊥U

+
−1,t.

By Theorem 2, Ut = C0εt + ∆b0Yt ∈ Zb0 , where the class Zb0 is given in Definition 2.
Lemma A.9 therefore applies directly to product moments of ∆d+ib−d0

+ U+
t , using the stationary

processes β′0U
+
jt , j ≥ −1, with indices u = d+jb−d0 +b0 ≥ −1/2+(1/2−2ε) and β′0⊥U

+
it , i ≥ 0,

with indices u = d + ib − d0 ≥ d − d0 ≥ −1/2 + (1/2 − ε) so κu = 1/2 − 2ε, and the
nonstationary process β′0⊥U

+
−1,t with index w = d− b− d0 ≤ −b0 + 2ε ≤ −1/2− (b0− 1/2− 2ε)

so κw = b0 − 1/2 − 2ε noting that we have chosen ε so small that q > (b0 − 1/2)−1 implies
q > 1/κw. Tightness of (DmAT (ψ),DmBT (ψ),DmCT (ψ)) and convergence in distribution of
(AT (ψ),DmBT (ψ),DmCT (ψ)) in Cn(N (ψ0, ε)) then follows from Lemma A.9.
The proof for C0

εT follows from (7).
Proof of (ii): For b0 < 1/2 < d0 the only difference in the above proof is that β′0⊥X−1,t

is stationary (apart from a deterministic term that converges uniformly to zero) and can be
replaced by β′0⊥U

+
−1,t. The limit of (AT (ψ),DmBT (ψ),DmCT (ψ)) then follows from (102) of

Lemma A.9. In this case we find

A(ψ)=E(β′0⊥U−1,tU
′
−1,tβ0⊥). (46)

Finally, β′0⊥U
+
−1,tε

′
t is a martingale difference sequence and the Central Limit Theorem for

martingales gives (43), see Hall and Heyde (1980, chp. 3).
If instead b0 < d0 < 1/2 we apply the representation (17) and find

∆̃d+ibXt = ∆d+ib
+ ∆−d0(C0εt + ∆b0Yt) + ∆d+ib

− X̃t, t = 1, . . . , T.

In this case µ0t plays no role and the argument is as above.
Proof of (iii): The same proof as above works.
We next want to discuss the asymptotic variance of the stationary components and define

for b0 > 1/2 the parameter φ = (d, b, α,Ψ∗) and the residual εt(φ) = εt(φ, 0) = (−α,Ψ∗, Ip)Vt,
c.f. (34). For (d, b) close to (d0, b0) we define the corresponding stationary process

et(φ) = Ukt − αβ′0U−1,t +
k−1∑
i=0

ΨiUit = (−α,Ψ∗, Ip)(U ′−1,tβ0, U
′
∗t, U

′
kt)
′. (47)

In the following we use Dφ and D2
φφ to denote first- and second-order derivatives with respect

to φ.

Lemma 7 Let Assumptions 1-4 hold. We find for φ = φ0 that et(φ0) = εt(φ0) = εt and:

(i) When b0 > 1/2 we find

T−1

T∑
t=1

εt(φ)εt(φ)′
P→ Eet(φ)et(φ)′ = (−α,Ψ∗, Ip)B(ψ)(−α,Ψ∗, Ip)′, (48)

DφEet(φ0)′Ω−1
0 et(φ0) = E(Dφet(φ0)′Ω−1

0 εt) + E(ε′tΩ
−1
0 Dφet(φ0)) = 0, (49)

D2
φφEet(φ0)′Ω−1

0 et(φ0) = E(Dφet(φ0)′Ω−1
0 Dφet(φ0)) = Σ0, (50)

where Σ0 is positive definite if Ψ0k 6= 0 or equivalently Γ0k 6= 0.
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(ii) When b0 < 1/2 we redefine φ = (θ, d, b, α,Ψ∗) and find the limits of the product moment
matrices (35), see (46),

T−1

T∑
t=1

εt(φ)εt(φ)′
P→ (−α(θ′, Ir),Ψ∗, Ip)

(
A(ψ) C(ψ)
C(ψ)′ B(ψ)

)
(−α(θ′, Ir),Ψ∗, Ip)

′, (51)

where C(ψ) = Cov(β′0⊥U−1,t, (U
′
−1,tβ0, U

′
0t, . . . , U

′
kt)
′), and (49) and (50) hold with suitably

redefined et(φ) and
Σstat

0 = D2
φφEet(φ0)′Ω−1

0 et(φ0). (52)

(iii) For model Hr(d = b) with a constant the same results hold with the relevant restriction
imposed and the relevant modifications to the definitions.

Proof. Proof of (i): The transfer function for the stationary process C0εt + ∆b0Yt is f0(z)−1 =
(1 − z)d0Π0(z)−1 = (1 − y)Ψ0(y)−1 for y = 1 − (1 − z)b0 , see (8) and (9), where subscripts
indicate that we consider the characteristic and transfer functions for the process defined by
the true parameter values. We then find the transfer function for et(φ) to be

fφ(z) = (1− z)d−b−d0+b0Ψ(1− (1− z)b)|β=β0,ρ=ρ0Ψ0(y)−1. (53)

For φ = φ0 we find fφ0(z) = 1 so that et(φ0) = εt. The result (48) follows from (41) of
Theorem 6. Differentiating the left-hand side of (48), we find the limit

E(Dφet(φ0)′Ω−1
0 et(φ0)) = 2E(Dφet(φ0)′Ω−1

0 εt) = 0,

because Dφet(φ0) is measurable with respect to ε1, . . . , εt−1. Therefore

DφE(et(φ0)et(φ0)′) = E(Dφet(φ0)et(φ0)′) = 0

which proves (49). Differentiating twice we find (50) the same way.
Finally we prove that if Ψ0k 6= 0 then Σ0 is positive definite. If Σ0 were singular, there

would exist a linear combination of the processes Dφet(φ0) which had zero variance. We want
to show that this is not possible when Ψ0k 6= 0. The statement that Σ0 is singular translates
into a statement that there is a linear combination of the derivatives of the transfer function
fφ(z) which, for φ = φ0, is zero. That is, for some set of values h = (d1, b1, A,G∗) of the same
dimensions as φ = (d, b, α,Ψ∗), the derivative Dsfφ0+sh(z)|s=0 = 0. We find from (8) and (53)
the derivatives, where we use y = 1− (1− z)b0 and the relation Ψk = Ip −

∑k−1
i=0 Ψi,

Ddfφ0(z) = log(1− z)Ip = b−1
0 log(1− y)Ip,

Dbfφ0(z) = −b−1
0 log(1− y)(Ip + [DyΨ0(y)](1− y)Ψ0(y)−1),

DΨifφ0(z) = ((1− y)i+1 − (1− y)k+1)Ψ0(y)−1, i = 0, . . . , k − 1,

Dαfφ0(z) = −β′0yΨ0(y)−1.

This gives the directional derivative Dsfφ0+sh(z)|s=0 in the direction h = (d1, b1, A,G∗) which,
post-multiplied by Ψ0(y), is

b−1
0 log(1− y){(d1− b1)Ψ0(y)− b1[DyΨ0(y)](1− y)}−{Aβ′0y−

k−1∑
i=0

Gi((1− y)i+1− (1− y)k+1)}.

This should be zero for all y for Σ0 to be singular. Because log(1−y) is not a polynomial we have
Aβ′0y−

∑k−1
i=0 Gi((1−y)i+1−(1−y)k+1) = 0 for all y, and henceA = 0 andGi = 0, i = 0, . . . , k−1.

We therefore find that for all y the polynomial (d1 − b1)Ψ0(y) − b1[DyΨ0(y)](1 − y) has only
zero coeffi cients. In particular we find that the coeffi cients to (1− y)i, i = 0, 1, k + 1, are

0 = −(d1 − b1)α0β
′
0, (54)
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0 = d1(α0β
′
0 + Ψ00), (55)

0 = (d1 + b1k)Ψ0k, k > 0. (56)

We want to show that d1 = b1 = 0. If k > 0, (56) and Ψ0k = (−1)k+1Γ0k 6= 0 imply d1+b1k = 0.
If α0β

′
0 6= 0 we find from (54) that d1− b1 = 0 and if α0β

′
0 = 0, (55) shows that d1Ψ00 = 0. But

in the latter case α0⊥ = β0⊥ = Ip and Ψ00 = Ip −
∑k

i=1 Γ0i = Γ0 = α′0⊥Γ0β0⊥ 6= 0, so that in
either case d1 = b1 = 0. If k = 0 and r > 0 then Ψ00 = Ip and (55) shows that d1 = 0 because
α0β

′
0 6= −Ip, and then (54) gives d1 = b1 = 0. Finally, if k = r = 0 the model is ∆dXt = εt and

the condition for singularity is d1d
−1
0 log(1− y)Ip = 0 which implies d1 = 0. Hence in all cases

d1 = b1 = 0 and Σ0 is positive definite.
Proof of (ii) and (iii): The same proof can be used as for (i) by a change of notation.

4.2 Asymptotic distribution of the MLE

We first find asymptotic distributions of the score functions and the limit of the information
at the true value. We then expand the likelihood function in a neighborhood of the true value
and find asymptotic distributions of the MLEs. By Lemmas A.2 and A.3 we only need the
information at the true value because the estimators are consistent (by Theorem 5) and the
first- and second-order derivatives are tight on N (ψ0, ε) (by Theorem 6).

Lemma 8 Let Assumptions 1-4 be satisfied and (k, r) 6= (0, 0). We assume that X−n = 0 for
n ≥ T υ for some υ < 1/2.

(i) If b0 > 1/2 and E|εt|q < ∞ for some q > (b0 − 1/2)−1, the limit distribution of the
Gaussian score function for model (2) at the true value is given by(

T−1/2Dφ logLT (λ0)
T−1/2Dθ logLT (λ0)

)
D→
(

Nnφ (0,Σ0)

(vec(
∫ 1

0
F0(dG0)′))′

)
, (57)

where Σ0 is given in (50), nφ = 1 + 1 + pr + kp2 is the number of parameters in φ =
(d, b, α,Ψ∗), F0 = β′0⊥C0Wb0−1, G0 = α′0Ω−1

0 W , and the two components in the limit in
(57) are independent.

(ii) If 0 < b0 < 1/2 then the score with respect to all parameters is asymptotically Gaussian,
Nnφ+(p−r)r(0,Σ

stat
0 ), see (52).

(iii) In model Hr(d = b) with a constant the same results hold with θ replaced by (θ′β, θ
′
ρ)
′ and

F0 by (W ′
b0−1C

′
0β0⊥, 1)′.

Proof. For λ = λ0 we find

εt(λ0) = εt + Π0−(L)(X̃t −Xt) = εt + d0t,

Dεt(λ0) = DΠ+0(L)Xt + DΠ0−(L)X̃t = s1t + d1t,

where d1t is a linear combination of the deterministic terms DDit(ψ)|ψ=ψ0 and, if b0 > 1/2,
also T 1/2−b0β′0⊥DD−1,t(ψ)|ψ=ψ0 , see (92) and (93). From Lemma A.8 we find that the terms
of d1t either tend to zero as t → ∞ or satisfy T 1/2−b0 max1≤t≤T |β′0⊥DD−1,t(ψ)|ψ=ψ0| → 0 as
T →∞, and that T−1/2

∑T
t=1 |d0t| → 0 as T →∞. These properties are enough to show that

T−1/2
∑T

t=1 |d0td1t| → 0 as T → ∞ and that in product moments where d1t appears it can in
fact be ignored.
Proof of (i): For b0 > 1/2, T−1/2Dφ logLT (λ0) for φ = (d, b, α,Ψ∗) evaluated at λ0 is

−T−1/2

T∑
t=1

εt(λ0)′Ω−1
0 Dφεt(λ0) = −T−1/2

T∑
t=1

ε′tΩ
−1
0 (s1t + d1t)− T−1/2

T∑
t=1

d′0tΩ
−1
0 (s1t + d1t).
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The first term is a martingale with sum of conditional variances T−1
∑T

t=1(s1t + d1t)
′Ω−1

0 (s1t +

d1t)
P→ Σ0, see Lemma 7, because d1t can be ignored. In the second term we find that the

second moment is bounded by c(T−1/2
∑T

t=1 |d0t|)2 → 0. The result for the first block of (57)
now follows from the Central Limit Theorem for martingales, see Hall and Heyde (1980, chp.
3).
The score function for θ evaluated at the true value is

T−1/2Dθ logLT (λ0)

= (vec(T−1/2

T∑
t=1

T−1/2−b0β′0⊥X
0
−1,tε

′
tΩ
−1
0 α0))′ + (vec(T−1/2

T∑
t=1

T 1/2−b0β′0⊥X
0
−1,td

′
0tΩ
−1
0 α0))′,

where X0
−1,t denotes X−1,t evaluated at ψ = ψ0. The main term converges in distribution to

(vec(
∫ 1

0
F0(dG0)′))′, see (42) in Theorem 6, and the second term converges in probability to

zero because max1≤t≤T |T 1/2−b0β′0⊥X
0
−1,t| = OP (1) by (6) and T−1/2

∑T
t=1 |d0t| → 0 by (96).

This proves the second block of (57). The independence of the two components in the limit of
(57) follows exactly as in JN (2010, Lemma 10).
Proof of (ii): If 0 < b0 < 1/2, all stochastic regressors are asymptotically stationary and

we take β = β0 + β0⊥θ and the score with respect to θ, evaluated at λ = λ0, is

T−1/2Dθ logLT (λ0) = T−1/2

T∑
t=1

(vec(β′0⊥X
0
−1,tεt(λ0)′Ω−1

0 α0))′.

The Central Limit Theorem for martingales gives the result.
Proof of (iii): The same methods can be used here, noting that the score with respect to

ρ, evaluated at λ = λ0, is T−1/2
∑T

t=1 εt(λ0)′Ω−1
0 α0.

Lemma 9 Let Assumptions 1-4 be satisfied and (k, r) 6= (0, 0).

(i) If b0 > 1/2 and E|εt|q < ∞ for some q > (b0 − 1/2)−1, the Gaussian information per
observation in model (2) for (φ, θ) = (φ0, 0) converges in distribution to(

Σ0 0

0 α′0Ω−1
0 α0 ⊗

∫ 1

0
F0F

′
0du

)
> 0 a.s., (58)

where Σ0 is given in (50) and F0(u) = β′0⊥C0Wb0−1(u).

(ii) If 0 < b0 < 1/2 the information per observation for all parameters is convergent in
probability to the non-stochastic limit Σstat

0 given in (52).
(iii) For the model Hr(d = b) with a constant the same results hold with F0 replaced by (F ′0, 1)′.

Proof. Proof of (i): The information matrices can be found from (37) and the deterministic

terms can be ignored due to Lemma A.8. From (41) of Theorem 6 it holds that DmC0
T

P→ 0.
Using this and (50) we find using θ0 = 0 that

−T−1D2
φφ logLT (λ0)

P→ Σ0,

−T−1D2
θθ logLT (λ0) = α′0Ω−1

0 α0 ⊗A0
T

D→ α′0Ω−1
0 α0 ⊗

∫ 1

0

F0F
′
0du,

−T−1D2
θφ logLT (λ0) = D2

θφ tr(Ω−12αθ′CT (−α,Ψ∗, Ip)′)|λ=λ0
P→ 0.
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Proof of (ii): If 0 < b0 < 1/2 we find the information for θ = β̄′0⊥(β − β0) to be

−T−1D2
θθ logLT (λ0) = α′0Ω−1

0 α0 ⊗ T−1

T∑
t=1

(β′0⊥X
0
−1,t)(β

′
0⊥X

0
−1,t)

′,

and the cross term −T−1D2
θφ logLT (λ0) can be found similarly from (37). In this case the entire

information matrix converges to a non-stochastic limit by the Law of Large Numbers because
X0
−1,t is (asymptotically) stationary when b0 < 1/2, see also (102).
Proof of (iii): The same methods can be applied in this case.
We now apply the previous two lemmas in the usual expansion of the likelihood score

function to obtain the asymptotic distribution of the MLE.

Theorem 10 Let the assumptions of Theorems 4 and 5 be satisfied with (k, r) 6= (0, 0) and
suppose (d0, b0) ∈ int(N ). Assume also that X−n = 0 for n ≥ T υ for some υ < 1/2.

(i) If b0 > 1/2 and E|εt|q <∞ for some q > (b0− 1/2)−1, the asymptotic distribution of the
maximum likelihood estimators φ̂ = (d̂, b̂, α̂, Ψ̂∗) and β̂ for model (2) is given by(

T 1/2 vec(φ̂− φ0)

T b0 β̄′0⊥(β̂ − β0)

)
D→
(

Nnφ

(
0,Σ−1

0

)
(
∫ 1

0
F0F

′
0du)−1

∫ 1

0
F0(dG0)′(α′0Ω−1

0 α0)−1

)
, (59)

where F0 = β′0⊥C0Wb0−1 and G0 = α′0Ω−1
0 W are independent, and also the two compo-

nents of (59) are independent. It follows that the asymptotic distribution of vec(T b0 β̄′0⊥(β̂−
β0)) is mixed Gaussian with conditional variance given by

(α′0Ω−1
0 α0)−1 ⊗ (

∫ 1

0

F0F
′
0du)−1. (60)

(ii) If 0 < b0 < 1/2 the estimators for (d, b, α, β,Ψ∗) are asymptotically Gaussian.
(iii) In the model Hr(d = b) with a constant the same results hold with the relevant restriction

imposed and with F0 replaced by (F ′0, 1)′.
(iv) If k = r = 0 the model is ∆dXt = εt and d̂ is asymptotically Gaussian.

Proof. Proof of (i): For b0 > 1/2 we find limit distributions of T 1/2(φ̂ − φ0) and T 1/2θ̂ by
applying the usual expansion of the score function around φ = φ0, θ = 0, and Ω = Ω̂. Using
Taylor’s formula with remainder term we find for lT = −2T−1 logLT that

0 =

(
T 1/2DφlT (φ0, 0, Ω̂)

T 1/2DθlT (φ0, 0, Ω̂)

)
+

(
DφφlT (λ∗) DφθlT (λ∗)
DθφlT (λ∗) DθθlT (λ∗)

)(
T 1/2 vec(φ̂− φ0)

T 1/2 vec θ̂

)
.

Here asterisks indicate intermediate points between (φ̂, θ̂, Ω̂) and (φ0, 0, Ω̂), one for each row.
We have proved tightness of the product moments as functions of ψ in a compact set, see

Theorem 6. Here we need tightness of the second derivatives in all parameters λ in a compact
neighborhood of the true value, λ0, which follows from Lemma A.2 because the second deriva-
tives are continuously differentiable in the parameters (α, β,Ψ∗,Ω) and the product moments.

Because the second derivatives are tight and because λ∗ P→ λ0 by Theorem 5, we apply Lemma
A.3 to replace λ∗ by λ0. The limit of the information per observation is then given in Lemma
9.
The score functions normalized by T 1/2 are given in the proof of Lemma 8, and because Ω

only acts as a scaling factor on a term that converges in distribution (and therefore is tight),
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tightness as a function of Ω follows. Hence we replace (φ0, 0, Ω̂) by λ0 in the normalized score
functions, and their weak limits are given in Lemma 8.
This yields the asymptotic distribution of T 1/2((vec(φ̂−φ0))′, (vec θ̂)′)′. We then prove (59)

using T−d0+b0+d̂−b̂ = eOP (T−1/2 log T ) = 1 + oP (1) and the relation

T b0−1/2β̄′0⊥(β̂ − β0) = T−d0+b0+d̂−b̂T 1/2θ̂.

The stochastic component of the process F0 is a function of α′0⊥W, see (13) and (42), whereas
G0 = α′0Ω−1

0 W, so that F0 and G0 are independent and the limit distribution of T 1/2θ̂ is mixed
Gaussian. Finally, the independence of the two components of (59) follows from Lemma 8 and
the block-diagonality in (58), see also Johansen (1991, p. 1573).
Proof of (ii): If 0 < b0 < 1/2 the result follows from the results about score and information

by the same type of proof and the asymptotic variance is (Σstat
0 )−1, see (52).

Proof of (iii): In the model Hr(d = b) with b0 > 1/2 the same results hold by the same
type of proof. For 0 < b0 < 1/2 we find the asymptotic distribution of β̂ and ρ̂ jointly with
the other parameters from(

T 1/2β̄′0⊥(β̂ − β0)
T 1/2(ρ̂− ρ0)

)
=

(
Ip−r 0

−ρ0α
′
0C
∗′
0 β0⊥ Ir

)(
T 1/2θ̂β
T 1/2θ̂ρ

)
,

which shows how the asymptotic variance can be calculated from Σstat
0 , see (52).

Proof of (iv): Follows by the same methods.
The results in Theorem 10 show under i.i.d. errors with suitable moments conditions, that

φ̂ is asymptotically Gaussian, while the estimated cointegration vectors β̂ are locally asymp-
totically mixed normal (LAMN) when b0 > 1/2. Results like these are well known from the
standard (non-fractional) cointegration model, but are much less developed for fractional mod-
els, see the references in Section 1. These are important results, which allow (i) inference on
φ̂ to be conducted as if β̂ were known and vice versa, and (ii) asymptotically standard (chi-
squared) inference on all parameters of the model —including the cointegrating relations and
orders of fractionality —using Gaussian likelihood ratio tests.
Furthermore, this result has optimality implications for the estimation of β in the fraction-

ally cointegrated VAR. In the LAMN case with stochastic information matrix, β̂ is asymp-
totically optimal under the additional assumption of Gaussian errors in the sense that it has
asymptotic maximum concentration probability, see, e.g., Phillips (1991) and Saikkonen (1991)
for the precise definitions in the context of the standard cointegration model.

5 Likelihood ratio test for cofractional rank
We consider the model

Hp : ∆dXt = Π∆d−bLbXt +
k∑
i=1

Γi∆
dLibXt + εt (61)

and want to test the hypothesis Hr : rank(Π) ≤ r against the alternative Hp : rank(Π) ≤ p.
For model Hr, r = 0, 1, . . . , p, let `T,r(ψ) be the profile likelihood function, where α, β,Γ∗,Ω
have been concentrated out by regression and reduced rank regression, see (26) in Section 3.1,
and let ψ̂r be the MLE of ψ. The likelihood ratio (LR) statistic is

−2 logLR(Hr|Hp) = T log
det(S00(ψ̂r))

∏r
i=1(1− ω̂i(ψ̂r))

det(S00(ψ̂p))
∏p

i=1(1− ω̂i(ψ̂p))
= T (`T,r(ψ̂r)− `T,p(ψ̂p)). (62)
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Theorem 11 Let the assumptions of Theorem 10 hold with (k, r) 6= (0, 0).

(i) If b0 > 1/2 the likelihood ratio statistic for Π = αβ′, that is Hr in Hp, has asymptotic
distribution

−2 logLR(Hr|Hp)
D→ tr(

∫ 1

0

(dB)B′b0−1(

∫ 1

0

Bb0−1B
′
b0−1du)−1

∫ 1

0

Bb0−1(dB)′), (63)

where B(u) is (p− r)-dimensional standard BM and Bb0−1(u) is the corresponding fBM.
The limit distribution is continuous in b0.

(ii) If 0 < b0 < 1/2 then

−2 logLR(Hr|Hp)
D→ χ2((p− r)2). (64)

(iii) Let P1 be the probability measure under the alternative Π1 = α1β
′
1 = αβ′ + α∗β∗′, where

α1 = (α, α∗) and β1 = (β, β∗) are p × (r + r∗) of rank r1 = r + r∗ > r, and hence
rank(Π1) > r. Assume that Assumption 1 is satisfied under the alternative. Then

−2 logLR(Hr|Hp)
P1→∞. (65)

(iv) In the model Hr(d = b) with a constant the results (i)—(iii) hold for k ≥ 0, r ≥ 0 and
Bb0−1(u) replaced by (Bd0−1(u)′, 1)′.

Proof. We give the proofs only for model (2) without the constant. The proofs for part (iv) are
the same but with different notation and with the extended fBM replacing the fBM, reflecting
the reduced rank regression of Xkt on (X ′−1,t, 1)′. For parts (i)—(iii) note that (k, r) 6= (0, 0)
ensures that b is identified under the null, but for part (iv) this is not a problem because b = d
is identified also when k = r = 0.
Proof of (i): We assume that rank(Π) = r and that Π0 = α0β

′
0, where α0 and β0 are p× r

of rank r. It is convenient to introduce the extra hypothesis that Π = αβ′ and β = β0, see
Lawley (1956) and Johansen (2002) for an application to the cointegrated VAR model.
Then LR(Hr|Hp) is

maxΠ=αβ′ L

maxL
=

maxΠ=αβ′0
L

maxL
/

maxΠ=αβ′0
L

maxΠ=αβ′ L
=
LR(Hr and β = β0|Hp)

LR(β = β0|Hr)

The statistic LR(Hr and β = β0|Hp) is the test that Π = αβ′0 (with rank r) against Π
unrestricted, and LR(β = β0|Hr) is the test that β = β0 in the model with Π = αβ′ and
rank(Π) = r. We next find a first order approximation to each statistic and subtract them.
For T →∞ we find the asymptotic distribution.
In both cases we apply the result that when, in a statistical problem with vector valued

parameters ξ and η, the limiting observed information per observation is block diagonal and
tight as a continuous process in a neighborhood of the true value, then a Taylor expansion of
the log likelihood ratio statistic and the score function shows that

−2 logLR(ξ = ξ0) = Dξ logLT (ξ0, η0)(D2
ξξ logLT (ξ0, η0))−1Dξ logLT (ξ0, η0)′ + oP (1), (66)

see JN (2010, Theorem 14) for a detailed discussion of the univariate case.
A first order approximation to −2 logLR(β = β0|Hr) : It follows from Lemma 9 that, for

ξ = θ, η = (d, b, α,Ψ∗,Ω), the asymptotic information per observation is block diagonal at the
true value, and Theorem 6 and Lemma A.2 show that the information is tight as a process in
the parameters. Thus we have that

−2 logLR(β = β0|Hr) = (vec(C0
εTΩ−1

0 α0))′(α′0Ω−1
0 α0 ⊗A0

T )−1 vec(C0
εTΩ−1

0 α0) + oP (1) (67)
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= tr((α′0Ω−1
0 α0)−1α′0Ω−1

0 C0′
εT (A0

T )−1C0
εTΩ−1

0 α0) + oP (1),

using the relation tr(ABCD) = (vecB′)′(A′ ⊗ C) vecD.
A first order approximation to −2 logLR(Hr and β = β0|Hp) : In model (61) we introduce

a convenient reparametrization by α = Πβ̄0, ξ
′ = T−δ−1−1/2Πβ̄0⊥, so that by (11) we have

Π = αβ′0 + T δ−1+1/2ξ′β′0⊥. The equations are, see (34),

Xkt = αβ′0X−1,t + ξ′T d−b−d0+1/2β′0⊥X−1,t −
k−1∑
i=0

ΨiXit + εt.

The likelihood function −2T−1 logLT (ξ, η) conditional on initial values becomes

log det(Ω) + tr(Ω−1(ξ′AT ξ + (−α,Ψ∗, Ip)BT (−α,Ψ∗, Ip)′ − 2ξ′CT (−α,Ψ∗, Ip)′)),
where η = (d, b, α,Ψ∗,Ω). This expression is the same as the conditional likelihood (37) except
that αθ′ is replaced by ξ′. The properties of the likelihood function and its derivatives can be
derived from those of AT ,BT , and CT , and it is seen that the second derivative as a function
of the parameters is tight and the limit is block diagonal. It follows as above that

−2 logLR(Hr and β = β0|Hp) = tr(Ω−1
0 C0′

εT (A0
T )−1C0

εT ) + oP (1). (68)

A first order approximation to −2 logLR(Hr|Hp) : Subtracting (67) from (68) and applying
the identity

Ω−1
0 − Ω−1

0 α0(α′0Ω−1
0 α0)−1α′0Ω−1

0 = α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥
we find that −2 logLR(Hr|Hp) has the same limit as

tr(α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥C0′
εT (A0

T )−1C0
εT ) (69)

D→ tr(α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥

∫ 1

0

(dW )F ′0(

∫ 1

0

F0F
′
0du)−1

∫ 1

0

F0(dW )′) = DF (ψ0),

say, which is the desired result if we define B = (α′0⊥Ω0α0⊥)−1/2α′0⊥W and note that Bb0−1 is
a linear transformation of F0.
The continuity of the limit distribution can be seen by noticing that the matrices

∫ 1

0
Fψ(dB)′

and
∫ 1

0
FψF

′
ψdu, and hence also DF (ψ), are continuous in L2 as functions of ψ and that is

enough for convergence in distribution so that if ψn → ψ then DF (ψn)
D→ DF (ψ).

Proof of (ii): In this case the result follows from the usual expansion of the LR test statistic
and the asymptotic distribution in Theorem 10.
Proof of (iii): The test for Hr in Hp is given in (62). We choose a small neighborhood

N (ψ0, ε) = {ψ : |ψ − ψ0| ≤ ε} and find for fixed ψ ∈ N (ψ0, ε) that
p∑
i=1

log(1− ω̂i(ψ)) =
r∑
i=1

log(1− ω̂i(ψ)) +

p∑
i=r+1

log(1− ω̂i(ψ))

≤
r∑
i=1

log(1− ω̂i(ψ)) + log(1− min
ψ∈N (ψ0,ε)

ω̂r+1(ψ)).

Adding log det(S00(ψ)) on both sides and minimizing over ψ we find `T,p(ψ̂p) ≤ `T,r(ψ̂r) +
log(1−minψ∈N (ψ0,ε) ω̂r+1(ψ)), so that

−2 logLR(Hr|Hp) ≥ −T log(1− min
ψ∈N (ψ0,ε)

ω̂r+1(ψ)). (70)

We now show that the right hand side diverges to infinity under P1, the probability
measure described in (iii), or equivalently that for some ε > 0, δ > 0, and any ξ > 0
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there is a T0 = T (ε, ξ, δ) so that P1(minψ∈N (ψ0,ε) ω̂r+1(ψ) ≥ δ) ≥ 1 − ξ for all T ≥ T0.
The eigenvalues are continuous functions of the product moments AT (ψ),BT (ψ), CT (ψ), see
(35). It therefore follows from Theorem 6 that, under P1, ω̂r+1(·) is tight on N (ψ0, ε) and
ω̂r+1(ψ) =⇒ ωr+1(ψ) on C(N (ψ0, ε)) as T → ∞, see (41), where ωr+1(ψ) is given by the so-
lution of (138). This implies that ωr+1(ψ) > 0 is continuous in ψ. Therefore we can choose
ε so small that minψ∈N (ψ0,ε) ωr+1(ψ) > δ, say, for some small δ > 0. Because the function
ωr+1(·) 7→ minψ∈N (ψ0,ε) ωr+1(ψ) is continuous in the uniform topology on N (ψ0, ε) we get that

min
ψ∈N (ψ0,ε)

ω̂r+1(ψ)
P1→ min

ψ∈N (ψ0,ε)
ωr+1(ψ) > δ,

such that for any ξ > 0 we can find T0 so that

P1( min
ψ∈N (ψ0,ε)

ω̂r+1(ψ) > δ) ≥ 1− ξ for all T ≥ T0, (71)

which completes the proof of (iii).
We note that in modelHr with k = 0 we can test r = 0 by testing Π = 0, see (61), but then b

is not identified under the null. For fixed b this LR statistic is denoted LR(b) = −2 logLR(Π =
0|b) and it is possible to consider a sup-type test, supb LR(b), where the supremum is taken
either over stationary or non-stationary values of the index b, see Hansen (1996) for the general
theory and Lasak (2010) for a cointegration test. Note that in model Hr(d = b) the parameter
b = d is identified and (63) applies also for k = r = 0.
The distribution (63) of the LR test for cointegration rank is a fractional version of the

distribution of the trace test in the cointegrated I(1) VAR model, see Johansen (1988, 1991).
Note that it is only the parameter b0, describing the “strength”of the cofractional relations,
which determines the order of the fBMs in the limit distribution. For given hypothesized b0 or
estimated b̂r, the distribution (63) can be simulated to obtain critical values on a case-by-case
basis. Alternatively, numerical CDFs have been simulated as functions of b0 by MacKinnon
and Nielsen (2011), and their computer programs can be used to immediately obtain critical
values or P -values for the tests, including that in part (iv) for modelHr(d = b) with a constant.
In either case, the continuity of the limit distribution (63) in b0 ensures asymptotic validity of
the approach.
We estimate the cofractional rank by conducting a sequence of tests, for a given size δ: test

Hr for r = 0, 1, . . . until rejection, and the estimated rank r̂ is the last non-rejected value of
r. If the true rank is r0, then consistency of the LR rank test in Theorem 11(iii) shows that
any test of r < r0 will reject with probability one as T → ∞. Thus, P0(r̂ < r0) → 0. Since
the asymptotic size of the test for rank is δ we have that P0(r̂ > r0) → δ and it follows that
P0(r̂ = r0) → 1 − δ. This shows that r̂ is almost consistent, in the sense that it attains the
true value with probability 1− δ as T →∞.

6 Conclusion
In this paper well known likelihood based inference results for the cointegrated VAR model (1)
have been generalized to the cointegrated fractional VARd,b(k) models,

∆dXt = ∆d−bLbαβ
′Xt +

k∑
i=1

Γi∆
dLibXt + εt, 0 < b ≤ d, (72)

∆dXt = Ldα(β′Xt + ρ′) +

k∑
i=1

Γi∆
dLidXt + εt. (73)
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For model (72) we have analyzed the conditional Gaussian likelihood given initial values.
We have shown existence and consistency of the maximum likelihood estimators, and derived
the asymptotic distribution of the maximum likelihood estimator as well as the asymptotic
distribution of the LR test for the rank of αβ′. In the asymptotic analysis we assumed i.i.d.
errors with suitable moment conditions. For the proof of consistency we assumed that initial
values, X−n, n ≥ 0, are bounded, and for the asymptotic distribution theory we assumed that
initial values are zero for n ≥ T υ for some υ < 1/2. If b0 > 1/2 inference on β is asymptotically
mixed Gaussian while the estimators of the remaining parameters are asymptotically Gaussian,
and the LR test for rank is expressed in terms of fractional Brownian motion Bb0−1(u). If
b0 < 1/2 the estimators are all asymptotically Gaussian and the test for rank is asymptotically
χ2. The same type of results hold for the model with d = d0, a prespecified value. For the
model Hr(d = b) with a constant, i.e. (73), the same results hold except the test for rank
involves (Bd0−1(u)′, 1)′.
The main technical contribution in this paper is the proof of existence and consistency of

the maximum likelihood estimator, which allows standard likelihood theory to be applied. This
involves an analysis of the influence of initial values as well as proving tightness and uniform
convergence of product moments of processes that can be critical and nearly critical, and this
was made possible by a truncation argument.

Appendix A Product moments
In this appendix we evaluate product moments of stochastic and deterministic terms and find
their limits based on results for convergence in distribution of probability measures on Cp(K)
and Dp(K).

A.1 Results on convergence in distribution

For a multivariate random variable Z with E|Z|q <∞ the Lq norm is ||Z||q = (E|Z|q)1/q.

Lemma A.1 If XT (s) is a sequence of p-dimensional continuous processes on a compact set
K ⊆ R2, i.e. XT (·) ∈ Cp(K), with

||XT (s)||4 ≤ c and ||XT (s1)−XT (s2)||4 ≤ c|s1 − s2|, s1, s2 ∈ K, (74)

for some constant c > 0, which does not depend on T , s1, or s2, then XT (s) is tight on K.

Proof. This is a consequence of Kallenberg (2001, Corollary 16.9).

Lemma A.2 If the sequence of p-dimensional continuous processes XT (s) is tight on K ⊆ Rq,
the vector u ∈ Rk, and the function F : Rk × Rp 7−→ Rm is continuously differentiable, then
ZT (u, s) = F (u,XT (s)) is tight on Rk ×K.

Proof. JN (2010, Lemma A.2).

Lemma A.3 Assume that ST
P→ s0 ∈ K ⊆ Rq and that the p × p matrix-valued continuous

process XT (s) is tight on K. Then XT (ST )−XT (s0)
P→ 0.

Proof. See JN (2010, Lemma A.3) for the vector-valued result.

Lemma A.4 Let XT (s) be a sequence of p-dimensional continuous processes on a compact set
K ⊆ Rq and suppose XT (s) =⇒ X(s) on Cp(K) as T → ∞. If X(s) is deterministic then

XT (s)
P→ X(s) uniformly in s ∈ K.
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Proof. IfXT (s) =⇒ X(s) andX(s) is deterministic thenXT (s)−X(s) =⇒ 0. By the Continu-

ous Mapping Theorem it follows that sups∈K |XT (s)−X(s)| D→ 0 and therefore sups∈K |XT (s)−
X(s)| P→ 0.

A.2 Bounds on product moments

We begin with some bounds on the fractional coeffi cients.

Lemma A.5 (i) For |u| ≤ u0 and all j ≥ 1 it holds uniformly in u that

|Dmπj(−u)| ≤ c(u0)(1 + log j)mj−u−1, (75)

|DmT uπj(−u)| ≤ c(u0)T u(1 + | log
j

T
|)mj−u−1. (76)

(ii) Let j ≥ 1 and let K denote any compact subset of R\N0. Then it holds that

πj(−v) =
1

Γ(−v)
j−v−1(1 + εj(v)), (77)

where maxv∈K |εj(v)| → 0 as j →∞. Thus πj(−v) ≥ cj−v−1 uniformly in v ∈ K and all
j ≥ 1.

Proof. For (i), see JN (2010, Lemma B.3). To prove (ii) we apply Stirling’s formula,

πj(−v) =
Γ(−v + j)

Γ(−v)Γ(j + 1)
=

1

Γ(−v)
j−v−1(1 + εj(v)),

where maxv∈K |εj(v)| → 0 as j → ∞. This proves the result and shows that the constant in
the lower bound does not depend on v.
Our proof of tightness applies the result of Kallenberg (2001) in Lemma A.1 and involves

evaluation of the fourth moment of linear processes and their product moments. For real
coeffi cients ζ1n, ζ2n, n = 0, 1 . . . , we give evaluations of such moments in terms of the quantity

ξT (ζ1, ζ2) = max
0≤|n−m|≤T

T+min(n,m)∑
t=max(n,m)

|ζ1,t−nζ2,t−m|. (78)

Lemma A.6 For i = 1, 2, let εit be i.i.d.(0, σ2
i ) with E|εit|8 < ∞. Assume that {ζin}∞n=0 and

{ξin}∞n=0 are real coeffi cients satisfying
∑∞

n=0 |ξin| < ∞. Define Z+
it =

∑t−1
n=0 ξinεi,t−n and, for

t > N ≥ 0, also the processes Z
(N)

it =
∑t−1

n=N ζinZ
+
i,t−n and Z

(N)
it =

∑N−1
n=0 ζinZ

+
i,t−n. Then, for

0 ≤ N < T,

||T−1

T∑
t=N+1

Z
(N)

1t Z
(N)

2t ||4 ≤ cξT (ζ1, ζ2), (79)

||T−1

T∑
t=N+1

Z
(N)
1t Z

(N)
2t ||4 ≤ cξN(ζ1, ζ2), (80)

||T−1

T∑
t=N+1

Z
(N)
1t Z

(N)
2t − E[Z

(N)
1t Z

(N)
2t ]||4 ≤ c(N/T )1/4ξN(ζ1, ζ2), (81)

||T−1

T∑
t=N+1

Z
(N)
1t Z

(N)

2t )||4 ≤ c(N/T )1/4ξN(ζ1, ζ1)1/2ξT (ζ2, ζ2)1/2. (82)
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Proof. We find
∑t−1

n=0 ζinZ
+
i,t−n =

∑t−1
h=0(ζi ∗ ξi)hεi,t−h, where (ζi ∗ ξi)h =

∑h
n=0 ζi,h−nξin, and

ξT ((ζ1 ∗ ξ1), (ζ2 ∗ ξ2)) ≤ max
1≤n1,n2≤T

T+min(n1,n2)∑
h=max(n1,n2)

h−n1∑
n=0

|ζ1,h−n1−nξ1n|
h−n2∑
m=0

|ζ2,h−n2−mξ2m|

≤ c
∞∑
m=0

|ξ2m|
∞∑
n=0

|ξ1n|ξT (ζ1, ζ2) ≤ cξT (ζ1, ζ2) (83)

because
∑∞

n=0 |ξin| <∞. Thus, it is enough to prove the results for Z+
it = εit or ξin = 1{n=0}.

Proof of (79): Using the notation vsi = ti − nsi, where s = 1, 2 and i = 1, . . . , 4, we find

E(T−1

T∑
t=N+1

Z
(N)

1t Z
(N)

2t )4 = T−4
∑
(1)

(

4∏
i=1

ζ1,ti−v1iζ2,ti−v2i)E(

4∏
i=1

ε1,v1iε2,v2i), (84)

where
∑

(1) is the sum over N ≤ n1i = ti − v1i, n2i = ti − v2i < ti ≤ T, i = 1, . . . , 4.
We first sum over ti for fixed (v1i, v2i). Note that ti ≥ N + v1i, ti ≥ N + v2i and hence
ti ≥ N+max(v1i, v2i) ≥ max(v1i, v2i). Similarly ti ≤ T+min(v1i, v2i). This gives the summation

T+min(v1i,v2i)∑
ti=N+max(v1i,v2i)

|ζ1,ti−v1iζ2,ti−v2i | ≤
T+min(v1i,v2i)∑
ti=max(v1i,v2i)

|ζ1,ti−v1iζ2,ti−v2i | ≤ ξT (ζ1, ζ2),

and summing over v1i, v2i we get the bound

ξT (ζ1, ζ2)4T−4
∑
(2)

|E(
4∏
i=1

ε1,v1iε2,v2i)|,

where
∑

(2) is the summation over 1 ≤ v1i, v2i ≤ T −N, i = 1, . . . , 4. The expectation is zero
unless for each (l, i) there is a (k, j) for which vli = vkj so the indices are equal in groups. The
smallest number of restrictions, and hence the largest number of summations, occurs if the
indices are equal in pairs. This leaves four summations from 1 to T −N and hence a factor of
(T −N)4, and therefore the bound cξT (ζ1, ζ2)4.
Proof of (80): For N = 0 we get from (79) that ||T−1

∑T
t=1 Z

+
1tZ

+
2t||4 ≤ cξT (ζ1, ζ2).We apply

this for coeffi cients for which ζ1n = ζ2n = 0, n ≥ N, so that ξT (ζ1, ζ2) = ξN(ζ1, ζ2). We also
have Z+

it =
∑t−1

n=0 ζitεt−n =
∑N−1

n=0 ζitεt−n = Z
(N)
it for t > N . Thus from

T−1

T∑
t=1

Z+
1tZ

+
2t = T−1

T∑
t=N+1

Z
(N)
1t Z

(N)
2t + (N/T )N−1

N∑
t=1

Z+
1tZ

+
2t

we find

||T−1

T∑
t=N+1

Z
(N)
1t Z

(N)
2t || ≤ c(ξN(ζ1, ζ2) + (N/T )ξN(ζ1, ζ2)) ≤ cξN(ζ1, ζ2).

Proof of (81): The expression (84) now becomes

T−4
∑
(1)

(
4∏
i=1

ζ1,ti−v1iζ2,ti−v2i)E

4∏
i=1

(ε1,v1iε2,v2i − σ121{v1i=v2i}),

where
∑

(1) is the sum over 0 ≤ n1i = ti − v1i, n2i = ti − v2i ≤ N < ti ≤ T, i = 1, . . . , 4. In this
case the bounds for ti are ti ≥ max(v1i, v2i) and ti ≤ N + min(v1i, v2i) and ti ≤ T. Summing
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over ti we therefore get the factor
min(T,N+min(v1i,v2i))∑

ti=max(v1i,v2i)

|ζ1,ti−v1iζ2,ti−v2i | ≤
N+min(v1i,v2i)∑
ti=max(v1i,v2i)

|ζ1,ti−v1iζ2,ti−v2i | = ξN(ζ1, ζ2),

that is, a factor ξN(ζ1, ζ2)4 when summing over all ti. For the contribution from the expectation
we only consider vsi equal in pairs. Note that if v1i = v2i for all i the contribution is zero
because of the centering. Thus there exists i so that v1i 6= v2i belong to different pairs and
satisfy 0 < |v2i − v1i| = | − n2i + n1j| ≤ N. Hence we sum over 1 ≤ v1i, v2i ≤ T, i = 1, . . . , 4, in
pairs with at least one restriction of the form |v2i − v1i| ≤ N , so we get at most NT 3 terms.
We therefore find the bound (N/T )ξN(ζ1, ζ2)4 which proves (81).
Proof of (82): In this case we write (84) as

E(T−1

T∑
t=N+1

Z
(N)
1t Z

(N)

2t ))4 = T−4
∑
(1)

(
4∏
i=1

ζ1,n1iζ2,n2i)E(

4∏
i=1

ε1,ti−n1iε2,ti−n2i),

where the summation
∑

(1) is over 0 ≤ n1i < N ≤ n2i ≤ ti ≤ T, i = 1, . . . , 4.
We consider ti−nsi equal in pairs, which gives the fewest restrictions. Note, however, that

n1i < N ≤ n2i implies that ti − n1i > ti − n2i for all i, which means that there must exist a
j 6= i such that ti − n1i = tj − n1j and therefore |ti − tj| = |n1i − n1j| ≤ N, and another k 6= l
for which tk − n2k = tl− n2l with no restriction on (tk, tl).We eliminate n1j = tj − ti + n1i and
n2l = tl − tk + n2k and consider

|
N−1∑
n1i=0

ζ1,n1iζ1,tj−ti+n1i ||
T−1∑
n2k=0

ζ2,n2kζ2,tl−tk+n2k | ≤ ξN(ζ1, ζ1)ξT (ζ2, ζ2).

Summing over the two other pairs gives either the same factor or the mixed case,

(
N−1∑
n=0

ζ1,nζ2,tp−tq+n)2 ≤
N−1∑
n=0

ζ2
1,n

N−1∑
n=0

ζ2
2,tp−tq+n ≤ ξN(ζ1, ζ1)ξT (ζ2, ζ2),

where the first inequality is Cauchy-Schwarz. Finally the summation over ti, i = 1, . . . , 4, with
at least one restriction |ti − tj| ≤ N gives at most NT 3 terms and we find the bound (82).
The next lemma is the key result on the evaluation of ξT (ζ1, ζ2) and hence the empirical

moments for a class of processes defined by coeffi cients (ζ1n, ζ2n). We assume that ζ1 and ζ2

satisfy conditions of the type

|ζ(a)
1,0 | ≤ 1, |ζ(a)

1n | ≤ c(1 + log n)m1n−a−1, n ≥ 1, (85)

|ζ(a)∗
1,0 | ≤ 1, |ζ(a)∗

1n | ≤ cT a+1/2(1 + | log
n

T
|)m1n−a−1, n ≥ 1, (86)

where c does not depend on a or n. We use superscript (a) to indicate the order of magnitude
of the bound, but sometimes omit it when that should cause no confusion, and an asterisk to
indicate the normalization by T a+1/2. Note that (85) and (86) are satisfied by the fractional
coeffi cients and their derivatives, see Lemma A.5.
We repeatedly use the elementary inequalities, for 0 < κ < 1,

T∑
n=1

n−u−1 ≤ 1 +

∫ T

1

x−u−1dx = 1 + u−1(1− T−u) ≤ 1 +
1

u
≤ 2κ−1, u ≥ κ, (87)

κ−1(1− T−κ) ≤ u−1(1− T−u) =

∫ T

1

x−u−1dx ≤
T∑
n=1

n−u−1, u ≤ κ. (88)
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Lemma A.7 For i = 1, 2, let ζ(ai)
in and ζ(ai)∗

in satisfy (85) and (86) with |ai| ≤ a0. Then:

(i) Uniformly for min(a1 + 1, a2 + 1, a1 + a2 + 1) ≥ a we have

ξT (ζ
(a1)
1 , ζ

(a2)
2 ) ≤ c

{
(1 + log T )m1+m2+1T−a,
a−1,

a ≤ 0,
a > 0.

(89)

(ii) Uniformly for max(a1, a2, a1 + a2 + 1) ≤ −κ for some κ > 0,

ξT (ζ
(a1)∗
1 , ζ

(a2)∗
2 ) ≤ cκ−1. (90)

(iii) Uniformly for a1 ≥ −1/2 + a and a2 ≤ −1/2− κ for any a ≥ −1/2 and any κ < 1/2,

ξT (ζ
(a1)
1 , ζ

(a2)∗
2 ) ≤ c(1 + log T )m1+m2+1T−min(a,κ). (91)

Proof. In evaluating (78) we focus on terms with t > max(m,n), because the analysis with
t = m or t = n is straightforward.
Proof of (89): For t > max(m,n) we first apply (85) and therefore bound the summation∑T+min(n,m)
t=max(n,m)+1 |ζ

(a1)
1,t−nζ

(a2)
2,t−m| by

T+min(n,m)∑
t=max(n,m)+1

c(1 + log(t− n))m1(t− n)−a1−1c(1 + log(t−m))m2(t−m)−a2−1.

For a ≤ 0, we bound the log factors by (1 + log T ). If ai ≤ −1, i = 1, 2, we bound (t −
n)−a1−1(t − m)−a2−1 ≤ T−a1−a2−2 ≤ T−a−1 and the result follows. If a1 ≤ −1, a2 ≥ −1 we
bound (t− n)−a1−1 ≤ T−a1−1 and find

T+min(n,m)∑
t=max(n,m)+1

(t− n)−a1−1(t−m)−a2−1 ≤ T−a1−1

T+min(n,m)∑
t=max(n,m)+1

(t−m)−a2−1 ≤ c(log T )T−a,

and similarly if a1 ≥ −1, a2 ≤ −1. If ai ≥ −1, i = 1, 2, then (t − n)−a1−1(t − m)−a2−1 ≤
(t−max(n,m))−(a1+a2+1)−1 and the bound for ξT (ζ

(a1)
1 , ζ

(a2)
2 ) follows because

T+min(n,m)∑
t=max(n,m)+1

(t−max(n,m))−a−1 ≤ c(log T )T−a for a ≤ 0.

For a > 0 we bound (1 + log(t− n))m1(t− n)−a/3 and (1 + log(t−m))m2(t−m)−a/3 by a
constant. Then ξT (ζ

(a1)
1 , ζ

(a2)
2 ) is by (87) bounded by

max
1≤n,m≤T

T+min(n,m)∑
t=max(n,m)+1

(t−max(n,m))−a+2a/3−1 ≤ ca−1.

Proof of (90): We find that ξT (ζ
(a1)∗
1 , ζ

(a2)∗
2 ) is bounded by a constant times the maximum

(over 0 ≤ |n−m| ≤ T ) of

T−1

T+min(n,m)∑
t=max(n,m)+1

(1 + | log(
t− n
T

)|)m1(
t− n
T

)−(a1+1)(1 + | log(
t−m
T

)|)m2(
t−m
T

)−(a2+1)

→
∫ 1+min(x,y)

max(x,y)

(1 + | log(s− x)|)m1(s− x)−(a1+1)(1 + | log(s− y)|)m2(s− y)−(a2+1)ds

as T →∞. This is uniformly bounded by cκ−1 if max(a1, a2, a1 + a2 + 1) ≤ −κ.
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Proof of (91): We evaluate the log factors by (1 + log T ) and T a2+1/2(t −m)−(a2+1/2+κ) ≤
T a2+1/2T−(a2+1/2+κ) = T−κ. Because a1 + 1 ≥ 0 and 1/2 − κ > 0 we find that the remaining
terms in the summation are bounded as

(t− n)−a1−1(t−m)−1/2+κ ≤ (t−max(n,m))−a1−1−1/2+κ ≤ (t−max(n,m))−a−1+κ,

where the last inequality follows from −a1 ≤ 1/2 − a. Summing over t gives the bound
T−κTmax(−a+κ,0) = T−min(a,κ).

A.3 Limit theory for product moments of deterministic terms

The next lemma gives results for the impact of deterministic terms generated by initial values
and the constant term, see (44), in the models considered, using the bounds in JN (2010,
Lemma C.1). For the product moments in the proof of consistency we define, for d0 ≥ 1/2,

Dit(ψ) =


(∆d−b
− −∆d

−)X̃t + (∆d−b
+ −∆d

+)µ0t,

(∆d+ib
− −∆d+kb

− )X̃t + (∆d+ib
+ −∆d+kb

+ )µ0t,

∆d+kb
− X̃t + ∆d+kb

+ µ0t,

i = −1,
i = 0, . . . , k − 1,
i = k.

(92)

In model (3) with d = b and a constant, we replace µ0t by µ0t +C∗0α0ρ
′
0 in Dit(ψ) for i ≥ 0

and subtract ∆d
+C
∗
0α0ρ

′
0 from D−1,t(ψ). For d0 < 1/2 we leave out the terms involving ∆d+ib

+ µ0t

because we use the representations (17) and (18). For the analysis of the score function we
define the deterministic terms

d0t = Π0−(L)(X̃t −Xt) and d1t = DΠ0+(L)µ0t + DΠ0−(L)X̃t, (93)

where Dm denotes derivatives with respect to d + ib and DΠ0−(L) denotes the derivative of
Π−(L) evaluated at the true value. Note that the expression for d0t is the same for models (2)
and (3) because for the latter model we find from εt = Π0(L)Xt + α0ρ

′
0 that

εt(λ0) = Π0+(L)Xt+Π0−(L)X̃t+α0ρ
′
0 = Π0(L)Xt+α0ρ

′
0+Π0−(L)(X̃t−Xt) = εt+Π0−(L)(X̃t−Xt).

The expression for d1t is found as a linear combination of DDit(ψ)|ψ=ψ0 , see (92), and also
T 1/2−b0β′0⊥DD−1,t(ψ)|ψ=ψ0 if b0 > 1/2.

Lemma A.8 We let η > 0 and κ1 > 0, where κ1 < 1/2 if d0 < 1/2 and κ1 < min(1/2, d0−1/2)
if d0 > 1/2. It then holds that:

(i) For δi = d+ ib− d0 and b ≥ η the functions DmDit(ψ) are continuous in ψ and

max
−1/2−κ1≤δi≤u1

|DmDit(ψ)| → 0 as t→∞, (94)

max
−u0≤δi≤−1/2−κ1

max
1≤t≤T

|DmT δi+1/2β′0⊥Dit(ψ)| → 0 as T →∞. (95)

(ii) In model Hr(d = b) with a constant the same results hold.
(iii) If X−n = 0, n ≥ T υ, then for both Hr and for Hr(d = b) with a constant,

T−1/2

T∑
t=1

|d0t| → 0 for υ < 1/2. (96)

Proof. From (10) we have that µ0t = −Π0+(L)−1Π0−(L)Xt, and from Theorem 2 and
C0α0β

′
0 = 0 we get

µ0t = −(C0∆−d0+ + ∆−d0+b0
+ F+(L))(−α0β

′
0∆d0−b0
− +

k∑
j=0

Ψ0j∆
d0+jb0
− )Xt (97)
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= F+(L)α0β
′
0∆−d0+b0

+ ∆d0−b0
− Xt −

k∑
j=0

(C0Ψ0j∆
−d0
+ + F+(L)Ψ0j∆

−d0+b0
+ )∆d0+jb0

− Xt.

From JN (2010, Lemma C.1) we have the evaluations

| ∂
m

∂um
∆u

+∆v
−Xt| ≤ c(1 + log t)m+1t−min(u+v,u+1,v), (98)

| ∂
m

∂um
T u∆u

+∆v
−Xt| ≤ c(1 + log T )m+1T−min(v,1,v−u,−u). (99)

We see that differentiating the fractional coeffi cients gives an extra factor of the order (1+log T ),
and it is seen from the proof that such a factor does not change the results, so we continue
setting m = 0.
Proof for ∆d+ib

− X̃t in (i) and (ii): To prove (94) we find from (75) of Lemma A.5 that
because d+ ib ≥ d− b ≥ 0 we have

|∆d+ib
− X̃t| = |

N0−1∑
j=0

πj+t(−d− ib)X−n| ≤ c|
N0−1∑
j=0

(j + t)−(d+ib)−1| ≤ cN0t
−(d−b)−1, (100)

which proves (i) and (ii) because max0≤d+ib≤d1 |∆d+ib
− X̃t| ≤ ct−1. The proof of (95) for ∆d+ib

− X̃t

follows from (100) because max−u0≤δi≤−1/2−κ1 T
δi+1/2 → 0.

Proof for ∆
(i+1)d
+ C∗0α0ρ

′
0 for i ≥ 0 in (i) and (ii): We find ∆

(i+1)d
+ 1 = ∆(i+1)d1−∆

(i+1)d
− 1 =

−∆
(i+1)d
− 1, which is bounded by c

∑∞
n=t n

−η−1 ≤ ct−η uniformly for (i+ 1)d ≥ d ≥ η > 0 which
proves both (94) and (95).
Proof for ∆d+ib

+ µ0t in (i) and (ii): This term is only present if d0 > 1/2 and we only apply
the condition d − b ≥ 0. We first prove (94). The term ∆d+ib

+ µ0t contains terms of the form
G+(L)∆u

+∆v
−Xt with G(z) =

∑∞
n=0 gnz

n and
∑∞

n=0 |gn| < ∞, and where u = d + ib − γ0 and
v = d0 + jb0 ≥ γ0 with γ0 = d0 or γ0 = d0− b0, see (97). Because δi = d+ ib− d0 ≥ −1/2− κ1

in (94), then for both choices of γ0 we find u + v ≥ d + ib ≥ d0 − 1/2 − κ1, v ≥ γ0, and
u+ 1 ≥ d0 + 1/2− κ1 − γ0 ≥ 1/2− κ1 so that from (98) we get for d0 > b0 that

|∆d+ib−γ0
+ ∆d0+jb0

− Xt| ≤ c(1 + log t)t−min(d0−1/2−κ1,1/2−κ1,d0−b0) → 0.

The Dominated Convergence Theorem shows the same result for G+(L)∆d+ib−γ0
+ ∆d0+jb0

− Xt, and
(94) follows for ∆d+ib

+ µ0t when d0 > b0.
If d0 = b0 then ∆0

+∆0
−Xt = 0 and (97) implies

∆d+ib
+ µ0t = −

k∑
j=0

(C0Ψ0j∆
d+ib−d0
+ + F+(L)Ψ0j∆

d+ib
+ )∆d0+jb0

− Xt.

To prove (94) with d0 = b0 we take u = d + ib− γ0 where γ0 = d0 or 0 and v = d0 + jb0 ≥ d0

and find from (98) for d+ ib ≥ d0 − 1/2− κ1 > 0 that

|∆d+ib−γ0
+ ∆d0+jb0

− Xt| ≤ c(1 + log t)t−min(d0−1/2−κ1−γ0+d0,d0+1/2−κ1−γ0,d0) → 0.

To prove (95) we take l ≥ i and apply (99) with u = d + lb − γ0 and v = d0 + jb0 ≥
γ0 ≥ 0. Because u + v ≥ d − b ≥ 0 and v ≥ 0 imply v ≥ −u and v − u ≥ −u we have
min(v, 1, v − u,−u) = min(1,−u) and thus

|T d+ib−d0+1/2∆d+lb−γ0
+ ∆d0+jb0

− Xt| = T (i−l)b+1/2−d0+γ0 |T d+lb−γ0∆d+lb−γ0
+ ∆d0+jb0

− Xt|
≤ c(1 + log T )Tmax(−1/2+(i−l)b−d0+γ0,d+ib+1/2−d0)



Likelihood inference for cofractional processes 34

≤ c(1 + log T )Tmax(−1/2,−κ1) → 0

using d + ib − d0 + 1/2 ≤ −κ1. If we apply this for l = i = −1 and i = −1, l = 0 then we
find the result for (∆d−b

+ − ∆d
+)µ0t. With l = i, l = k and l = i = k we find the result for

(∆d+ib
+ −∆d+kb

+ )µ0t and ∆d+kb
+ µ0t, respectively.

Proof of (iii): The deterministic term d0t = Π0−(L)(X̃t−Xt) only depends on X−n, n ≥ N0,
because X̃−n = X−n, n < N0. We find the terms ∆d0+ib0

− Xt, i ≥ −1, which are bounded by
cT υt−1−(d0−b0), see (100). It follows that T−1/2

∑T
t=1 |d0t| → 0 for υ < 1/2.3

A.4 Limit theory for product moments of stochastic terms

We analyze product moments of processes that are either asymptotically stationary, near crit-
ical, or nonstationary, and we first define the corresponding fractional indices.

Definition A.1 We define S(κw, κv, κ̄v, κu) as the set where the three fractional indices w, v,
and u are in the intervals

[−w0,−1/2− κw], [−1/2− κv,−1/2 + κ̄v], [−1/2 + κu, u0], (101)

respectively, and where we assume 0 ≤ κv < κv and 0 < κv < min(b0/3, κw/2, κu/2, 1/6).

In the following we assume these bounds on (u, v, w). Thus for Zt ∈ Zb, b > 0, see Definition
2, and indices (w, v, u) as in Definition A.1, ∆w

+Z
+
t is nonstationary, ∆u

+Z
+
t is asymptotically

stationary, and ∆v
+Z

+
t is close to a critical process of the form ∆

−1/2
+ εt. In the applications

we always choose fixed values of κv, κu, and κw, but we shall sometimes choose small values
(→ 0) of κv.
In the subsequent lemmas we derive results for product moments of fractional differences

of processes in the class Zb0 , see Definition 2, or the deterministic term. For m = m1 +m2 we
define the product moments

DmMT (a1, a2) = T−1

T∑
t=1

(Dm1∆a1
+ Z

+
1t)(D

m2∆a2
+ Z

+
2t)
′,

MT ((a1, a2), (a1, a2)) = T−1

T∑
t=1

(
∆a1

+ Z
+
1t

∆a2
+ Z

+
2t

)(
∆a1

+ Z
+
1t

∆a2
+ Z

+
2t

)′
,

MT (a1, a2|a3) = MT (a1, a2)−MT (a1, a3)M−1
T (a3, a3)MT (a3, a2),

where a1, a2, a3 can be u,w, and v in the intervals in Definition A.1, or they can be the constant
one, in which case the notation MT (1, a2) means that ∆a1

+ Z
+
1t has been replaced by 1. Let NT

be a normalizing sequence and define MT (a1, a2) = OP (NT ) on a compact set K to mean that
N−1
T MT (a1, a2) is tight on K and MT (a1, a2) = oP (NT ) to mean that N−1

T MT (a1, a2) =⇒ 0 on
K. Finally, we introduce the notation M∗∗

T (w1, w2) = Tw1+w2+1MT (w1, w2) and M∗
T (w, a) =

Tw+1/2MT (w, a), where a can be u, v, or 1, to indicate that the nonstationary processes have
been normalized by Twi+1/2.

3Under the alternative assumption
∑∞
n=1 n

−1/2|X−n| <∞ (replacing X−n = 0 for n ≥ T υ) the argument is

|∆d0+ib0
− Xt| ≤ c

∞∑
n=0

(n+ t)−1−(d0−b0)|X−n| ≤ ct−1/2−(d0−b0)
∞∑
n=0

n−1/2|X−n| ≤ ct−1/2−(d0−b0),

such that T−1/2
∑T
t=1 t

−1/2−(d0−b0) ≤ cT−(d0−b0) → 0 for d0 > b0. If d0 = b0 then ∆d0−b0
− Xt = ∆0

−Xt = 0 for
t ≥ 1 and the dominating term becomes T−1/2

∑T
t=1 |∆

d0
−Xt| ≤ cTmax(−1/2,−d0) → 0.
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Lemma A.9 Let Zit = ξiεt + ∆b0
∑∞

n=0 ξ
∗
inεt−n ∈ Zb0 , i = 1, 2, and define MT (a1, a2) as above

and assume that E|εt|q <∞ for some q > κ−1
w and q ≥ 8. Then it holds jointly that:

(i) Uniformly for −w0 ≤ w ≤ −1/2− κw and −1/2 + κu ≤ u ≤ u0 we find that

DmMT (u1, u2) =⇒ DmE(∆u1Z1t)(∆
u2Z2t)

′, (102)

DmM∗∗
T (w1, w2) is tight, and

M∗∗
T (w1, w2) =⇒ ξ1

∫ 1

0

W−w1−1(s)W−w2−1(s)′dsξ′2, (103)

DmM∗
T (w, u) = OP ((1 + log T )2+mT−min(κu,κw)). (104)

Uniformly for −w0 ≤ w ≤ −1/2− κw, −1/2− κv ≤ v ≤ v0, and −1/2 + κu ≤ u ≤ u0,

M∗
T (w, v) = OP ((1 + log T )2T κv), (105)

MT (v, u) = OP (1). (106)

(ii) If we choose N = Tα with 0 < α < 1/4, and (ξ′1, ξ
′
2) has full rank, then for −1/2− κv ≤

vi ≤ −1/2 + κv we find

MT ((v1, v2), (v1, v2)) ≥ c
1−N−2κv

2κv
(ξ′1, ξ

′
2)′Ω0(ξ′1, ξ

′
2) +RT , (107)

where RT = oP (1) uniformly for |vi + 1/2| ≤ κv.

Proof. Amatrix valued process DmMT (a1, a2) is tight if the coordinate processes are tight, and
the (i, j)’th coordinate is a finite sum of univariate processes constructed the same way, so it is
enough to prove the result for univariate processes. We prove tightness by checking condition
(74) of Lemma A.1 for DmMT (a1, a2). The moments are evaluated by ξT (ζ1, ζ2), see Lemma
A.6, for suitable coeffi cients satisfying (85) and (86). We give the proofs for m1 = m2 = 0, as
the extra factors of (1 + log T )mi do not change the evaluations.
Proof of (102): We define the coeffi cients ζi,t−n = πt−n(−ui), which satisfy condition (85).

The assumption that ui ≥ −1/2 + κu implies min(u1 + u2 + 1, u1 + 1, u2 + 1) ≥ 2κu, so we can
apply (79) with N = 0 and (89) which shows that ||MT (u1, u2)||4 ≤ c.
Next we consider ||MT (u1, u2)−MT (ũ1, ũ2)||4 which we bound by

||T−1

T∑
t=1

(∆u1
+ Z

+
1t −∆ũ1

+ Z
+
1t)(∆

u2
+ Z

+
2t)
′||4 + ||T−1

T∑
t=1

(∆ũ1
+ Z

+
1t)(∆

u2
+ Z

+
2t −∆ũ2

+ Z
+
2t)
′||4. (108)

We apply (79) with N = 0 to the first term with ζ1,t−n = (πt−n(−u1) − πt−n(−ũ1)) and
ζ2,t−n = πt−n(−u2) bounded by (85), see also JN (2010, Lemma B.3), and it follows from (89)
with a = 2κu that the first term of (108) is bounded by c|u1 − ũ1|. A similar proof works for
the other term of (108), and tightness then follows from (74).
Notice that the second condition of (74) follows in the same way as the first using the

inequalities in Lemma A.7. The only difference is an extra log factor and the factor (u1 − ũ1).
We next apply the Law of Large Numbers to identify the limit as an expectation. From

∆ui
+Z

+
it =

∑t−1
h=0(π(−ui)∗ξi)hεt−h and ∆uiZit =

∑∞
h=0(π(−ui)∗ξi)hεt−h we see that it is enough

that the variance of the difference converges uniformly to zero,

V ar(∆uiZit −∆ui
+Z

+
it ) =

∞∑
h=t

(π(−ui) ∗ ξi)hΩ(π(−ui) ∗ ξi)h → 0 as t→∞.

We proved above that MT (u1, u2) is tight and therefore MT (u1, u2) =⇒ E(∆u1Z1t)(∆
u2Z2t)

′.
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Proof of (103): We define ζ∗i,t−n(wi) = Twi+1/2πt−n(−wi) for wi ≤ −1/2 − κw so that
max(w1, w2, w1 +w2 + 1) ≤ −2κw < 0.We then apply (79) with N = 0 and (90) with κ = 2κw
and find that (74) holds and M∗∗

T (w1, w2) is tight. Because −1/(wi + 1/2) ≤ κ−1
w < q we get

the limit
Twi+1/2∆wi

+ Z
+
i[Ts] =⇒ W−wi−1(s) on Dp([0, 1]), i = 1, 2,

see (6) and also JN (2010, Lemma D.2) for a few more details. The Continuous Mapping
Theorem gives the result (103).
Proof of (104): We apply (79) withN = 0 and (91) for ζ1,t−n(u) = πt−n(−u) and ζ∗2,t−n(w) =

Tw+1/2πt−n(−w) and find for w ≤ −1/2− κw, u ≥ −1/2 + κu, a = κu, and κ = κw that

||M∗
T (w, u)||4 ≤ c(1 + log T )T−min(κu,κw),

||M∗
T (w, u)−M∗

T (w̃, ũ)||4 ≤ c|(w, u)− (w̃, ũ)|(1 + log T )2T−min(κu,κw),

and (74) implies that M∗
T (w, u) = OP ((1 + log T )2T−min(κu,κw)). The extra (1 + log T ) in the

increment is due to JN (2010, Lemma B.3, eqn (56)).
Proof of (105): We first apply (79) withN = 0, ζ1,t−n = πt−n(−v), and ζ∗2,t−n = Tw+1/2πt−n(−w)

and find from (91) with a = −κv, κ = κw that for v ≥ −1/2− κv, w ≤ −1/2− κw we get
||M∗

T (w, v)||4 ≤ c(1 + log T )T κv , (109)

||M∗
T (w, v)−M∗

T (w̃, ṽ)||4 ≤ c|(w, v)− (w̃, ṽ)|(1 + log T )2T κv ,

and (74) then shows that M∗
T (w, v) = OP ((1 + log T )2T κv).

Proof of (106): We define ζ1,t−n = πt−n(−u) and ζ2,t−n = πt−n(−v) where v ≥ −1/2 − κv
and u ≥ −1/2 +κu, so that min(u+ 1, v+ 1, u+ v+ 1) ≥ min(κu, 1/2)−κv > 0, see Definition
A.1. It then follows from (79) with N = 0 and (89) that (74) is satisfied and hence that
MT (u, v) is tight.
Proof of (107): Because we need to decompose the processes we use the notation

PT (U1, U2) = T−1

T∑
t=1

U+
1tU

+′
2t and PT,N(U1, U2) = T−1

T∑
t=N+1

U+
1tU

+′
2t

for product moments of any processes U1t and U2t. We define Z̃+
it by Z

+
it = ξiεt+∆b0

+ Z̃
+
it , i = 1, 2,

ξ = blockdiag(ξ1, ξ2), ∆v
+Z

+
t = (∆v1

+Z
+′
1t ,∆

v2
+Z

+′
2t )′, ∆v

+Z̃
+
t = (∆v1

+ Z̃
+′
1t ,∆

v2
+ Z̃

+′
2t )′, and ∆v

+εt =
(∆v1

+ ε
′
t,∆

v2
+ ε
′
t)
′, and find the evaluation

PT (∆v
+Z,∆

v
+Z) ≥ ξPT (∆v

+ε,∆
v
+ε)ξ

′ + PT (∆b0+v
+ Z̃,∆v

+ε)ξ
′ + ξPT (∆v

+ε,∆
b0+v
+ Z̃), (110)

where the inequality means that the difference is positive semi-definite.
We define the index ui = vi + b0 ≥ −1/2 + (b0 − κv) for ∆b0+vi

+ Z̃+
it so that κu − κv =

b0 − 2κv > 0. It follows that we can use (106) for the components of PT (∆b0+v
+ Z̃,∆v

+ε) and its
transposed which are therefore OP (1).
We next consider PT (∆v

+ε,∆
v
+ε) ≥ PT,N(∆v

+ε,∆
v
+ε) and decompose, for t > N = Tα,

V +
it = ∆vi

+εt = V
(N)
it + V

(N)

it =
N−1∑
n=0

πn(−vi)εt−n +
t−1∑
n=N

πn(−vi)εt−n. (111)

We define V (N)
t = (V

(N)′
1t , V

(N)′
2t )′, V

(N)

t = (V
(N)′
1t , V

(N)′
2t )′ and evaluate the product moment

PT,N(∆v
+ε,∆

v
+ε) ≥ PT,N(V (N), V (N)) + PT,N(V (N), V

(N)
) + PT,N(V

(N)
, V (N)). (112)
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Analysis of PT,N(V (N), V
(N)

): It follows from (89) for ai = vi ≥ −1/2−κv that ξT (ζ2, ζ2) ≤
c(1 + log T )T κv and ξN(ζ1, ζ1) ≤ c(1 + logN)Nκv , so that (82) implies

||PT,N(V (N), V
(N)

)||4 ≤ c(1 + log T )T−(1−2κv)/4+α(1+2κv)/4, (113)

which converges to zero for α < 1/4 and κv < 1/6 because −(1− 2κv)/4 + α(1 + 2κv)/4 < 0.
To prove tightness we check condition (74). We take two points (v1, v2) and (ṽ1, ṽ2). For

convenience we introduce the notation MT,N(v1, v2) = PT,N(V (N), V
(N)

) to emphasize the de-
pendence on (v1, v2). Then the difference MT,N(v1, v2)−MT,N(ṽ1, ṽ2) contains differences like
πn1(−v1)πn2(−v2)− πn1(−ṽ1)πn2(−ṽ2), which we can write as

(πn1(−v1)− πn1(−ṽ1))πn2(−ṽ2) + πn1(−v1)(πn2(−v2)− πn2(−ṽ2)),

where the first term is, by the Mean Value Theorem,

πn2(−ṽ2)(πn1(−v1)− πn1(−ṽ1)) = πn2(−ṽ2)(v1 − ṽ1)Dπn1(−v∗1) = (v1 − ṽ1)ζ1n1ζ2n2

for some intermediate value v∗1. Here ζ1n1 and ζ2n2 satisfy (85) with ai = vi ≥ −1/2− κv and
m1 = 1,m2 = 0. Therefore we have from (82) and (89) that

||
T∑

t=N+1

∑
1≤n1,n2<N

(πn1(−v1)− πn1(−ṽ1))πn2(−ṽ2)ε1,t−n1ε2,t−n2||4 ≤ cT |v1 − ṽ1|,

where cT → 0, see (113), and a similar expression for the other term. This shows that

||MT,N(v1, v2)−MT,N(ṽ1, ṽ2)||4 ≤ cT |v − ṽ| ≤ c|v − ṽ|,

and hence that MT,N(v1, v2) = PT,N(V (N), V
(N)

) is tight and therefore oP (1) by (113).
Analysis of PT,N(V (N), V (N)): We define for −1/2− κv ≤ vi ≤ −1/2 + κv the coeffi cient

FNij =
N−1∑
n=0

πn(−vi)πn(−vj) ≥ 1 + c
N−(vi+vj+1) − 1

−(vi + vj + 1)
≥ 1 + c

1−N−2κv

2κv
,

where the dependence on κv appears for the first time, see Lemma A.5(ii) and (88). Note that
FNij →∞ as (κv, N)→ (0,∞). We find that

E(PT,N(V (N), V (N))) = T−1

T∑
t=N+1

E(V (N), V (N)) = T−1(T −N)

(
FN11 FN12

FN12 FN22

)
⊗ Ω0.

The difference RT (v1, v2) = PT,N(V (N), V (N))− E(PT,N(V (N), V (N))) =⇒ 0 uniformly for |vi +
1/2| ≤ κv by (81) of Lemma A.6 and (89) because

||RT (v1, v2)||4 ≤ c(N/T )1/4ξN(ζ1, ζ2) ≤ cT−1/4(1 + logN)N1/4+κv → 0

for α < 1/4 and κv < 1/6 because −1/4+α(1/4+κv) < 0. Tightness follows as forMT,N(v1, v2)
in the analysis of PT,N(V (N), V (N)). Hence

ξPT,N(V (N), V (N))ξ′ ≥ c
1−N−2κv

2κv
(ξ′1, ξ

′
2)′Ω0(ξ′1, ξ

′
2) + oP (1),

where the remainder term is uniformly small for |vi + 1/2| ≤ κv independently of κv. From
(110) and multiplying (112) by ξ and ξ′ we find (107).
We apply the results of Lemma A.9 and Corollary A.10 in the analysis of `T,p(ψ) and `T,r(ψ)

to show that they converge, which is the key ingredient in the proof of consistency of the MLE
and in the test for rank. The results for m = 0, 1, 2 in Lemma A.9 are used to show that the
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information matrix is tight in a neighborhood of the true value and the results are summarized
for AT (ψ),BT (ψ), and CT (ψ) in Theorem 6.
For the proof of existence and consistency of the MLE we need the product moments that

enter the likelihood function `T,p(ψ), which are analyzed in Corollaries A.10 and A.12 to follow.

Corollary A.10 If the assumptions of Lemma A.9 hold, then uniformly for (w, v, u) ∈ S(κw, κv, κ̄v, κu),
see (101) of Definition A.1:

(i) It holds that

M∗∗
T (w1, w2|w3, u) = M∗∗

T (w1, w2|w3) + oP (1), (114)

MT (u1, u2|w, u3) =⇒ V ar(∆u1Z1t,∆
u2Z2t|∆u3Z3t), (115)

MT (v, u1|w, u2) = OP (1). (116)

(ii) If N = Tα with 0 < α < 1/4, and (ξ′1, ξ
′
2) has full rank, then

MT ((v1, v2), (v1, v2)|w, u) ≥ c
1−N−2κv

2κv
(ξ′1, ξ

′
2)′Ω0(ξ′1, ξ

′
2) +RT , (117)

where RT = OP (1) uniformly for |vi + 1/2| ≤ κv.

Proof. Proof of (i): The proofs of (114), (115), and (116) are the same, so we give only the
latter. We decompose MT (v, u1|w, u2) as

MT (v, u1)−
(
M∗

T (w, v)
MT (u2, v)

)′(
M∗∗

T (w,w) M∗
T (w, u2)

M∗
T (u2, w) MT (u2, u2)

)−1(
M∗

T (w, u1)
MT (u2, u1)

)
,

where the second term is

M∗
T (v, w)M∗∗

T (w,w)−1M∗
T (w, u1) +MT (v, u2)MT (u2, u2)−1MT (u2, u1) + oP (1)

because M∗
T (w, u2) =⇒ 0 by (104). The result follows by application of Lemma A.9.

Proof of (ii): The proof is similar to that of (107) except for conditioning on a stationary
and a nonstationary variable. We start by eliminating the stationary variable and find that
MT ((v1, v2), (v1, v2)|w, u) is

MT ((v1, v2), (v1, v2)|w)−MT ((v1, v2), u|w)MT (u, u|w)−1MT (u, (v1, v2)|w),

where MT (u, u|w)−1 = OP (1) by (115) and MT ((v1, v2), u|w) = OP (1) by (116), and we
therefore continue with MT ((v1, v2), (v1, v2)|w).
We decompose ∆vi

+Z
+
it = ξi∆

vi
+εt + ∆vi+b0

+ Z̃+
it , i = 1, 2, and define Z+

t = (Z+′
1t , Z

+′
2t )′ and

Z̃+
t = (Z̃+′

1t , Z̃
+′
2t )′. Then we have the evaluation

MT ((v1, v2), (v1, v2)|w) ≥ ξPT (∆vε,∆vε|∆wZ3)ξ′

+ ξPT (∆vε,∆b0+vZ̃|∆wZ3)ξ′ + ξPT (∆b0+vZ̃,∆vε|∆wZ3)ξ′.

It follows from (116) for ui = vi + b0 ≥ −1/2 + b0 − κv (i.e., κu = b0 − κv > 2κv) and
w ≤ −1/2− κw that the last two terms are OP (1).
We next evaluate PT (∆vε,∆vε|∆wZ3) ≥ PT,N(∆vε,∆vε|∆wZ3) and decompose ∆vi

+εt =

V
(N)
it + V

(N)

it , see (111), and stack them into V (N) and V
(N)
. We bound PT,N(∆vε,∆vε|∆wZ3)

from below by

PT,N(V (N), V (N)|∆wZ3) + PT,N(V (N), V
(N)|∆wZ3) + PT,N(V

(N)
, V (N)|∆wZ3)

= PT,N(V (N), V (N))−R1T +R2T +R′2T ,
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where

R1T = P ∗T,N(V (N),∆wZ3)P ∗∗T (∆wZ3,∆
wZ3)−1P ∗T,N(∆wZ3, V

(N)),

R2T = PT,N(V (N), V
(N)

)− P ∗T,N(V (N),∆wZ3)P ∗∗T (∆wZ3,∆
wZ3)−1P ∗T,N(∆wZ3, V

(N)
),

and asterisks denote that nonstationary processes have been normalized as for M∗
T and M

∗∗
T .

We next show that, for N = Tα,

P ∗T,N(V (N),∆wZ3) = OP ((1 + log T )2(T 3ακv−2κv + T−1/4+α(1+2κv)/4), (118)

P ∗T,N(V
(N)
,∆wZ3) = OP ((1 + log T )2T κv). (119)

If these were proved and α < 1/4 and κv < 1/6, it follows that R1T and R2T are oP (1), see
also (113). Thus, proving (118) and (119) completes the proof of (ii), see (107) for the main
term PT,N(V (N), V (N)).

Proof of (118): We decompose∆w
+Z3 = W

(N)
t +W

(N)

t =
∑N−1

n=0 πn(−w)Z+
3,t−n+

∑t−1
n=N πn(−w)Z+

3,t−n,
and evaluate

||P ∗T,N(V (N),∆wZ3)||4 ≤ ||P ∗T,N(V (N),W (N))||4 + ||P ∗T,N(V (N),W
(N)

)||4.

From (80) and (91) with a = −κv and κ = κw we find that ||P ∗T,N(V (N),W (N))||4 is bounded
by

cξN(ζ
(v1)
1 , ζ

(w)
2 )Tw+1/2 ≤ c(N/T )κwξN(ζ

(v1)
1 , ζ

(w)∗
2 )

≤ c(1 + log T )T−κw+α(κw+κv) ≤ c(1 + log T )T−2κv+3ακv ,

using κw > 2κv and where ξN(ζ
(v1)
1 , ζ

(w)∗
2 ) denotes ξN(ζ

(v1)
1 , ζ

(w)
2 ) normalized by Nw+1/2. Simi-

larly ||P ∗T,N(V (N),W
(N)

)||4 is, by (82), (90), and (91), bounded by

c(N/T )1/4ξN(ζ
(v1)
1 , ζ

(v1)
1 )1/2ξT (ζ

(w)∗
2 , ζ

(w)∗
2 )1/2 ≤ c(1 + log T )T−1/4+α(1+2κv)/4.

Proof of (119): Because ∆v
+εt = V

(N)
t + V

(N)

t for t > N = Tα we have

P ∗T,N(V
(N)
,∆wZ3) = P ∗T (∆vε,∆wZ3)− P ∗T,N(V (N),∆wZ3)− (N/T )1/2−wP ∗N(∆vε,∆wZ3).

The first term is OP ((1 + log T )2T κv) by (105), the second is OP ((1 + log T )2(T 3ακv−2κv +
T−1/4+α(1+2κv)/4)) by (118), and the last term is OP ((1 + logN)2Nκv+1+κwT−1−κw) by (105).
The first term dominates which proves the result.

Lemma A.11 If the assumptions of Lemma A.9 hold, then:

(i) Uniformly for −1/2 + κu ≤ u ≤ u0 it holds that

DmMT (1, u) = OP ((1 + log T )2+mT−κu). (120)

Uniformly for −w0 ≤ w ≤ −1/2− κw it holds that DmM∗
T (1, w) = OP (1) and

M∗
T (1, w) =⇒ ξ

∫ 1

0

W−w−1(s)ds. (121)

Uniformly in −1/2− κv ≤ v ≤ v0 it holds that

MT (1, v) = OP ((1 + log T )2T κv). (122)
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(ii) Uniformly for (w, v, u) ∈ S(κw, κv, κ̄v, κu), see (101) of Definition A.1, it holds that

MT (u1, u2|1) =⇒ V ar(∆u1Z1t,∆
u2Z2t), (123)

M∗
T (w1, u2|1) = OP ((1 + log T )2T−min(κu,κw)) + oP (1), (124)

M∗∗
T (w1, w2|1) =⇒ ξ1

∫ 1

0

(W−w1−1(s)|1)(W−w2−1(s)|1)′dsξ′2, (125)

MT (v, u|1) = OP (1), (126)

M∗
T (v, w|1) = OP ((1 + log T )2T κv), (127)

MT ((v1, v2), (v1, v2)|1) ≥MT ((v1, v2), (v1, v2)) + oP (1), (128)

where (W−w−1(s)|1) = W−w−1(s)−
∫ 1

0
W−w−1(s)ds.

Proof. Proof of (i): The variable MT (1, a) = T−1
∑T

t=1 ∆a
+Z

+
2t is a linear process in ε2t with

mean zero, so that it follows from JN (2010, Lemma B.1) that ||MT (1, a)||4 ≤ c||MT (1, a)||2.
As in the proof of Lemma A.6 it is enough to prove the result for Z2t = ε2t, and as in Lemma
A.9 we give only the proof for m = 0 because the additional (log T )-factors do not change the
proof. We find because |πn(−a)| ≤ cn−a−1 that

||MT (1, a)||22 ≤ cT−2

T∑
t=1

[
t−1∑
n=1

n−a−1]2 ≤ c(1 + log T )2T−1+2 max(−a,0). (129)

For a = u ≥ −1/2 +κu we find ||MT (1, u)||4 ≤ c(1 + log T )T−κu and for a = v ≥ −1/2−κv we
get ||MT (1, v)||4 ≤ c(1 + log T )T κv . For a = w we get ||M∗

T (1, w)||4 ≤ c by the same method
as in the proof of (90). We also find from (6) that

T−1

T∑
t=1

Tw+1/2∆w
+Zt

D→ ξ

∫ 1

0

W−w−1(s)ds.

Proof of (ii): To prove (123)-(127) we use decompositions likeMT (u1, u2|1) = MT (u1, u2)−
MT (u1, 1)MT (1, 1)−1MT (1, u2) and apply Lemmas A.9 and A.11(i), and note thatMT (1, 1)−1 =
1.
To prove (128) we follow the proof of (107) and write Z+

it = ξiεt + ∆b0
+ Z̃

+
it and the same

argument shows that we only need to consider ξiεt, and it is then enough to prove the result
for Z+

it = εt. We decompose ∆v
+εt = V

(N)
t + V

(N)

t as in (111) and find, as in (112), that

MT ((v1, v2), (v1, v2)|1) ≥ PT,N(V (N), V (N)|1) + PT,N(V (N), V
(N)|1) + PT,N(V

(N)
, V (N)|1)

= PT,N(V (N), V (N))−R1T +R2T +R′2T ,

where

R1T = PT,N(V (N), 1)MT (1, 1)−1PT,N(1, V (N)),

R2T = PT,N(V (N), V
(N)

)− PT,N(V (N), 1)MT (1, 1)−1PT,N(1, V
(N)

).

For N = Tα and a = v2 ≥ −1/2− κv we get from (129) that

||PT,N(1, V (N))||4 ≤ c(1 + log T )T−1/2+α(1/2+κv), (130)

||PT,N(1, V
(N)

)||4 ≤ c(1 + log T )T κv . (131)

This shows that R1T = oP (1) for α < 1/4 and κv < 1/6 because −1/2 + α(1/2 + κv) < 0, and
also that R2T = oP (1) because −1/2 + α(1/2 + κv) + κv < 0 and because (113) shows that

PT,N(V (N), V
(N)

) = oP (1) for α < 1/4 and κv < 1/6.
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Corollary A.12 If the assumptions of Lemma A.9 hold, then uniformly for (w, v, u) ∈ S(κw, κv, κ̄v, κu),
see (101) of Definition A.1:

(i) It holds that

M∗∗
T (w1, w2|w3, u, 1) = M∗∗

T (w1, w2|w3, 1) + oP (1), (132)

MT (u1, u2|w, u3, 1) =⇒ V ar(∆u1Z1t,∆
u2Z2t|∆u3Z3t), (133)

MT (v, u1|w, u2, 1) = OP (1). (134)

(ii) If N = Tα with α < 1/4, and (ξ′1, ξ
′
2) has full rank, then for −1/2−κv ≤ vi ≤ −1/2 +κv

we find

MT ((v1, v2), (v1, v2)|w, u, 1) ≥ c
1−N−2κv

2κv
(ξ′1, ξ

′
2)′Ω0(ξ′1, ξ

′
2) +RT , (135)

where RT = OP (1) uniformly for |vi + 1/2| ≤ κv.

Proof. Proof of (i): The proofs are identical to those of (114), (115), and (116) except
MT (a1, a2) are replaced byMT (a1, a2|1) and the results follow by application of Lemma A.11(ii).
Proof of (ii): The proof is identical to that of Corollary A.10(ii) except all product moments

are also conditional on a constant, 1, such that the remainder terms are now

R1T = P ∗T,N(V (N),∆wZ3|1)P ∗∗T (∆wZ3,∆
wZ3|1)−1P ∗T,N(∆wZ3, V

(N)|1),

R2T = PT,N(V (N), V
(N)|1)− P ∗T,N(V (N),∆wZ3|1)P ∗∗T (∆wZ3,∆

wZ3|1)−1P ∗T,N(∆wZ3, V
(N)|1).

We thus need to show that, for N = Tα,

P ∗T,N(V (N),∆wZ3|1) = OP ((1 + log T )2(T 3ακv−2κv + T−1/4+α(1+2κv)/4), (136)

P ∗T,N(V
(N)
,∆wZ3|1) = OP ((1 + log T )2T κv). (137)

If these were proved and α < 1/4 and κv < 1/6, it follows that R1T and R2T are oP (1), see
also (113), (130), and (131). Thus, proving (136) and (137) completes the proof of part (ii),
see (107) and (128) for the main term PT,N(V (N), V (N)|1).
Proof of (136): We find

P ∗T,N(V (N),∆wZ3|1) = P ∗T,N(V (N),∆wZ3)− PT,N(V (N), 1)MT (1, 1)−1P ∗T,N(∆wZ3, 1).

The first term is considered in (118). Next, P ∗T,N(∆wZ3, 1) = M∗
T (w, 1)− (N/T )1/2−wM∗

N(w, 1)
such that

PT,N(V (N), 1)MT (1, 1)−1P ∗T,N(∆wZ3, 1) = OP ((1 + log T )2T−1/2+α(1/2+κv))

by (121) and (130). The right-hand side is dominated by OP ((1 + log T )2T−2κv+3ακv) for
κ < 1/6, and summing up we thus find (136).
Proof of (137): The proof is identical to that of (119) except we refer to (127) and (136)

instead of (105) and (118).

Appendix B Proof of Theorem 4
By Lemma A.8 deterministic terms generated by initial values are uniformly small. Note that
(94) is formulated for index ≥ −1/2− κ1, which covers not only the asymptotically stationary
β′0Xjt and β′0⊥Xit but also the nearly critical ones, whereas (95) deals with the nonstationary
β′0⊥Xit. Hence deterministic terms in the processes do not influence the limit behavior of
product moments, and in the remainder of the proof of Theorem 4 we therefore assume that
they are zero and replace the regressors Xit by their stochastic component U+

it , see (45).
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B.1 Proof of (30): unique minimum of `p(ψ)

OnNdiv(0) the inequality is trivially satisfied and onNconv(0) we have that Ukt = ∆d+kb−d0(C0εt+
∆b0Yt) is stationary. The transfer function for Ut = C0εt + ∆b0Yt is f0(z)−1, where f0(z) =
(1− z)−d0Π0(z) = (1− z)−b0Ψ0(1− (1− z)b) for |z| < 1, see (8).
For given ψ let us assume that {β′0⊥Uit}ki=m are stationary and {β′0⊥Uit}m−1

i=−1 are nonsta-
tionary, so that Fstat(ψ) = σ({Uit}k−1

i=m, {β′0Ujt}m−1
j=−1). We define, see also (22),

S
(m)
t = Ukt +

k−1∑
i=m

ΨiUit +

m−1∑
j=0

Ψjβ̄0β
′
0Ujt − Πβ̄0β

′
0U−1,t = g(m)(L)(C0εt + ∆b0Yt),

g(m)(L) = ∆d−d0 [∆kbIp +

k−1∑
i=m

Ψi(∆
ib −∆kb) +

m−1∑
j=0

Ψjβ̄0(∆jb −∆kb)β′0 − Πβ̄0β
′
0(∆−b − 1)].

The transfer function of the stationary linear process S(m)
t is g(m)(z)f0(z)−1, which has

g(m)(0)f0(0)−1 = Ip, so that S
(m)
t is of the form S

(m)
t = εt + ξ1εt−1 + . . . . It follows that

V ar(S
(m)
t ) ≥ Ω0 and equality holds only for S

(m)
t = εt or g(m)(z) = f0(z) for all |z| < 1, which

implies that (d, b) = (d0, b0), m = 0, and that Ψj = Ψj0 and Πβ̄0 = α0.

Note that V ar(S(m)
t ) is quadratic in the parameters {Ψi}k−1

i=m, {Ψjβ̄0}k−1
j=0 ,Πβ̄0, and that

minimizing over these, the residual variance satisfies the same inequality,

V ar(Ukt|Fstat(ψ)) = V ar(S
(m)
t |Fstat(ψ)) ≥ Ω0 for all ψ.

Equality holds only for ψ = ψ0 so this completes the proof of (30).

B.2 Proof of (31): convergence in probability of `T,r(ψ0)

We find from (34) that the matrices in the reduced rank regression can be expressed in terms
of AT ,BT , and CT , see (35). The eigenvalues in (25) are continuous functions of the product
moment matrices, so that (41) shows that {ω̂i(ψ)}ri=1 =⇒ {ωi(ψ)}ri=1 on Cr(N (ψ0, ε)) as T →
∞. It follows that {ωi(ψ)}ri=1 are continuous in ψ and given as solutions of

det(ωΣββ − Σβ0Σ−1
00 Σ0β) = 0, (138)

where Σ00 = V ar(Ukt|Ft),Σ0β = Cov(Ukt, β
′
0U−1t|Ft), and Σββ = V ar(β′0U−1t|Ft), and where

Ft = σ(U0t, . . . , Uk−1,t), see Johansen (1996, chapter 11) for the detailed proof for the I(1)
model. For ψ = ψ0, `T,r(ψ0) is given by

log det(S00(ψ0)) +
r∑
i=1

log(1− ω̂i(ψ0))
P→ log det(V ar(Ukt|Ft)) +

r∑
i=1

log(1− ωi(ψ0))

= log det(Σ00 − Σ0βΣ−1
ββΣ0β) = log det(Σ00|β) = log det(Ω0).

This completes the proof of (31).

B.3 Proof of (i): model Hp

In the following we use the result that if we regress a stationary variable on stationary and
nonstationary variables, the limit of the normalized residual sum of squares is the same as
if we leave out the nonstationary variables from the regression. Similarly if we regress a
nonstationary variable on stationary and nonstationary variables, the limit of the normalized
residual sums of squares is the same as if we leave out the stationary variables from the
regression. Special problems arise if the regression contains processes that are nearly critical.
These results are made precise in Appendix A.4 and especially Lemma A.9 and Corollary
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Figure 1: The parameter space N is the set
bounded by b > 0, b ≤ d, and d ≤ d1. The
sets N bd

m = N bd
m (κ1, κ), where a process is

close to being critical, and the sets N int
m =

N int
m (κ1, κ) are illustrated assuming k = 1.

If k ≥ 2 there would be more lines.

A.10, which we apply repeatedly below to show weak convergence of the profile likelihood as
a process indexed by the parameters d and b.
The behavior of the processes depends on d and b. Note that β′0⊥∆d+mbXt ∈ F(d0−d−mb)

and β′0∆d+nbXt ∈ F(d0 − b0 − d − nb), and it is convenient to define the fractional indices
δm = d − d0 + mb. Thus the fractional order is the negative fractional index. For notational
reasons in Definition B.2 below we define δ−2 = −∞ and δk+1 =∞.
The process ∆d+mbβ′0⊥Xt is critical if δm = d + mb − d0 = −1/2, see Figure 1, and we

partition the parameter space into “interiors”and “boundaries”given as follows.

Definition B.2 We take 0 < κ < κ1 and define the (κ1, κ)−interiors,
N int
m (κ1, κ) = {ψ ∈ N : δm−1 ≤ −1/2− κ1 and − 1/2 + κ ≤ δm}, −1 ≤ m ≤ k + 1, (139)

and the (κ1, κ)−boundaries,
N bd
m (κ1, κ) = {ψ ∈ N : −1/2− κ1 ≤ δm ≤ −1/2 + κ}, −1 ≤ m ≤ k. (140)

Note (recalling δk+1 =∞) that N int
k+1(κ1, κ) = N int

k+1(κ1) does not depend on κ and

Nconv(κ) = ∪k−1
m=−1(N int

m (κ1, κ) ∪N bd
m (κ1, κ)) ∪N int

k (κ1, κ) = {ψ ∈N : δk ≥ −1/2 + κ},
Ndiv(κ) = N int

k+1(κ1) ∪N bd
k (κ1, κ) = {ψ ∈N : δk ≤ −1/2 + κ}.

In (139) we define the (κ1, κ)−interior N int
m (κ1, κ) as the set of ψ for which all processes are

either clearly stationary or clearly nonstationary in the sense that their fractional index is
either ≥ −1/2 + κ or ≤ −1/2 − κ1. The (κ1, κ)−boundary N bd

m (κ1, κ) is the set where the
process β′0⊥Xmt has an index which is close to the critical value of −1/2, see Figure 1.
The profile likelihood for model Hp is derived by regressing Xkt = ∆d+kbXt on the other

variables, which can be either asymptotically stationary, nonstationary, or near critical. We
apply the expression `T,p(ψ) = log det(SSRT (ψ)), see (27), and Lemma A.9 and Corollary
A.10 to find the asymptotic properties of det(SSRT (ψ)). We use the notation κw, κv, κv, and
κu, see (101) in Definition A.1, and note that for (d, b) ∈ N all indices are bounded. The
assumptions in Theorem 4 imply that q−1 < min(η/3, (1/2 − (d0 − b0))/2) and q−1 ≤ 1/8,
so q−1 < min(1/6, η/3, (1/2 − (d0 − b0))/2). We can therefore choose a κ1 in the interval
q−1 < κ1 < min(1/6, η/3, (1/2− (d0 − b0))/2), and apply this fixed κ1 in the proof below.
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B.3.1 Analysis of N bd
m (κ1, κ)

In order to apply Corollary A.10 we need to define the indices κw, κv, κv, and κu. For ψ ∈
N bd
m (κ1, κ) the process β′0⊥Xmt is near critical with index v = δm ∈ [−1/2 − κ1,−1/2 + κ], so

we define κv = κ1 and κv = κ. The nonstationary processes {β′0⊥Xit}m−1
i=−1 are collected in a

vector with largest fractional index w = δm−1 = δm− b ≤ −1/2+κ− b ≤ −1/2−2η/3, because
b ≥ η and κ < κ1 < η/3, so we define κw = 2η/3 > q−1, so we have enough moments for
weak convergence of the nonstationary processes to fBM, c.f. the moment condition needed
for (103) of Lemma A.9. Finally the asymptotically stationary processes {β′0⊥Xit}ki=m+1 have
smallest index δm+1 = δm + b ≥ −1/2 − κ1 + η ≥ −1/2 + 2η/3 because b ≥ η and κ1 < η/3,
and {β′0Xjt}kj=−1 have smallest index δ−1 + b0 ≥ −d0 + b0 = −1/2 + (1/2 − (d0 − b0)), so we
choose κu = min(2η/3, 1/2− (d0 − b0)).
With these choices κv satisfies the conditions in Definition A.1 for the application of Corol-

lary A.10, because b0 ≥ η implies that

κv = κ1 < min(1/6, η/3, (1/2− (d0 − b0))/2) ≤ min(b0/3, κw/2, κu/2, 1/6).

We can now prove that, for m = k and any A > 0 and γ > 0, there is a κ0 > 0 and T0 > 0
so that for T ≥ T0,

P ( inf
ψ∈N bdk (κ1,κ0)∩K(η)

`T,p(ψ) ≥ A) ≥ 1− γ. (141)

For the rest of the proof we let κ0 be fixed at this value. Furthermore, for m < k, we can prove
that for this fixed value of κ0,

sup
ψ∈N bdm (κ1,κ0)∩K(η)

|`T,p(ψ)− `p(ψ)| P→ 0 as T →∞. (142)

Proof of (141): For ψ ∈ N bd
k (κ1, κ), β′0Xkt is stationary with index u1 = δk + b0 and β′0⊥Xkt

is near critical with index v1 = δk. Applying the decomposition Xkt = β̄0β
′
0Xkt + β̄0⊥β

′
0⊥Xt =

B0(X ′ktβ0, X
′
ktβ0⊥)′ where B0 = (β̄0, β̄0⊥), see (11), we decompose the determinant

det(SSRT (ψ)) = det(B0MT ((u1, v1), (u1, v1)|w, u)B′0)

= det(MT (u1, u1|w, u)) det(MT (v1, v1|w, u, u1))(det(B0))2.

Uniformly in ψ ∈ N bd
k (κ1, κ) the first factor converges in distribution by (115).

For the second factor we apply (117) for N = Tα:

MT (v1, v1|w, u, u1) ≥ c
1− T−2κvα

2κv
(ξ′1ξ

′
2)′Ω−1

0 (ξ′1ξ
′
2) +RT , (143)

where max|v1+1/2|≤κv |RT | is bounded with probability ≥ 1− γ for T ≥ T0. Thus, the smallest
eigenvalue ofMT (v1, v1|w, u, u1) is bounded below by a constant times (1−T−2κvα)/(2κv). This
factor is increasing in T from zero to 1/(2κv) and decreasing in 2κv from α log T to zero. It
follows that for any A > 0 we can find (κ0, T0) so that for κv ≤ κ0 and T ≥ T0 it holds that
c(1−T−2κvα)/2κv ≥ A. Using κv = κ = κ0 we then find that infψ∈N bdk (κ1,κ0)∩K(η) `T,p(ψ) is large
with probability ≥ 1− γ for T ≥ T0. This proves (141).
Proof of (142): For ψ ∈ N bd

m (κ1, κ0) with m < k, β′0Xkt is stationary with index u1 and
β′0⊥Xt is stationary with index u2. Then SSRT (ψ) = B0MT ((u1, u2), (u1, u2)|w, v, u)B′0, and

SSRT (ψ)− V ar(Ukt|Fstat(ψ)) (144)

= B0MT ((u1, u2), (u1, u2)|w, u)B′0 − V ar(Ukt|Fstat(ψ))

−B0MT ((u1, u2), v|w, u)MT (v, v|w, u)−1MT (v, (u1, u2)|w, u)B′0.
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For fixed κ0 > 0, we find from (115) that on C(N bd
m (κ1, κ0) ∩ K(η)),

B0MT ((u1, u2), (u1, u2)|w, u)B′0 − V ar(Ukt|Fstat(ψ)) =⇒ 0 as T →∞.
We then apply Lemma A.4 which shows that weak convergence to a deterministic limit implies
uniform convergence in probability.
For the last term of (144) we apply (116) to see that on C(N bd

m (κ1, κ0) ∩ K(η)),

MT (ui, v|w, u) = OP (1) as T →∞,
and (143) shows that the factor (1 − T−2κ0α)/2κ0 can be chosen so large that the smallest
eigenvalue of MT (v, v|w, u) is large with probability ≥ 1 − γ for T ≥ T0. This implies that
MT (v, v|w, u)−1 is small uniformly on N bd

m (κ1, κ0) ∩ K(η), which proves (142).

B.3.2 Analysis of N int
m (κ1, κ0)

For ψ ∈ N int
m (κ1, κ0) the asymptotically stationary processes {β′0⊥Xit}k−1

i=m and {β′0Xjt}kj=−1

have indices greater than −1/2 + κ0 and −1/2 + (1/2 − (d0 − b0)), respectively, so we collect
them in a vector with lowest index u ≥ −1/2 + κu for κu = min(κ0, 1/2 − d0 + b0). The
nonstationary processes {β′0⊥Xit}m−1

i=−1 are collected in a vector with largest fractional index
w = δm−1 ≤ −1/2− κ1, so that κw = κ1.
We can then prove that form = k+1, whereN int

k+1(κ1, κ0) = N int
k+1(κ1), and any A > 0, γ > 0

there is a T0 > 0 so that for T ≥ T0,

P ( inf
ψ∈N intk+1(κ1)∩K(η)

`T,p(ψ) ≥ A) ≥ 1− γ. (145)

For m ≤ k we can prove that (for κ0 > 0 fixed at the value determined in (141))

sup
ψ∈N intm (κ1,κ0)∩K(η)

|`T,p(ψ)− `p(ψ)| P→ 0 as T →∞. (146)

Proof of (145): For ψ ∈ N int
k+1(κ1), β′0Xkt is stationary with index u1 and β′0⊥Xkt is nonsta-

tionary with index w1 ≤ −1/2− κ1. We decompose

det(SSRT (ψ)) = det(B0MT ((u1, w1), (u1, w1)|w, u)B′0)

= det(MT (w1, w1|w, u)) det(MT (u1, u1|w1, w, u)) det(B0)2.

The second factor is OP (1) uniformly in ψ ∈ N int
k+1(κ1) ∩ K(η) by (115). In the first factor we

normalize T 2w1+1MT (w1, w1|w, u) to convergence to an almost surely positive limit, see (114),
so that the first factor is proportional to T−(2w1+1) ≥ T 2κ1 →∞, which proves (145).
Proof of (146): For ψ ∈ N int

m (κ1) and m ≤ k, β′0Xkt is stationary with index u1 and β′0⊥Xkt

is stationary with index u2, and SSRT (ψ) = B0MT ((u1, u2), (u1, u2)|w, u)B′0. It follows from
(115) and Lemma A.4, see also (29), that for fixed κ1, κ0, (146) holds.
Finally, (32) follows from (141) and (145), and (33) follows from (142) and (146). This

completes the proof of Theorem 4(i).

B.4 Proof of (ii): model Hp(d = b)

The proof for model (3) in part (ii) is identical to that for model (2) given in part (i) with two
modifications. First, the definitions of “interiors”and “boundaries”in Definition B.2 need to
be simplified to take into account the restriction d = b, that is the 45◦ line in Figure 1. Second,
all references to results in Lemma A.9 and Corollary A.10 need to be replaced with references
to Lemma A.11 and Corollary A.12.
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