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Abstract

We propose a dynamic factor model for the analysis of multivariate time series count data.

Our model allows for idiosyncratic as well as common serially correlated latent factors in order to

account for potentially complex dynamic interdependence between series of counts. The model

is estimated under alternative count distributions (Poisson and negative binomial). Maximum

Likelihood estimation requires high�dimensional numerical integration in order to marginalize

the joint distribution with respect to the unobserved dynamic factors. We rely upon the Monte�

Carlo integration procedure known as E�cient Importance Sampling which produces fast and

numerically accurate estimates of the likelihood function. The model is applied to time series data

consisting of numbers of trades in 5 minutes intervals for �ve NYSE stocks from two industrial

sectors. The estimated model accounts for all key dynamic and distributional features of the

data. We �nd strong evidence of a common factor which we interpret as re�ecting market�wide

news. In contrast, sector�speci�c factors are found to be statistically insigni�cant.
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1. Introduction

Modelling of dispersion and serial correlation for univariate count series has received much attention

over recent years. Existing approaches can be broadly classi�ed as either observation� or parameter�

driven. The monographs of Kedem and Fokianos (2002) and McKenzie (2003) provide excellent

overviews. More recent contributions include Jung et al. (2006), Neal and Subba Rao (2007) and

Jung and Tremayne (2008).

Multivariate dynamic models for count data remain few. As discussed by Cameron and Trivedi

(1998, Section 8.1), this might be explained by the fact that classical inference in multivariate count

data models has proven to be analytically as well as computationally very demanding. This is par-

ticularly relevant for models attempting to capture the complex correlation structure characterizing

many multivariate count time series. Three pioneering multivariate applications are found in Jør-

gensen et al. (1999), Held et al. (2005), and Heinen and Rengifo (2007). The speci�cation proposed

by Jørgensen et al. (1999) belongs to the class of parameter�driven models. It is a multivariate

Poisson state�space model with a common factor following a gamma Markov process. These speci�c

distributional assumptions produce a model which can be analyzed by a Kalman �lter. The model

is used to assess the impact of air pollution on daily emergency admission counts in an hospital for

four sickness categories. Held et al. (2005) propose an observation�driven multivariate model which

imposes a simple vector�autoregressive structure for the means. This model can be estimated by

standard Maximum Likelihood (ML). It is applied to infectious disease surveillance counts from a

measle epidemic. Heinen and Rengifo (2007) also adopt an observation�driven approach extending

the univariate autoregressive conditional Poisson model of Heinen (2003). A copula approach is used

to represent contemporaneous correlations among time series counts. Since e�cient joint ML estima-

tion is not feasible, the authors rely upon a consistent though less e�cient two�stage ML approach

for separate estimation of the parameters of the marginal distributions and those of the copula. Their

model is then used to analyze co�movements in the number of trades for stocks traded at the New

York Stock Exchange (NYSE). Other multivariate count models rely upon panel data techniques,

with emphasis on unobserved heterogeneity in the individual series. See Winkelmann (2008) for a

recent survey.
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In the present paper we adopt a parameter�driven approach and propose a new �exible, parsi-

monious and easy to interpret dynamic factor model for multivariate count series. It builds upon

and generalizes earlier models by Jørgensen et al. (1999) and Wedel et al. (2003). The former model

includes a single dynamic common factor only and no dynamic idiosyncratic components. The latter

model is a static multivariate Poisson factor model for cross-sectional analyses. Our model allows for

serially correlated common as well as idiosyncratic factors driving the conditional means of the count

distributions. Therefore, it can represent non�trivial contemporaneous and temporal interactions

across count series. It can also accommodate di�erent distributional assumptions for the conditional

distribution of the counts given the factors. This can be critical since the commonly used Poisson

distribution has an index of dispersion equal to one (the latter being de�ned as the ratio between

the variance and the mean). However, count data often exhibit strong over�dispersion (index signi�-

cantly larger than one) which can not be fully captured by a conditional Poisson distribution even if

a varying conditional mean generates by itself an over�dispersed unconditional distribution. Hence,

it is important to allow for conditional distributions which can accommodate over�dispersion, such

as the negative binomial (here after Negbin) and the double Poisson.

Our model depends non�linearly upon its dynamic latent factors. Whence, likelihood evaluation

requires high�dimensional numerical integration, for which we use the E�cient Importance Sampling

(hereafter EIS) procedure developed by Richard and Zhang (2007). EIS is a generic, �exible and

easy to implement Monte Carlo integration procedure speci�cally designed to maximize numerical

accuracy. It also facilitates exploring alternative model speci�cations which typically require only

minor modi�cations of a baseline EIS implementation. Last but not least, EIS can be used to compute

�ltered and/or smoothed estimates of the latent factors themselves. Several diagnostic test statistics

are based upon such estimates.

Our model is then applied to a multivariate time series consisting of numbers of trades in 5�minutes

intervals for �ve stocks traded at the NYSE. We implicitly adopt the information �ow interpretation

associated with the mixture-of-distribution model of Tauchen and Pitts (1983). See also Andersen

(1996) and Liesenfeld (2001). In this context, numbers of trades are directly in�uenced by the arrival

of new information, whether speci�c to a single stock (idiosyncratic factor), to an industry (sector
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factor), or to the market (market factor).

The paper is organized as follows. The multivariate dynamic factor model is introduced in Section

2, Section 3 discusses ML estimation, �ltering and smoothing based upon EIS. The application to

NYSE data is presented in Section 4. Section 5 concludes. Technical derivations are regrouped in an

Appendix.

2. Dynamic Factor Model for Multivariate Count Data

The econometric model we propose consists of a dynamic extension of the static multivariate Poisson

factor model introduced by Wedel et al. (2003). Consider a J�dimensional vector of counts yt =

(yt1, ..., ytJ)′ recorded at time t, (t = 1, ..., T ). Dynamics will be introduced at the level of the latent

factors. Whence, counts are assumed to be conditionally independently distributed with Poisson

distributions

p(ytj |θtj) =
exp(−θtj)θ

ytj
tj

ytj !
, t = 1, .., T, j = 1, ..., J, (1)

whose means θtj are latent random variables. We assume the existence of a link function b(·), whereby

the mean vector θt = (θt1, ..., θtJ)′ can be expressed as a linear function of a P�dimensional vector

of latent random factors ft, say

b(θt) = µ+ Γft, (2)

where µ denotes a vector of �xed intercepts and Γ a (J × P ) matrix of factor loadings. The P

latent factors in ft are assumed to be independent of each other. A log-link function b(θt) = ln(θt)

is convenient since it implies positivity of θt without parametric restrictions on (µ,Γ). Alternative

link functions will not be considered here.

In the context of our NYSE application considering the joint behavior of the number of trades

for di�erent stocks, we allow for a single common market factor λt, S < J industry�speci�c factors

τt = (τt1, ..., τtS)′, and J stock�speci�c factors ωt = (ωt1, ..., ωtJ)′. Whence, ft is partitioned into

ft = (λt, τ ′t , ω
′
t)
′ and P = J + S + 1. The matrix of factor loadings is partitioned conformably with

ft into Γ = (Γλ,Γτ ,Γω), where Γλ = (γλj ) is a J�dimensional vector, Γτ = (γτsj ) a J ×S matrix with

zero entries for any �rm j which does not belong to sector s, and Γω = diag(γωjj ) a (J × J) diagonal
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matrix. Whence, the log-mean function for stock j, belonging to industry s is given by

ln θtj = µj + γλj λt + γ
τsj
j τtsj + γ

ωj
j ωtj , (3)

where the index sj denotes the industry of �rm j.

In order to account for possible serial and cross-correlation in the counts, we assume that the

factors follow independent gaussian AR(1) processes, say

λt|λt−1 ∼ N(κλ + δλλt−1 , [νλ]2) (4)

τts|τt−1s ∼ N(κτs + δτsτt−1s , [ντs ]2), (5)

ωtj |ωt−1j ∼ N(κωj + δωjωt−1j , [νωj ]2). (6)

To ensure stationarity of the factors, it is assumed that |δλ| < 1, |δτs | < 1, and |δωj | < 1. Other

distributional and dynamic speci�cations for the factors are easily accommodated. Under an identity

link b(·), for example, a Gamma transition distribution or a log-normal transition distribution would

be suitable factor speci�cations (see, Jørgensen et al., 1999, and Jung and Liesenfeld, 2001).

The model as speci�ed is unidenti�ed. Identi�cation for the static case with i.i.d. factors is

discussed in Wedel et al. (2003) and can be extended to the dynamic model introduced here. We

impose the restrictions that κλ = κτs = κωj = 0 for s = 1, ..., S and j = 1, ..., J in order to identify

the µj 's (see Equations 4�6). Furthermore, we set γλ1 = 1, γωjj = 1 for j = 1, ..., J , and γτsj = 1

for one arbitrarily selected stock j in industry s for s = 1, ..., S (see Equation 3). This eliminates

indeterminacies in the factor scales.

Under the assumed Poisson distribution, whose dispersion index equals one, over�dispersion of the

counts can only originate from the unconditional variances of the factors, which themselves critically

depend on the persistence parameters (δλ, δτs , δωj ). In order to relax this close relationship between

over�dispersion and persistence, we can substitute a more �exible distribution for the Poisson. One

4



such distribution which we shall apply below is the negative binomial (Negbin), which is given by

p(ytj |θtj) =
Γ(ytj + 1/σ2

j )
Γ(1/σ2

j )Γ(ytj + 1)

(
1

1 + σ2
j θtj

)1/σ2
j
(

θtj
θtj + 1/σ2

j

)ytj
, (7)

where Γ(·) denotes the Gamma function. Its mean and variance are given by θtj and θtj(1 + σ2
j θtj),

respectively. The over�dispersion is a monotone increasing function of σj > 0 and the Poisson

distribution in Equation (1) obtains as the limit for σj → 0. The double Poisson distribution

proposed by Efron (1994) or the generalized Poisson distribution proposed by Consul (1989) o�er

alternatives to capture (conditional) over�dispersion but will not be considered here.

3. EIS Based Inference

3.1 EIS

The evaluation of the likelihood function for the model described by Equations (1) to (6) requires

integrating the joint density of counts and factors with respect to the T · P latent factor variables

(in our application below T · P ranges from 22,875 to 36,600!). For likelihood evaluation counts are

kept �xed at their observed values and are, therefore, omitted from notation except for the fact that

densities need to be time indexed to re�ect their dependence on the data.

The likelihood integral to be evaluated is of the following form:

L(ψ) =
∫
· · ·
∫ T∏

t=1

ϕt(ft, ft−1;ψ)dfT · · · df1, (8)

where ψ regroups the parameters of the model. ϕt denotes the product of the time t densities for yt

given ft and for ft given ft−1 as de�ned by Equations (1) to (6). The initial condition f0 is assumed

to be a known constant, which we set in our application to f0 = E(ft) = 0. If all relevant integrals

had analytical solutions, L(ψ) would obtain from the following (backward) recursive sequence of

P�dimensional integrals

Lt(ft−1;ψ) =
∫
ϕt(ft, ft−1;ψ)Lt+1(ft;ψ)dft, (9)
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with LT+1(fT ;ψ) ≡ 1, and L(ψ) ≡ L1(f0;ψ). When these integrals are analytically intractable, EIS,

as proposed by Richard and Zhang (2007), essentially amounts to constructing a sequence of auxiliary

parametric density kernels {kt(ft, ft−1; at) , at ∈ At}Tt=1, which (i) are analytically integrable in ft

given ft−1, and (ii) are amenable to MC simulation. The corresponding importance samplers are

then given by

mt(ft|ft−1; at) =
kt(ft, ft−1; at)
χt(ft−1; at)

, with χt(ft−1; at) =
∫
kt(ft, ft−1; at)dft. (10)

The integral in Equation (8) is then rewritten as

L(ψ) = χ1(f0; a1)
∫
· · ·
∫ T∏

t=1

[
ϕt(ft, ft−1;ψ)χt+1(ft; at+1)

kt(ft, ft−1; at)

]
mt(ft|ft−1; at)dfT · · · df1, (11)

with χT+1(·) ≡ 1. Here χt+1 essentially substitutes for the analytically intractable Lt+1 in Equation

(9). EIS then aims at selecting {ât}Tt=1 which minimizes the MC sampling variances of the ratios

ϕt · χt+1/kt as functions of ft and ft−1, not just ft. An MC-EIS approximate solution of this

minimization problem obtains from the following backward sequence of auxiliary Least Squares (LS)

problems:

(ĉt, ât) = arg min
ct∈R,at∈At

N∑
i=1

{
ln
[
ϕt
(
f̃

(i)
t , f̃

(i)
t−1;ψ

)
· χt+1

(
f̃

(i)
t ; ât+1

)]
(12)

−ct − ln kt
(
f̃

(i)
t , f̃

(i)
t−1; at

)}2

,

where {f̃ (i)
t }Tt=1 denotes a trajectory drawn from the (forward) sequence of auxiliary samplers

{mt(ft|f̃ (i)
t−1; ât)}Tt=1 with i = 1, ..., N (i.i.d.). In order to account for the fact that the {f̃ (i)

t } in

Equation (12) also depends on {ât}, the latter obtains as �xed-point solutions of the following iter-

ated sequences of auxiliary backward LS problems:

· · · → {â(k−1)
t }Tt=1 → forward

draws
: {{f̃ (i),(k−1)

t }Tt=1}Ni=1} → backward

LS
: {â(k)

t }Tt=1 → · · · .
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At convergence the EIS estimate of L(ψ) is given by:

L̄N (ψ) = χ1(f0; â1)
1
N

N∑
i=1

T∏
t=1

[
ϕt(f̃

(i)
t , f̃

(i)
t−1;ψ)χt+1(f̃ (i)

t ; ât+1)

kt(f̃
(i)
t , f̃

(i)
t−1; ât)

]
. (13)

For smooth convergence of the EIS �xed-point sequence as well as subsequent continuity of L̄N (ψ)

w.r.t. ψ, it is critical that all i-th trajectories {f̃ (i),(k)
t }Tt=1 be obtained by transforming a single set of

Common Random Numbers (CRNs), say {ũ(i)
t }Tt=1. CRNs are N(0, 1) for gaussian EIS samplers and

U(0, 1) for EIS-sampling densities simulated by cdf inversion. Most importantly, EIS-density kernels

within the exponential family of distributions are linear in the auxiliary parameters at under their

natural parametrization as well as closed under multiplication. As detailed in the Appendix, these

two properties considerably simplify the application of EIS to our model. Note �nally that {ât}Tt=1

is an implicit function of ψ. Therefore, maximal numerical e�ciency requires complete reruns of the

EIS algorithm for any new value of ψ. See Richard and Zhang (2007) for details.

3.2 EIS likelihood for the dynamic count data model

EIS estimation of the likelihood function of the model de�ned by Equations (1) to (6) turns out

to be conceptually straightforward and numerically accurate though notationally tedious. In this

section we only outline the EIS implementation. All relevant algebraic details are regrouped in the

Appendix.

Under the log�link function, the Poisson density in Equation (1) is rewritten as

p (ytj | φtj) =
exp

(
ytjφtj − eφtj

)
ytj !

, (14)

with φtj = ln θtj . Equations (2) and (3) are rewritten in matrix form as

φt = µ+ Γft, (15)
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with φ′t = (φt1, . . . φtJ) , f ′t = (λt, τt1, . . . τtS , ωt1, . . . , ωtJ , ), and

Γ =



γλ1

γλ2
...

γλJ

∣∣∣∣∣∣∣∣∣∣∣∣∣

γτ1 0 . . . 0

0 γτ2 . . . 0
...

...
...

0 0 γτS

∣∣∣∣∣∣∣∣∣∣∣∣∣

γω1
1 0 . . . 0

0 γω2
2 . . . 0

...
...

...

0 0 γωJJ


, (16)

where γτs = (γ
τsj
j ), for j = Js + 1, . . . , Js+1 (J1 = 0, JS+1 = J) denotes the vector of factor loadings

on the industry factor τts for all stocks which belong to sector s. Equations (4) to (6) imply that

p (ft | ft−1) ∼ N
(
∆ft−1, H

−1
)
, (17)

where ∆ and H are both diagonal and H denotes the inverse of the covariance matrix of ft given

ft−1.

In order to apply sequential EIS to this model, we �rst note that the factor ϕt(ft, ft−1;ψ) in the

likelihood integral (8) and (11) is given by

ϕt (ft, ft−1;ψ) = p (ft | ft−1) ·

 J∏
j=1

p (ytj | φtj)

 , (18)

where p (ft | ft−1) is linear gaussian and φtj is a linear function of ft. Next, note that if kt (ft, ft−1; at)

is a gaussian kernel in both ft and ft−1, then its integrating constant w.r.t. ft given by χt (ft−1; at)

is a gaussian kernel in ft−1. By recursion this implies that the sole non�gaussian term in the product

ϕtχt+1 to be approximated by kt is the product of the J densities p (ytj | φtj). It follows that all we

have to do is to construct gaussian approximates in φtj to the latter densities in order to produce

a gaussian kernel kt for (ft, ft−1). The kernel kt then consists of the product of p (ft | ft−1) by J

univariate gaussian kernels in the φtj 's and by χt+1. Moreover, the factors p (ft | ft−1) and χt+1

appear in logs on both sides of the auxiliary EIS regressions in Equation (12) and cancel out. All in

all, the EIS auxiliary regression for the approximation of ϕtχt+1 by kt simpli�es into J independent

bivariate linear LS regressions of {ln p(ytj | φ̃(i)
tj )}Ni=1 on {(φ̃(i)

tj , [φ̃(i)
tj ]2)}Ni=1 and a constant. These
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auxiliary regressions run fast and produce numerically very accurate evaluations of the likelihood

function, rendering ML-EIS estimation of the model fully operational.

The corresponding matrix algebra, which essentially consists of regrouping three gaussian kernels

in (ft, ft−1) and integrating out ft, is conceptually straightforward. Details are regrouped in the

Appendix.

Last but not least, note that if we replace the Poisson density by the Negbin density in Equation

(7), we only need to modify accordingly the dependent variables in the auxiliary EIS regressions, a

trivial adjustment all together.

3.3 Filtering and smoothing

In many state-space applications such as the one analyzed here, interest lies also in the estimation

of the latent states (i.e. in our application the factors) whether for diagnostic checking, interpreta-

tion and/or forecasting. Since, however, factors are one-time occurrences (incidental in statistical

jargon) they obviously cannot be consistently estimated. Nevertheless, their moments conditional

upon alternative information sets are functions of the parameters of the model and can therefore be

consistently estimated.

The �ltered moments of ft are de�ned as being conditional upon information available up to time

t−1 denoted by Yt−1. In the present paper we shall compute means and variances of exp(γ′jft), where

γ′j denotes the jth row of Γ. These moments are instrumental in the computation of the standardized

Pearson residuals

ztj =
ytj − E(ytj |Yt−1)
Var(ytj |Yt−1)1/2

. (19)

These residuals are critical components of a variety of diagnostic statistics since they should have

zero mean and unit variance and should be serially uncorrelated if the model is correctly speci�ed.

Under the Poisson model the relevant conditional moments of ytj are given by

E(ytj |Yt−1) = exp{µj} · E(exp{γ′jft}|Yt−1), (20)
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and

Var(ytj |Yt−1) = exp{µj} · E(exp{γ′jft}|Yt−1) + exp{2µj} ·Var(exp{γ′jft}|Yt−1), (21)

respectively. The �ltered moments of exp(γ′jft) take the form of ratios of integrals in {fr}tr=1 which

are functionally similar to the likelihood integral in Equation (8) with products running only up to

period t − 1. Both numerator and denominator can be accurately approximated by EIS. Moreover,

both EIS approximations should use the same set of CRNs in order to induce positive correlation

between numerator and denominator, resulting in additional e�ciency gains.

Smoothed moments of ft are de�ned as being conditional on the entire sample YT and are also

computed by EIS (and are typically very close to the moments of the EIS samplers since the latter

can be interpreted as approximations of the posterior densities of the factors). Smoothed moments

provide, therefore, an ex-post image of the factor history over the sample period.

4. Application to Stock-Market Trading Volume

4.1 The data

Di�erent versions of the dynamic factor model introduced in Section 2 are applied to the number

of trades in 5-minute intervals between 9:45 AM and 4:00 PM for J = 5 stocks traded at the

NYSE: Two companies - P.H. Glatfelter Company (GLT) and Wausau Paper Corporation (WPP)

� belong to the industry subsector paper; three companies � Empire District Electric Company

(EDE), Northeast Utilities (NU) and Westar Energy, Inc. (WR) � belong to the industry subsector

conventional electricity. Data are taken from the TAQ (Trades and Quotes) data set, provided by the

NYSE. The time period covered is the �rst quarter of 2005 (January 3, 2005 � March 31, 2005) with

61 trading days. As there are 75 5-minute intervals per day, the sample size is T = 4575. See the top

panel of Figure 3 for time series plots of the number of trades. Descriptive statistics are provided

in Table 1, and Table 2 reports the sample correlations across the �ve stocks. As one can see, the

empirical distribution of the number of trades is clearly over�dispersed. The Ljung�Box statistics

for the number of trades Q10 and Q20 including 10 and 20 lags, respectively, indicate strong serial

correlation. As shown in Table 2, contemporaneous correlation between the trading activities of the
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�ve stocks are all positive.

4.2 Daily trading pattern

It is well�known that daily trading activity has a distinctive U-shape pattern (see, e.g., Admati and

P�eiderer, 1988). In order to capture it we introduce a Fourier series for the intercept of the log�mean

function (see Equation 3). Speci�cally, µj is replaced by a cyclical term µtj de�ned as

µtj = µj + α′jxt, (22)

with α′j = (α1j , . . . , α4j) and x′t = (cos(2πt/75), sin(2πt/75), cos(4πt/75), sin(4πt/75)), accounting

for the fact that there are 75 5-minutes intervals in a trading day. EIS trivially accommodates this

extension. The �ltering equations (20) and (21) are modi�ed as follows:

E(ytj |Yt−1, xt) = exp{µj + α′jxt} · E(exp{γ′jft}|Yt−1, xt), (23)

Var(ytj |Yt−1, xt) = exp{µj + α′jxt} · E(exp{γ′jft}|Yt−1, xt) (24)

+ exp{2(µj + α′jxt)} ·Var(exp{γ′jft}|Yt−1, xt).

4.3 Univariate Analysis

As initial step, we �rst estimate a univariate dynamic Poisson model for each of the �ve stocks

separately. This model is de�ned by Equations (1) and (6) � with κωj = 0 � together with

ln θtj = µtj + ωtj , (25)

and Equation (22). This univariate (parameter�driven) dynamic Poisson model was introduced

by Zeger (1988) and analyzed by Chan and Ledolter (1995), Kuk and Cheng (1997), Jung and

Liesenfeld (2001), and Jung et al. (2006). The ML-EIS estimation results based on a MC sample

size of N = 50 are found in Table 3. Most importantly, we �nd that the parameters governing the
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stochastic latent processes {ωtj}5j=1 and those characterizing the diurnal patterns are quite similar

across the �ve stocks. In particular, estimates of δωj range from 0.60 to 0.72 and are indicative of

strong persistence, while the estimates of νωj range from 0.30 to 0.50. These �ndings motivate our

subsequent multivariate analysis where we shall aim at identifying common factors. They also allow

us to impose in Equation (22) a common diurnal pattern to the �ve stocks obtained by setting the

vectors α′j = α′ = (α1, . . . , α4) for j = 1, ..., J , thereby preserving parsimony in the multivariate

speci�cation.

4.4 Multivariate Factor Models

4.4.1 Poisson Model with one common factor

Allowing for a single common factor λt in addition to the idiosyncratic factors ωtj , the log-mean

function in the conditional Poisson distribution (1) for stock j is now given by

ln θtj = µtj + γλj λt + ωtj , (26)

with γλ1 = 1, together with Equations (4), (6) and (22) � under the restriction αj = α. Joint ML-

EIS estimates based upon N = 50 trajectories are found in Table 4. ML-EIS estimation requires

approximately 65 BFGS iterations and takes of the order of 100 minutes on a Core 2 Duo Intel 2.7

GHz processor using GAUSS on Windows XP. (We also experimented with the Nelder-Mead simplex

method for maximizing the log-likelihood functions (see, e.g., Press et al., 1988). It turned out that

it produces the same results and requires about the same computing time as the BFGS algorithm.

However, for higher dimensional factor models and/or less well-behaved likelihood functions we advise

the use of this gradient free simplex algorithm.) MC numerical standard deviations of the ML-

EIS parameter estimates used as measures of numerical precision are obtained from 20 i.i.d. ML-

EIS estimations conducted under di�erent CRN seeds (see Richard and Zhang, 2007 for details).

They indicate that the parameter estimates are numerically very accurate. The fact that such

high accuracy obtains with as little as N = 50 trajectories indicates that the likelihood integrands

in Equation (11) are very well-behaved functions of the 27,450 latent factor variables, which are
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accurately approximated by the EIS-sampler (using 54,900 auxiliary parameters). In particular, the

R2s of the EIS auxiliary LS-problems (12) are typically larger than 0.99.

All parameter estimates are reasonable and apart from α4 signi�cant at the 1% signi�cance level.

The estimates of the parameters for the common process δλ and νλ indicate a substantial variation

and a slight, yet signi�cant, persistence. The estimates of the factor loadings ranging from 0.53 to

1.24 suggest that the trading activity of all stocks load signi�cantly on the common factor, which

is not surprising as trading is positively correlated across stocks. The estimates of the parameters

characterizing the idiosyncratic factors indicate substantially more persistence than for the common

factor as well as uniformly more persistence than their univariate counterparts in Table 3. Hence,

the idiosyncratic factors capture the persistent movements of the trading process, whilst the common

factor accounts for the more transitory variation. Note, furthermore, that the estimated α-parameters

governing the deterministic seasonal e�ects are similar in magnitude to those obtained under the

univariate models (see Table 3). Figure 1 shows the estimated diurnal seasonal e�ects for the number

of trades obtained under the dynamic factor model. They exhibit the well-documented U -shape

pattern. The sum of the individual log-likelihood values for the �ve independent univariate models

equals -62,134 (see Table 3) which is substantially smaller than the log-likelihood value of -61,631

for the multivariate factor model. This large di�erence re�ects the fact that, as shown below, the

common factor model fully accounts for observed correlations between trading activities, in sharp

contrast with the univariate models which ignore them.

In order to assess the reliability and the statistical properties of the ML-EIS estimator in this

multivariate factor model we conducted a small simulation experiment, in which we drew 20 �ctitious

samples of size 4575 from that model setting the parameters equal to their estimates obtained from

the real data. MC mean and standard deviation of the ML-EIS estimates obtained for the �ctitious

samples are provided in Table 5 and indicate that the ML-EIS estimation procedure is statistically

very well behaved. Figure 2 shows the time series of the true log conditional mean ln θtj of the

�rst count data series for the �rst 500 time periods together with its smoothed estimates E(ln θtj |Y )

obtained for simulated data. Unsurprisingly, the series of smoothed estimates closely follows the true

value.
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The parameter estimates in Table 4 can be used to compute the implied estimates of the means

and the covariance of the unconditional distribution for the number of trades, to be compared with

their sample counterparts. In the presence of deterministic diurnal e�ects, the unconditional means

and variances for the trades of stock j under the factor model are

E(ytj) = ET
(
exp{µtj + 0.5γ′jΣfγj}

)
(27)

and

Var(ytj) = VarT
(
exp{µtj + 0.5γ′jΣfγj}

)
(28)

+ET
(
exp{2µtj + γ′jΣfγj}

[
exp{γ′jΣfγj} − 1

]
+ exp{µtj + 0.5γ′jΣfγj}

)
,

where γj represents the vector of the factor loadings for stock j and Σf the covariance matrix of

the vector of factors ft. The notation ET and VarT indicate sample mean and sample variance com-

puted w.r.t. the deterministic variation of the diurnal seasonal e�ects. The corresponding covariance

between trading of stock j and stock k is obtained from the cross moments

E(ytjytk) = ET
(
exp{µtj + µtk + 0.5(γj + γk)′Σf (γj + γk)}

)
, j 6= k. (29)

The estimates of the unconditional mean and covariance matrix of yt are given by

Ê(yt) =



5.83

7.93

3.45

10.41

9.72


and V̂ar(yt) =



16.93

5.46 38.70

3.11 3.76 9.55

5.94 7.40 4.02 33.11

4.99 6.27 3.34 7.19 39.07


,
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respectively. The corresponding sample moments are given by

ȳ =



5.80

7.90

3.47

10.41

9.61


and Σȳ =



16.75

5.68 34.17

3.26 4.65 9.65

4.95 5.97 5.17 34.41

4.09 6.32 3.37 7.47 34.89


,

respectively. The close match between those two sets of moments indicates that the common factor

model provides an excellent parsimonious representation of the contemporaneous correlation across

the �ve stocks.

In order to assess the relative importance of the common factor, idiosyncratic factors and the

diurnal component we computed their relative contribution to the overall variance of the log-link

function for the individual stocks ln θtj . The implied estimates of the contributions to the variation

of the log-link function are reported in the upper panel of Table 8. The fraction of variation explained

by the common factor varies between 8% (WR) and 31% (EDE) while that of the idiosyncratic factors

range between 56% (GLT) and 76% (WR). Even though the idiosyncratic factors explain a larger

fraction of variation in ln θtj than the common factor, it is important to remember that the latter is

indispensable to capture observed contemporaneous correlations.

For diagnostic checking we computed the standardized Pearson residuals ztj as de�ned by Equa-

tions (19), (23) and (24). The conditional moments of exp{γ′jft} appearing in the Equations (23)

and (24) are �ltered moments and are evaluated by EIS as described in Section 3.3 above. The upper

panel of Table 9 summarizes the properties of the Pearson residuals. Their sample means are all close

to zeros. However, their standard deviations are all substantially larger than 1. This indicates that

there is more variation and over�dispersion in the data than the model accounts for. Furthermore,

the Ljung-Box statistics for the residuals including 10 and 20 lags indicates that the model does not

fully capture the dynamic behavior of the trading activity even though it dramatically reduces the

Ljung-Box statistic for the raw data as given in Table 1. The bottom row of Figure 3 displays the

time series of the standardized residuals for the 5 stocks. The comparison with the time series plot
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of the raw data (see top row of Figure 3) reveals that the model accounts for a substantial fraction

of the variation in the data.

4.4.2 Negbin Model with one common factor

In order to better account for over�dispersion and to allow for more �exibility to capture the serial

correlation we replace the conditional Poisson density in Equation (1) by the more �exible Negbin

density in Equation (7). As explained in Section 3.2 above, this substitution only requires minor

modi�cations of the baseline EIS-ML algorithm.

The results of the ML-EIS estimation of the Negbin factor model with one common and J id-

iosyncratic factors are reported in Table 6. Note that the substitution of the Negbin for the Poisson

distribution increases the value of the maximized likelihood function by 381, indicative of a much

better �t. Moreover, the additional σ-parameters measuring the deviation from the Poisson distribu-

tion are in each case statistically signi�cantly larger than zero at any conventional signi�cance level.

On the other hand the estimates of the intercept parameters (µj), the factor loadings (γ
λ
j ), and of the

seasonal parameters (αi) obtained under the Poisson and the Negbin speci�cation are very similar

to each other, indicating a fairly robust factor structure. Note, however, that the δ-coe�cients have

increased under the Negbin model while the ν-parameters have decreased. This indicates that the

factors, whether common or idiosyncratic evolve more smoothly over time and with greater persis-

tence under the Negbin. These di�erences also suggest that a substantial part of the variation in

trading activities, which was attributed to persistent shocks in the factor processes under the Poisson

model, is now interpreted as transitory and attributed to conditional over�dispersion (σj > 0) under

the Negbin model. (Such a substitution e�ect can also be observed for applications of the stochastic

volatility models when the usual gaussian density for the conditional distribution of the returns is,

in the presence of outliers, substituted by a fat-tailed student-t assumption, see, e.g., Liesenfeld and

Jung, 2000). Note also that the MC numerical standard errors for the parameters common to both

models are much smaller under the Negbin model, consistent with the fact that the latter better

accounts for observed over�dispersion.

The relative contributions of the individual factors to the overall variance of the log-link function
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for the individual stocks obtained under the Negbin model are reported in the middle panel of Table

8. Note that the relative contribution of the common factor has increased slightly for all �ve stocks

under the Negbin.

The middle panel of Table 9 summarizes the properties of the Pearson residuals ztj obtained from

the Negbin factor model. The values shown for the means (close to zero) and standard deviations

(close to one) for all �ve stocks are indicative of a valid speci�cation. Whence, the Negbin factor

model appears to fully account for over�dispersion in the data, in contrast to the Poisson speci�cation.

Moreover, the Ljung-Box statistics for the residuals indicate that the Negbin model successfully

accounts for serial correlation in the number of trades for GLT, EDE and NU. However, there remain

di�culties capturing the full dynamics in trading activity for WPP and WR.

4.4.3 Negbin Model with a common and industry�speci�c factors

Since the �ve stocks considered here belong to two di�erent industries, their trading volumes might

be a�ected by industry�speci�c news in addition to market�wide news which are already captured by

the common factor. Therefore, we now add two sector-speci�c factors to the Negbin model introduced

in Section 4.4.2. The log-mean function for stock j is now given by

ln θtj = µtj + γλj λt + γ
τsj
j τtsj + ωtj , (30)

with sj = 1 for j = {1, 2} (GLT,WPP) and sj = 2 for j = {3, 4, 5} (EDE,NU,WR). Accounting for

normalization (γτ11 = γτ23 = 1) this amounts to introducing seven additional parameters in the model:

three loading factors (γτ12 ,γτ24 ,γτ25 ) and four factor parameters (δτ1 ,ντ1 ,δτ2 ,ντ2).

The ML-EIS estimation results are summarized in Table 7. Note that the addition of the two in-

dustry factors (seven parameters) produces an additional signi�cant increase of the likelihood function

by 40. Moreover, most of the parameters common to both Negbin models are very similar, providing

evidence of robustness in the factor speci�cations (see Tables 6 and 7). Two signi�cant di�erences

are observed for σ1 (GLT) and νω5 (WR). The addition of industry factors has noticeably decreased

these two parameters. The estimates of the factor loadings for the industry factors suggest that the
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paper�industry factor τt1 is essentially a GLT factor while that of the electric�service industry τt2

is dominated by WR. This is con�rmed by the �nding that the industry factors account for 29%

(GLT) and 27% (WR) of the variation in the conditional means of these two stocks, and only for

3% or less for the other three stocks (see bottom panel of Table 8). The negative signs of the NU

and WR loadings on the electric�service factor reported in Table 7 are indicative of a `substitution

e�ect' in the trading activities of this sector, though both coe�cients are statistically insigni�cant.

All in all, our analysis suggests that the two industry�speci�c factors we have introduced actually

capture additional �rm�speci�c variations for GLT and WR, rather than genuine industry-speci�c

factors. In particular, τt1 captures mostly transitory movements in GLT trading, while τt2 re�ects

mostly persistent movements in WR trading. Such interpretation is supported further by the �nding

that the over�dispersion parameter σ1 (GLT) and the idiosyncratic volatility parameter νω5 (WR)

have both decreased following the addition of the two industry factors.

The properties of the Pearson residuals ztj for the factor model with industry�speci�c factors are

summarized in the bottom panel of Table 9. The model clearly accounts for most of the observed

over�dispersion except possibly for GLT with a standard deviation of 1.14. However, closer inspection

of the GLT�residuals indicate that this large standard deviation is essentially due to a single outlier.

The Ljung�Box statistics indicate that the model successfully accounts for most of the observed serial

correlation except possibly for WPP, whose dynamics have been di�cult to parsimoniously capture

under all three model speci�cations.

5. Conclusion

We can draw three sets of conclusions from the application we have presented in this paper. With

respect to modelling multivariate time series of counts, we have illustrated that our proposed parsi-

monious and easy to interpret dynamic factor model is able to represent non-trivial contemporaneous

and temporal interdependencies across count series. Hence, we expect that it provides a useful frame-

work for the analysis of high-dimensional time series of counts.

In regard to our application to the number of trades for �ve NYSE stocks itself, we found robust

evidence for a common factor re�ecting market�wide news and accounting for observed co�movements
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in trading activities across the �ve individual stocks analyzed here. While the two industry�speci�c

factors we added to the model do capture additional variations in trading activities, they appear to

represent additional �rm�speci�c factors for two stocks rather than genuine industry�speci�c factors.

Last but not least, the Negbin clearly dominates the Poisson distribution in terms of accounting for

observed over�dispersion and serial correlation of trading volumes.

From a numerical viewpoint, we have demonstrated that EIS enables one to analyze complex

factor structures in the context of dynamic multivariate discrete models, at least as long as the

dynamics of the model is speci�ed in the form of gaussian autoregressive factors. (Work in progress

should allow us to relax such restrictions but goes beyond the objectives of the present paper.) In the

current application, EIS simpli�es into a sequence of J · T bivariate auxiliary linear LS regressions,

irrespective of the number P of factors and of the complexity of the factor structure. Moreover,

numerically highly accurate ML-EIS parameter estimates obtain under very small numbers of draws

(N = 50 trajectories for the present application). Last but not least, the baseline EIS algorithm

requires only minor adjustments to accommodate alternative speci�cations (factor structure and/or

discrete distribution) providing thereby unparalleled �exibility for the analysis of complex dynamic

factor structures.
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Appendix: EIS Implementation

This appendix details the functional forms of the EIS implementation for the dynamic count data

model given by Equations (1) and (3)�(6).

Let the integrating constant of the EIS gaussian kernel kt (ft, ft−1; ât) w.r.t. ft be parameterized

as

χt+1 (ft; ât+1) = exp−1
2
(
f ′tPt+1ft − 2f ′tqt+1 + rt+1

)
, (A.1)

where (Pt+1, qt+1, rt+1) denote appropriate functions of the EIS auxiliary parameter ât+1, to be

obtained by backward recursions as described below. (Since χT+1 ≡ 1, the `initial values' are PT+1 =

0, qT+1 = 0, rT+1 = 0.) Let the EIS�LS approximation of the product
∏J
j=1 p (ytj | φtj) in Equation

(18) be denoted as

k1
t (ft; ât) = exp−1

2

(
φ′tB̂tφt − 2φ′tĉt

)
, (A.2)

with φt = µ + Γft. B̂t = diag(b̂tj) denotes a J × J positive de�nite diagonal matrix and ĉt = (ĉtj)

a J�dimensional vector. The EIS auxiliary parameter ât is de�ned as â′t = (vech(B̂t)′, ĉ′t). The EIS

gaussian kernel kt is then given by

kt (ft, ft−1; ât) = k1
t (ft; ât) p (ft | ft−1)χt+1 (ft; ât+1) . (A.3)

Combining together Equations (17), (A.1) and (A.2) we have

−2 ln kt (ft, ft−1; ât) = (µ+ Γft)
′ B̂t (µ+ Γft)− 2 (µ+ Γft)

′ ĉt (A.4)

+ (ft −∆ft−1)′H (ft −∆ft−1) + f ′tPt+1ft − 2f ′tqt+1 + rt+1.

Completing the quadratic form in ft (given ft−1) we rewrite −2 ln kt as

−2 ln kt (ft, ft−1; ât) = [ft − (dt +Gtft−1)]′Mt [ft − (dt +Gtft−1)] (A.5)

+
(
µ′B̂tµ− 2µ′ĉt + f ′t−1∆′H∆ft−1 + rt+1

)
− (dt +Gtft−1)′Mt (dt +Gtft−1) ,

20



with

Mt = Γ′B̂tΓ +H + Pt+1, (A.6)

dt = M−1
t

[
qt+1 + Γ′

(
ĉt − B̂tµ

)]
, (A.7)

Gt = M−1
t H∆. (A.8)

It immediately follows that the gaussian EIS sampler for ft | ft−1 is given by

mt (ft | ft−1; ât) ∼ N
(
dt +Gtft , M

−1
t

)
. (A.9)

The log integrating constant −2 lnχt (ft−1; ât) obtains by regrouping all remaining factors in

Equation (A.5) and is, therefore, of the form introduced in Equation (A.1) together with

Pt = ∆′H∆−G′tMtGt, (A.10)

qt = G′tMtdt, (A.11)

rt = µ′B̂tµ− 2µ′ĉt + rt+1 − d′tMtdt. (A.12)

Hence, Equations (A.6)�(A.8) and (A.10)�(A.12) fully characterize the EIS recursion whereby the

coe�cients (Pt+1, qt+1, rt+1) are combined with the period t EIS coe�cients (B̂t, ĉt) in order to

produce (back recursively) the coe�cients (Mt, dt, Gt) characterizing the EIS-sampling densities.

Based on these functional forms the computation of the EIS estimate of the likelihood requires

the following simple steps:

Step (1). Generate N independent P�dimensional trajectories {{f̃ (i)
t }Tt=1}Ni=1 from a sequence of

initial samplers {m(ft|ft−1, a
(0)
t )}. Such a sequence is obtained, e.g., by using as k1

t in Equation (A.2)

a second-order Taylor-series approximation (TSA) in φtj to
∏J
j=1 p(ytj | φtj) around E(φtj) = µj .

The resulting TSA values of the auxiliary parameters (a(0)
t )′ = (vech(B(0)

t )′, (c(0)
t )′) can be used to

construct according to Equation (A.9) together with the recursions (A.6)�(A.8) and (A.10)�(A.12)

an initial EIS sampler, which obtains by setting B̂t = B
(0)
t and ĉt = c

(0)
t .

Step (2). Transform the simulated ft�trajectories from the previous sampler into the corresponding
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N independent J�dimensional φt�trajectories according to φt = µ+ Γft. Use the latter trajectories

to solve for each period t the LS�problem de�ned in Equation (12). This requires to run for each

period t the following J independent linear auxiliary regressions:

ln p(yt1 | φ̃(i)
t1 ) = constant− 1

2
bt1[φ̃(i)

t1 ]2 + ct1φ̃
(i)
t1 + ζ

(i)
1t , i = 1, ..., N, (A.13)

...

ln p(ytJ | φ̃(i)
tJ ) = constant− 1

2
btJ [φ̃(i)

tJ ]2 + ctJ φ̃
(i)
tJ + ζ

(i)
Jt , i = 1, ..., N, (A.14)

where ζ
(i)
jt denotes the regression error term of regression j.

Step (3). Use the LS estimates B̂t = diag(b̂tj) and ĉt = (ĉtj) obtained in Step (2) to construct

back-recursively the sequence of EIS-sampling densities {m(ft|ft−1, ât)} as given by Equation (A.9)

together with the recursions (A.6)�(A.8) and (A.10)�(A.12).

Step (4). Generate N independent trajectories from the sequence of EIS samplers constructed in

Step (3) and use them either to repeat Step (2) and (3) or (at convergence) to compute the EIS-MC

estimate of the likelihood according to Equation (13).
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Table 1. Descriptive Statistics for the Number of Trades.

GLT WPP EDE NU WR

Mean 5.80 7.90 3.47 10.41 9.61
Median 5 7 3 9 9
Standard dev. 4.09 5.85 3.11 5.87 5.91
Minimum 0 0 0 0 0
Maximum 54 43 25 48 59
Q10 2, 086 4, 057 1, 575 3, 452 4, 150
Q20 2, 549 5, 026 1, 908 3, 927 5, 942

NOTE: The number of observations per stock is T = 4575. The Ljung-Box Statistics Q10 and Q20 include

10 and 20 lags.
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Table 2. Sample Correlation Matrix of

the Number of Trades.

GLT WPP EDE NU WR

GLT 1
WPP .238 1
EDE .256 .256 1
NU .206 .174 .283 1
WR .168 .183 .184 .216 1
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Table 3. ML-EIS Estimates for the Univariate Dynamic

Poisson Count Data Model for the TAQ Data.

GLT WPP EDE NU WR

µj 1.619 1.869 1.030 2.246 2.140
(.015) (.018) (.019) (.013) (.017)

δωj .596 .616 .598 .619 .723
(.021) (.017) (.022) (.021) (.016)

νωj .400 .469 .496 .304 .330
(.011) (.010) (.013) (.008) (.009)

α1j .250 .320 .339 .286 .201
(.012) (.007) (.015) (.017) (.019)

α2j −.024 −.125 −.091 .006 −.088
(.016) (.007) (.009) (.008) (.014)

α3j .009 .065 .045 .064 .034
(.011) (.009) (.021) (.009) (.007)

α4j .044 −.065 −.028 −.032 −.009
(.012) (.022) (.012) (.009) (.008)

Log-likelihood −11, 833.5 −13, 219.5 −10, 264.6 −13, 386.0 −13, 430.2

Sum of the Log-likelihood values −62, 133.9

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors

obtained from a numerical approximation to the Hessian are in parentheses. ML-EIS estimates are based

on a MC sample size of N = 50 and three EIS iterations.
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Table 4. ML-EIS for the Poisson Factor Model with Firm

Speci�c Factors and a Common Factor for the TAQ Data.

GLT WPP EDE NU WR

µj 1.622 1.871 1.033 2.248 2.140
(.015) (.018) (.018) (.012) (.016)
[.0021] [.0025] [.0022] [.0009] [.0020]

γλj 1.000 .855 1.242 .635 .525
(.048) (.052) (.039) (.039)
[.0105] [.0114] [.0071] [.0084]

δωj .814 .730 .786 .766 .786
(.014) (.012) (.018) (.018) (.014)
[.0043] [.0034] [.0031] [.0029] [.0022]

νωj .232 .373 .306 .219 .281
(.010) (.008) (.013) (.009) (.009)
[.0030] [.0030] [.0026] [.0013] [.0017]

Factor

param. δλ νλ

.152 .283
(.026) (.007)
[.0051] [.0017]

Seasonal

param. α1 α2 α3 α4 Log-likelihood

.275 −.050 .043 −.016 -61,630.7
(.005) (.009) (.004) (.010)
[.0019] [.0014] [.0014] [.0010] [2.354]

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors

obtained from a numerical approximation to the Hessian are in parentheses and MC (numerical) standard

deviations obtained from 20 ML-EIS estimations conducted under di�erent sets of CRNs are in brackets.

ML-EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 5. ML-EIS for the Poisson Factor Model with Firm

Speci�c Factors and a Common Factor for Simulated Data.

GLT WPP EDE NU WR

µj true 1.622 1.871 1.033 2.248 2.140
mean 1.625 1.940 1.055 2.252 2.142
std. .018 .055 .030 .013 .020

γλj true 1.000 .855 1.242 .635 .525
mean 1.000 .822 1.243 .630 .529
std. .051 .054 .031 .039

δωj true .814 .730 .786 .766 .786
mean .814 .744 .793 .759 .785
std. .015 .019 .013 .014 .013

νωj true .232 .373 .306 .219 .281
mean .229 .353 .294 .220 .278
std. .010 .016 .009 .007 .007

Factor

param. δλ νλ

true .152 .283
mean .182 .288
std .017 .008

Seasonal

param. α1 α2 α3 α4

true .275 −.050 .043 −.016
mean .289 −.051 .045 −.018
std .020 .022 .016 .016

NOTE: The reported numbers are the MC mean and standard deviation of 20 repeated ML-EIS estimates

for the parameters for di�erent simulated data set and a �xed set of CRNs for ML-EIS estimation. ML-

EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 6. ML-EIS for the Negbin Factor Model with Firm

Speci�c Factors and a Common Factor for the TAQ Data.

GLT WPP EDE NU WR

µj 1.646 1.929 1.080 2.269 2.166
(.022) (.020) (.023) (.016) (.021)
[.0001] [.0001] [.0002] [<.0001] [<.0001]

γλj 1.000 .915 1.331 .681 .583
(.053) (.083) (.037) (.040)
[.0006] [.0014] [.0005] [.0004]

δωj .939 .946 .927 .916 .957
(.008) (.008) (.017) (.008) (.007)
[.0001] [.0001] [.0003] [.0002] [<.0001]

νωj .112 .135 .142 .110 .106
(.008) (.012) (.023) (.007) (.008)
[.0001] [.0001] [.0004] [.0001] [.0001]

σj .281 .365 .341 .218 .288
(.012) (.011) (.024) (.009) (.009)
[.0003] [.0002] [.0005] [.0001] [.0001]

Factor

param. δλ νλ

.351 .260
(.023) (.009)
[.0002] [.0001]

Seasonal

param. α1 α2 α3 α4 Log-likelihood

.271 −.050 .044 −.015 -61,249.9
(.004) (.009) (.003) (.004)

[<.0001] [<.0001] [<.0001] [<.0001] [0.138]

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors

obtained from a numerical approximation to the Hessian are in parentheses and MC (numerical) standard

deviations obtained from 20 ML-EIS estimations conducted under di�erent sets of CRNs are in brackets.

ML-EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 7. ML-EIS for the Negbin Factor Model with Firm- and Industry Speci�c

Factors and a Common Factor for the TAQ Data.

GLT WPP EDE NU WR

µj 1.619 1.931 1.072 2.269 2.140
(.027) (.033) (.039) (.018) (.047)
[.0034] [.0003] [.0024] [.0001] [.0005]

γλj 1.000 .955 1.767 .735 .686
(.067) (.202) (.062) (.105)
[.0022] [.0536] [.0077] [.0229]

γτ1j 1.000 .224 0.000 0.000 0.000
(.096)
[.0230]

γτ2j 0.000 0.000 1.000 −.504 −2.386
(.334) (1.408)
[.0884] [.4317]

δωj .951 .944 .965 .914 .986
(.009) (.009) (.015) (.043) (.005)
[.0006] [.0003] [.0034] [.0004] [.0007]

νωj .095 .138 .086 .111 .052
(.010) (.013) (.025) (.010) (.011)
[.0008] [.0004] [.0056] [.0003] [.0018]

σj .160 .370 .294 .219 .226
(.054) (.013) (.041) (.011) (.020)
[.0221] [.0009] [.0116] [.0005] [.0026]

Factor

param. δλ νλ δτ1 ντ1 δτ2 ντ2

.372 .229 .263 .273 .608 .083
(.033) (.016) (.092) (.036) (.086) (.044)
[.0037] [.0032] [.0216] [.0134] [.0169] [.0128]

Seasonal

param. α1 α2 α3 α4 Log-likelihood

.262 −.056 .042 −.014 -61,210.0
(.012) (.011) (.009) (.009)
[.0005] [.0001] [.0001] [.0001] [1.001]

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors

obtained from a numerical approximation to the Hessian are in parentheses and MC (numerical) standard

deviations obtained from 20 ML-EIS estimations conducted under di�erent sets of CRNs are in brackets.

ML-EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 8. Relative Contributions of the Factors

to the Overall Variance of the Log Conditional Mean.

seasonal unique common industry

Poisson Model: Firm Speci�c Factors

& Common Factor

GLT .14 .56 .29
WPP .10 .74 .15
EDE .10 .59 .31
NU .21 .61 .18
WR .15 .76 .08

Negbin Model: Firm Speci�c Factors

& Common Factor

GLT .18 .48 .35
WPP .14 .62 .23
EDE .12 .45 .43
NU .26 .50 .24
WR .19 .67 .13

Negbin Model: Firm- and Industry Speci�c

Factors & Common Factor

GLT .14 .35 .22 .29
WPP .14 .64 .21 .01
EDE .11 .30 .55 .03
NU .25 .51 .22 .02
WR .16 .43 .13 .27

32



Table 9. Diagnostics Based on the Pearson Residuals.

GLT WPP EDE NU WR

Poisson Model: Firm Speci�c Factors

& Common Factor

Mean .05 .07 .05 .04 .04

Standard dev. 1.24 1.29 1.21 1.20 1.22

Q10 25.0 60.9 6.9 29.6 48.1
(.005) (.000) (.732) (.001) (.000)

Q20 56.0 128.1 29.3 62.1 95.4
(.000) (.000) (.080) (.000) (.000)

Negbin Model: Firm Speci�c Factors

& Common Factor

Mean .01 .00 .00 .00 .01

Standard dev. 1.05 1.01 1.01 1.03 1.02

Q10 12.9 27.5 10.6 12.8 31.8
(.228) (.002) (.391) (.237) (.000)

Q20 21.2 48.2 21.8 29.3 38.1
(.383) (.000) (.353) (.081) (.008)

Negbin Model: Firm- and Industry Speci�c Factors

& Common Factor

Mean .03 .01 .02 .02 .02

Standard dev. 1.14 1.06 1.09 1.07 1.09

Q10 10.1 20.0 14.8 11.9 15.5
(.428) (.029) (.140) (.229) (.116)

Q20 27.1 37.5 28.2 31.5 20.0
(.133) (.010) (.104) (.049) (.454)

NOTE: The Ljung-Box Statistic Q20 includes 20 lags. Probability values are given in parentheses.
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Figure 1. Estimated diurnal seasonal e�ects for the number of trades obtained under the dynamic Poisson

factor model with one common factor given by exp{0.275 cos(2πt/75)− 0.050 sin(2πt/75)
+0.043 cos(4πt/75)− 0.016 sin(4πt/75)}.
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Figure 2. True ln θt1 (dashed line) and its smoothed estimates (solid line) for the �rst 500 time periods

obtained for simulated data of the Poisson factor model with one common factor.
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Figure 3. Time series of the number of trades in 5-minute intervals ytj (top row) and of the standardized

residuals ztj obtained from the dynamic Poisson factor model with one common factor (bottom row).
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