Journal of Applied Economics. Vol X, No. 1 (May 2007), 185-211

RANDOM WALKS AND HALF-LIVES IN CHILEAN AND MEXICAN PESO REAL EXCHANGE RATES: 1980 – 2003

André Varella Mollick*

University of Texas-Pan American

Submitted May 2004; accepted April 2006

Several papers have shown that high-inflation contributes to mean reversion in real exchange rates. This paper studies the Chilean peso (CLP) and Mexican peso (MXN) real exchange rates over 1980-2003. Three datasets are used: two with quarterly and monthly bilateral data (against the U.S. dollar) with consumer and producer price indices and another with monthly real effective rate exchange rates (REER). Unit root tests do not reject the root in levels for both currencies. Half-lives, however, contrast markedly: at 5 years or infinity for the Chilean peso and between 1 and 3 years for the Mexican peso. These findings suggest that the sharp depreciations in MXN and Mexico's relatively higher inflation record may have amplified monetary forces in the dynamics of the real exchange rates.

JEL classification codes: F31 Key words: ARMA models, half-lives, random walks, real exchange rates, unit roots

I. Introduction

At high rates of inflation, nominal shocks dominate real shocks. Evidence on the German hyperinflationary experience of the 1920s in Frenkel (1978) has led researchers to search for this stylized fact in postwar high inflation countries. Typical examples are McNown and Wallace (1989) for 4 countries over monthly 1976-1986 data, Mahdavi and Zhou (1994) for 13 countries over quarterly data at varying periods, and Choudhry (1999) for 4 Eastern European countries over monthly data at varying periods from 1991 to 1997. While the estimated coefficients

^{*} Department of Economics and Finance, College of Business Administration, University of Texas-Pan American (UTPA), 1201 W. University Dr., Edinburg, TX 78539-2999, USA. E-mail: amollick@utpa.edu Tel.: +1-956-316-7913 and fax: +1-956-384-5020. I wish to thank Francisco Carneiro, Roberto Duncan, João Faria, Miguel León-Ledesma, and Kiseok Nam for helpful comments on topics discussed in this paper. Two referees of this journal provided useful comments that helped improve the article. The usual disclaimer applies.

of cointegrating regressions between exchange rates and relative prices are much closer to the PPP-based value of unity in high inflation countries, Salehizadeh and Taylor (1999) find large deviations from the theoretical values in a large sample of 27 developing economies. Findings such as these have led some to argue that "empirical evidence from countries that have experienced varying inflation rates is, however, more ambiguous" (Bleaney et al. 1999, p.839).

A very influential study by Rogoff (1996) refers to the "remarkable consensus" of 3-5 year half-lives of deviations from PPP in long-horizon data for currencies of industrial countries. Bayesian evidence in Kilian and Zha (2002) has found, however, considerable uncertainty about the half-life, with an average of 90% posterior error bands covering values between 2 and 15 years. The half-life, defined as the number of periods required for a unit shock to dissipate by one half, is a good measure of persistence. A conceptual issue is how to reconcile the high short-term volatility of real exchange rates with slow convergence to (long-run) PPP. Nonlinear mean reversion proposed by Michael et al. (1997) and the structural change hypothesis suggested by Cheung and Lai (1998) can be offered as explanations for this fact.

Further evidence with new econometric tools to handle persistence in real exchange rates may lead to new findings. This is because the null hypothesis of the second stage of PPP research, as surveyed by Froot and Rogoff (1995), is simply the random walk hypothesis.¹ The non-rejection of the null hypothesis implies non-stationarity, while the alternative hypothesis comprehends the stationary autoregressive process. Any half-life figure must be based on the estimate of the autoregressive parameter, which may be imprecise. Murray and Papell (2002) and Cashin and McDermott (2003) apply to real exchange rates the adjustment to the autoregressive parameter proposed by Andrews (1993) in the AR (1) case and by Andrews and Chen (1994) to the more general AR (p) case. These methods are called median unbiased (MU) estimations of AR parameters in DF or ADF-type regressions and essentially deal with the problem of downward bias in the AR parameter. More specifically, "if the least squares estimate equals 0.8, say, one does not use 0.8 as the estimate of α , but rather, one uses the value of α that yields the least squares estimator to have a median of 0.8" (Andrews 1993, p. 140).

¹ The first stage of PPP involves OLS regressions of exchange rates on price differentials and the third stage handles cointegration issues. See Froot and Rogoff (1995).

While abstracting from nonlinear mean reversion, this paper employs the MU methods for adjustment of the autoregressive process for quarterly data from 1980:1 to 2003:4 and monthly data from 1980:1 to 2003:12 of two important Latin American currencies against the U.S. dollar (USD): the Chilean peso (CLP) and Mexican peso (MXN). The only other study we know of that addresses half-lives for Latin American countries finds that "estimates for developing countries appear much more dispersed than those for industrial countries. Most of the half-lives for developing countries are less than 3 years" (Cheung and Lai 2000, p. 388). Such result was presented for blocks of countries and not for individual countries.

We are specifically interested in comparing two real Latin American currencies that behave very differently and, for this reason, may have different degrees of persistence. While performing unit roots testing is common practice in many studies on the real exchange rate in Latin America, no study has focused on the connection between these tests and the persistence as measured by the half-life. Typical recent examples that have not discussed half-lives include: the battery of unit root tests for Argentinean macroeconomic variables (including the real exchange rate) conducted by Carrera et al. (2003) and the analysis for real exchange rates in the very long run for Brazil by Mollick (1999).

Similarly, the measurement of price indices requires explanation. Although the consumer price index (CPI) is the most widely used index in PPP tests, its calculation involves large amounts of non-tradables and different baskets of goods across countries. Engel (1999), for example, finds that relative prices of non-traded goods account for almost none of the movements in U.S. real exchange rates. Kim (1990) does not reject the random walk hypothesis for CPI-based U.S. real exchange rates; yet he obtains cointegration for series calculated with the wholesale price index (WPI). Others find evidence (in 14 out of 27 countries) in favor of PPP as a cointegration concept under CPI, although the coefficients do not correspond to the unitary values implied by PPP, which led them to conclude about a "no discernible pattern" (Salehizadeh and Taylor 1999, p. 192).

Given the conflicting evidence on the appropriate price index, this paper employs three different datasets. Two are with bilateral data (against the U.S. dollar) under both CPI and PPI indices. The other collects data from both CLP and MXN with respect to countries that represent large part of the trade against Chile and Mexico, constructed with PPI series. This is a sort of real effective exchange rate (REER), advocated by the IMF as a better measure of real competitiveness of a currency

than bilateral rates. Analyzing effective, rather than bilateral, real exchange rates captures the international competitiveness of a country against its major trade partners. It also helps to avoid biases related to the choice of base country in bilateral real exchange rate analyses. This "U.S. dollar problem" might carry substantial bias in Latin American countries. Nevertheless, bilateral rates against the USD are more often used in practice, and one is tempted to know if the results change across different real exchange rate definitions.

We estimate ARMA models and find substantial moving average (MA) terms for the CLP real exchange rates process, while an augmented AR model fits the MXN nicely. Five unit root tests, including those proposed by Ng and Perron (2001) that are able to deal with near unit roots in the AR case or large MA terms, uniformly coincide in suggesting integrated of order one [hereafter I(1)] processes for both real exchange rates in both quarterly and monthly datasets.

The evidence on half-lives, however, contrasts remarkably: at 5 years or infinity for the Chilean peso and between 1 and 3 years for the Mexican peso. The CLP thus clearly behaves like a random walk, while the MXN implies a mean reversion pattern faster than the 3 to 5 years "consensus" by Rogoff (1996) on industrial countries. In addition to MU estimation, the half-lives are calculated by the standard formula in the AR (1) case and by impulse responses in the AR (p) case. A related paper by Rossi (2005) finds that the lower bound of the confidence interval is around 4 to 8 quarters for most currencies, while the upper bounds are infinity for all currencies.

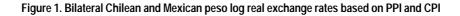
We conjecture that the several abrupt depreciations of MXN and Mexico's relatively higher inflation record may have lead to these contrasting results. We also discuss in this paper features of CLP that make it smoother in the sample, possibly due to "real exchange rate" targeting by the Chilean Central Bank.

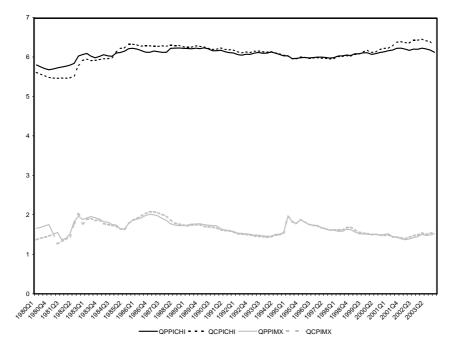
This paper contains four more sections. Section II presents the data employed and Section III reviews the empirical models to be implemented. Section IV summarizes our main findings. Section V concludes the paper and indicates extensions for further work.

II. The data and institutional setting

The bilateral dataset is taken from the IMF's International Financial Statistics (http://ifs.apdi.net/imf/logon.aspx) and covers the period 1980:1 to 2003:4 for

quarterly data and 1980:1 to 2003:12 for monthly data, except for the Mexican peso real exchange rate, which covers the period 1981:1 to 2003:12 for the monthly data constructed with the PPI. All other real exchange rates (CLP under CPI and PPI and MXN under CPI) run from 1980:1 to 2003:12. We employ logs on all series as in the standard equation ($q_t \equiv s_t - p_t + p_t^*$) and obtain the log real exchange rate series in Figure 1 for CLP and MXN constructed with PPI and then with CPI. For both price indices, the overall graph representations look similar. Yet there seems to be some discrepancy in the estimates, particularly for the real CLP, in which there are noticeable gaps in the early and late 1980s as well as in more recent years.²





 $^{^2}$ Using data from 1980 to 2003, the 1970s period of high inflation in Chile is absent in our empirical evidence. The study by Fischer et al. (2002) on inflationary episodes in market economies displays a remarkable difference under high-inflation. In Chile, from October 1971 to May 1977 (68 months), the cumulative inflation rate was 127,958%. In Mexico, from December 1985 to August 1988 (33 months), the cumulative inflation rate was 724% and from February 1982 to July 1983 (18 months), the cumulative inflation rate was 180%.

The multilateral dataset comes from Argentina's Center for International Economics (CEI: Centro de Economía Internacional; http://www.cei.gov.ar/home.htm) of the Secretary of Foreign Affairs and covers monthly data from 1980:1 to 2003:12. The multilateral (effective) real exchange rate (REER) is adjusted by the producer price indices. The destination weights vary over the years and are calculated every year, representing about 71% of total Chilean and Mexican trade. The countries included for the CLP are: Argentina, Brazil, Canada, United States, Mexico, Peru, Germany, Spain, France, Italy, Belgium, Netherlands, U.K., Sweden, and Japan. The countries for the MXN REER calculation are: Argentina, Brazil, Canada, Chile, United States, Peru, Germany, Spain, France, Italy, Belgium, Netherlands, U.K., Switzerland, and Japan.

Since the REERs resemble the behavior of the pair of series just displayed under bilateral real rates, we omit both multilateral graphs. Analyzing effective rather than bilateral real exchange rates measures the international competitiveness of a country against its major trade partners and addresses robustness, thereby avoiding biases due to the "U.S. dollar problem".³

The general pattern of the graphs is that the CLP appears smoother, while MXN displays pronounced peaks with the 1982, 1987, and 1994 depreciations. The latter one, in particular, represented a drastic move into the floating rate scheme after so many variations of pegged systems in the 1980s and early 1990s. The Chilean experience is perhaps less known and ended up less abruptly. Gallego and Loayza (2002) refer to the "golden period for growth in Chile" as remarkable and their growth accounting exercise showed that the large increase in the growth rate after 1985 was due mostly to an expansion of total factor productivity. After 13 years of sustained high growth rates, Chile experienced a slowdown in 1998. Figure 1 shows that the real exchange rate appreciated until 1997, which is consistent with a Balassa-Samuelson effect of productivity in the tradable sector implying a stronger real currency. Morandé and Tapia (2002) argue that growth in demand far outpaced output, forcing stricter monetary policy and higher interest rates. The

³ See Ellis (2001) for several issues on the calculation of REERs that deal with which currencies to include, the appropriate weighting scheme and the price measures to use. She emphasizes that the choice of the index depends on the issue being investigated and that there is no single "right" measure. Her message is that since real exchange rates are intended to capture competitiveness, "it would be preferable to deflate the nominal exchange rates with some measure of *producer* prices or costs rather than consumer prices" (Ellis 2001, p. 12).

Central Bank of Chile, reluctant to abandon the exchange rate band, pursued several "second-best" options between 1990 and 1997 aiming at accommodating a stronger peso.⁴ After the Russian crisis of 1998 and the devaluation of the Brazilian real in January of 1999, the floating rate regime was adopted by Chile in September of 1999.

Figures 2 and 3 picture Chilean and Mexican quarterly inflation rates measured by the CPI (the ones for PPI are very similar) against the logarithm of their respective real exchange rates. In Chile the real exchange rate follows a weaker pattern with inflation changes than in Mexico. In both countries the early 1980s is subject to relatively higher rates of inflation, while recent data suggests price stabilization. Inspection of Figures 2 and 3 leads to the conclusion that Mexico had higher inflation rates than Chile over the period. Also, the abnormally high quarterly inflation in the first quarter of 1995 is matched by accompanying movements in the real exchange rate when the Mexican peso started to float. From then onwards, the inflation rate and the RER series are subject to a downward trend. The other spike in Mexican inflation around the late 1980s occurred under the managed exchange rate system, in which case the RER did not respond as in the mid-1990s. In all, these two figures suggest a closer relationship between price changes and the RER in Mexico than in Chile.

The remaining sections formalize this stylized fact under several unit root tests and estimates of the autoregressive coefficient of the real exchange rate.

III. Testing strategy and discussion

Provided individual series are I (1), empirical tests of long-run PPP are based

on:

⁴ These included: 1) an increase in the band's width from 10% in 1990 to 25% in 1997; 2) discounting a positive productivity factor in addition to foreign inflation when adjusting the band's center; 3) changing the foreign inflation definition; and 4) moving from a dollar reference to a basket of currencies (with the dollar, the yen, and the mark). Complementary policies included: regulations to capital inflows (reduced to 0 in September of 1998 and eliminated in April 2001) and sterilization of foreign exchange reserves. These were attempts to reduce the peso appreciation. In general, Chile has been mentioned in the literature as an example of targeting the real exchange rate. Calvo et al. (1995, p. 100), for example, refer to the July 1985 – January 1992 period in Chile as "no deviations from the rule", while Grier and Hernández Trillo (2004, p. 5) acknowledge this fact in a study on MXN and output: "short run real exchange rate."

JOURNAL OF APPLIED ECONOMICS

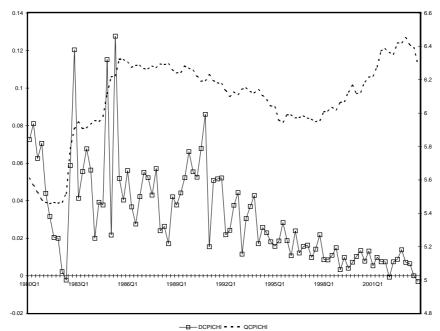
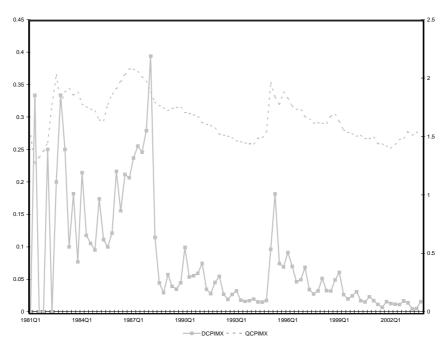


Figure 2. Chilean peso log real exchange rates against CPI quarterly inflation rates

Figure 3. Mexican peso log real exchange rates against CPI quarterly inflation rates



192

$$s_t = \alpha + \beta_1 p_t + \beta_2 p_t^* + \varepsilon_t \tag{1}$$

where *s* is the logarithm of the nominal exchange rate (domestic price of foreign currency), *p* is the logarithm of domestic prices, p^* is the logarithm of foreign prices, and ε is the error term. Equation (1) has been subject to extensive cointegration tests, starting perhaps with Enders (1988). Froot and Rogoff (1995) refer to this as stage 3 of PPP tests. In this case, if the three individual series are I (1) and if there is a cointegrating vector representing a linear combination of them, long-run PPP is found. However, despite implying mean reversion, cointegration assumes a linear process for ε , meaning the adjustment process is both continuous and has a constant speed.⁵

Imposing the restrictions $\alpha = 0$, $\beta_1 = 1$ and $\beta_2 = -1$ on (1), the error term becomes a measure of the real exchange rate (q_i), as discussed in Xu (2003), for example. With these restrictions, it makes sense to measure deviations from parity as follows:

$$q_t = s_t - p_t + p_t^* \tag{2}$$

All series of real exchange rates (q) are first tested for a unit root using the ADF test. This procedure is referred to as "stage 2 of PPP tests" by Froot and Rogoff (1995). If one supposes some form of long-run PPP to hold, the real exchange rate should be stationary and the unit root null should be rejected. The ADF test procedure estimates:

$$\Delta q_t = \alpha_0 + \alpha_1 t + \beta_0 q_{t-1} + \sum_{j=1}^k \beta_j \Delta q_{t-j} + \nu_t \tag{3}$$

where: α_0 is a constant; *t* is the time trend whenever the time trend is included in the estimation in levels⁶; *q* is the real exchange rate; Δq is the first-difference of *q*;

⁵ Theoretical contributions, initiated by Dumas (1992), for example, have emphasized the importance of transaction costs, suggesting a nonlinear adjustment is more plausible. Michael et al. (1997) and Taylor et al. (2001) contain evidence for major currencies, while Ferreira and León-Ledesma (2005) discuss asymmetries in the real interest rate hypothesis (differences in real interest rates) for a set of emerging and developed countries using monthly data from 1995 to 2002.

⁶ The literature related to Balassa-Samuelson (BS) effects attributes a natural interpretation to the trend term in the ADF-type regression in (3). Allowing for trend is equivalent to accepting factors that have a systematic influence on the real exchange rates. As Sabaté et al. (2003) state it, this may be due to movements in the relative prices of traded over non-traded goods across borders due to BS effects and a demand side bias in favor of non-traded goods. But this

 α_1 and the β 's are parameters to estimate; and ν is the stochastic disturbance with white-noise properties. The null hypothesis of a unit root is represented by $\beta_0 = 0$ and the ADF statistic is the value associated with the t-ratio on the β_0 coefficient. In practice the optimal lag-length (*k*) in this paper is determined by the sequential procedure suggested by Ng and Perron (1995). The choice of *k* in this fashion is expected to yield the desired white-noise properties on ν .

Elliott et al. (1996) perform asymptotic power calculations and show that the modified DF-GLS test can achieve substantial power gain over the testing procedure outlined in (3). The DF-GLS^{τ} test that allows for a time trend is based on:

$$\Delta q_t^{\Gamma} = \phi_0 q_{t-1}^{\Gamma} + \sum_{j=1}^k \phi_j \Delta q_{t-j}^{\Gamma} + \nu_t \tag{4}$$

where q^{Γ} is the GLS-detrended series, the original q without either a constant and a constant and trend. One considers the same null hypothesis on the t-ratio tests on ϕ_0 but critical values change as reported in Elliott et al. (1996).

We also employ the KPSS test as developed in Kwiatkowski (1992) with bandwidth set at 4 and Bartlett kernel. Finally, the more recently developed tests by Ng and Perron (2001) may be particularly useful when the autoregressive root is close to one or when there are negative moving average terms. For these tests, we perform estimation with both the modified Akaike information criterion (MAIC) and the Schwarz Bayesian information criterion (BIC) as advocated in Ng and Perron (2001). The tables below contain the results based on BIC, which tend to select lower lags than MAIC. As occurred in the G-7 inflation series reported in Ng and Perron (2001), evidence of stationarity herein is weaker with MAIC than with BIC.

Complementary to the unit root tests is the study on the persistence of the dynamics of real exchange rates. The reason is that the unit root null hypothesis of the test procedures above is tested against the alternative of stationary autoregressive (AR) model. In order to estimate the speed of convergence to PPP, the first-order autoregressive model on q_i is adopted under the assumption of independent identically distributed (i.i.d.) normal errors:

$$q_t = \alpha_0 + \alpha_1 q_{t-1} + v_t \tag{5}$$

may be also be due to the non-stationarity of real exchange rate for traded goods because of menu costs of pricing to market strategies.

where the autoregressive parameter α_1 lies in the interval (-1, 1]. The half-life (HL) measures the time it takes for a deviation from PPP to dissipate by 50% and is calculated by $HL = ABS [ln(0.5)/ln(\alpha_1)]$. Survey papers on long-horizon data, such as: Froot and Rogoff (1995) and Rogoff (1996), report as the consensus in the literature that the HL of a shock to the real exchange rate lies between 3 and 5 years. This slow speed of reversion to PPP is difficult to reconcile with the observed large short-run volatility of real exchange rates.

The problem with (5), however, is the presence of serial correlation. As discussed in Andrews and Chen (1994), the AR (p) model may be used, incorporating lagged first-differences to account for serial correlation. The AR (p) model, for t = 1, ..., T, is the special case of (3):

$$q_t = \alpha_0 + \alpha_1 q_{t-1} + \sum_{j=1}^{\kappa} \beta_j \Delta q_{t-j} + v_t$$
(6)

where we again use the general-to-specific lag selection procedure suggested by Ng and Perron (1995), with maximum lag set at k = 12 and 5% as the significance criterion for the last *k* term.

On the HL calculation, we take into account the b(1) correction factor, which is equal to $b(1) = 1 - \Sigma \beta_j (j=1 \dots k)$ in the ADF-type regression. The b(1) correction factor enters the calculation of the HL as: $h^* \equiv \max \{\ln(0.5b(1))/\ln(\alpha_1), 0\}$, which differs from $h_a \equiv \max \{\ln(0.5)/\ln(\alpha_1), 0\}$. Both half-lives $(h_a \text{ and } h^*)$ will be reported in the next section, as well as the HL calculated by the impulse response functions (h_{IRF}) for the AR (p) case.⁷ The 95% confidence intervals for h_a and h^* (respectively, h_{al}, h_{ah}, h^*_{p} and h^*_{h}) will be calculated by using a delta method approximation: $h_a \pm 1.96\sigma_{\alpha 1} \{(\ln(0.5)/(\alpha_1))[\ln(\alpha_1)]^2\}$, where $\sigma_{\alpha 1}$ is the estimate of the standard deviation of α_1 . Since the HL cannot be negative, we impose a lower bound of zero.⁸

⁷ Since the HL calculated from equation (5) assumes that shocks to RERs decay at a constant rate, the HL can be calculated directly from the IRFs to remedy this problem. The HL for the IRFs is defined as the number of periods required for deviations from PPP to subside permanently below one half in response to a unit shock. In this paper, the estimates based on h^* looked very similar to those based on the HL for the IRFs. The next section discusses their differences.

⁸ Using floating rate period quarterly data from non-EMU, Rossi (2005) reports point estimates of h^* to be around 8 to 12 quarters for most currencies, while earlier research had focused on h_a estimation. Due to the absence of the correction factor, the latter generally underestimates the true half-life. In addition to the correction factor above, Rossi (2005) proposed a method to estimate confidence intervals for half-lives which are robust to the presence of highpersistence, which is different from the delta method approximation method implemented in this paper.

IV. Results

A. ARMA models

Tables 1 and 2 contain the following ARMA(1,1) and ARMA(2,2) models as a first pass on the time series processes for quarterly and monthly datasets:

ARMA (1,1):
$$q_{t} = \alpha_{0} + \alpha_{1}q_{t-1} + \beta_{1}\varepsilon_{t-1} + \varpi_{t}$$
, (7)

ARMA (2,2):
$$q_t = \alpha_0 + \alpha_1 q_{t-1} + \alpha_2 q_{t-2} + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} + v_t$$
 (8)

In order to detect serial correlation, we employ the Ljung-Box Q(12) statistics for quarterly data and Q(36) for monthly data, as well as the Lagrange Multiplier Breusch-Godfrey statistic, which coincide in general. Any evidence of serial correlation implies a systematic movement in *q* that is not accounted for by the ARMA coefficients. In Table 1, MA terms are statistically significant for the Chilean peso, regardless of the domestic price index used.⁹ For the Mexican peso, when the CPI is used as domestic price index, serial correlation is detected in both models, although the MA terms are weaker, implying rejection of the null of zero β coefficients at 10% only. When the PPI is employed, there is no evidence of misspecification for the real value of the bilateral Mexican peso.

These results are confirmed in Table 2 with monthly data for the same time span. Here the Chilean peso has MA terms statistically significant in almost all cases. While the Chilean peso equations seem to be devoid of serial correlation, the bilateral real Mexican peso equations are plagued by serial correlation problems in 3 out of the 4 cases. By employing the REER (see the bottom of the table), however, one finds white-noise processes for all models, except for the ARMA(1,1) in Mexico, although the rejection is only at 10%. The worst ARMA specifications

⁹ This is not entirely unheard of for Latin American currencies. Mollick (1999) provides evidence of significant MA terms (a –0.22 coefficient) in the very long run (1855-1990) for the Brazilian currency against the British pound and the U.S. dollar. MA terms are typically associated with seasonal factors in the data. Enders (1995, pp. 106-111), for example, estimates AR (1), AR (2), ARMA (1,1) and ARMA (1,2) for the U.S. wholesale price index and refers to an ARMA (1,1) with an additional MA coefficient at lag 4 to account for the possibility of seasonality.

		• • •	,				,	
Real exchange rate models	$lpha_{_0}$	$\alpha_{_1}$	α ₂	$\beta_{_1}$	β_2	Adj. R ²	Ljung-Box Q(12) test	
Chile - PPI								
ARMA (1,1)	6.112	0.92 8		0.268		0.933	14.395	0.946
	(0.054)	(0.049)		(0.075)			[0.156]	[0.623]
ARMA (2,2)	6.111	1.682	· -0.72***	-0.577 ***	-0.15 [*]	0.936	9.884	1.049
	(0.024)	(0.102)	(0.095)	(0.097)	(0.089)		[0.273]	[0.592]
Chile – CPI								
ARMA (1,1)	6.229 ***	0.954 ***	*	0.377	0.	968 12.368	1	.928
	(0.127)	(0.044)		(0.100)			[0.261]	[0.381]
ARMA (2,2)	6.116 ***	1.891 "	· -0.91 ^{····}	-0.753 ***	-0.40 ***	0.976	14.78	23.89 ***
	(0.035)	(0.062)	(0.061)	(0.125)	(0.135)		[0.063]	[0.00]
Mexico -PPI								
ARMA (1,1)	1.656 ***	0.877 ***	•	0.152		0.813	5.116	2.207
	(0.097)	(0.058)		(0.163)			[0.883]	[0.332]
ARMA (2,2)	1.655 ***	1.445	-0.53	-0.431	0.06	0.812	3.152	2.387
	(0.062)	(0.648)	(0.546)	(0.730)	(0.183)		[0.317]	[0.303]
Mexico -CPI								
ARMA (1,1)	1.638 ***	0.820 ***		0.258 [·]		0.781	16.60 *	20.74 ***
	(0.066)	(0.081)		(0.141)			[0.084]	[0.00]
ARMA (2,2)	1.641	0.385	0.40	0.718	0.03	0.799	10.287	14.47 ***
	(0.074)		(0.247)	(0.414)	(0.226)		[0.245]	[0.0007]

Table 1. Estimates of ARMA (1,1) and ARMA (2,2) models under quarterly data

RANDOM WALKS AND HALF-LIVES IN CHILEAN AND MEXICAN PESO REAL 197

Notes: Data are of quarterly frequency from 1980:01 to 2003:04. The symbols , ", " indicate rejection of the null at the 10%, 5%, and 1% levels. As diagnostic tests, the Ljung-Box Q(12) test reports the Q statistics, under the null of no serial correlation, constructed from the autocovariances with probabilities adjusted for 2 ARMA terms. Also reported is the Breusch-Godfrey LM serial correlation test with ARMA errors of order up to 2. In the latter, the null hypothesis is of no serial correlation. The statistics are constructed as the number of observations (N) times the R². For the serial correlation LM test, the NR² statistic has an asymptotic x^2 distribution under the null.

Series and models	$\alpha_{_{0}}$	$\alpha_1 \qquad \alpha_2$	$eta_{_1}$	$eta_{_2}$	Adj. R ²	Ljung-Box LM test = $Q(36)$ test N x R ²
Chile - PPI						
ARMA (1,1)	6.111 ***	0.978 ***	0.266 ***		0.979	33.025 0.405
	(0.061)	(0.014)	(0.089)			[0.515] [0.817]
ARMA (2,2)	6.111 ***	0.013 0.944	1.233	0.260 "	0.979	33.185 0.541
	(0.063)	(0.040) (0.039)	(0.108)	(0.102)		[0.409] [0.763]
Chile - CPI						
ARMA (1,1)	6.258 ***	0.987 ***	0.158		0.989	26.605 5.789 ⁺
	(0.161)	(0.012)	(0.217)			[0.813] [0.055]
ARMA (2,2)	6.133 ***	1.968		-0.109	0.990	24.496 3.798
	(0.011)	(0.011) (0.011)	(0.217)	(0.217)		[0.826] [0.150]
Mexico - PPI						
ARMA (1,1)	1.663 ***	0.947 ***	0.170 **		0.924	47.850 * 8.216 **
	(0.061)	(0.022)	(0.085)			[0.058] [0.016]
ARMA (2,2)	1.663 ***	1.170 -0.198	-0.089	-0.160	0.925	38.012 3.988
	(0.083)	(0.533) (0.516)	(0.554)	(0.137)		[0.214] [0.136]
Mexico - CPI						
ARMA (1,1)	1.663	0.952 ***	0.141		0.931	62.08 13.02
	(0.063)	(0.021)	(0.094)			[0.002] [0.001]
ARMA (2,2)	1.669 ***	1.250 -0.274	-0.194			51.50 14.79
,	(0.081)	(0.710) (0.686)	(0.736)			[0.016] [0.0006]
Chile-REER						
ARMA (1,1)	4.495 ***	0.983 ***	0.290 ***		0.980	35.922 0.296
	(0.100)	(0.013)	(0.052)			[0.378] [0.862]
ARMA (2,2)	4.499 ***	0.320 0.650		0.204 ***	0.979	36.877 1.187
	(0.096)	(0.172) (0.171)	(0.172)	(0.077)		[0.253] [0.552]
Mexico-REER						
ARMA (1,1)	4.496 ***	0.962 ***	0.264 ***		0.953	46.225 4.586
	(0.101)	(0.017)	(0.074)			[0.079] [0.101]
ARMA (2,2)	4.496 ***	0.755 0.209	0.443	-0.083	0.953	41.329 1.667
	(0.126)	(0.583) (0.562)	(0.561)	(0.133)		[0.125] [0.435]

Table 2. Estimates of ARMA (1,1) and ARMA (2,2) models under monthly data

198

Notes: Data are of monthly frequency from 1980:01 to 2003:12. The symbols `,`,`` indicate rejection of the null at the 10%, 5%, and 1% levels. As diagnostic tests, the Ljung-Box Q(36) test reports the Q statistics, under the null of no serial correlation, constructed from the autocovariances with probabilities adjusted for 4 ARMA terms. Also reported is the Breusch-Godfrey LM serial correlation test with ARMA errors of order up to 2, constructed as the number of observations (N) times the R²; NR² statistic has an asymptotic x² distribution under the null.

seem to be for the Mexican peso under either the PPI or the CPI as the domestic price index.¹⁰

Simpler AR(1) specifications seem to fit the Mexican data better than the Chilean data as will be discussed in detail below.

B. Unit roots

Since we are performing simple ARMA(1,1) tests, it is important to detect large moving average terms in the real exchange rate that could affect seriously the size of standard unit root tests according to Ng and Perron (2001). Table 3 contains various unit root tests for the Chilean and Mexican peso real exchange rates with respect to the U.S. dollar. The frequency of data is quarterly in this case. The table contains also the more efficient DF-GLS tests, as well as the complementary KPSS tests under the null of stationarity, and the Ng and Perron (2001) tests.

According to the tests based on the PPI for Chile, ADF and DF-GLS equally do not reject the unit root null in levels while DF-GLS does reject it in first-differences at the 10% level only. The Ng and Perron MZ tests suggest, however, I(1) processes at standard confidence levels. Similarly, the KPSS rejects the null of stationarity in levels but does not do so in first-differences. These results are insensitive to the inclusion of the deterministic trend in the regression. For the Mexican CPI, the Ng-Perron MZ tests reject non-stationarity for the tests without trend in levels. But the KPSS is consistent with I(1) inference, although there is also disagreement in view of the inclusion of the trend term: 0.84 against 0.11. Evidence of stationarity in first-differences for the Mexican peso is stronger than in Chile for the PPI: 5 out of 5 rejections against 3 out of 5.

For the CPI-based tests for Chile, the inference favors I(1) series, except for the ADF that is able to reject the null in levels, regardless of the inclusion of the trend term. For Mexican CPI the DF-GLS rejects the unit root in levels (without trend) but

¹⁰ As further diagnostic tests, we conduct ARCH LM tests where the null, distributed as $x^2(q)$ where q is the number of squared residuals - is that the coefficients on lagged squared residuals are all zero. Under quarterly data, we do not reject the null in all cases, except for the MXN measured by the CPI: at 10% for the ARMA (1,1) and at 5% for the ARMA (2,2). Under monthly data, we do reject the null in all cases for the bilateral CLP at 1% levels and for multilateral MXN REER at the 10% level, but do not reject for any other REER. We conclude that evidence on ARCH terms is not strong in our estimates.

the MZ tests are not able to reject the null in first-differences. The results from ADF and KPSS tests, however, are consistent with I(1) series. Overall, except for a few cases, the non-stationarity null is not rejected for the real exchange rate in levels. The recently developed tests by Ng and Perron (2001) confirm I(1) inference throughout except for the real exchange rate constructed with Mexican CPI. This class of unit root tests are particularly appropriate in cases when statistically significant MA terms are present and when there is near unit root behavior. As shown in Table 1, there seems to be MA terms for the ARMA (1,1) model for Chile.

Employing monthly data, Table 4 reports overwhelming evidence of I(1) processes for both Chilean and Mexican pesos. The only exceptions are the ADF tests for the Mexican peso, calculated with the PPI and the REER, which seem to suggest some stationarity in levels. However, all other three tests do not confirm this. The DF-GLS, KPSS and MZ tests uniformly do not reject the null in levels, which support the I(1) inference for both currencies under the three different exchange rate definitions. Comparing to the quarterly data case, Table 4 documents a more precise picture in favor of non-stationary processes in levels. This is consistent with less size distortions as the sample size increases from T = 96 to T = 288.

C. Half-lives

Autoregressive models form the alternative hypothesis for the unit root testing procedure in the literature on real exchange rates as discussed in Froot and Rogoff (1995). Tables 5 and 6 are based on the following models:

$$\operatorname{AR}(1): q_{t} = \alpha_{0} + \alpha_{1}q_{t,1} + \overline{\omega}_{t}, \qquad (9)$$

AR (p):
$$q_t = \alpha_0 + \alpha_1 q_{t-1} + \sum_{i=1}^k \beta_i \Delta q_{t-i} + \overline{\omega}_t$$
 (10)

Table 5 contains results on half-lives for the quarterly dataset. For the AR(1) process for Chilean real exchange rate, the calculations imply very high 0.944 and 0.965 OLS autoregressive coefficients, depending on whether PPI or CPI is used. As these estimates are potentially biased, the median unbiased (MU) estimator of Andrews (1993) is applied next. These methods are called MU estimations of AR

Serie	Series Trend? ADF (<i>k</i>)		DF-GLS (<i>k</i>) KPSS (4)		Ng-Perron $MZ_{\alpha}(k)$	Ng-Perron MZ _t (<i>k</i>)
Chile	e – PPI					
q	Yes	-2.21 (12)	-2.10 (12)	0.26 ***	-3.20 (0)	-1.22 (0)
q	No	-2.21 (12)	-1.03 (12)	0.48 **	-0.85 (0)	-0.52 (0)
Δq	No	-2.52 (11)	-1.85 (11) ⁻	0.17	-13.52 (2) "	-2.59 (2) ***
Mexi	co – PPI					
q	Yes	-3.04 (7)	-3.05 (7)	0.84 ***	-10.99 (0)	-2.34 (0)
q	No	-2.13 (0)	-2.12 (0) "	0.11	-8.58 (0)	-2.04 (0) ~
Δq	No	-8.80 (0) ***	-3.17 (6) ***	0.05	-32.14 (2) ***	-4.01 (2) ***
Chile	e – CPI					
q	Yes	-3.55 (12)	-2.93 (12) ⁻	0.27 ***	-5.19 (1)	-1.60 (1)
q	No	-3.27 (12)	-1.46 (12)	0.64 **	-1.14 (1)	-0.57 (1)
Δq	No	-6.06 (0) ***	-2.24 (3) "	0.17	-16.95 (2) ***	-2.85 (2) ***
Мехі	co – CPI					
q	Yes	-1.69 (12)	-0.89 (12)	0.15 ~	-6.63 (0)	-1.81 (0)
q	No	-1.27 (12)	-0.27 (12)	0.42 *	-4.74 (0)	-1.53 (0)
Δq	No	-4.98 (11) ***	-0.67 (12)	0.04	-1.97 (2)	-0.88 (2)

Table 3. Unit root tests on (bilateral) real exchange rates under quarterly data

Notes: Data are of quarterly frequency from 1980:01 to 2003:04 and are explained in the data section. For each country, q refers to the bilateral (against the U.S.) real exchange rate calculated using baskets of either producer or consumer price indexes taken from the IFS dataset. We include the deterministic trend only when testing the series in levels. ADF(k) refers to the Augmented Dickey-Fuller t-tests for unit roots, in which the null is that the series contains a unit root. The lag length (k) for ADF tests is chosen by the Campbell-Perron data dependent procedure, whose method is usually superior to k chosen by the information criterion, according to Ng and Perron (1995). The method starts with an upper bound, $k_{max}=12$, on k. If the last included lag is significant, choose $k = k_{max}$. If not, reduce k by one until the last lag becomes significant (we use the 5% value of the asymptotic normal distribution to assess significance of the last lag). If no lags are significant, then set k = 0. Next to the reported calculated t-value, in parenthesis is the selected lag length. DF-GLS (k) refers to the modified ADF test proposed by Elliott et al. (1996), with the data dependent procedure used for lag-length selection. The KPSS test follows Kwiatkowski et al. (1992), in which the null is that the series is stationary and k=4 is the used lag truncation parameter. We report two of the M-tests developed by Ng and Perron (2001) with BIC used for lag-length selection. The MZ_ and MZ, can be viewed as modified versions of the Phillips and Perron (1988) Z, and Z, tests, which suffer from severe size distortions when the errors have a negative moving average (MA) root. The first step of the method is to construct the DF-GLS modified ADF test proposed by Elliott et al. (1996) and then to compute the MZ_ and MZ, statistics as defined in Ng and Perron (2001). The symbols ;, ;, indicate rejection of the null at the 10%, 5%, and 1% levels.

Series Trend?	ADF (<i>k</i>)	DF-GLS (<i>k</i>)	KPSS (4)	Ng-Perron MZ _{a?} (<i>k</i>)	Ng-Perron MZ _t (k)
Chile - PPI					
q Yes	-2.00 (1)	-1.51 (1)	0.71 ***	-4.96 (1)	-1.53 (1)
q No	-2.21 (1)	-0.67 (1)	0.74 ***	-1.18 (1)	-0.65 (1)
∆q No	-12.91 (0) ***	-5.47 (4)	0.16	-172.24 (0) ***	-9.27 (0) ***
Mexico - PPI					
q Yes	-5.66 (12) ***	-2.52 (12)	0.22 ***	-6.72 (2)	-1.82 (2)
q No	-3.24 (12)	-2.22 (12) -	2.12 ***	-5.57 (2)	-1.67 (2) ⁻
∆q No	-4.15 (12) ***	-2.60 (11)	0.10	-28.24 (4 ⁾	-3.76 (4) ***
Chile - CPI					
q Yes	-1.57 (1)	-1.11 (1)	0.75 ***	-2.61 (1)	-1.11 (1)
q No	-1.88 (1)	-0.01 (1)	1.77***	0.03 (1)	0.02 (1)
∆q No	-13.83 (0) ***	-3.87 (4) ***	0.22	-22.06 (4) ***	-3.30 (4) ***
Mexico - CP					
q Yes	-2.91 (5)	-1.76 (5)	0.41 ***	-5.84 (0)	-1.69 (0)
q No	-2.52 (5)	-1.36 (5)	1.05 ***	-3.67 (0)	-1.33 (0)
∆q No	-6.68 (4) ***	-5.82 (4) ***	0.13	-36.78 (4) ***	-4.29 (4) ***
Chile – REEF	2				
q Yes	-1.81 (1)	-1.78 (1)	1.07 ***	-6.34 (1)	-1.78 (1)
q No	-1.69 (1)	-0.87 (1)	1.66 ***	-2.26 (1)	-0.89 (1)
∆q No	-12.98 (0) ***	-2.28 (9)	0.10	-152.35 (0) ***	-8.71 (0) ***
Mexico – RE	ER				
q Yes	-3.42 (10) [*]	-3.38 (10) "	0.68 ***	-8.48 (2)	-2.06 (2)
q No	-3.06 (10) **	-2.89 (10) ***	1.37 ***	-6.26 (2) ⁻	-1.74 (2)
∆q No	-6.06 (4) ***	-1.27 (9)	0.06	-9.07 (4) ***	-2.03 (4)

Table 4. Unit root tests on real exchange rates under monthly data

202

parameters in DF or ADF-type regressions and essentially deal with the problem of downward bias in the AR parameter.¹¹

In the AR (1) case it turns out that the MU estimator (α^{U_1}) clearly approaches 1: 0.990 for the PPI-based Chilean peso real exchange rate and 1 for the CPI-based. Based on these MU estimations, application of the standard HL formula suggests an extremely slow convergence process for the Chilean peso, varying from 68.62 quarters (for the PPI) to ∞ (for the CPI). As the Ljung-Box and Breusch-Godfrey serial correlation tests detect serial correlation, however, we proceed with the more general AR(p) procedure for the Chilean peso real exchange rate. We conduct extensive search on additional autoregressive terms as recommended by Murray and Papell (2002) in order to account for serial correlation and employ the Ng and Perrron (1995) sequential test procedure to determine the optimal lag-length. We set the maximum number of lags in the quarterly case (in Table 5) at *k*=8 and in the monthly case (in Table 6) at *k*=24. In both datasets it is possible to obtain well-specified equations as there is no rejection of the null of no-serial correlation when autoregressive terms are included. Under the LM test, not reported in the table, there is only one rejection at the 10% level for the monthly Mexican peso under the PPI.

Below the AR(1) estimates in Table 5, we report the A(p) models and apply the algorithm in Andrews and Chen (1994) when computing MU estimators for α_1 . The resulting AR(p) models yield much lower coefficients for Chilean PPI (0.870) and CPI (0.936), compared to the AR(1) case. Note that there is no serial correlation according to Ljung-Box Q (.) tests (LM tests yield similar results) in these AR(p) specifications. The MU estimators therefore yield a higher $\alpha_1^{U_1}$ for the Chilean peso compared to the biased α_1 : 0.964 for PPI and 0.954 for CPI.

For Chilean PPI exchange rates the implied half-life is 12 quarters under the simpler AR(1) process. Application of conventional two-sided intervals (h_a) yields wide confidence intervals varying from 0 to 30.66 quarters. After taking into account

¹¹ To obtain MU estimates of α_0 , α_1 , β_1 , ..., β_{k-1} in (6), the algorithm proposed by Andrews and Chen (1994) is followed for the AR(p) case. We compute the OLS of (6) and obtain estimates of β_1 , ..., β_{k-1} . Then treat these estimates as though they were the true values and calculate the bias-corrected estimator of α_1 , denoted $\alpha_1^{U_1}$, according to one of the tables in Andrews (1993). Then treat $\alpha_1^{U_1}$ as if it were the true value of α_1 and compute a second round of OLS estimates of β_1 , ..., β_{k-1} in (6) and calculate a second-round bias corrected estimator of α_1 , $\alpha_1^{U_1}$, using the tables in Andrews (1993). When convergence occurs, these final approximately MU estimators of true parameter values are referred to as $\alpha_1^{U_1}$, $\alpha_1^{U_1}$, \ldots , $\beta_{k-1}^{U_k}$.

Real Exchange Rate Models	$\alpha_{_1}$	Half-Life for <i>h_a</i> (95% C.I.)	Corrected HL <i>h</i> * (95% C.I.)	Adj. R ² Q(12)	Ljung- Box	α^{u}_{1}
Chile - PPI						
AR (1)	0.944 ***	12.03		0.928	25.668 ***	0.990
	(0.043)	(0, 30.66)			[0.007]	
AR (7)	0.870 ***	4.98	6.77	0.863	7.133	0.964
	(0.043)	(1.52, 8.44)	(3.31, 10.23)		[0.849]	
Chile - CPI						
AR (1)	0.965 ***	19.46		0.963	21.616 ***	1.000
	(0.038) ((0.61, 61.60)			[0.028]	
AR (4)	0.936 ***	10.48	20.28	0.961	10.415	0.954
	(0.031) ((0.19, 20.77)	(9.99, 30.57)		[0.580]	
Mexico - PPI						
AR (1)	0.905 ***	6.94		0.811	9.060	0.943
	(0.044) ((0.32, 13.57)			[0.616]	
AR (8)	0.900 ***	6.58	7.32	0.816	4.926	0.954
	(0.061)	(0, 14.87)	(0, 15.61)		[0.960]	
Mexico - CPI						
AR (1)	0.884 ***	5.62		0.780	14.816	0.920
	(0.052) ((0.37, 10.88)			[0.191]	
AR (3)	0.852 ***	4.33	6.65	0.785	9.001	0.952
	(0.062)	(0.47, 8.18)	(2.80, 10.51)		[0.703]	

Table 5. Estimates of half-lives under quarterly data

Notes: Data are of quarterly frequency from 1980:01 to 2003:04. The symbols `, `, `` indicate rejection of the null at the 10%, 5%, and 1% levels. For the AR(p) model, a general to specific procedure is adopted with maximum lag set at 8 quarters. For the AR(1) case, the implied half life is calculated according to the formula $HL = \ln(0.5)/\ln(\alpha_{\rm v})$ and the 95% confidence interval is a conventional two-sided interval. IRFs are also used to verify the half-lives in the AR (p) case as mentioned in the text: the response in quarters of the first time it gets below 0.50. As diagnostic tests, the Ljung-Box Q (12) statistic at 12 lags is a test of the null hypothesis that there is no auto-correlation up to order 12. We also applied the Breusch-Godfrey LM serial correlation test NR² statistic that has an asymptotic x^2 distribution under the null. As the results matched the Q(12), we omit these LM tests. The $\alpha_1^{U_1}$ coefficient is the MU estimator obtained from table II (for T+1 = 90) associated with model 2 (without the time trend) in Andrews (1993) for the AR (1) case and by the algorithm proposed by Andrews and Chen (1994) for the AR (p) case. In column (4), we calculate the half-life taking into account the *b*(1) correction factor, which is shown to be equal to *b*(1) = 1 - $\Sigma \beta_i$ (*i* = 1 to *k*) in the ADF-type regression. The *b*(1) correction factor enters the calculation of the half-life as: h* = max{In (0.5b(1))/In (α_1), 0}.

serial correlation, the implied half-life becomes 4.98 quarters with h_a confidence intervals ranging from 1.52 to 8.44 quarters. When the correction factor b(1) is incorporated, the adjusted half-life increases to 6.77, with corresponding h^* confidence intervals varying from 3.31 to 10.23 quarters. In general, compared to the h_a calculation, increases in the magnitudes of the half-lives are observed for the other real exchange rates in Table 5. The increase is particularly high for the Chilean CPI case as we go from h_a to h^* : from 10.48 quarters to 20.28.

For the AR (p) case, we also check the half-lives computed directly from the impulse response functions (h_{IRF}) .¹² Since there is thus not much difference between h_{IRF} and the values obtained according to the corrected HL (h^*), we focus on h^* in the tables. Looking at the periods upon which the one-unit shock first gets below 0.5 for Chilean PPI, for example, this occurs at 8 quarters. For Chilean CPI, this happens longer at 15 quarters. These values are fairly close to the 6.77 and 20.28 quarters obtained by h^* .

The results for Mexican real exchange rates present a contrasting pattern. The biased α_1 for the AR(1) in Table 5 are originally lower than those for the Chilean peso: 0.905 for the PPI and 0.884 for the CPI. Computing the MU estimators for the AR(1) case yield 0.943 and 0.920 for the PPI and CPI, respectively. These are devoid of serial correlation according to the Ljung-Box Q(12) and LM tests and do imply 11.81 or 8.31 half-lives, respectively, applying the standard *HL* formula. These figures suggest half-lives between 2 and 3 years, in the lower band of the 3 to 5 years period discussed in Rogoff (1996) for industrial countries. Application of the *b*(1) factor yields HL of 7.32 and 6.65 quarters, still below the "consensus" in the literature.¹³

¹² On the half-lives for the MU estimators in the AR(p) case, we follow Andrews and Chen (1994) and Cheung and Lai (2000). In studying the moving-average representation (MA) of the Δq_i process, the MA coefficients are referred to as impulse responses. The impact of a unit innovation at time t on the relevant variable at time t+j can be shown to be given by $C(j) = 1 + a_1 + a_2 + ... + a_j$, with C(j) as the cumulative impulse response (CIR). Let *C* (*j*) be the computed CIR for the real exchange rate series. The half-life (HL) is given by C(*HL*) = 0.5 and indicates how long it takes for the impact of a unit shock to dissipate by half.

¹³ Although unnecessary given that AR(1) for MXN is not plagued by serial correlation, calculating more general AR(p) processes imply half-fives based on $h_{_{I\!RF}}$ at 7 quarters for the PPI and CPI Mexican peso bilateral real exchange rates. In years, these persistence measures imply almost 2 years for Mexican RERs. Again, these are very close to the values of close to 7 quarters reported in Table 5.

Table 6 contains the estimates under monthly data, which reinforce the basic findings of the quarterly data. The Andrews (1993) and Andrews and Chen (1994) MU estimators include the same procedures as in the quarterly case. The only difference is that now the Ljung-Box test is evaluated at Q(36) to keep the same horizon with the quarterly case. Besides, the maximum lag for the AR(p) model selection procedure is also set at 24 in order to cover the same period as in the quarterly case (2 years).

As in the quarterly data case, increases in the half-lives are observed for the real exchange rates in Table 6 when the correction factor is adopted. For example, when the correction factor b(1) is incorporated, the adjusted half-life increases to 52.04 months from 36.13 for the PPI case, with corresponding confidence intervals running from 14.41 to 89.68 months. All other upper bands of the two confidence intervals for the Chilean peso are quite wide: 95.58 for the CPI and 132.81 for the multilateral REER. Similar to the quarterly case, there is similarity between the h^* and h_{IRF} estimations.¹⁴

Since serial correlation is detected in the AR(1) models according to both Ljung-Box Q(36) and LM tests, the AR(p) models for the Mexican peso provide AR(12) for the PPI, AR(24) for the CPI and AR(10) for the REER. Applying the MU estimators proposed by Andrews and Chen (1994) yield a higher $\alpha_1^{U_1}$ compared to the biased α_1 : 0.975 for PPI, 0.974 for CPI, and 0.982 for the REER. In Table 6 all Chilean peso rates have the MU estimators implying infinite half-lives in the AR(1) case. On the other hand, for the Mexican peso rate the implied half-lives are finite in the AR(1) and AR(p) processes alike. Except for the REER, there is not much variation between the corrected HL estimates (h^*) and the h_{IBF} ones.¹⁵

In contrast to the Chilean peso, the half-lives and confidence intervals are much smaller for the Mexican peso. This finding is corroborated by the calculation of MU estimators and by confidence intervals for half-life using the correction factor. The half-life goes from 16.98 to 11.20 as we take into account serial correlation

¹⁴ While the h^* yields for monthly Chilean RER 52.04 months (PPI), 61.62 months (CPI), and 56.56 months (REER), based on h_{RF} the HL stays at 40 months (PPI), 41 months (CPI), or 49 months (REER).

¹⁵ In the the AR (1) for the Mexican peso, the unbiased HL based on MU implies close to 30 months based on either PPI or CPI and 116 months based on REER. In the more appropriate AR (p) case, $h_{\rm IRF}$ implies around 20 months based on PPI, 26 months based on CPI, and 25 months based on REER.

Real exchange rate models	$\alpha_{_1}$	Half-life for <i>h_a</i> (95% C.I.) (95% C.I.)	Corrected HL h*	Adj. R ² Q(36)	Ljung- Box	$\alpha^{\rm U}{}_1$
Chile - PPI						
AR (1)	0.983 ***	40.43		0.978	60.694 ***	1.000
	(0.013)	(0, 101.54)			[0.000]	
AR (2)	0.981 ***	36.13	52.04	0.979	31.927	1.000
	(0.010)	(0, 73.77)	(14.41, 89.68)		[0.663]	
Chile - CPI						
AR (1)	0.989 ***	62.67		0.989	39.995	1.000
	(0.011)	(0, 186.17)			[0.258]	
AR (11)	0.980 ***	34.31	61.62	0.987	19.266	1.000
	(0.010)	(0.34, 68.28)	(27.65, 95.58)		[0.990]	
Mexico - PPI						
AR (1)	0.960 ***	16.98		0.923	55.186 ***	0.977
	(0.017)	(2.54, 31.42)			[0.016]	
AR (12)	0.940 ***	11.20	24.81	0.930	17.238	0.975
	(0.019)	(4.03, 18.38)	(17.63, 31.98)		[0.997]	
Mexico - CPI						
AR (1)	0.961 ***	17.42		0.931	72.059 ***	0.978
	(0.017)	(2.24, 32.61)			[0.000]	
AR (24)	0.955 ***	15.05	20.01	0.934	23.482	0.974
	(0.024)	(0, 31.16)	(3.91, 36.11)		[0.946]	
Chile - REER						
AR (1)	0.989 ***	62.67		0.978	68.730 ***	1.000
	(0.012)	(0, 197.40)			[0.000]	
AR (6)	0.986 ***	49.16	56.56	0.979	32.557	1.000
	(0.011)	(0, 125.41)	(0, 132.81)		[0.633]	
Mexico - REER	<i>,</i> .	. ,	. ,			
AR (1)	0.975 ***	27.38		0.950	69.944 ***	0.994
	(0.014)	(0, 57.81)			[0.000]	
AR (10)	0.957 ***	15.77	35.89	0.956	12.889	0.982
	(0.012)	(6.95, 24.59)	(27.07, 44.71)		[1.000]	

Table 6. Estimates of half-lives under monthly data

Notes: Data are of monthly frequency from 1980:01 to 2003:12. The symbols `,`,`` indicate rejection of the null at the 10%, 5%, and 1% levels. For the AR (p) model, a general to specific procedure is adopted with maximum lag set at 24 months. Please refer to the notes to Table 5 for details. As diagnostic tests, the Ljung-Box Q(36) statistic at 36 lags is a test of the null hypothesis that there is no auto-correlation up to order 36. The α^{U}_{1} coefficient is the MU estimator obtained from table II (for T+1 = 200) associated with model 2 (without the time trend) in Andrews (1993) for the AR (1) case and by the algorithm proposed by Andrews and Chen (1994) for the AR (p) case. In column (4), we calculate *HL* as explained in the notes to Table 5.

for Mexican PPI, and from 17.42 to 15.05 for Mexican CPI. When the correction factor *b*(1) is incorporated, the adjusted half-life increases to 24.81 from 11.20 for the Mexican PPI case, with corresponding confidence intervals running from 17.63 to 31.98 months. Similarly, the adjusted half-life increases to 20.01 from 15.05 for the Mexican PPI case, with corresponding confidence intervals going from 3.91 to 36.11 months. Therefore, the upper band of the Mexican CPI is not much beyond the 36 month-mark. For the multilateral case, the adjusted half-life increases to 35.89 from 15.77, with corresponding confidence intervals varying from 27.07 to 44.71 months. The *upper band* in this case is still between 3 and 4 years!

Taken together, evidence of mean reversion ($\alpha_1 < 1$) is clearly stronger for the Mexican peso RER. This holds across the three datasets investigated. Once the MU estimates by Andrews and Chen (1994) are obtained, the econometric techniques on the half-lives provide consistent results with each other: either by the half-life calculations based on the correction factor for the ADF equation (h^*) or on the half-lives based on impulse responses (h_{ipe}).

How do our results relate to others in the literature? For the MXN real exchange rate, Taylor (2002) reports half-lives during his 1971 to 1996 floating rate period of just 1.1 year, much lower than the 3.6 years of the gold standard or the 6.2 years of the interwar period. The 1.1 year figure is considerably smaller than the mean and median half-lives around 2 to 3 years, a time frame considered "even more favorable to rapid PPP adjustment than most empirical studies." (Taylor 2002, p. 145). There is also (pooled, with Mexico but without Chile) evidence of contrasting patterns in industrial countries (from 2 to 5 years): "Most of the half-lives for developing countries are less than 3 years. Accordingly, the persistence in PPP deviations tends to be lower for developing countries than for industrial countries." Cheung and Lai (2000 p. 388). The only reference we know of half-lives for CLP finds smaller values than ours. Using a threshold autoregressive (TAR) model for 1810-2002 and splitting into 1810-1973 and 1974-2000, "the half-life of the process falls from 2.1 to 1.6 years along both periods, which are even lower than the 2.8 years found for the full sample." (Calderón and Duncan 2003, p. 121).

V. Concluding remarks

Several papers, including Frenkel (1978), McNown and Wallace (1989), and Mahdavi and Zhou (1994), have shown that past German, Israeli and Latin American

hyperinflation contribute to purchasing power parity (PPP) relatively to industrial countries with very stable inflation rates. Usually the approach in these studies has been to estimate any of the three stages of PPP tests in Froot and Rogoff (1995). None of these studies, however, has combined techniques in stage two with econometric advances in half-lives such as Andrews (1993) and Andrews and Chen (1994). Recent works in this vein by Cashin and McDermott (2003) are confined to industrial countries.

This paper attempts to fill this gap for two representative real Latin American currencies: CLP and MXN. We find that the evidence on half-lives contrasts markedly across the two currencies: at 5 years or infinity for the Chilean peso and between 1 and 3 years for the Mexican peso. This set of results holds across the three RER datasets and the econometric techniques on the half-lives also provide consistent results with each other. With the MXN implying a mean reversion pattern faster than the 3 to 5 years "consensus" by Rogoff (1996), evidence on MXN is more consistent with research on groups of developing countries that report less than 3 years for the half-lives (Cheung and Lai 2000). This paper presents evidence that the abrupt depreciations in MXN and its relatively higher inflation record may have amplified monetary forces in the dynamics of the real exchange rate.

As an extension, the incorporation of heterogeneity in disaggregated relative prices seems worthwhile. Recent work by Imbs et al. (2002) shows that this dramatically decreases estimates of the half-lives to little more than 1 year. We leave this research route to future work.

References

- Andrews, Donald (1993), "Exactly median-unbiased estimation of first order autoregressive/ unit root models", *Econometrica* 61: 139-165.
- Andrews, Donald, and Hong-Yuan Chen (1994), "Approximately median-unbiased estimation of autoregressive models", *Journal of Business & Economic Statistics* 12: 187-204.
- Bleaney, Michael, Stephen Leybourne, and Paul Mizen (1999), "Mean reversion of real exchange rates in high-inflation countries, *Southern Economic Journal* 65: 839-854.
- Calderón, César, and Roberto Duncan (2003), "Purchasing Power parity in an emerging market economy: A long-span study for Chile", *Estudios de Economía* **30**: 103-132.
- Calvo, Guillermo, Carmen Reinhart, and Carlos Végh (1995), "Targeting the real exchange rate: Theory and evidence", *Journal of Development Economics* **47**: 97-133.
- Carrera, Jorge Eduardo, Mariano Féliz, and Demian Panigo (2003), "Testing the order of integration with low power tests. An application to Argentine macro-variables", *Journal*

of Applied Economics 6: 221-246.

- Cashin, Paul, and John McDermott (2003), "An unbiased appraisal of purchasing power parity", *IMF Staff Papers* **50**: 321-351.
- Cheung, Yin-Wong, and Kon S. Lai (2000), "On cross-country differences in the persistence of real exchange rates", *Journal of International Economics* **50**: 375-397.
- Cheung, Yin-Wong, and Kon S. Lai (1998), "Parity reversion in real exchange rates during the Post-Bretton Woods period", *Journal of International Money and Finance* 17: 597-614.
- Choudhry, Taufiq (1999), "purchasing power parity in high-inflation Eastern European Countries: Evidence from fractional and Harris-Inder cointegration tests", *Journal of Macroeconomics* **21**: 293-308.
- Dumas, Bernard (1992), "Dynamic equilibrium and the real exchange rate in a spatially separated world", *The Review of Financial Studies* **5** : 153-180.
- Elliott, Graham, Thomas Rothenberg, and James Stock (1996), "Efficient Tests for an autoregressive unit root", *Econometrica* 64: 813-836.
- Ellis, Luci (2001), "Measuring the real exchange rate: Pitfalls and practicalities", Discussion Paper 2001-04, Economic Research Department, Reserve Bank of Australia.
- Enders, Walter (1995), Applied Econometric Time Series, New York, John Wiley & Sons.
- Enders, Walter (1988), "ARIMA and cointegration tests of PPP under fixed and flexible exchange rate regimes", *Review of Economics and Statistics* **70**: 504-508.
- Engel, Charles (1999), "Accounting for U.S. real exchange rates", *Journal of Political Economy* **107**: 507-538.
- Ferreira, Alex L., and Miguel León-Ledesma (2005), "Does the real interest parity hypothesis hold? Evidence for developed and emerging markets", *Journal of International Money and Finance*, forthcoming.
- Fischer, Stanley, Ratna Sahay, and Carlos Végh (2002), "Modern hyper and high inflation", *Journal of Economic Literature* **40**: 837-880.
- Frenkel, Jacob A. (1978), "purchasing power parity: Doctrinal perspectives and evidence from the 1920s", *Journal of International Economics* **8**: 169-191.
- Froot, Kenneth, and Kenneth Rogoff (1995), "Perspectives on PPP and long-run real exchange rates", in G. Grossman and K. Rogoff, eds., *Handbook of InternationalEconomics*, vol. 3, Amsterdam, North-Holland.
- Gallego, Francisco, and Norman Loayza (2002), "The golden period for growth in Chile: Explanations and forecasts", Working Paper 146, Banco Central de Chile.
- Grier, Kevin, and Fausto Hernández-Trillo (2004), "The real exchange rate process and its real effects: The cases of Mexico and the USA", *Journal of Applied Economics* 7: 1-25.
- Imbs, Jean, Haroon Mumtaz, Morten Ravn and Hélène Rey (2002), "PPP Strikes Back: Aggregation and the Real Exchange Rate", Working Paper 9372, Cambridge, MA, NBER.
- Kilian, Lutz, and Tao Zha (2002), "Quantifying the uncertainty about the half-life of deviations from PPP", *Journal of Applied Econometrics* **17**: 107-125.
- Kim, Yoonbai (1990), "Purchasing power parity: another look at the long-run data", *Economics Letters* **32**: 339-344.
- Kwiatkowski, Denis, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin (1992), "Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic series have a unit root?", *Journal of Econometrics* **54**: 159-178.
- Mahdavi, Saeid, and Su Zhou (1994), "Purchasing power parity in high-inflation countries: Further evidence", *Journal of Macroeconomics* **16**: 403-422.

- McNown, Robert, and Myles Wallace (1989), "National Price levels, purchasing power parity, and cointegration: A test of four high inflation economies", *Journal of International Money and Finance* 8: 533-545.
- Michael, Panos, A. Robert Nobay, and David Peel (1997), "Transactions costs and nonlinear adjustment in real exchange rates: An empirical investigation", *Journal of Political Economy* 105: 862-879.
- Mollick, André V. (1999), "The real exchange rate in Brazil: Mean reversion or random -walk in the long-run", *International Review of Economics & Finance* 8: 115-126.
- Morandé, Felipe, and Matías Tapia (2002), "Exchange rate policy in Chile: From the band to floating and beyond", Working Paper 152, Banco Central de Chile.
- Murray, Christian, and David Papell (2002), "The purchasing power parity persistence paradigm", *Journal of International Economics* **56**: 1-19.
- Ng, Serena, and Pierre Perron (2001), "Lag length selection and the construction of unit root tests with good size and power", *Econometrica* **69**: 1519-1554.
- Ng, Serena, and Pierre Perron (1995), "Unit root test in ARMA models with data dependent methods for the selection of the truncation lag", *Journal of theAmerican Statistical Association* **90**: 268-281.
- Rogoff, Kenneth (1996), "The purchasing-power-parity puzzle", *Journal of Economic Literature* **34**: 647-668.
- Rossi, Barbara (2005), "Confidence intervals for half-life deviations from purchasing power parity", *Journal of Business and Economic Statistics*, forthcoming.
- Sabaté, Marcela, María Dolores Gadea, and José Maria Serrano (2003), "PPP and structural breaks: The peseta-sterling rate, 50 years of a floating regime", *Journal of International Money and Finance* **22**: 613-627.
- Salehizadeh, Mehdi and Robert Taylor (1999), "A test of purchasing power parity for emerging economies", *Journal of International Financial Markets, Institutions and Money* **9**: 183-193.
- Taylor, Alan (2002), "A century of purchasing-power-parity puzzle", *Review of Economics* and Statistics 84: 139-150.
- Taylor, Mark, David Peel, and Lucio Sarno (2001), "Nonlinear mean-reversion in real exchange rates: Toward a solution to the purchasing-power-parity puzzles", *International Economic Review* 42: 1015-1042.
- Xu, Zhenhui (2003), "Purchasing-power-parity, price indices, and exchange rate forecasts", Journal of International Money and Finance 22: 105-130.