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Abstract

We propose a dynamic factor model for the analysis of multivariate time series count data.
Our model allows for idiosyncratic as well as common serially correlated latent factors in order to
account for potentially complex dynamic interdependence between series of counts. The model
is estimated under alternative count distributions (Poisson and negative binomial). Maximum
Likelihood estimation requires high—dimensional numerical integration in order to marginalize
the joint distribution with respect to the unobserved dynamic factors. We rely upon the Monte—
Carlo integration procedure known as Efficient Importance Sampling which produces fast and
numerically accurate estimates of the likelihood function. The model is applied to time series data
consisting of numbers of trades in 5 minutes intervals for five NYSE stocks from two industrial
sectors. The estimated model accounts for all key dynamic and distributional features of the
data. We find strong evidence of a common factor which we interpret as reflecting market—wide

news. In contrast, sector—specific factors are found to be statistically insignificant.
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1. Introduction

Modelling of dispersion and serial correlation for univariate count series has received much attention
over recent years. Existing approaches can be broadly classified as either observation— or parameter—
driven. The monographs of Kedem and Fokianos (2002) and McKenzie (2003) provide excellent
overviews. More recent contributions include Jung et al. (2006), Neal and Subba Rao (2007) and

Jung and Tremayne (2008).

Multivariate dynamic models for count data remain few. As discussed by Cameron and Trivedi
(1998, Section 8.1), this might be explained by the fact that classical inference in multivariate count
data models has proven to be analytically as well as computationally very demanding. This is par-
ticularly relevant for models attempting to capture the complex correlation structure characterizing
many multivariate count time series. Three pioneering multivariate applications are found in Jer-
gensen et al. (1999), Held et al. (2005), and Heinen and Rengifo (2007). The specification proposed
by Jorgensen et al. (1999) belongs to the class of parameter-driven models. It is a multivariate
Poisson state—space model with a common factor following a gamma Markov process. These specific
distributional assumptions produce a model which can be analyzed by a Kalman filter. The model
is used to assess the impact of air pollution on daily emergency admission counts in an hospital for
four sickness categories. Held et al. (2005) propose an observation—driven multivariate model which
imposes a simple vector—-autoregressive structure for the means. This model can be estimated by
standard Maximum Likelihood (ML). It is applied to infectious disease surveillance counts from a
measle epidemic. Heinen and Rengifo (2007) also adopt an observation—driven approach extending
the univariate autoregressive conditional Poisson model of Heinen (2003). A copula approach is used
to represent contemporaneous correlations among time series counts. Since efficient joint ML estima-
tion is not feasible, the authors rely upon a consistent though less efficient two—stage ML approach
for separate estimation of the parameters of the marginal distributions and those of the copula. Their
model is then used to analyze co-movements in the number of trades for stocks traded at the New
York Stock Exchange (NYSE). Other multivariate count models rely upon panel data techniques,
with emphasis on unobserved heterogeneity in the individual series. See Winkelmann (2008) for a

recent survey.



In the present paper we adopt a parameter—driven approach and propose a new flexible, parsi-
monious and easy to interpret dynamic factor model for multivariate count series. It builds upon
and generalizes earlier models by Jorgensen et al. (1999) and Wedel et al. (2003). The former model
includes a single dynamic common factor only and no dynamic idiosyncratic components. The latter
model is a static multivariate Poisson factor model for cross-sectional analyses. Our model allows for
serially correlated common as well as idiosyncratic factors driving the conditional means of the count
distributions. Therefore, it can represent non—trivial contemporaneous and temporal interactions
across count series. It can also accommodate different distributional assumptions for the conditional
distribution of the counts given the factors. This can be critical since the commonly used Poisson
distribution has an index of dispersion equal to one (the latter being defined as the ratio between
the variance and the mean). However, count data often exhibit strong over—dispersion (index signifi-
cantly larger than one) which can not be fully captured by a conditional Poisson distribution even if
a varying conditional mean generates by itself an over—dispersed unconditional distribution. Hence,
it is important to allow for conditional distributions which can accommodate over—dispersion, such

as the negative binomial (here after Negbin) and the double Poisson.

Our model depends non—linearly upon its dynamic latent factors. Whence, likelihood evaluation
requires high—dimensional numerical integration, for which we use the Efficient Importance Sampling
(hereafter EIS) procedure developed by Richard and Zhang (2007). EIS is a generic, flexible and
easy to implement Monte Carlo integration procedure specifically designed to maximize numerical
accuracy. It also facilitates exploring alternative model specifications which typically require only
minor modifications of a baseline EIS implementation. Last but not least, EIS can be used to compute
filtered and/or smoothed estimates of the latent factors themselves. Several diagnostic test statistics

are based upon such estimates.

Our model is then applied to a multivariate time series consisting of numbers of trades in 5—minutes
intervals for five stocks traded at the NYSE. We implicitly adopt the information flow interpretation
associated with the mixture-of-distribution model of Tauchen and Pitts (1983). See also Andersen
(1996) and Liesenfeld (2001). In this context, numbers of trades are directly influenced by the arrival

of new information, whether specific to a single stock (idiosyncratic factor), to an industry (sector



factor), or to the market (market factor).

The paper is organized as follows. The multivariate dynamic factor model is introduced in Section
2, Section 3 discusses ML estimation, filtering and smoothing based upon EIS. The application to
NYSE data is presented in Section 4. Section 5 concludes. Technical derivations are regrouped in an

Appendix.

2. Dynamic Factor Model for Multivariate Count Data

The econometric model we propose consists of a dynamic extension of the static multivariate Poisson
factor model introduced by Wedel et al. (2003). Consider a J-dimensional vector of counts y; =
(yt1, .-, yrg) recorded at time ¢, (¢t = 1,...,T). Dynamics will be introduced at the level of the latent
factors. Whence, counts are assumed to be conditionally independently distributed with Poisson

distributions
exp(—ﬁtj)ﬁfgj

L ot=1,..T, j=1,..J 1
! (1)

P(yt|0) =

whose means 6;; are latent random variables. We assume the existence of a link function b(-), whereby
the mean vector 6; = (041, ...,0:5) can be expressed as a linear function of a P-dimensional vector

of latent random factors f;, say

b(6) = p+ I ft, (2)

where p denotes a vector of fixed intercepts and T a (J x P) matrix of factor loadings. The P
latent factors in f; are assumed to be independent of each other. A log-link function b(6;) = In(6;)
is convenient since it implies positivity of 6; without parametric restrictions on (u,I"). Alternative

link functions will not be considered here.

In the context of our NYSE application considering the joint behavior of the number of trades
for different stocks, we allow for a single common market factor ¢, S < J industry—specific factors
7 = (1a1,...,7ts)’, and J stock—specific factors wy = (w1, ..., wry)’. Whence, f; is partitioned into
ft = (i, 7/,w;) and P = J 4+ S + 1. The matrix of factor loadings is partitioned conformably with
frinto I' = (I'y,I'7,T',,), where I'y = (7]’\) is a J-dimensional vector, I'; = (7]*) a J x S matrix with

zero entries for any firm j which does not belong to sector s, and T',, = diag(y;dj) a (J x J) diagonal
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matrix. Whence, the log-mean function for stock j, belonging to industry s is given by
In 0y = pj + ’Y}\/\t + ’Yjsj Tts; ’Y;ujwtj; (3)

where the index s; denotes the industry of firm j.

In order to account for possible serial and cross-correlation in the counts, we assume that the

factors follow independent gaussian AR(1) processes, say

MA-1 ~ NN+ N1, 7P (4)
7—1fs|7_t—1s ~ N(/QTS + 5TSTt—ls s [VTS]2)7 (5)
wtj‘wtflj ~ N(fiwj + 5ijt71j ) [Z/wj]2>‘ <6>

To ensure stationarity of the factors, it is assumed that |6*] < 1, [07] < 1, and |§*/| < 1. Other
distributional and dynamic specifications for the factors are easily accommodated. Under an identity
link b(-), for example, a Gamma transition distribution or a log-normal transition distribution would

be suitable factor specifications (see, Jorgensen et al., 1999, and Jung and Liesenfeld, 2001).

The model as specified is unidentified. Identification for the static case with i.i.d. factors is
discussed in Wedel et al. (2003) and can be extended to the dynamic model introduced here. We
impose the restrictions that k* = k™ =k =0 for s =1,....,5 and j = 1,...,J in order to identify
the p;’s (see Equations 4-6). Furthermore, we set v} = 1, fy;)j =1forj=1,..,J, and 7;5 =1
for one arbitrarily selected stock j in industry s for s = 1,...,.S (see Equation 3). This eliminates

indeterminacies in the factor scales.

Under the assumed Poisson distribution, whose dispersion index equals one, over—dispersion of the
counts can only originate from the unconditional variances of the factors, which themselves critically
depend on the persistence parameters (6,87, 6*7). In order to relax this close relationship between

over—dispersion and persistence, we can substitute a more flexible distribution for the Poisson. One



such distribution which we shall apply below is the negative binomial (Negbin), which is given by

T tj 0'2 1/072 ¥ Ytg
P(ytj\‘gtj): I( b + 1/ ]) ( ! ) (0]> ) (7)

1/032‘)F(ytj +1) \ 1+ U?th 01 + 1/0]2-

where I'(-) denotes the Gamma function. Its mean and variance are given by 6;; and 6;(1 + a?@tj),
respectively. The over-dispersion is a monotone increasing function of o; > 0 and the Poisson
distribution in Equation (1) obtains as the limit for o; — 0. The double Poisson distribution
proposed by Efron (1994) or the generalized Poisson distribution proposed by Consul (1989) offer

alternatives to capture (conditional) over—dispersion but will not be considered here.

3. EIS Based Inference

3.1 EIS

The evaluation of the likelihood function for the model described by Equations (1) to (6) requires
integrating the joint density of counts and factors with respect to the T - P latent factor variables
(in our application below T - P ranges from 22,875 to 36,600!). For likelihood evaluation counts are
kept fixed at their observed values and are, therefore, omitted from notation except for the fact that

densities need to be time indexed to reflect their dependence on the data.

The likelihood integral to be evaluated is of the following form:

T
L(v) :/"'/H%(ft,ft1;7/1)dfT"’df1, (8)
=1

where 1 regroups the parameters of the model. ¢; denotes the product of the time ¢ densities for y;
given f; and for f; given f;_1 as defined by Equations (1) to (6). The initial condition fj is assumed
to be a known constant, which we set in our application to fo = E(f;) = 0. If all relevant integrals
had analytical solutions, L(t) would obtain from the following (backward) recursive sequence of

P—dimensional integrals

Lelfoosi ) = / o for frors ) Lust (fis ), (9)
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with Lyy1(fr;¢) = 1, and L(¢) = Li(fo;1). When these integrals are analytically intractable, EIS,
as proposed by Richard and Zhang (2007), essentially amounts to constructing a sequence of auxiliary
parametric density kernels {k;(fi, fi_1;a¢), a; € A;}_;, which (i) are analytically integrable in f;
given f;_1, and (ii) are amenable to MC simulation. The corresponding importance samplers are

then given by

ke(fe, fe—1:ae)

mt(ft|ft*1;at) - Xt(ftfl'at)

., with Xt(ft1;Clt):/kt(ftaft1§at)dft~ (10)

The integral in Equation (8) is then rewritten as

with x741(-) = 1. Here x;+1 essentially substitutes for the analytically intractable L1 in Equation
(9). EIS then aims at selecting {a;};_,; which minimizes the MC sampling variances of the ratios
ot - Xt+1/ke as functions of f; and fi—i1, not just f;. An MC-EIS approximate solution of this

minimization problem obtains from the following backward sequence of auxiliary Least Squares (LS)

problems:
N s s o
(éna) = arg min = ; { (o (7, F25) X (75 a0sn) | (12)

2
—Ct — lnkt(ft s Jt— 17at)} ;

where { ft(i) }L, denotes a trajectory drawn from the (forward) sequence of auxiliary samplers
{mt(ftm(i)l;&t)}f:l with ¢ = 1,..., N (i.i.d.). In order to account for the fact that the {ft(i)} in
Equation (12) also depends on {a;}, the latter obtains as fixed-point solutions of the following iter-

ated sequences of auxiliary backward LS problems:

~(k—1 forward (k—1 backward
B A T (/) RV ARY: .
raws

~(k
e, -



At convergence the EIS estimate of L(v)) is given by:

) LN FO, R0 (7 )
Ly () = xa(fo ) m | | v
N X1tJo; a1 N;E kt(ftZ 7ft—1;at)

For smooth convergence of the EIS fixed-point sequence as well as subsequent continuity of Ly ()
w.r.t. ¢, it is critical that all ¢-th trajectories {ﬁ(i)’(k)}thl be obtained by transforming a single set of
Common Random Numbers (CRNs), say {af)}{:l. CRNs are N(0, 1) for gaussian EIS samplers and
U(0,1) for EIS-sampling densities simulated by cdf inversion. Most importantly, EIS-density kernels
within the exponential family of distributions are linear in the auxiliary parameters a; under their
natural parametrization as well as closed under multiplication. As detailed in the Appendix, these
two properties considerably simplify the application of EIS to our model. Note finally that {a;}7_,
is an implicit function of ¢. Therefore, maximal numerical efficiency requires complete reruns of the

EIS algorithm for any new value of 1. See Richard and Zhang (2007) for details.

3.2 EIS likelihood for the dynamic count data model

EIS estimation of the likelihood function of the model defined by Equations (1) to (6) turns out
to be conceptually straightforward and numerically accurate though notationally tedious. In this
section we only outline the EIS implementation. All relevant algebraic details are regrouped in the

Appendix.

Under the log-link function, the Poisson density in Equation (1) is rewritten as

exp (yijdr; — €%t9)

p (i | ¢u5) = T ; (14)
ytj‘
with ¢; = In6y;. Equations (2) and (3) are rewritten in matrix form as
or=p+Tf, (15)



with @) = (¢p1,... Peg) s fi = Aty 71, .- T, Wi, - - -, Wiy, ), and

AT 0 . 0 0 ... 0
A T w2
Y| 0 ~™2 ... 0| 0 ~ oo 0
r=|"~ ’ , (16)
¥ 0 0 700 "5

where ™ = WTS"' Jfor j=Js+1,...,Js41 (J1 =0, Jgy1 = J) denotes the vector of factor loadings
Y b + +

on the industry factor 744 for all stocks which belong to sector s. Equations (4) to (6) imply that

p(fi| fio1) ~N(Afir, HY), (17)

where A and H are both diagonal and H denotes the inverse of the covariance matrix of f; given
ft-1.

In order to apply sequential EIS to this model, we first note that the factor p¢(f;, fi—1;) in the
likelihood integral (8) and (11) is given by

e (fe, feeis0) = p (fe | fee1) Hp Yyej | 64) | (18)

where p (f; | fi—1) is linear gaussian and ¢y is a linear function of f;. Next, note that if k& (f;, fi—1; ar)
is a gaussian kernel in both f; and f;_1, then its integrating constant w.r.t. f; given by x: (fi—1;a¢)
is a gaussian kernel in f;_;. By recursion this implies that the sole non—gaussian term in the product
©ixt+1 to be approximated by k; is the product of the J densities p (yi; | ¢+;). It follows that all we
have to do is to construct gaussian approximates in ¢;; to the latter densities in order to produce
a gaussian kernel k; for (fi, fi—1). The kernel k; then consists of the product of p(f; | fi—1) by J
univariate gaussian kernels in the ¢¢;’s and by x;41. Moreover, the factors p (f; | fi—1) and xi41
appear in logs on both sides of the auxiliary EIS regressions in Equation (12) and cancel out. All in
all, the EIS auxiliary regression for the approximation of ¢;x;+1 by k; simplifies into J independent

bivariate linear LS regressions of {Inp(y; | qgg)) L, on {(gzbt] , [d)t]] )}, and a constant. These



auxiliary regressions run fast and produce numerically very accurate evaluations of the likelihood

function, rendering ML-EIS estimation of the model fully operational.

The corresponding matrix algebra, which essentially consists of regrouping three gaussian kernels
in (fy, fi—1) and integrating out f;, is conceptually straightforward. Details are regrouped in the

Appendix.

Last but not least, note that if we replace the Poisson density by the Negbin density in Equation
(7), we only need to modify accordingly the dependent variables in the auxiliary EIS regressions, a

trivial adjustment all together.

3.3 Filtering and smoothing

In many state-space applications such as the one analyzed here, interest lies also in the estimation
of the latent states (i.e. in our application the factors) whether for diagnostic checking, interpreta-
tion and/or forecasting. Since, however, factors are one-time occurrences (incidental in statistical
jargon) they obviously cannot be consistently estimated. Nevertheless, their moments conditional
upon alternative information sets are functions of the parameters of the model and can therefore be

congistently estimated.

The filtered moments of f; are defined as being conditional upon information available up to time
t—1 denoted by Y;_1. In the present paper we shall compute means and variances of exp(v} ft), where
7; denotes the jth row of I'. These moments are instrumental in the computation of the standardized

Pearson residuals
P E(yt;]Ye-1)
& Var(y;|Vi—1)'/?

(19)

These residuals are critical components of a variety of diagnostic statistics since they should have
zero mean and unit variance and should be serially uncorrelated if the model is correctly specified.

Under the Poisson model the relevant conditional moments of y;; are given by

E(yi;[Yi1) = exp{p;} - E(exp{v;fi}[Vi1), (20)



and

Var(yi;|Vi-1) = exp{u;} - E(exp{7; fe}|Yi—1) + exp{2u;} - Var(exp{~} fi}|Yi-1), (21)

respectively. The filtered moments of exp(fy} ft) take the form of ratios of integrals in {f.}!_; which
are functionally similar to the likelihood integral in Equation (8) with products running only up to
period t — 1. Both numerator and denominator can be accurately approximated by EIS. Moreover,
both EIS approximations should use the same set of CRNs in order to induce positive correlation

between numerator and denominator, resulting in additional efficiency gains.

Smoothed moments of f; are defined as being conditional on the entire sample Yr and are also
computed by EIS (and are typically very close to the moments of the EIS samplers since the latter
can be interpreted as approximations of the posterior densities of the factors). Smoothed moments

provide, therefore, an ex-post image of the factor history over the sample period.

4. Application to Stock-Market Trading Volume

4.1 The data

Different versions of the dynamic factor model introduced in Section 2 are applied to the number
of trades in 5b-minute intervals between 9:45 AM and 4:00 PM for J = 5 stocks traded at the
NYSE: Two companies - P.H. Glatfelter Company (GLT) and Wausau Paper Corporation (WPP)
— belong to the industry subsector paper; three companies — Empire District Electric Company
(EDE), Northeast Utilities (NU) and Westar Energy, Inc. (WR) — belong to the industry subsector
conventional electricity. Data are taken from the TAQ (Trades and Quotes) data set, provided by the
NYSE. The time period covered is the first quarter of 2005 (January 3, 2005 — March 31, 2005) with
61 trading days. As there are 75 5-minute intervals per day, the sample size is T' = 4575. See the top
panel of Figure 3 for time series plots of the number of trades. Descriptive statistics are provided
in Table 1, and Table 2 reports the sample correlations across the five stocks. As one can see, the
empirical distribution of the number of trades is clearly over—dispersed. The Ljung—Box statistics
for the number of trades Q19 and Qo including 10 and 20 lags, respectively, indicate strong serial

correlation. As shown in Table 2, contemporaneous correlation between the trading activities of the
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five stocks are all positive.

4.2 Daily trading pattern

It is well-known that daily trading activity has a distinctive U-shape pattern (see, e.g., Admati and
Pfleiderer, 1988). In order to capture it we introduce a Fourier series for the intercept of the log-mean

function (see Equation 3). Specifically, 41, is replaced by a cyclical term p;; defined as

pej = pj + oy, (22)

with o) = (auj,...,a45) and 2 = (cos(2mt/75),sin(21t/75), cos(4nt/75),sin(47t/75)), accounting
for the fact that there are 75 5-minutes intervals in a trading day. EIS trivially accommodates this

extension. The filtering equations (20) and (21) are modified as follows:

E(yej|Yi-1,21) = exp{p; + oz} - E(exp{7j fi}[Yi-1, 1), (23)

Var(yi Vi1, 2) = exp{p; + i} - Blexp{ fi}[Vi1, z1) (24)

+ exp{2(u; + ajz¢)} - Var(exp{v; fi}|Ye—1, z¢).

4.3 Univariate Analysis
As initial step, we first estimate a univariate dynamic Poisson model for each of the five stocks
separately. This model is defined by Equations (1) and (6) — with k9 = 0 — together with

In 9,5]‘ = ;5 + Wtj, (25)

and Equation (22). This univariate (parameter—driven) dynamic Poisson model was introduced
by Zeger (1988) and analyzed by Chan and Ledolter (1995), Kuk and Cheng (1997), Jung and
Liesenfeld (2001), and Jung et al. (2006). The ML-EIS estimation results based on a MC sample

size of N = 50 are found in Table 3. Most importantly, we find that the parameters governing the

11



stochastic latent processes {wtj}?zl and those characterizing the diurnal patterns are quite similar

across the five stocks. In particular, estimates of 6“7 range from 0.60 to 0.72 and are indicative of

strong persistence, while the estimates of v*7 range from 0.30 to 0.50. These findings motivate our

subsequent multivariate analysis where we shall aim at identifying common factors. They also allow

us to impose in Equation (22) a common diurnal pattern to the five stocks obtained by setting the
/ /

vectors oy = o' = (a1,...,ay4) for j = 1,...,J , thereby preserving parsimony in the multivariate

specification.

4.4 Multivariate Factor Models
4.4.1 Poisson Model with one common factor

Allowing for a single common factor \; in addition to the idiosyncratic factors wyj;, the log-mean

function in the conditional Poisson distribution (1) for stock j is now given by
In6:j = pej + 73 A\e + wij, (26)

with 79 = 1, together with Equations (4), (6) and (22) — under the restriction o; = «. Joint ML-
EIS estimates based upon N = 50 trajectories are found in Table 4. ML-EIS estimation requires
approximately 65 BFGS iterations and takes of the order of 100 minutes on a Core 2 Duo Intel 2.7
GHz processor using GAUSS on Windows XP. (We also experimented with the Nelder-Mead simplex
method for maximizing the log-likelihood functions (see, e.g., Press et al., 1988). It turned out that
it produces the same results and requires about the same computing time as the BFGS algorithm.
However, for higher dimensional factor models and/or less well-behaved likelihood functions we advise
the use of this gradient free simplex algorithm.) MC numerical standard deviations of the ML-
EIS parameter estimates used as measures of numerical precision are obtained from 20 i.i.d. ML-
EIS estimations conducted under different CRN seeds (see Richard and Zhang, 2007 for details).
They indicate that the parameter estimates are numerically very accurate. The fact that such
high accuracy obtains with as little as N = 50 trajectories indicates that the likelihood integrands

in Equation (11) are very well-behaved functions of the 27,450 latent factor variables, which are

12



accurately approximated by the EIS-sampler (using 54,900 auxiliary parameters). In particular, the

R2s of the EIS auxiliary LS-problems (12) are typically larger than 0.99.

All parameter estimates are reasonable and apart from oy significant at the 1% significance level.
The estimates of the parameters for the common process 6* and v* indicate a substantial variation
and a slight, yet significant, persistence. The estimates of the factor loadings ranging from 0.53 to
1.24 suggest that the trading activity of all stocks load significantly on the common factor, which
is not surprising as trading is positively correlated across stocks. The estimates of the parameters
characterizing the idiosyncratic factors indicate substantially more persistence than for the common
factor as well as uniformly more persistence than their univariate counterparts in Table 3. Hence,
the idiosyncratic factors capture the persistent movements of the trading process, whilst the common
factor accounts for the more transitory variation. Note, furthermore, that the estimated a-parameters
governing the deterministic seasonal effects are similar in magnitude to those obtained under the
univariate models (see Table 3). Figure 1 shows the estimated diurnal seasonal effects for the number
of trades obtained under the dynamic factor model. They exhibit the well-documented U-shape
pattern. The sum of the individual log-likelihood values for the five independent univariate models
equals -62,134 (see Table 3) which is substantially smaller than the log-likelihood value of -61,631
for the multivariate factor model. This large difference reflects the fact that, as shown below, the
common factor model fully accounts for observed correlations between trading activities, in sharp

contrast with the univariate models which ignore them.

In order to assess the reliability and the statistical properties of the ML-EIS estimator in this
multivariate factor model we conducted a small simulation experiment, in which we drew 20 fictitious
samples of size 4575 from that model setting the parameters equal to their estimates obtained from
the real data. MC mean and standard deviation of the ML-EIS estimates obtained for the fictitious
samples are provided in Table 5 and indicate that the ML-EIS estimation procedure is statistically
very well behaved. Figure 2 shows the time series of the true log conditional mean Inf;; of the
first count data series for the first 500 time periods together with its smoothed estimates E(In 6;;]Y")
obtained for simulated data. Unsurprisingly, the series of smoothed estimates closely follows the true

value.
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The parameter estimates in Table 4 can be used to compute the implied estimates of the means
and the covariance of the unconditional distribution for the number of trades, to be compared with
their sample counterparts. In the presence of deterministic diurnal effects, the unconditional means

and variances for the trades of stock j under the factor model are

E(yy;) = Er (exp{utj + 0.5v;557;}) (27)

and

Var(y,;) = Varp (exp{,utj + 0.57§Ef7j}) (28)

+Er (exp{2uj +v;X 57} [exp{X sy} — 1] + exp{us; + 0.57;55751}) ,

where 7; represents the vector of the factor loadings for stock j and ¥ the covariance matrix of
the vector of factors f;. The notation Ep and Vary indicate sample mean and sample variance com-
puted w.r.t. the deterministic variation of the diurnal seasonal effects. The corresponding covariance

between trading of stock j and stock k is obtained from the cross moments

E(yjyie) = Er (exp{; + per + 0.5(v; + v6)'Sr (v + 7)) J# k. (29)

The estimates of the unconditional mean and covariance matrix of y; are given by

5.83 16.93
7.93 5.46  38.70

Ey)=| 345 and Var(y)=| 311 376 9.55 ,
10.41 5.94 740 4.02 33.11
9.72 499 627 334 719 39.07
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respectively. The corresponding sample moments are given by

5.80 16.75
7.90 5.68 34.17
y= 3.47 and Yy = 3.26  4.65 9.6 )
10.41 4.95 597 5.17 34.41
9.61 4.09 6.32 337 7.47 34.89

respectively. The close match between those two sets of moments indicates that the common factor
model provides an excellent parsimonious representation of the contemporaneous correlation across

the five stocks.

In order to assess the relative importance of the common factor, idiosyncratic factors and the
diurnal component we computed their relative contribution to the overall variance of the log-link
function for the individual stocks In 6;;. The implied estimates of the contributions to the variation
of the log-link function are reported in the upper panel of Table 8. The fraction of variation explained
by the common factor varies between 8% (WR) and 31% (EDE) while that of the idiosyncratic factors
range between 56% (GLT) and 76% (WR). Even though the idiosyncratic factors explain a larger
fraction of variation in In 6; than the common factor, it is important to remember that the latter is

indispensable to capture observed contemporaneous correlations.

For diagnostic checking we computed the standardized Pearson residuals z;; as defined by Equa-
tions (19), (23) and (24). The conditional moments of exp{v]f:} appearing in the Equations (23)
and (24) are filtered moments and are evaluated by EIS as described in Section 3.3 above. The upper
panel of Table 9 summarizes the properties of the Pearson residuals. Their sample means are all close
to zeros. However, their standard deviations are all substantially larger than 1. This indicates that
there is more variation and over—dispersion in the data than the model accounts for. Furthermore,
the Ljung-Box statistics for the residuals including 10 and 20 lags indicates that the model does not
fully capture the dynamic behavior of the trading activity even though it dramatically reduces the
Ljung-Box statistic for the raw data as given in Table 1. The bottom row of Figure 3 displays the

time series of the standardized residuals for the 5 stocks. The comparison with the time series plot
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of the raw data (see top row of Figure 3) reveals that the model accounts for a substantial fraction

of the variation in the data.

4.4.2 Negbin Model with one common factor

In order to better account for over—dispersion and to allow for more flexibility to capture the serial
correlation we replace the conditional Poisson density in Equation (1) by the more flexible Negbin
density in Equation (7). As explained in Section 3.2 above, this substitution only requires minor

modifications of the baseline EIS-ML algorithm.

The results of the ML-EIS estimation of the Negbin factor model with one common and J id-
iosyncratic factors are reported in Table 6. Note that the substitution of the Negbin for the Poisson
distribution increases the value of the maximized likelihood function by 381, indicative of a much
better fit. Moreover, the additional o-parameters measuring the deviation from the Poisson distribu-
tion are in each case statistically significantly larger than zero at any conventional significance level.
On the other hand the estimates of the intercept parameters (), the factor loadings (’yj‘), and of the
seasonal parameters (a;) obtained under the Poisson and the Negbin specification are very similar
to each other, indicating a fairly robust factor structure. Note, however, that the §-coefficients have
increased under the Negbin model while the v-parameters have decreased. This indicates that the
factors, whether common or idiosyncratic evolve more smoothly over time and with greater persis-
tence under the Neghin. These differences also suggest that a substantial part of the variation in
trading activities, which was attributed to persistent shocks in the factor processes under the Poisson
model, is now interpreted as transitory and attributed to conditional over—dispersion (o; > 0) under
the Negbin model. (Such a substitution effect can also be observed for applications of the stochastic
volatility models when the usual gaussian density for the conditional distribution of the returns is,
in the presence of outliers, substituted by a fat-tailed student-t assumption, see, e.g., Liesenfeld and
Jung, 2000). Note also that the MC numerical standard errors for the parameters common to both
models are much smaller under the Negbin model, consistent with the fact that the latter better

accounts for observed over—dispersion.

The relative contributions of the individual factors to the overall variance of the log-link function
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for the individual stocks obtained under the Negbin model are reported in the middle panel of Table
8. Note that the relative contribution of the common factor has increased slightly for all five stocks

under the Negbin.

The middle panel of Table 9 summarizes the properties of the Pearson residuals z;; obtained from
the Negbin factor model. The values shown for the means (close to zero) and standard deviations
(close to one) for all five stocks are indicative of a valid specification. Whence, the Negbin factor
model appears to fully account for over—dispersion in the data, in contrast to the Poisson specification.
Moreover, the Ljung-Box statistics for the residuals indicate that the Negbin model successfully
accounts for serial correlation in the number of trades for GLT, EDE and NU. However, there remain

difficulties capturing the full dynamics in trading activity for WPP and WR.

4.4.3 Negbin Model with a common and industry—specific factors

Since the five stocks considered here belong to two different industries, their trading volumes might
be affected by industry—specific news in addition to market—wide news which are already captured by
the common factor. Therefore, we now add two sector-specific factors to the Negbin model introduced

in Section 4.4.2. The log-mean function for stock j is now given by
Ts,:
In 6y = pugj + 73 Ao + V5 Tes; Wi, (30)

with s; =1 for j = {1,2} (GLT,WPP) and s; = 2 for j = {3,4,5} (EDE,NU,WR). Accounting for
normalization (y;' = 73*> = 1) this amounts to introducing seven additional parameters in the model:
three loading factors (v5',74%,75°) and four factor parameters (67,07 ,6™,v™).

The ML-EIS estimation results are summarized in Table 7. Note that the addition of the two in-
dustry factors (seven parameters) produces an additional significant increase of the likelihood function
by 40. Moreover, most of the parameters common to both Negbin models are very similar, providing
evidence of robustness in the factor specifications (see Tables 6 and 7). Two significant differences
are observed for o1 (GLT) and v*5 (WR). The addition of industry factors has noticeably decreased

these two parameters. The estimates of the factor loadings for the industry factors suggest that the
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paper—industry factor 71 is essentially a GLT factor while that of the electric—service industry 7o
is dominated by WR. This is confirmed by the finding that the industry factors account for 29%
(GLT) and 27% (WR) of the variation in the conditional means of these two stocks, and only for
3% or less for the other three stocks (see bottom panel of Table 8). The negative signs of the NU
and WR loadings on the electric—service factor reported in Table 7 are indicative of a ‘substitution
effect’ in the trading activities of this sector, though both coefficients are statistically insignificant.
All in all, our analysis suggests that the two industry—specific factors we have introduced actually
capture additional firm—specific variations for GLT and WR, rather than genuine industry-specific
factors. In particular, 74 captures mostly transitory movements in GLT trading, while 7o reflects
mostly persistent movements in WR trading. Such interpretation is supported further by the finding
that the over—dispersion parameter o; (GLT) and the idiosyncratic volatility parameter v*5 (WR)

have both decreased following the addition of the two industry factors.

The properties of the Pearson residuals z;; for the factor model with industry—specific factors are
summarized in the bottom panel of Table 9. The model clearly accounts for most of the observed
over—dispersion except possibly for GLT with a standard deviation of 1.14. However, closer inspection
of the GLT-residuals indicate that this large standard deviation is essentially due to a single outlier.
The Ljung—Box statistics indicate that the model successfully accounts for most of the observed serial
correlation except possibly for WPP, whose dynamics have been difficult to parsimoniously capture

under all three model specifications.

5. Conclusion

We can draw three sets of conclusions from the application we have presented in this paper. With
respect to modelling multivariate time series of counts, we have illustrated that our proposed parsi-
monious and easy to interpret dynamic factor model is able to represent non-trivial contemporaneous
and temporal interdependencies across count series. Hence, we expect that it provides a useful frame-

work for the analysis of high-dimensional time series of counts.

In regard to our application to the number of trades for five NYSE stocks itself, we found robust

evidence for a common factor reflecting market—wide news and accounting for observed co-movements
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in trading activities across the five individual stocks analyzed here. While the two industry—specific
factors we added to the model do capture additional variations in trading activities, they appear to
represent additional firm—specific factors for two stocks rather than genuine industry—specific factors.
Last but not least, the Neghin clearly dominates the Poisson distribution in terms of accounting for

observed over—dispersion and serial correlation of trading volumes.

From a numerical viewpoint, we have demonstrated that EIS enables one to analyze complex
factor structures in the context of dynamic multivariate discrete models, at least as long as the
dynamics of the model is specified in the form of gaussian autoregressive factors. (Work in progress
should allow us to relax such restrictions but goes beyond the objectives of the present paper.) In the
current application, EIS simplifies into a sequence of J - T' bivariate auxiliary linear LS regressions,
irrespective of the number P of factors and of the complexity of the factor structure. Moreover,
numerically highly accurate ML-EIS parameter estimates obtain under very small numbers of draws
(N = 50 trajectories for the present application). Last but not least, the baseline EIS algorithm
requires only minor adjustments to accommodate alternative specifications (factor structure and/or
discrete distribution) providing thereby unparalleled flexibility for the analysis of complex dynamic

factor structures.
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Appendix: EIS Implementation

This appendix details the functional forms of the EIS implementation for the dynamic count data
model given by Equations (1) and (3)-(6).
Let the integrating constant of the EIS gaussian kernel k; (f;, fi—1;a¢) w.r.t. f; be parameterized

as

R 1
Xt+1 (ft: Gey1) = exp 3 (fz&lPt+1ft - 2f7t,Qt+1 + 7’t+1) ) (A1)

where (Pit1,qi+1,7t+1) denote appropriate functions of the EIS auxiliary parameter a;y1, to be
obtained by backward recursions as described below. (Since x741 = 1, the ‘initial values’ are Ppiq =
0, gr4+1 =0, rpy1 = 0.) Let the EIS-LS approximation of the product H;-lep (ytj | ¢¢5) in Equation
(18) be denoted as

ki (fe; @) = exp —% (ﬁbéétéf)t - 2¢;ét) ) (A.2)

with ¢y = p + T'fy. B, = diag(i)tj) denotes a J x J positive definite diagonal matrix and ¢ = ()
a J-dimensional vector. The EIS auxiliary parameter d; is defined as @, = (vech(B;)’,é,). The EIS

gaussian kernel k; is then given by

ke (fio fro1iae) = ki (fsae) p (fr | 1) Xes (fe3 o) - (A.3)

Combining together Equations (17), (A.1) and (A.2) we have

—2Ink (fi, fiosar) = (u+Tf) Be(u+Tf) —2(+Tf) é (A4)

+(fr = Afic1) H (fe — Afic1) + flPiorfe — 2f{qi1 + 741

Completing the quadratic form in f; (given fi_1) we rewrite —21Ink; as

—2Ink; (fi, fimrsae) = [fr — (de + Gefec1)) My [fr — (di + Gifeo1)] (A.5)
(W Bup = 200+ 1y A HA Sy + 741 )

— (d¢ + Gefr1) My (dy + Gifin),
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with

M; = T'BI+ H+ Py, (A.6)
d = M [qtﬂ 4T (ét - Bm)} : (A7)
Gy = M'HA. (A.8)

It immediately follows that the gaussian EIS sampler for f; | f;—1 is given by
my (ft | ft—l; dt) ~ N (dt -+ tht y Mt_1> . (Ag)

The log integrating constant —21In x; (fi—1;a:) obtains by regrouping all remaining factors in

Equation (A.5) and is, therefore, of the form introduced in Equation (A.1) together with

P, = ANHA-G,MG, (A.10)
qt = G;Mtdt, (A].].)
Tt = M/Btu — 2,u/ét + Tt4+1 — déMtdt (A12)

Hence, Equations (A.6)-(A.8) and (A.10)-(A.12) fully characterize the EIS recursion whereby the

coefficients (Pjy1,qi+1,7t+1) are combined with the period ¢ EIS coefficients (Bt,ét) in order to

produce (back recursively) the coefficients (M, d¢, G¢) characterizing the EIS-sampling densities.
Based on these functional forms the computation of the EIS estimate of the likelihood requires

the following simple steps:

Step (1). Generate N independent P—dimensional trajectories {{ ﬂ(i)}tT:l}i]\il from a sequence of
initial samplers {m(f¢| fi—1, ago))}. Such a sequence is obtained, e.g., by using as ki in Equation (A.2)
a second-order Taylor-series approximation (TSA) in ¢¢; to H'jjzl P(yej | ) around E(¢yj) = p;.
The resulting TSA values of the auxiliary parameters (ago))' = (Vech(BISO))’, (cgo))') can be used to
construct according to Equation (A.9) together with the recursions (A.6)-(A.8) and (A.10)-(A.12)

(0) (0)

an initial EIS sampler, which obtains by setting B, = B, and ¢ = ¢

Step (2). Transform the simulated f;—trajectories from the previous sampler into the corresponding

21



N independent J—dimensional ¢s—trajectories according to ¢ = u + I'f;. Use the latter trajectories
to solve for each period ¢ the LS—problem defined in Equation (12). This requires to run for each

period t the following J independent linear auxiliary regressions:

7 (i L~ +(i i .

In p(ys | gbf(/l)) = constant — §bt1 [¢§1)]2 + cﬂ(bgl) + C{t), i=1,...,N, (A.13)
~(i L~ <(i i :

Inp(yer | ¢§J)) = constant — 5btJ[ IEJ)]Q + ctJ¢§J) + CSt), 1=1,...,N, (A.14)

where ¢ j(;) denotes the regression error term of regression j.

Step (3). Use the LS estimates B, = diag(Btj) and ¢ = () obtained in Step (2) to construct
back-recursively the sequence of EIS-sampling densities {m(fi|fi—1,a:)} as given by Equation (A.9)
together with the recursions (A.6)—(A.8) and (A.10)—(A.12).

Step (4). Generate N independent trajectories from the sequence of EIS samplers constructed in

Step (3) and use them either to repeat Step (2) and (3) or (at convergence) to compute the EIS-MC

estimate of the likelihood according to Equation (13).
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Table 1. Descriptive Statistics for the Number of Trades.

GLT WPP EDE NU WR
Mean 5.80 7.90 3.47 10.41 9.61
Median 5 7 3 9 9
Standard dev. 4.09 5.85 3.11 5.87 5.91
Minimum 0 0 0 0 0
Maximum 54 43 25 48 59
Q10 2,086 4,057 1,575 3,452 4,150
Q20 2,549 5,026 1,908 3,927 5,942

NOTE: The number of observations per stock is T' = 4575. The Ljung-Box Statistics Q10 and Q2o include
10 and 20 lags.
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Table 2. Sample Correlation Matrix of
the Number of Trades.

GLT WPP EDE NU WR
GLT 1
WPP .238 1
EDE .256 .256 1
NU .206 174 283 1
WR .168 183 184 216 1
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Table 3. ML-EIS Estimates for the Univariate Dynamic
Poisson Count Data Model for the TAQ Data.

GLT WPP EDE NU WR
i 1.619 1.869 1.030 2.246 2.140
(.015) (.018) (.019) (.013) (.017)
0“3 .596 .616 .598 .619 723
(.021) (.017) (.022) (.021) (.016)
i .400 .469 .496 .304 .330
(.011) (.010) (.013) (.008) (.009)
o1 .250 .320 .339 .286 201
(.012) (.007) (.015) (.017) (.019)
o2 —.024 —.125 —.091 .006 —.088
(.016) (.007) (.009) (.008) (.014)
Q3 .009 .065 .045 .064 .034
(.011) (-009) (.021) (.009) (.007)
4 .044 —.065 —.028 —.032 —.009
(.012) (.022) (.012) (.009) (.008)
Log-likelihood —11,833.5 —13,219.5 —10,264.6 —13,386.0 —13,430.2
Sum of the Log-likelihood values —62,133.9

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors

obtained from a numerical approximation to the Hessian are in parentheses. ML-EIS estimates are based

on a MC sample size of N = 50 and three EIS iterations.
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Table 4. ML-EIS for the Poisson Factor Model with Firm
Specific Factors and a Common Factor for the TAQ Data.

GLT WPP EDE NU WR
1y 1.622 1.871 1.033 2.248 2.140
(.015) (.018) (.018) (.012) (.016)
[.0021] [.0025] [.0022] [.0009] [.0020]
73 1.000 855 1.242 635 525
(.048) (.052) (.039) (.039)
[.0105] [.0114] [.0071] [.0084]
6“7 .814 .730 .786 .766 .786
(.014) (.012) (.018) (.018) (.014)
[.0043] [.0034] [.0031] [.0029] [.0022]
i 232 .373 .306 .219 .281
(.010) (.008) (.013) (.009) (.009)
[.0030] [.0030] [.0026] [.0013] [.0017]
Factor
param. 5 v
152 .283
(-026) (.007)
[.0051] [.0017]
Seasonal
param. ay as as oy Log-likelihood
275 —.050 .043 —.016 -61,630.7
(.005) (.009) (.004) (.010)
[.0019] [.0014] [.0014] [.0010] [2.354]

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors

obtained from a numerical approximation to the Hessian are in parentheses and MC (numerical) standard
deviations obtained from 20 ML-EIS estimations conducted under different sets of CRNs are in brackets.

ML-EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 5. ML-EIS for the Poisson Factor Model with Firm
Specific Factors and a Common Factor for Simulated Data.

GLT WPP EDE NU WR
i true 1.622 1.871 1.033 2.248 2.140
mean 1.625 1.940 1.055 2.252 2.142
std. .018 .055 .030 .013 .020
o true 1.000 855 1.242 635 525
mean 1.000 .822 1.243 .630 .529
std. .051 .054 .031 .039
0vi true 814 .730 .786 .766 786
mean .814 744 793 .759 .785
std. .015 .019 .013 .014 .013
vi true 232 373 .306 .219 .281
mean .229 .353 .294 .220 278
std. .010 .016 .009 .007 .007
Factor
param. o v
true .152 .283
mean 182 .288
std .017 .008
Seasonal
param. (e 5] a2 [0%:3 (671
true 275 —.050 .043 —.016
mean .289 —.051 .045 —.018
std .020 .022 .016 .016

NOTE: The reported numbers are the MC mean and standard deviation of 20 repeated ML-EIS estimates
for the parameters for different simulated data set and a fixed set of CRNs for ML-EIS estimation. ML-
EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 6. ML-EIS for the Negbin Factor Model with Firm
Specific Factors and a Common Factor for the TAQ Data.

GLT WPP EDE NU WR
17 1.646 1.929 1.080 2.269 2.166
(.022) (.020) (.023) (.016) (.021)
[.0001] [.0001] [.0002] [<.0001] [<.0001]
v 1.000 915 1.331 681 583
(.053) (.083) (.037) (.040)
[.0006] [.0014] [.0005] [.0004]
6“9 .939 .946 927 916 957
(-008) (-008) (.017) (.008) (.007)
[.0001] [.0001] [.0003] [.0002] [<.0001]
v 112 135 142 110 .106
(.008) (.012) (.023) (.007) (.008)
[.0001] [.0001] [.0004] [.0001] [.0001]
0 .281 .365 341 218 .288
(.012) (.011) (.024) (.009) (.009)
[.0003] [.0002] [.0005] [.0001] [.0001]
Factor
param. 5 v
.351 .260
(.023) (.009)
[.0002] [.0001]
Seasonal
param. ay as as Q4 Log-likelihood
271 —.050 044 —.015 -61,249.9
(.004) (.009) (.003) (.004)
[<.0001] [<.0001] [<.0001] [<.0001] [0.138]

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors

obtained from a numerical approximation to the Hessian are in parentheses and MC (numerical) standard
deviations obtained from 20 ML-EIS estimations conducted under different sets of CRNs are in brackets.

ML-EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 7. ML-EIS for the Negbin Factor Model with Firm- and Industry Specific
Factors and a Common Factor for the TAQ Data.

GLT WPP EDE NU WR
1y 1.619 1.931 1.072 2.269 2.140
(.027) (.033) (.039) (.018) (.047)
[.0034] [.0003] [.0024] [.0001] [.0005]
73 1.000 955 1.767 735 .686
(.067) (.202) (.062) (.105)
[.0022] [.0536] [.0077) [.0229]
'y;l 1.000 224 0.000 0.000 0.000
(.096)
[.0230]
7;2 0.000 0.000 1.000 —.504 —2.386
(.334) (1.408)
[.0884] [.4317]
6“i 951 .944 .965 .914 .986
(.009) (.009) (.015) (.043) (.005)
[.0006] [.0003] [.0034] [.0004] [.0007]
i .095 138 .086 111 .052
(.010) (.013) (.025) (.010) (.011)
[.0008] [.0004] [.0056] [.0003] [.0018]
oj .160 .370 .294 .219 .226
(.054) (.013) (.041) (.011) (.020)
[.0221] [.0009] [.0116] [.0005] [.0026]
Factor
param. 5 v o vt 02 V72
372 .229 .263 273 .608 .083
(.033) (.016) (.092) (.036) (.086) (.044)
[.0037] [.0032] [.0216] [.0134] [.0169] [.0128]
Seasonal
param. e %} [ % a3 o Log-likelihood
.262 —.056 .042 —.014 -61,210.0
(.012) (.011) (.009) (-009)
[.0005] [.0001] [.0001] [.0001] [1.001]

NOTE: The reported numbers are the ML-EIS estimates for the parameters, asymptotic standard errors
obtained from a numerical approximation to the Hessian are in parentheses and MC (numerical) standard
deviations obtained from 20 ML-EIS estimations conducted under different sets of CRNs are in brackets.
ML-EIS estimates are based on a MC sample size of N = 50 and three EIS iterations.
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Table 8. Relative Contributions of the Factors
to the Overall Variance of the Log Conditional Mean.

seasonal

unique

common

industry

GLT
WPP
EDE
NU
WR

GLT
WPP
EDE
NU
WR

GLT
WPP
EDE
NU
WR

Poisson Model: Firm Specific Factors

& Common Factor

14
.10
.10
.21
.15

.56
.74
.59
.61
.76

.29
.15
31
.18
.08

Negbin Model: Firm Specific Factors

& Common Factor

.18
.14
12
.26
.19

48
.62
.45
.50
.67

.35
.23
43
.24
.13

Negbin Model: Firm- and Industry Specific

Factors & Common Factor

.14
.14
11
.25
.16

.35
.64
.30
.51
43

.22
.21
.55
.22
13

.29
.01
.03
.02
27
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Table 9. Diagnostics Based on the Pearson Residuals.

GLT WPP EDE NU WR

Poisson Model: Firm Specific Factors

& Common Factor

Mean .05 .07 .05 04 04
Standard dev. 1.24 1.29 1.21 1.20 1.22
Q1o 25.0 60.9 6.9 29.6 48.1
(.005) (.000) (.732) (.001) (.000)
Q20 56.0 128.1 29.3 62.1 95.4
(.000) (.000) (.080) (.000) (.000)

Negbin Model: Firm Specific Factors

& Common Factor

Mean 01 .00 .00 .00 .01
Standard dev. 1.05 1.01 1.01 1.03 1.02
Qo 12.9 27.5 10.6 12.8 31.8
(.228) (.002) (.391) (.237) (.000)
Q20 21.2 48.2 21.8 29.3 38.1
(.383) (.000) (.353) (.081) (.008)

Negbin Model: Firm- and Industry Specific Factors
& Common Factor

Mean 03 .01 .02 .02 .02
Standard dev. 1.14 1.06 1.09 1.07 1.09
Qo 10.1 20.0 14.8 11.9 15.5
(.428) (.029) (.140) (.229) (.116)
Q20 27.1 37.5 28.2 31.5 20.0
(.133) (.010) (.104) (.049) (.454)

NOTE: The Ljung-Box Statistic Q20 includes 20 lags. Probability values are given in parentheses.
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Figure 1. Estimated diurnal seasonal effects for the number of trades obtained under the dynamic Poisson
factor model with one common factor given by exp{0.275 cos(27t/75) — 0.050 sin(27t/75)
+0.043 cos(4nt/75) — 0.016 sin(47t/75)}.
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Figure 2. True In 0y (dashed line) and its smoothed estimates (solid line) for the first 500 time periods
obtained for simulated data of the Poisson factor model with one common factor.
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Figure 3. Time series of the number of trades in 5-minute intervals y;; (top row) and of the standardized

residuals z;; obtained from the dynamic Poisson factor model with one common factor (bottom row).
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