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Abstract

Recent approaches to development accounting reflect substantial model uncertainty
at both the instrument and the development determinant level. Bayesian Model Av-
eraging (BMA) has been proven useful in resolving model uncertainty in economics,
and we extend BMA to formally account for model uncertainty in the presence of en-
dogeneity. The new methodology is shown to be highly efficient and to reduce many-
instrument bias; in a simulation study we found that IVBMA estimates reduced mean
squared error by 60% over standard IV estimates. We also introduce Bayesian over
and under-identification tests that are based on model averaged predictive p-values.
This approach is shown to mitigate the reduction in power these tests experience as
dimension increases. In a simulation study where the exogeneity of the instrument is
compromised we show that the classical Sargan test has a power of 0.2% while our
Bayesian over-identification test has a power of 98% at detecting the violation of the
exogeneity assumption. An application of our method to a prominent development
accounting approach leads to new insights regarding the primacy of institutions. Using
identical data and robustness specifications we find support not only for institutions,
but also for geography and integration, once both model uncertainty and endogeneity
have been jointly addressed.
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1 Introduction

The hallmark of the recent development literature is the distinction between proximate
and fundamental development determinants. Proximate causes (technology, physical
and human capital, etc) are the focus of cross-country growth regressions that are sub-
ject to substantial model uncertainty. The degree of model uncertainty is expressed by
the 140 or so candidate regressors that have been suggested by competing theories.1

Fundamental determinants (e.g., geography, institutions, and culture) are examined in
the recent development literature, which is hampered by instrument uncertainty since
a multitude of competing theories motivate numerous candidate instruments for iden-
tification.2

Raftery (1995) argued that uncertainty surrounding particular theories should be
addressed explicitly by the statistical approach. Standard errors based on a single
model can be underestimated when the uncertainty surrounding the validity of theo-
ries has been ignored. Bayesian model averaging (BMA) has been used extensively to
account for model uncertainty in growth regressions.3 To date, instrument uncertainty
has been addressed only in standard robustness analyses that juxtapose one particular
Instrumental Variable (IV) theory/specification against another. In one of the most
prominent examples, Rodrik et al. (2004), henceforth RST, motivate their work by a
“horse race” among alternative theories that propose candidate instruments and re-
gressors.

Accounting for uncertainty about both growth determinants and instruments re-
quires a methodology that is rooted in statistical theory. Durlauf et al. (2007) intro-
duced an IV model selection procedure to evaluate coefficient estimates according to
t-statistics, while warning of the tenuous nature of the underlying theory. The most
comprehensive approach to addressing endogeneity in growth regressions has previ-
ously been proposed by Durlauf et al. (2008), who built on Tsangarides (2004). The
authors introduced a model averaged version of Two Stage Least Squares (2SLS), but
noted that their heuristic approach lacked statistical justification.4 Strictly speaking,
Durlauf et al. (2008) also did not allow for instrument uncertainty, but provided a
model averaging approach to instrument candidate regressors in the second stage only.
We extend the Durlauf et al. (2008) approach and develop formal statistical founda-
tions for an instrumental variable BMA (IVBMA) methodology that addresses model
uncertainty in the presence of endogeneity.

We conduct a thorough exploration of the properties of IVBMA as a valid IV es-
timator and show that the procedure is a consistent methodology that reduces the
well known many-instrument bias in standard IV regressions. A simulation study con-

1See Brock and Durlauf (2001) and Durlauf et al. (2005) for reviews of the growth empirics literature.
2See e.g., Rodrik (2003), Acemoglu (2008) for extensive surveys of both proximate and fundamental

causes of growth.
3See e.g., Fernandez et al. (2001), Sala-i-Martin et al. (2004), Ciccone and Jarocinski (2007), and Eicher

et al. (2007).
4A similar heuristic panel approach is introduced by Hineline (2007) to examine the growth/inflation

relationship.
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ducted below shows this reduction in bias and also a 60% reduction in mean squared
error for estimating regression coefficients. Instrumental variable estimation of any
kind requires a number of assumptions that relate to the identification of the implied
structural model.

Frequently, as is the case in the Sargan (1958) and Cragg and Donald (1993) tests,
a test statistic is compared to a reference distribution. The test statistic is often only
asymptotically distributed according to the reference distribution, which frequently has
a degrees of freedom related to the size of the model estimated. The nature of these
statistics proves problematic when working with growth data, for which sample size is
small and dimension is continually increasing.

The Bayesian approach provides a direct interpretation of the efficacy of an instru-
mentation strategy, by examining posterior inclusion probabilities. However, we also
provide alternative measures to verify IV assumptions that are based on model aver-
aged Bayesian predictive p-values. Rubin (1984) and Gelman et al. (1996) discussed
the use of posterior predictive p-values for a single model.

Here we introduce the concept of model averaged p-values. We provide Bayesian
tests for over-identification (based on the Sargan test), and a Bayesian test for under-
identification (based on Cragg and Donald 1993) to examine instrument conditions
within IVBMA. In a simulation study of moderate dimension in which a proposed
instrument does not satisfy the exogeneity assumption, we found that the Bayesian
over-identification test had a power of 98% at detecting this failure, while the tradi-
tional Sargan test had a power of only 0.2%.

IVBMA is then applied to a prominent approach to development accounting that
features both instrument and determinant uncertainty. We first replicate the robustness
analysis of RST, whose analysis led the authors to endorse the “primacy of institutions”
over all other alternative theories. Using their own data and robustness specifications,
but allowing for a principled approach to determinant and instrument uncertainty, we
find that strong conclusions regarding any primacy of institutions must be modified.
Not only institutions but also integration and geography are shown to have a clear
effect on long term development once instrument and determinant uncertainty is ad-
dressed as part of the statistical approach.5 At the instrument level, we find that,
once we allow for instrument uncertainty evidence, Settler Mortality may, at times,
not be robust to the inclusion of alternative instruments suggested by RST in their
robustness specification. The exercises highlight that the results presented in RST
may have relied on specific robustness specifications that do not generate the greatest
model performance given the entire instrument and covariate space suggested by the
authors. The resolution of model uncertainty at both the development determinant
and the instrument level allows us to isolate additional models that receive stronger
support from the same data.

The IVBMA approach thus highlights the extent to which results may be affected
by focusing on particular specifications without accounting for the complexity of the
model uncertainty that may be present in both stages of the IV approach. Our result

5Glaeser et al. (2004) rejected the primacy of institutions, contending that the proximate causes in

previous approaches measured policy choices. Measurement error is not addressed in our approach.
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is similar to the findings of Durlauf et al. (2008), who document that many theo-
ries/variables are not robust once model uncertainty is integrated into the statistical
framework. Our approach differs, however, as we develop a formal methodology that
is specifically designed to resolve endogeneity in the presence of model uncertainty.

Previous approaches to resolving endogeneity and identifying proximate and fun-
damental growth determinants are not limited to the papers and datasets we explore
below. The purpose of our paper is to introduce IVBMA methodology and provide
applications that highlight the importance of model uncertainty at both the determi-
nant and instrument stages. Alternative approaches to development accounting include
Mauro (1995), who first suggested ethnolinguistic fragmentation as a fundamental de-
terminant of corruption, and Hall and Jones (1999), who introduced Latitude and
Language indicators as instruments to measure western influence. Acemoglu et al.,
(2001b; 2001a) suggested population density in 1500 and colonial origins as effective
instruments, respectively. La Porta et al. (2004) presented yet another ”horse race” of
theories, in their case juxtaposing judicial independence and constitutional review. In
RST the ”horse race” is between three possible determinants: Institutions, Integration,
and Geography. Geography-based theories of fundamental development determinants
have previously been proposed by Bloom and Sachs (1998), Easterly and Levine (2003),
and Sachs (2003).

The article proceeds as follows. Section 2 outlines the statistical approach that
underlies IVBMA and discusses theoretical properties of the technique. Section 3 de-
scribes a simulation study, while Section 4 revisits key robustness results to highlight
the importance of both determinant and instrument uncertainty in the recent develop-
ment literature. Section 5 concludes.

2 Theoretical Properties of IVBMA

It is standard to address endogeneity by applying two-stage least squares (2SLS) and
imposing over-identification and instrument restrictions as expressed by

Y = β′
(

W
X

)
+ η, (1)

W = θ′ZZ + θ′XX + ε, (2)

where Y is the dependent variable, X is a set of covariates, W is the set of endogenous
variables, and Z is the set of instruments. Both X and θX have dimension pX , while
Z and θZ have dimension pZ . To simplify exposition we assume that W is univariate.
Assuming that (

η
ε

)
∼ N

((
0
0

)
,

(
σ2

ε σηε

σηε σ2
ε

))
, (3)

the classical endogenous variable situation arises when σηε 6= 0, causing W to violate
the standard regression assumption of independence of the error term, η.

In the presence of endogeneity, it is well known that the determination of W leads
to inconsistent estimates of the entire coefficient vector, β, under standard Ordinary
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Least Squares (OLS). The 2SLS estimator solves the consistency problem, but relies on
the existence of a set of instruments, Z, which are independent of Y , given W and the
vector of covariates, X. The IV estimates derived in the second stage, β̂IV , obtained
using the fitted values from the first stage, w̃, are consistent only if the conditional
independence assumptions are valid.

Several problems can arise. A key concern in IV estimation is that the estimates
of β̂IV are biased and that the extent of this bias increases with the number of terms
that are added in the first stage with coefficients equal, or close to, zero. In that case,
the instrumental variable results are not necessarily better than the biased OLS re-
sults (Davidson and MacKinnon, 2004). Another concern is that IV is a large-sample
procedure, implying that even when all assumptions are met, there exists the distinct
possibility of finite sample biases (see Bound et al. (1995)). The prospect of this type
of bias looms large in development accounting applications, where samples rarely ex-
ceed 100 observations. A third concern for IV estimation is that economic data rarely
present clear-cut instruments that have both strong explanatory power on the endoge-
nous variables and unquestionable conditional independence properties in relation to
the dependent variable. Over-identification tests such as the one proposed by Sargan
(1958) help verify the validity of instrument assumptions, but can often become inef-
fective as the dimension of the problem increases in small sample situations.

2.1 Statistical Foundations

IVBMA combines the IV and BMA methodologies. It processes the data much like a
two stage estimator while also addressing model uncertainty in both stages. The first
stage is a simple application of BMA to identify effective instruments. As we introduce
notation, it is helpful to review the properties of BMA that are implied in stage 1.

Let ∆ be a quantity of interest and let the set of potential models in the first stage,
M, be comprised of individual models {M1, . . . ,MI}. The posterior distribution of ∆
given the data, D, is given by the weighted average of the predictive distribution under
each model, weighted by the corresponding posterior probabilities,

pr(∆|D) =
I∑

i=1

pr(∆|Mi, D)pr(Mi|D), (4)

where pr(∆|Mi, D) is the predictive distribution given model Mi and pr(Mi|D) is the
posterior model probability of model Mi. The posterior model probability πi, for each
first stage model Mi is given by

πi = pr(Mi|D) ∝ pr(D|Mi)pr(Mi) (5)

where
pr(D|Mi) =

∫
pr(D|θ(i),Mi)pr(θ(i)|Mi)dθ(i) (6)

is the integrated likelihood of model Mi with parameters θ(i). The prior densities for
parameters and models are pr(θ(i)|Mi) and pr(Mi), respectively.
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Previous approaches that outline Bayesian instrumental variable methods are pro-
vided by Geweke (1996) and Kleibergen and Zivot (2003). There is also a literature
that attempts to “derive” IV, in some cases using automatic, information-theory-based
methods to avoid explicit priors (see Kitamura and Stutzer (1997), Zellner et al. (1997),
and Kim (2002)). Related work by Chao and Phillips (1998) pursues the use of Jeffreys
priors, which are another automatically generated class of priors.

We simplify matters below by using the BIC approximation to the integrated like-
lihood. In general, Schwarz (1978) showed that

pr(D|Mi) = log pr(D|θ̂(i),Mi)− (pZ,i + pX,i) log n + O(1), (7)

where pZ,i and pX,i are, respectively, the number of Z and X variables included in
model Mi. Furthermore, when a unit information prior is used the O(1) term may be
replaced by O(n−1/2); see Kass and Wasserman (1995) and Raftery (1995).

Under BMA, the posterior mean of θ is

θ̂BMA =
I∑

i=1

πiθ̂
(i), (8)

which is the sum of the posterior means of each model in the collection M, weighted
by their posterior probabilities. Similarly, the posterior variance of the BMA estimate
is calculated as

σ̂BMA(θ) =
I∑

i=1

πiσ̂
2
i +

I∑
i=1

πi

(
θ̂(i) − θ̂BMA

)2
. (9)

This variance has a clear interpretation that highlights how model uncertainty is ac-
counted for in the standard errors by the BMA methodology. The first term is the
weighted variance for each model, σ̂2

i = V ar(θ̂(i)|Mi, D), averaged over all relevant
models, and the second term indicates how stable the estimates are across models.
The more the estimates differ between models, the greater is the posterior variance.

The posterior distribution for a parameter is a mixture of a regular posterior distri-
bution and a point mass at zero, which represents the probability that the parameter
equals zero. The sum of the posterior probabilities of the models that contain the
variable is called the inclusion probability and can then be taken as a measure of the
importance of a variable. For instance, for instrument Zk we may write,

µBMA(θZk
) = pr(θ̂Zk

6= 0|D) =
∑

i∈Mk

πi, (10)

where Mk is collection of indices for which i ∈Mk implies model Mi does not restrict
the parameter θZk

to zero. Standard rules of thumb for interpreting µBMA have been
provided by Kass and Raftery (1995). They establish the following effect thresholds: <
50% evidence against the effect, 50-75% weak evidence for the effect, 75-95% positive
evidence, 95-99% strong evidence, and > 99% very strong evidence.

In the case of IV estimation in the presence of model uncertainty, the BMA frame-
work must be extended to account for the two stages in which estimation is performed.
IVBMA is a nested approach that first determines the posterior model probabilities in
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the first stage according to the BMA methodology, determining both πi as well as w̃i,
the first-stage fitted value according to model Mi, for all models in M. Denoting by
L = {L1, . . . , LJ} the set of second stage models, IVBMA then uses the fitted value,
w̃i to derive second stage posterior model probabilities, νj(w̃i), and estimates, β̂(j)(w̃i)
for each model Lj ∈ L. The IVBMA estimate of β is calculated as

β̂IV BMA =
I∑

i=1

J∑
j=1

πiνj(w̃i)β̂(j)(w̃i). (11)

Equation 11 shows that the IVBMA estimate is formed as the average of each IV
estimate that results from using the combination of model Mi in the first stage and
model Lj in the second stage, weighted by both the first and second stage probabilities.

Furthermore, for the estimated variance we have the following result.

Theorem 1. Let β̂i∗ =
∑J

j=1 νj(w̃i)β(j)(w̃i) be the model averaged estimate of β for a

fixed first stage model Mi. Then the variance of the estimate β̂IV BMA is

σ2
IV BMA(β) =

I∑
i=1

πiV ar(β|Mi) +
I∑

i=1

πi(β̂i∗(w̃i)− β̂IV BMA)2, (12)

where

V ar(β|Mi) =
J∑

j=1

νj(w̃i)β̂(j)(w̃i) +
J∑

j=1

νj(w̃i)(β̂(j)(w̃i)− β̂i∗)2 (13)

is the BMA variance associated with second stage estimates for a fixed first stage model.

Proof See Appendix.

Theorem 1 shows that the variance of IVBMA estimates has a similar separation
property to standard BMA variances, containing a part which is the average of BMA
variances associated with a single first stage model and another part that quantifies
the variation in the BMA estimates obtained by fixing a particular first stage model
relative to the overall IVBMA estimate.

The posterior distribution of β̂IV BMA is again a mixture of a regular posterior
distribution and a point mass at zero, which represents the probability that the pa-
rameter equals zero. The sum of these posterior probabilities that contain the variable
is then the inclusion probability in the second stage, which indicates the importance
of a variable. For instance, for the variable Xl we may write,

µIV BMA(βXl
) = pr(β̂Xl

6= 0|D) =
I∑

i=1

∑
j∈Ll

πiνj(w̃i). (14)

Where Ll indicates the subset of L for which the coefficient βXl
is not constrained to

zero. We continue to follow the standard rules of thumb for interpreting effect thresh-
olds in the second stage, as suggested by Kass and Raftery (1995).
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2.2 Properties of IVBMA

2.2.1 Consistency of IVBMA

The driving motivation underlying IV estimation is the fact that, in the presence of en-
dogeneity, IV estimates are consistent, in contrast to OLS estimates. This consistency
is retained by the IVBMA estimates.

Theorem 2. The IVBMA estimate is consistent, in that β̂IV BMA →p β.

Proof See Appendix.

2.2.2 Many Instrument Efficiency

In what is sometimes called the “many instruments” problem (Hall, 2005), IV estimates
become increasingly biased as the number of proposed instruments increases, especially
when these proposed instruments have little explanatory power on the endogenous
variable. Sawa (1969) derives this bias explicitly as6

βW − E
[
β̂2SLS

W

]
= (βW − σηε/σ2

η)
[
1− τ2

K
F1;1

(
1,

K + 2
2

;−τ2

2

)]
, (15)

where K is the number of proposed instruments plus those proposed covariates that
actually have coefficients equal to zero, F1;1(·, ·; ·) is a confluent hypergeometric function
and τ =

∑pZ
i=1

∑pZ
j=1 σZiZjθZiθZj +

∑pZ
i=1

∑pX
j=1 σZiXjθZiθXj +

∑pX
i=1

∑pX
j=1 σXiXjθXiθXj .

Bound et al. (1995) show that the many instrument bias in standard IV regressions
increases as τ2/K decreases. As τ2 is a function of the first stage regression coefficients,
we see that adding instruments with no explanatory power on W leads to a decline in
τ2/K, thereby creating larger bias.

We now show that IVBMA mitigates the many instrument bias. Let Bij denote
the bias of the estimate β̂(j)(w̃i) from model Mi in the first stage and Lj in the second
stage. Also define B∗∗ the bias from β̂2SLS , equivalent to using the full models in
both the first and second stages. Provided model Mi excludes some X or Z covariates,
but contains at least one valid instrument from Z, it can be shown that Bij ≤ B∗∗,
which implies that IVBMA will mitigate any many instruments problem that may have
existed in the standard IV procedure.

Theorem 3. The bias of β̂IV BMA is less than or equal to β̂2SLS provided that each

first-stage model Mi with πi > 0 contains as least one valid instrument.
6The derivation of Sawa (1969) considers the case in which there are no exogenous covariates X and the

instruments Z are considered to be independently distributed, but includes an outline of the straightforward

updates necessary to incorporate additional covariates and dependence between X and Z. Our treatment

takes these additional factors into account, as they are central to the purpose of modeling multiple growth

theories.
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Proof. See Appendix.

2.3 Bayesian Tests of Assumption Validity

As mentioned above, the IV framework requires the proposed instrument set to be
conditionally independent of the variable Y and presumes that the instruments have
some explanatory power on the endogenous variables W . Various tests have been
developed to verify these assumptions, most notably the over-identification test of
Sargan (1958) and the under-identification test of Cragg and Donald (1993) which
Stock and Yogo (2002) use to propose a weak instruments test. In this section we show
how model averaged versions of these tests can be used in the IVBMA framework to
verify model assumptions and discuss the properties of such techniques.

2.3.1 A Bayesian Test of Over-identification

The most important assumption in IV regressions is that the instrument condition
is satisfied, namely that the instrument is exogenous, E(η|Z) = 0, and that the in-
strument is relevant Cov(Z,W ) 6= 0. To allow for an examination of whether these
conditions are satisfied in the IVBMA context, we present a Bayesian over-identification
test of the exogeneity assumption that provides similar information to that provided by
the Sargan (1958) test for the standard IV procedure. Our test proceeds in a manner
similar to the Sargan test, but is conducted at the model level and then averaged using
model probabilities.

Let η̂ij be the residuals from the combination of models Mi and Lj and let pij

be the total number of X and Z included in this combination. Note that the Sargan
p-value S∗ is calculated as S∗ = pr(nR2

∗∗ > χ2
pX+pZ−1) where R2

∗∗ is the R2 associated
with the regression of η̂2SLS on all X and Z variables. Just as in the Sargan test, we
can then consider the regression of η̂ij on the subset of the variables X and Z that
belong to either Mi or Lj and determine R2

ij , the R2 associated with this regression.
Letting Sij = p(χ2

pij−1 > nR2
ij), we define the Bayesian Sargan p-value to be

SIV BMA =
I∑

i=1

J∑
j=1

πiνj(w̃i)Sij . (16)

SIV BMA is therefore the average of the Sargan p-values derived from the specific mod-
els Mi and Lj , weighted by their respective posterior probabilities.

The benefit of the Bayesian Sargan test is that it effectively mitigates the reduction
in power that the traditional Sargan test experiences as the dimension of the X or Z
variables grows. This increase in power can be marked, as shown in the simulation
study below.
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2.3.2 Bayesian Tests of Under-Identification and Weak Instruments

While it is crucial to verify that none of the proposed instruments violates the condi-
tional independence assumption, it is also important to test that they have an appro-
priate level of explanatory power on the endogenous W . When W is univariate, this
may be done by considering an F test based on the first stage. However, when pW > 1,
Cragg and Donald (1993) derive an equivalent test and test statistic to help verify this
claim. Here we derive a Bayesian analog of this test.

Consider fixed first and second stage models, Mi and Lj respectively, and let Zij

be the instruments used in this combination (thus all those variables in Z used in
Mi and those variables X used in Mi but excluded from Lj) and let Xj be those
X contained in Lj . Let Vij be the matrix of all X and Z variables included in ei-
ther Mi or Lj . Define PVij ≡ Vij(V ′

ijVij)−1V ′
ij and MVij ≡ In − PVij where In is

the n × n identity matrix, and similarly define PXj ≡ Xj(X ′
jXj)−1X ′

j and MXj =

In − PXj , and finally define Gij ≡ Σ̂−1/2
ij ΘijΣ̂

−1/2
ij where Σ̂ij = W ′MVijW and Θij =

(MXjW )′MXjZij((MXjZij)′MXjZij)−1(MXjZij)′MXjW . The Cragg and Donald statis-
tic under model Mi and Lj can then be derived as the minimum eigenvalue of Gij ,
gij = min eigenGij .

In practice, the statistic gij is used in two ways. Asymptotically, under the null
hypothesis of under-identification, ngij ∼ χ2

pZij
−1, and this reference distribution is

used to derive a p-value. Here we propose a Bayesian model-averaged version of this
p-value by considering

CD =
I∑

i=1

J∑
j=1

πiνj(w̃i)pr(χ2
pZij

−1 > ngij). (17)

A second use of gij was suggested by Stock and Yogo (2002), but their test statis-
tic provides only critical values, not p-values that one can average over when models
have different numbers of instruments. The apparent weakness of an instrument can,
however, be directly assessed in a Bayesian way, using the inclusion probabilities in the
first stage.

3 Simulation Study

We conduct a simulation study to show the estimation properties of IVBMA, as well
as the behavior of the Bayesian over-identification test. In the following we consider a
framework in which there are ten variables in Z, fifteen in X and W is univariate. We
set βX1 = βX2 = βW = 1 and the remaining elements of β to zero. In the first stage,
we set θZ1 = θZ2 = θX1 = θX3 = 1 and the remaining elements of θZ and θX to zero.

Thus, we consider a situation in which two covariates along with W have explana-
tory power on Y . Furthermore, two variables in Z serve as instruments, one of the
variables of X has explanatory power on both Y and W . Finally, one variable in X
would be more properly classified as an instrument, as it has explanatory power on W
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but not on Y . All variables in X and Z are determined by independent draws from a
N(0, 1) distribution.

We introduce endogeneity by drawing ε from a N(0, 1) distribution and setting
η = ε + ξ, with ξ drawn from a N(0, 1) distribution as well. We then consider two sce-
narios. The first scenario is one in which the IV model is correctly specified, i.e. the Z
covariates have no effect on Y . In the second scenario we consider a misspecified model
in which η = Z1 + ε + ξ, so that the instrument condition fails. This framework leads
to an R2 value of .89, which is typical of data sets currently considered in the growth
literature. In each scenario we simulate datasets of 100 observations and consider 500
replicates. The simulation study is structured to roughly resemble the growth data set
we will be examining below.

Figure 3 shows the distribution of the estimate of βW across replications using
IVBMA, 2SLS and OLS. We see that the OLS estimates are centered about a value
of 1.3. Indeed, in this case the OLS estimate will asymptotically approach this value.
Both IVBMA and 2SLS rectify this bias and are more closely centered about the true
value of 1. However, there is a distinct improvement in the quality of the estimator
using IVBMA, evidence of the finite-sample bias reduction property of IVBMA as dis-
cussed above. The average bias of β̂W was 0.330, 0.047 and 0.021 for OLS, IV and
IVBMA respectively. The average mean squared error for estimating the entire vec-
tor β was 0.0399, 0.0244 and 0.0094 for OLS, IV and IVBMA respectively. IVBMA
performs substantially better than OLS or IV.

The first panel in Figure 3 shows the distribution of the p-values returned from
the Bayesian Sargan test as well as the traditional Sargan test. We see that the p-
values from the Bayesian Sargan test are much lower. However, these scores are still
sufficiently high that the exogeneity assumption is unlikely to be incorrectly rejected.

The second panel in Figure 3 shows the resulting Bayesian Sargan and classical
Sargan p-values for the case of a misspecified exogeneity assumption. In the case
of valid instruments, the size of both tests was 0. However, in the case of invalid
instruments the power of the Bayesian Sargan test as 98%, whereas it was 0.2% using
the traditional Sargan test, based on an α = .05. We clearly see that the Bayesian
Sargan test performs much more precisely in discerning the failure of the exogeneity
assumption and it is far more likely to reject the hypothesis that the IV assumptions
are valid than the classical Sargan test.

The previous figures show that IVBMA returns appropriate coefficient estimates
and features dramatically improved power at detecting assumption violations over tra-
ditional methods. Table 1 shows that the technique also uncovers the pattern of inter-
action in both stages of the estimation. When the model is correctly specified, Table 1
shows the mean inclusion probability for each variable across the 500 replications in
both stages. We see that in the first stage the two variables in Z as well as the two
variables in X are given inclusion probabilities of essentially 1, while the remaining
variables are given low inclusion probabilities. This remains true in the second stage
as well, where W and the two covariates in X that have explanatory power are given
inclusion probabilities of close to 1 and all others are given low inclusion probabilities.
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Figure 1: Finite Sample Bias under IVBMA, 2SLS and OLS. Distribution of the estimate

for the coefficient βW across replications using IVBMA, IV and OLS, when βW = 1. The

average bias of β̂W across 500 replications was .021, .047 and .33 for IVBMA, BMA and OLS

respectively. Furthermore, the average mean squared error for estimating the entire vector

β was .0094, .0244 and .0399 for IVBMA, IV and OLS respectively.
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Figure 2: Distribution of scores returned by the Bayesian Sargan test and the Sargan test

across replications when the IV assumptions hold (Valid) and when they do not (Invalid).

In the case of valid instruments, the size of both tests was 0. However, in the case of invalid

instruments the power of the Bayesian Sargan test as 98%, whereas it was 0.2% using the

traditional Sargan test.
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Table 1: Mean variable inclusion probabilities and the standard deviation of these inclusion

probabilities across iterations. Variables shown in bold are those that are included in either

the first or second stage. This table shows that inclusion probabilities closely match the true

structure of the system.

First Stage Second Stage

Variable p 6= 0 SD p 6= 0 SD

W – – 1 (0)

X1 1 (0) 0.974 (0.004)

X2 0.087 (0.007) 0.981 (0.003)

X3 1 (0) 0.046 (0.003)

X4 0.11 (0.009) 0.082 (0.005)

X5 0.081 (0.007) 0.075 (0.004)

X6 0.085 (0.008) 0.079 (0.005)

X7 0.069 (0.006) 0.073 (0.004)

X8 0.087 (0.008) 0.079 (0.005)

X9 0.084 (0.008) 0.069 (0.004)

X10 0.085 (0.008) 0.072 (0.004)

X11 0.078 (0.007) 0.07 (0.004)

X12 0.088 (0.008) 0.081 (0.005)

X13 0.099 (0.009) 0.087 (0.005)

X14 0.087 (0.008) 0.079 (0.004)

X15 0.098 (0.008) 0.077 (0.004)

Z1 1 (0) – –

Z2 1 (0) – –

Z3 0.091 (0.008) – –

Z4 0.086 (0.008) – –

Z5 0.079 (0.007) – –

Z6 0.084 (0.008) – –

Z7 0.082 (0.008) – –

Z8 0.085 (0.008) – –

Z9 0.092 (0.008) – –

Z10 0.086 (0.007) – –
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4 Instrument and Determinant Uncertainty in

Development Accounting

We now apply IVBMA to a prominent dataset in the development accounting literature,
where Rodrik et al., (RST) provide an explicit “horse race” of theories that pertain not
only to development determinants (geography, integration and institutions), but also
to a range of theories that suggest alternative instruments to resolve the endogeneity
of the determinants. With less than 100 observations, the sample is a standard size of
datasets in development accounting. Model uncertainty among development determi-
nants is a defining feature of the literature and endogeneity is uniformly acknowledged
to be rampant.

RST explored over 25 different robustness specifications with alternative candidate
regressors suggested by a range of theories. Based on this, they claimed to resolve
model uncertainty in a clear way. The claims of the paper are unambiguous and well
captured by the title “Institutions rule: the primacy of institutions over geography
and integration in economic development.” While the previous literature had provided
evidence of Trade and Geography effects on development (e.g., Hall and Jones (1999),
Sachs (2003)), RST found that geography has at best weak direct effects on incomes,
and Integration is found to be “always insignificant, and often enters the income equa-
tion with the ‘wrong’ sign.”

Using their data, we reexamine RST’s suggested robustness specifications to ac-
count for the model and instrument uncertainty that RST highlight so forcefully. The
IVBMA first and second stages are reported in Tables 2 and 3. Geography is taken
to be exogenous, so the upper panel in Table 2 represents the first stage for the in-
stitutions proxy (Rule of Law) and the lower panel is the first stage for Integration.
Although it would be sufficient to present only the IVBMA results that explore the
entire model space spanned by RST’s determinants and instruments, we also provide
two intermediate stages. Column 1 represents RST’s “core specification” (their Table
2) and Column 2 is the first set of robustness exercises that RST introduce; it highlights
the sensitivity of the core specification to even a slight increase in model uncertainty.

Column 1 in Table 3 provides the second stage of RST’s preferred core specification
(RST’s Table 2). Both RST and IVBMA find that only Rule of Law shows an effect
and the conditional posterior mean is nearly identical to RST’s 2SLS estimate. In this
specification, the IVBMA result confirms RST’s central finding that “the preferred
specification accounts for about half of the variance in incomes across the sample, with
institutional quality (instrumented by settler mortality) doing most of the work.” The
generalized R2 for the best IVBMA model is 0.53 versus 0.55 in RST’s 2SLS approach.

Column 1 in Table 2 reports the IVBMA first stages for the core specification. They
broadly confirm the 2SLS results although the IVBMA suggests slightly more parsi-
monious models. IVBMA suggests three strong instruments for Rule of Law (Settler
Mortality, Latitude, and the Fraction Speaking English), while RST found significant
coefficients for all five instruments across their various 2SLS exercises. This generates
a slightly higher R2 for RST’s preferred 2SLS specification (0.55) as compared to the
best model in IVBMA (0.49). For Integration, the IVBMA first stage suggests only two
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strong instruments (Implied Trade Shares and Settler Mortality) while 2SLS produces
statistically significant coefficient for an additional instrument (Fraction Speaking En-
glish). Nevertheless the R2 of the IVBMA best model and of the 2SLS first stage are
identical (0.58).

RST find that any core specifications with more than one instrument fails to pass
the Sargan test. This finding is confirmed by the Bayesian Sargan test in Column 1
of Table 3, which presents a similar p-value to that found by RST. One interpretation
is that the Sargan test undermines alternative determinant and instrument strategies
as suggested by RST. Others might argue that RST’s specifications do not contain
the appropriate set of instruments. We examine this issue further below but note that
already at this stage, the under-identification (as measured by the Bayes/Crag-Donald
p-value) is easily rejected by IVBMA (not reported in RST).

The 2SLS and IVBMA results in column 1 are nearly identical because the core
specification includes minimal model uncertainty at the determinant level and only a
fraction of the standard instruments suggested by the development literature. Columns
2 and 3 in Tables 2 and 3 report the first and second stages for additional robustness
exercises suggested by RST. Column 2 adds regressors suggested by theories pertaining
to Legal Origins and Religion, as well as regional dummies, while column 3 represents
the most comprehensive set of regressors that adds standard covariates related to alter-
native Geography theories (most notably Temperature, Malaria) as well as alternative
Integration measures (such as Sea Access). As we allow for additional theories and
the associated regressors, IVBMA results start to diverge from the individual 2SLS
regressions that juxtapose a particular theory against another. In other words, the
disparities across results become more pronounced and extend beyond parsimony as
model uncertainty increases.

IVBMA results that use the most comprehensive set of instruments and develop-
ment determinants (Column 3 in Tables 2 and 3), cast doubt on the strong primacy
of institutions result. Instead IVBMA finds that the “horse race” ends in a statisti-
cal three-way tie when model uncertainty is considered. Geography (as measured by
Tropics), Institutions and Integration are shown to be highly effective development de-
terminants. This result is particularly surprising since Geography is only occasionally
weakly significant in RST, while Integration is never significant and often of the wrong
sign. In IVBMA all three effects are strong and estimated with the correct sign. The
results support the strong contentions of Sachs (2003) and Alcalá and Ciccone (2004)
who report strong effects of Geography and Integration.

The divergence of 2SLS and IVBMA results originates in the first stages. 7 Most im-
portantly, the Implied Trade Share no longer receives support as a strong instrument
for Integration. It is most strongly instrumented by EuroFrac in combination with
the covariates PopGrowth, Oil, SeaAccess, Malaria94, EuroFrac, Tropics, Latitude,
FrostArea, and PolicyOpenness. In contrast to the findings of RST, religion variables
also play an important part in the first stage regression. In particular, Catholic is
given nearly a 90 percent inclusion in the first stage for Rule of Law and above 50
percent in the first stage for Integration. Similarly, the power of Settler Mortality as
an instrument for Institutions is dominated by regressors such as EuroFrac and Tem-

7RST report neither first stages nor tests of instrument restrictions beyond the core specification.
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perature variables in both first stages. The increase in the model space of development
determinants and instruments dramatically increases the fit of the IVBMA first stage.
The best models in both IVBMA first stages (column 3) report R2 that is at least 40
percent greater than those found in the core specification.

This improvement in model fit is likewise observed in the second stage when con-
sidering the generalized R2 (Pesaran and Smith, 1994) of the best model returned by
IVBMA. In fact, none of the top 100 models’ generalized R2 falls below .82, which
greatly exceeds any model presented by RST (whose highest generalized R2 is .73).
IVBMA has therefore uncovered combinations of instruments and growth determi-
nants that fit the data substantially better and therefore produce different results in
both the first and second stages than those presented in RST. These models confirm the
strong effect institutions have on growth, but also suggest that the effects of integra-
tion and geography cannot be ignored when instrument and development determinant
uncertainty is directly incorporated into the estimation strategy. The Bayesian Sargan
and Bayesian Cragg and Donald tests clearly show, respectively, that over-identifcation
is easily rejected with the improved set of instruments and that under-identification
remains of no concern.
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Table 2: First Stage Results for RST Example
I II III

RST Table 2 RST Table 2, 4 RST Table 2, 4, 5, 6

Core Specification I + LegalOrig, Relig, Region II + Alt. Integr./Geo Measures

Stage 1, Depedent Variable: Rule of Law

p 6= 0 Mean Sd p 6= 0 Mean Sd p 6= 0 Mean Sd

SettlerMortality 92.7 -0.21189 0.07113 25.5 -0.10696 0.07218 17.1 -0.02528 0.06317

EuroFrac 16.5 0.23 0.23093 99.9 1.66071 0.31244 100 1.03 0.2994

Catholic 14.9 -0.00478 0.00381 89.9 -0.01405 0.00576

MeanTemp 86.8 -0.05535 0.02794

PopGrowth 72.5 -0.1011 0.08351

SubSaharaAfrica 10.7 -0.34126 0.30796 55.5 -0.2287 0.2442

Muslim 13 -0.00434 0.00393 40.2 -0.00204 0.003

Latitude 89.7 0.02254 0.00792 99.1 0.02919 0.00732 20.5 0.00411 0.00938

LatinAmerica 99.9 -1.00161 0.27639 14.9 -0.1277 0.3428

Area 12.8 .02582 .07443

Oil 8.8 -0.03573 0.1377

FR Trade Shares 38.5 0.17551 0.09726 99 0.28821 0.08545 8 -0.01918 0.08153

Tropics 7.9 -0.02392 0.1062

EngFrac 98.6 1.07778 0.28172 12.2 0.37306 0.35301 7.5 0.04617 0.201

FrostArea 6.3 0.04695 0.2127

Protestant 10.7 -0.00702 0.00619 3.8 0.00026 0.00159

FrostDays 1.9 0.00043 0.00725

LegalOrigFr 46.7 -0.30591 0.15008 1.8 -0.00387 0.03538

SeaAccess 1.4 0.00211 0.02705

PolicyOpenness 1.1 0.00268 0.03683

EastAsia 91.4 0.72988 0.25051 0 0 0

Malaria94 0 0 0

LegalOrigSocialist 63.9 -0.77728 0.36386 na na na

BIC best model -41.53 -53.81 -51.42

R2 best model 0.49 0.66 0.75

Stage 1, Depedent Variable: Integration

p 6= 0 Mean Sd p 6= 0 Mean Sd p 6= 0 Mean Sd

FR Trade Shares 100 0.5985 0.0612 100 0.5769 0.0502 0.7 -0.086 0.1074

LegalOrigSocialist 20.1 -0.2561 0.2001 na na na

PopGrowth 100 -0.2735 0.0285

SeaAccess 94.8 -0.3023 0.106

Oil 94.4 0.3445 0.1284

Malaria94 91.8 -0.4383 0.1399

EuroFrac 14.4 -0.1053 0.1389 6.1 0.0563 0.1329 81.2 -0.5145 0.1826

Tropics 73.1 0.4392 0.1921

Latitude 23.5 -0.0065 0.005 4.9 0.0003 0.0039 72.7 -0.0164 0.007

FrostArea 65.3 0.497 0.2019

PolicyOpenness 59.1 0.3468 0.1391

Catholic 7.3 0.001 0.0014 52.5 -0.0036 0.0018

SettlerMortality 84.9 -0.1111 0.0408 9 -0.0349 0.0371 50.2 -0.1077 0.0579

EastAsia 100 0.8236 0.139 28.2 0.2917 0.1663

EngFrac 23.2 0.246 0.1865 83.6 0.382 0.1431 24.7 -0.6486 0.3051

FrostDays 17.1 0.0217 0.0125

LatinAmerica 6.3 -0.0448 0.1147 16.6 -0.4149 0.1899

MeanTemp 13.5 -0.0225 0.0118

SubSaharaAfrica 5.3 -0.033 0.0925 4 -0.1922 0.1627

LegalOrigFr 6 0.0464 0.1039 3.8 -0.095 0.0902

Protestant 11.9 0.0041 0.0035 0.7 0.0024 0.0029

Muslim 5.3 -0.0005 0.0012 0.2 -0.0007 0.0015

Area 0.2 0 0

BIC best model -61.22 -84.37 -54.57

R2 best model 0.58 0.71 0.81
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Table 3: Second Stage Results for RST Example
I II III

RST Table 2 RST Table 2, 4 RST Table 2, 4, 5, 6

Core Specification I + LegalOrig, Relig, Region II + Alt. Integr./Geo Measures

Stage 2

p 6= 0 Mean Sd p 6= 0 Mean Sd p 6= 0 Mean Sd

Rule of Law 100 1.2775 0.1772 100 0.9485 0.1323 96.4 0.7979 0.3155

Integration 20 0.1119 0.2578 7.4 0.0697 0.1451 84.7 0.9275 0.3803

Tropics 69 -0.7828 0.37

Area 57.1 .164 .171

SubSaharaAfrica 97 -0.7487 0.1998 50.7 -0.5319 0.3077

Catholic 36.2 0.0043 0.0028 50.6 0.01 0.0072

PolicyOpenness 49.4 0.6857 0.368

PopGrowth 46.7 0.2099 0.1473

Muslim 50.3 -0.0044 0.0025 43.8 -0.0043 0.0035

LatinAmerica 10.1 0.0984 0.2858 36.1 0.6529 0.3652

LegalOrigFr 29.5 0.2083 0.2065 34.6 0.29 0.1682

FrostArea 33.3 1.2204 0.8814

FrostDay 31.3 -0.0621 0.0383

MeanTemp 22.2 0.0323 0.0433

EastAsia 22.8 0.3345 0.3127 19.5 0.532 0.3898

Latitude 18.3 -0.0019 0.0143 10.8 -0.0058 0.0099 18.6 -0.0168 0.0162

Oil 18 0.323 0.2919

Malaria94 7.3 -0.243 0.4787

SeaAccess 5.6 -0.0698 0.3142

Protestant 8 -0.0027 0.006 1.9 -0.0016 0.0069

LegalOrigSocialist 41 -0.6144 0.4917 na na na

BIC best model -57.34 -92.34 -77.12

Generalized R2 best model 0.53 75.10 85.70

Bayes/Sargan p value 0.0308 0.7591 0.8538

Bayes/Cragg-Donald p value 0.0000 0.0000 0.0097
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5 Conclusion

The recent development literature focuses not only on competing theories that suggest
alternative development determinants, but also on a different set of theories that moti-
vate instruments that may resolve the endogeneity between development determinants
and development outcomes. We develop a methodology to address model uncertainty
in the presence of endogeneity and explore its properties as a valid IV estimator. The
method is based on Bayesian Model Averaging (BMA), which has already been exten-
sively used in economic growth applications. IVBMA is a two step BMA procedure
that is shown to be a consistent methodology that also reduces many-instrument bias.

Instrumental variable estimation of any kind requires a number of assumptions that
relate to the identification of the implied structural model. To enable assumptions to
be verified in this setting we have proposed a new concept, that of model averaging
Bayesian predictive p-values within the IVBMA framework. As shown in the simula-
tion study, by using model averaged p-values we are able to reduce the effect increasing
dimension has on the power of the proposed tests, while not affecting the size in any
substantive manner.

We conclude our study by applying IVBMA to the dataset of Rodrik et al. (2004),
who motivate their paper by the diversity of alternative theories of development and
clearly outline the associated model uncertainty. Instead of resolving the model uncer-
tainty in a horse race of alternative regressions, we use the formal IVBMA approach.
We find not only support for institutions, but also substantial support for geographic
and trade factors, once model uncertainty in the presence of endogeneity is addressed.
The latter two effects had been relegated to second order effects by RST.

Among the number of potential implementations of the Bayesian model selection
paradigm, we have chosen to focus on augmenting the BMA methodology outlined in
Raftery (1995) and Raftery (1996) to accommodate the IV estimation problem. We
made this particular choice because this methodology has become familiar to a broad
range of econometricians and statisticians and has proven robust to the needs of ap-
plied researchers. However, recent research into the use of BMA in the development
determinant literature has suggested several modifications of this paradigm that may
help rectify the particulars of growth data with the goal of testing the strength of
various growth theories. In particular, Brock et al. (2003) and Durlauf et al. (2008)
discuss priors on the model space that account for the fact that many variables may
be collected to proxy one particular theory, while fewer may be available to proxy an
alternative theory. Ley and Steele (2007) and Doppelhofer and Weeks (2009) develop
metrics to quantify the degree to which development determinants act “jointly” to af-
fect growth. Determining how these extensions of the BMA paradigm may be taken
into account in the IVBMA framework would help extend the application of IVBMA
to the particular problem of testing growth theory robustness.

The IVBMA method allows researchers to incorporate concepts of model uncer-
tainty and model averaging into the assessment of a diverse range of economic behav-
ior where observations are subject to endogeneity. However, the current framework
does not directly handle such concepts as panel data, mixed effects, random coeffi-
cient models, and heteroskadasticity. Future research into these areas will improve the
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applicability of the BMA framework to economic analysis, in growth economics and
beyond.
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Appendix

Proof of Theorem 1: Note that using the standard BMA results, the variance of
β̂IV BMA can be written as

σ2
IV BMA(β) =

I∑
i=1

J∑
j=1

πiνj(w̃i)V ar(β̂(j)(w̃i)) +
I∑

i=1

J∑
j=1

πiνj(w̃i)(β̂(j)(w̃i)− β̂IV BMA)2.

(A-1)
Rewriting this we have,

σ2
IV BMA(β) =

I∑
i=1

πi


J∑

j=1

νj(w̃i)
[
V ar(β̂(j)(w̃i)) + (β̂(j)(w̃i)− β̂IV BMA)2

] , (A-2)

=
I∑

i=1

πi


J∑

j=1

νj(w̃i)
[
V ar(β̂(j)(w̃i)) + (β̂(j)(w̃i)− β̂i∗ + β̂i∗ − β̂IV BMA)2

] ,

(A-3)

=
I∑

i=1

πi


J∑

j=1

νj(w̃i)
[
V ar(β̂(j)(w̃i)) + (β̂(j)(w̃i)− β̂i∗)2 + (β̂i∗ − β̂IV BMA)2

] ,

(A-4)

which results since

J∑
j=1

νj(w̃i)(β̂(j)(w̃i)− β̂i∗)(β̂i∗ − β̂IV BMA) = 0. (A-5)

Reordering the terms we then receive,

σ2
IV BMA(β) =

I∑
i=1

πiV ar(β|Mi) +
I∑

i=1

πi(β̂i∗ − β̂IV BMA)2, (A-6)

as desired.

Proof of Theorem 2: For convenience, suppose that M1 ∈ M is the true model for
the first stage. Then,

π1 →p 1 and πj →p 0, j 6= 1 as n →∞. (A-7)

by the consistency of BIC. Furthermore, suppose that L1 ∈ L is the true second stage
model. Then,

ν1(w̃1) →p 1 and νj(w̃1) →p 0, j 6= 1 as n →∞. (A-8)

Therefore,

β̂IV BMA =
I∑

i=1

J∑
j=1

πiνj(w̃i)β̂(j)(w̃i) →p β̂(1)(w̃1). (A-9)
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Finally consider β̂2SLS . We know that β̂2SLS →p β by the consistency of the technique.
Furthermore, since the first and second stage estimates of 2SLS are individually con-
sistent we have β̂2SLS →p β̂(1)(w̃1) provided M1 and L1 are the true first and second
stage models. Thus, β̂(1)(w̃1) →p β, showing the technique is consistent.

Proof of Theorem 3: Let BIV BMA be the bias of β̂IV BMA. Note that BIV BMA =∑I
i=1

∑J
j=1 πiνj(w̃i)Bij and since Bij ≤ B∗∗ for all i and j, we immediately have that

BIV BMA ≤ B∗∗, with equality only when π∗ = 1, where M∗ denotes the model includ-
ing all X and Z variables.
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