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1 Introduction

Likelihood evaluation and filtering in applications involving state-space models re-
quires the calculation of integrals over possible realizations of unobservable state vari-
ables. When models are linear and stochastic processes are gaussian, required integrals
can be calculated analytically via the Kalman filter. Departures from these situations entail
integrals that must be approximated numerically. Here we introduce an efficient procedure
for calculating such integrals: the EIS filter.

The procedure takes as a building block the pioneering approach to likelihood evalua-
tion and filtering developed by Gordon, Salmond and Smith (1993) and Kitagawa (1997).
Their approach employs discrete fixed-support approximations to unknown densities that
appear in the marginalization and updating stages of the filtering process. The discrete
points that collectively provide density approximations are known as particles; the ap-
proach is known as the particle filter. Examples of its use are becoming widespread; in
economics, e.g., see Kim, Shephard and Chib (1998) for an application involving stochas-
tic volatility models; and Fernandez-Villaverde and Rubio-Ramirez (2005, 2007) for ap-
plications involving dynamic stochastic general equilibrium models.

While conceptually simple and easy to program, the particle filter suffers two short-
comings. First, the density approximations it provides are discrete. As a result, associated
likelihood approximations can feature spurious discontinuities, rendering as problematic
the application of likelihood maximization procedures (e.g., see Pitt, 2002). Second, the
supports upon which approximations are based are not adapted: period-t approximations
are based on supports that incorporate information conveyed by values of the observable
variables available in period t−1, but not period t (e.g., see Pitt and Shephard, 1999). This
problem gives rise to numerical inefficiencies that can be acute when the model’s observ-
able variables are highly informative with regard to the state variables, particularly given
the presence of outliers.

Numerous extensions of the particle filter have been proposed in attempts to address
these problems. For examples, see Pitt and Shephard (1999); the collection of papers in
Doucet, de Freitas and Gordon (2001); Pitt (2002); and the collection housed at http://www-
sigproc.eng.cam.ac.uk/smc/papers.html. Typically, efficiency gains are sought through at-
tempts at adapting period-t density supports via the use of information available through
period t. However, with the exception of the extension proposed by Pitt (2002), once
period-t supports are established they remain fixed over a discrete collection of points as
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the filter advances forward through the sample, thus failing to address the problem of spuri-
ous likelihood discontinuity. (Pitt employs a bootstrap-smoothing approximation designed
to address this problem for the specialized case in which the state space is unidimensional.)
Moreover, as far as we are aware, no existing extension pursues adaption in a manner that
is designed to achieve optimal efficiency.

Here we propose an extension that constructs adapted period-t approximations, but that
features a unique combination of two characteristics. First, the approximations are con-
tinuous or piecewise-continuous. Second, period-t supports are adjusted using a method
designed to produce approximations that achieve optimal efficiency at the adaption stage.
Specifically, the approximations are constructed using the efficient importance sampling
(EIS) methodology developed by Richard and Zhang (RZ, 2007). Construction is facili-
tated using an optimization procedure designed to minimize numerical standard errors as-
sociated with the approximated likelihood. The approach is demonstrated through a series
of example applications.

While the focus here is on optimizing the efficiency of likelihood approximations, filter-
ing (i.e., inferences regarding unobservable state variables) obtains as a natural byproduct.
However, optimization of the filtering process itself is an alternative objective to that of
optimizing likelihood approximations. In subsequent work, we will demonstrate how the
EIS filter can be used to optimize the filtering process.

2 State-Space Representations and Likelihood Evaluation

Let yt be a n× 1 vector of observable variables, and denote {y j}t
j=1 as Yt . Likewise,

let st be a m× 1 vector of unobserved (‘latent’) state variables, and denote {s j}t
j=1 as

St . The state-space representations we analyze consists of two equations. The first is a
state-transition equation:

st = γ(st−1,Yt−1)+υt , (1)

where γ(st−1,Yt−1) = E(st |st−1,Yt−1), and thus υt is a vector of innovations with respect
to (st−1,Yt−1). The second equation is an observation (or measurement) equation:

yt = δ(st ,Yt−1)+ut , (2)

where δ(st ,Yt−1)= E(yt |st ,Yt−1), and thus ut is a vector innovations with respect to (st ,Yt−1).
Hereafter, we refer to υt as structural shocks, and ut as measurement errors.
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Often, conditional independence assumptions are imposed to yield the exclusion of
lagged components of y in γ(·) and δ(·). Nevertheless, validation of the algorithms dis-
cussed here requires that γ(·) and δ(·) be interpreted as being conditional on Yt−1. Imple-
mentation of the particle filter is facilitated by interpreting (1) and (2) respectively in terms
of the densities f (st |st−1,Yt−1) and f (yt |st ,Yt−1). The state-space process is initialized
with a marginal density f (s0), which can be degenerate as a special case.

The likelihood function f (YT ) is factorized sequentially as

f (YT ) =
T

∏
t=1

f (yt |Yt−1) , (3)

where f (y1|Y0) ≡ f (y1). The individual factors are evaluated via marginalization of the
measurement densities with respect to st |Yt−1:

f (yt |Yt−1) =
∫

f (yt |st ,Yt−1) f (st |Yt−1)dst . (4)

Marginalization requires the recursive evaluation of densities f (st |Yt−1), which is accom-
plished via Bayes’ theorem:

f (st |Yt−1) =
∫

f (st |st−1,Yt−1) f (st−1|Yt−1)dst−1, (5)

where
f (st |Yt) =

f (yt ,st |Yt−1)
f (yt |Yt−1)

=
f (yt |st ,Yt−1) f (st |Yt−1)

f (yt |Yt−1)
. (6)

Note that the conditioning sets in (1) - (6) do not contain St−1. The common interpre-
tation of this omission we follow here is that (ut ,vt+1) are also innovations relative to St−1,
which is omitted for ease of notation.

The particle filter and related extensions employ (4) - (6) to achieve likelihood evalua-
tion and filtering via forward recursion. Note that (4) and (5) respectively require integra-
tion with respect to st and st−1. The integral in (4) is conditional on Yt−1 alone, while the
integral in (5) is conditional on (Yt−1,st).

To highlight the conditioning sets in (1) - (6), and to illustrate their internal consistency,
it is useful to represent the sequence of operations they entail as a flowchart (as in Figure
1). Densities associated with the model specification are included in rectangles. The term
filtration traditionally refers to the transformation of f (st−1|Yt−1) into f (st |Yt), both of
which are included in ovals. The numbers included in the figure correspond with equation

3



numbers associated with filtering, likelihood evaluation and prediction. While filtration
focusses on inference on the latent process itself, Figure 1 illustrates that filtration and
likelihood evaluation are intertwined.

Figure 1: Sequence of operations in the particle filter.

For cases in which the state-space representation is linear and the structural shocks and
observation errors are gaussian (or at least zero mean and i.i.d.), the integrals needed to
accomplish likelihood evaluation can be calculated analytically via the Kalman filter. The
particle filter and associated extensions provide alternative evaluation procedures given
departures from these cases. Following is a brief characterization.

3 The Particle Filter

3.1 Standard Filter

The particle filter represents the continuous densities f (st |Yt−1) and f (st |Yt) using
discrete approximations, which are used to produce a Monte Carlo (MC) estimate of
f (yt |Yt−1) in (4). To characterize its implementation, let sr,i

t denote the ith draw of st ob-
tained from the conditional density f (st |Yt−r) for r = 0,1. A single draw sr,i

t is a particle,
and a set of draws {sr,i

t }N
i=1 is a swarm of particles. The object of filtration is that of trans-

forming a swarm {s0,i
t−1}N

i=1 to {s0,i
t }N

i=1 through the sequence of operations highlighted in
Figure 1. The filter is initialized by a swarm {s0,i

0 }N
i=1 drawn from f (s0|Y0)≡ f (s0).

Period-t filtration takes as input a swarm {s0,i
t−1}N

i=1. The first operation consists of
transforming this swarm into a second swarm {s1,i

t }N
i=1 according to (5). This is accom-

plished by drawing s1,i
t from the conditional density f

(
st |s0,i

t−1,Yt−1

)
, i = 1, ...,N. This
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swarm is then used to produce an MC estimate of f (yt |Yt−1), which according to (4) is
given by

f̂N(yt |Yt−1) =
1
N

N

∑
i=1

f (yt |s1,i
t ,Yt−1). (7)

Next, the filter approximation of f (st |Yt) is obtained by preserving the discrete support
associated with the swarm {s1,i

t }N
i=1, but re-weighting its particles in accordance with (6).

Specifically, a particle s1,i
t with initial (prior) weight 1

N is assigned the new (posterior)
weight

w0,i
t =

f (yt |s1,i
t ,Yt−1)

N

∑
j=1

f (yt |s1, j
t ,Yt−1)

. (8)

The filtered swarm {s0,i
t }N

i=1 is then obtained by drawing with replacement from the swarm
{s1,i

t }N
i=1 with probabilities {w0,i

t }N
i=1 (i.e., bootstrapping).

Having characterized the particle filter, its weaknesses (well documented in previous
studies) can be pinpointed. First, it provides discrete approximations of f (st |Yt−1) and
f (st |Yt), which respectively enable completion of the marginalization and updating stages.
Such approximations, particularly the discrete bootstrap associated with the weights in (8),
are discontinuous functions of the model parameters. The associated likelihood approxi-
mation is therefore also discontinuous, rendering the application of maximization routines
problematic (a point raised previously, e.g., by Pitt, 2002).

Second, as the filter enters period t, the discrete approximation of f (st−1|Yt−1) is set.
Hence the swarm {s1,i

t }N
i=1 produced in the augmentation stage (as indicated by (5) in

Figure 1) ignores critical information provided by yt . (Pitt and Shephard, 1999, refer to
these augmenting draws as “blind”.) It follows that if f (yt |st ,Yt−1) - treated as a function
of st given Yt - is sharply peaked in the tails of f (st |Yt−1), the discrete approximation
{s1,i

t }N
i=1 will contain few elements in the relevant range of f (yt |st ,Yt−1). Thus {s1,i

t }N
i=1

represents draws from an inefficient sampler for likelihood evaluation: relatively few of
its elements will be assigned appreciable weight in the updating stage in the following
period. This phenomenon is known as “sample impoverishment”: it entails a reduction in
the effective size of the particle swarm. In extreme cases, the size of the effective swarm
can be reduced to a handful of particle sequences.

Extensions of the particle filter seek to employ adaption techniques to generate gains
in efficiency. Following is a characterization of some prominent examples.
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3.2 Extensions of the Particle Filter

Many extensions have been proposed in efforts to address the problems noted above.
An extension proposed by Gordon et al. (1993) and Kitagawa (1996) consists simply of
making N′ >> N blind proposals {s1, j

t }N′
j=1 as with the standard particle filter, and then

obtaining the swarm
{

s0,i
t

}N

i=1
by sampling with replacement, using the weights

wi =
f
(

yt |s1,i
t ,Yt−1

)
N′

∑
j=1

f
(

yt |s1, j
t ,Yt−1

) . (9)

This is the sampling-importance resampling (SIR) particle filter, and is widely used in
literature (see Doucet et al., 2001). Setting N′ = N yields the standard particle filter. This
extension seeks to overcome the problem of sample impoverishment by brute force, and
can be computationally expensive.

Carpenter, Clifford and Fearnhead (1999) sought to overcome sample impoverishment
using a stratified sampling approach to approximate the prediction density. This is accom-
plished by defining a partition consisting of K subintervals in the state space, and construct-
ing the prediction density approximation by sampling (with replacement) Nk particles from
among the particles in each subinterval. Here Nk is proportional to a weight similar to (9),
but defined for the entire kth interval; also, ∑

K
k=1 Nk = N. This produces wider variation

in re-sampled particles, but if the swarm of proposals {s1,i
t }N

i=1 are tightly clustered in the
tails of f (st |Yt−1), so too will be the re-sampled particles.

Pitt and Shephard (1999) developed an extension that ours perhaps most closely resem-
bles. They tackle the problem of adaption through the use of an Importance Sampling (IS)
procedure. Consider as an example the marginalization step of the filtering process. Faced
with the problem of calculating

f (yt |Yt−1) =
∫

f (yt |st ,Yt−1) f (st |Yt−1)dst ,

but with f (st |Yt−1) unknown, importance sampling achieves approximation via the intro-
duction into the integral of an importance density g(st |Yt):

f (yt |Yt−1) =
∫ f (yt |st ,Yt−1) f (st |Yt−1)

g(st |Yt)
g(st |Yt)dst . (10)
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Obtaining drawings s0,i
t from g(st |Yt), this integral is approximated as

f̂ (yt |Yt−1)≈
1
N

N

∑
i=1

f
(

yt |s0,i
t ,Yt−1

)
f
(

s0,i
t |Yt−1

)
g(s0,i

t |Yt)
. (11)

Pitt and Shephard referred to the introduction of g(st |Yt) in this context as adaption. Full
adaption is achieved when g(st |Yt) is constructed as being proportional to f (yt |st ,Yt−1) f (st |Yt−1) ,
rendering the ratios in (11) as constants. Our procedure is designed to achieve as nearly as
possible full adaption. Pitt and Shephard viewed adaption as being computationally infea-
sible, due to the cost of having to compute f

(
s0,i
t |Yt−1

)
for every value of s0,i

t produced by
the sampler. Instead they introduced the concept of an auxiliary particle filter designed to
yield partial adaption.

Their algorithm takes as input in period t a period-(t−1) approximation of f (st |Yt−1)
of the form

f̂N (st |Yt−1) =
N

∑
i=1

π
i
t−1 f (st |s0,i

t−1,Yt−1), (12)

where
{

s0,i
t−1

}N

i=1
denotes the period-(t−1) swarm of particles, and

{
πi

t−1
}N

i=1 a vector

of probabilities initialized by πi
0 = 1/N, and recursively updated as described below. The

corresponding approximation of f (yt ,st |Yt−1) is then interpreted as the marginal of the
mixed density

f̂ (yt ,st ,k|Yt−1) = π
k
t−1 f (yt |st ,Yt−1) f (st |s0,k

t−1,Yt−1), (13)

with an auxiliary discrete random variable k ∈ {1, ...,N} (omitting a subscript t for ease of
notation).

The adaption step consists of constructing an importance sampler g(st ,k|Yt) . In its
simplest form this obtains by replacing st in f (yt |st ,Yt−1) with its conditional expectation
µk

t = E
(

st |s0,k
t−1,Yt−1

)
. The corresponding (normalized) importance sampler is then given

by
g(st ,k|Yt) = λk f (st |s0,k

t−1,Yt−1), (14)

with

λk =
1
D

π
k
t−1 f

(
yt |µk

t ,Yt−1

)
, (15)

D =
N

∑
j=1

π
j
t−1 f

(
yt |µ j

t ,Yt−1

)
. (16)
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Draws from g(st ,k|Yt) are obtained as follows: first draw ki ∈ {1, ...,N} with probabilities
{λk}N

k=1 ; next, conditionally upon ki, draw s0,i
t from f (st |s0,ki

t−1,Yt−1). The IS estimate of the
period-t likelihood is then given by

f̂N (yt |Yt−1) =
1
N

N

∑
i=1

f̂N

(
yt ,s

0,i
t ,ki|Yt−1

)
g
(

s0,i
t ,ki|Yt

) (17)

=
D
N

N

∑
i=1

ω
i
t ,

with

ω
i
t =

f
(

yt |s0,i
t ,Yt−1

)
f
(

yt |µki
t ,Yt−1

) ,

and
{

s0,i
t ,ki

}N

i=1
denoting i.i.d. draws from g(st ,k|Yt) .

Similarly, the density f (st+1|Yt) is approximated by

f̂N (st+1|Yt) =
1

f̂N (yt |Yt−1)

∫
f (st+1|st ,Yt) f̂N (yt ,st |Yt−1)dst ,

whose IS estimate under g() is given by

f̂N (st+1|Yt) =
N

∑
i=1

π
i
t f
(

st+1|s̃0,i
t ,Yt

)
,

with

π
i
t =

ωi
t

N

∑
j=1

ω
j
t

.

Note from (17) that g(st ,k|Yt) is based implicitly on a zero-order Taylor series expan-
sion of ln f (yt |st ,Yt−1) around st = µk

t . Further adaption obtains if a higher-order expansion
can be implemented feasibly.

Let the exponential version of such an approximation be given by

f (yt |st ,Yt−1)' f
(

yt |µk
t ,Yt−1

)
h
(

st ;µk
t ,Yt

)
. (18)
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Combining h(·) with f (st |s0,k
t−1,Yt−1), we obtain

f∗
(

st |µk
∗t ,Yt

)
=

f
(

st |s0,k
t−1,Yt−1

)
h
(
st ;µk

t ,Yt
)

χ
(
µk
∗t ;Yt

) ,

where χ(·) and µk
∗t denote the integrating constant and reparameterization associated with

the replacement of f (·) by f∗ (·).
Two requirements must be met in order for f∗ (·) to be implemented feasibly. First, it

must be possible to draw from f∗ (·) ; second, χ(·) must be an analytical expression, since
as shown below, it is used to construct adapted resampling weights. As explained, e.g.,
in RZ, these conditions are met in working within the exponential family of distributions,
which are closed under multiplication. (Pitt and Shephard, 1999, present examples involv-
ing first-order approximations; and Smith and Santos, 2006, present examples involving
second-order expansions.)

Given the use of f∗ (·) , the adapted importance sampler obtains by replacing f (yt |st ,Yt−1)
in (13) by its approximation in (18):

g∗ (st ,k|Yt) = λ
k
∗ f∗(st |µk

∗t ,Yt), (19)

with

λ
k
∗ =

1
D∗

π
k
t−1 f

(
yt |µk

t ,Yt−1

)
χ

(
µk
∗t ;Yt

)
, (20)

D∗ =
N

∑
j=1

π
j
t−1 f

(
yt |µ j

t ,Yt−1

)
χ

(
µk
∗t ;Yt

)
. (21)

The IS weight in (17) is replaced by

ω
i
∗t =

f
(

yt |s0,i
t ,Yt−1

)
f
(

yt |µki
t ,Yt−1

)
h
(
st ;µk

t ,Yt
) . (22)

Relative to ωi
t in (17), ωi

∗t has a smaller MC sampling variance, since it is based upon
a higher-order Taylor series expansion of f (yt |st ,Yt−1) . The corresponding likelihood es-
timate is

f̂∗N (yt |Yt−1) =
D∗
N

N

∑
i=1

ω
i
∗t .
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Note that this sampler implicitly reweights
{

s0,i
t−1

}
to account for the new information

conveyed by yt . It is therefore expected to alleviate the problem of blind sampling. How-
ever, sample impoverishment potentially remains an issue, since the algorithm does not
allow the support of

{
s0,i
t−1

}
to be adjusted. Moreover, the sampler remains suboptimal, to

the extent that µt(s
0,i
t−1) is incapable of fully capturing the characteristics of f (yt |st ,Yt−1).

Finally, this extension does not address the discontinuity problem.
Pitt (2002) addressed the latter problem for the special case in which the state space

is unidimensional by replacing the weights in (8) associated with the particle filter, or
the weights in (15) associated with the auxiliary particle filter, with smoothed versions
constructed via a piecewise linear approximation of the empirical c.d.f. associated with the

swarm
{

s0,i
t

}N

i=1
. This enables the use of common random numbers (CRNs) to produce

associated likelihood estimates that are continuous functions of model parameters (e.g.,
see Hendry, 1984; or RZ).

As noted, the approach to which we now turn extends Pitt and Shephard (1999) and
Pitt (2002) by directly facilitating the process of adaption. Instead of employing discrete
filters to approximate necessary integrals, we instead use the EIS methodology developed
by RZ. This yields sampling densities that are (nearly) fully adapted, along with continuous
approximations of the likelihood function. We do so by developing operational procedures
for evaluating f (st |Yt−1) at any value of st required by the EIS algorithm, not merely those

in the swarm
{

s1,i
t

}N

i=1
. Details follow.

4 The EIS Filter

Efficient Importance Sampling (EIS) is an automated procedure for constructing nu-
merically efficient importance samplers for analytically intractable integrals. EIS samplers
are continuous and fully adapted as global approximations to targeted integrands. Section
4.1 outlines the general principle behind EIS, in the context of evaluating (4). Section 4.2
introduces a class of piecewise-continuous samplers for dealing with pathological cases.
Section 4.3 then discusses a complication for implementing EIS that arises in this con-
text, and outlines alternative approaches for overcoming this complication. Briefly, imple-
mentation of any procedure requires that one account explicitly for the unknown density
f (st |Yt−1) in (4). Recall that the particle filter does so by representing f (st |Yt−1) with
swarm {s1,i

t }N
i=1, thus eliminating the need to recompute f (st |Yt−1) in period t. In contrast,
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implementation of the EIS filter requires that f (st |Yt−1) be computed at auxiliary values of
st generated under period-t EIS optimization. This requirement is the focus of Section 4.3.
Section 4.4 discusses two special cases that often characterize state-space representations:
partial observability of the state space; and degenerate transition densities. Section 4.5
concludes with a gaussian example that admits an analytical comparison of the standard,
auxiliary, and EIS particle filters.

4.1 EIS integration

For ease of notation, let ϕt(st) represent the integrand in (4):

ϕt(st) = f (yt |st ,Yt−1) f (st |Yt−1); (23)

the subscript t in ϕt replaces Yt = (Yt−1,yt). Implementation of EIS begins with the pre-
selection of a parametric class K = {k(st ;at);at ∈ A} of auxiliary density kernels. Corre-
sponding density functions g are given by

g(st ;at) =
k(st ;at)
χ(at)

, χ(at) =
∫

k(st ;at)dst . (24)

The selection of K is inherently problem-specific; below we discuss gaussian and piecewise-
continuous alternatives. The objective of EIS is to select the parameter value ât ∈ A that
minimizes the variance of the ratio ϕt(st)

g(st |at)
over the range of integration. Thus EIS is a

global approximation technique. Following RZ, a (near) optimal value ât is obtained as the
solution to the least-squares problem

(ât , ĉt) = argmin
at ,ct

∫
[lnϕt(st)− ct − lnk(st ;at)]

2 g(st ;at)dst , (25)

where ct denotes an intercept meant to calibrate ln(ϕt/k). Equation (25) has the form of a
standard least squares problem, except that the auxiliary sampling density itself depends
upon at . This can be resolved by reinterpreting (25) as the search for a fixed-point solution.
An operational MC version of this analytically intractable problem, implemented using
R << N draws, is as follows:

Step l + 1: Given âl
t , draw intermediate values {si

t,l}
R
i=1 from the step-l EIS sampler

11



g(st ; âl
t), and solve

(âl+1
t , ĉl+1

t ) = argmin
at ,ct

R

∑
i=1

[
lnϕt(s

i
t,l)− ct − lnk(si

t,l;at)
]2

. (26)

The initial value â1
t can be chosen in a variety of ways, with minimal impact on conver-

gence. To avoid potential problems involving sample impoverishment, we employ a crude
grid search over the unconditional range of st . In the case of evaluating (4), the initial EIS
iteration can be based on draws from f (st |Yt−1) itself (which then implicitly augments K).
If K belongs to the exponential family of distributions, the auxiliary problems in (26) are
linear in at . For well-posed problems, convergence to a fixed point is typically achieved
within five to ten iterations.

In order to guarantee fast (and smooth) fixed-point convergence, and to ensure continu-
ity of corresponding likelihood estimates, it is critical that all draws {si

t, j} be obtained by a
transformation of a set of common random numbers (CRNs) {ui

t} drawn from a canonical
distribution (i.e., one that does not depend on at). Obvious examples are standardized Nor-
mal draws when g is gaussian, or more generally, uniform draws transformed into draws
from g by the inverse c.d.f technique (e.g., see Devroye, 1986). See RZ for CRN applica-
tion to EIS; and Pitt (2002) for the use of CRNs as a technique for smoothing the particle
filter bootstrap.

At convergence, the EIS filter approximation of f (yt |Yt−1) in (4) is given by

f̂N(yt |Yt−1) =
1
N

N

∑
i=1

f
(
yt |si

t ,Yt−1
)

f
(
si
t |Yt−1

)
g(si

t ;at)
, (27)

where
{

si
t
}N

i=1 are drawn from the (final) EIS sampler.
The estimate f̂N(yt |Yt−1) converges almost surely towards f (yt |Yt−1) under weak regu-

larity conditions (outlined, e.g., by Geweke, 1989). Violations of these conditions typically
result from the use of samplers with thinner tails than those of ϕt . RZ offer a diagnostic
measure that is adept at detecting this problem. The measure compares the MC sampling
variances of the ratio ϕt

g under two values of at : the optimal ât , and one that inflates the
variance of the st draws by a multiplicative factor of 3 to 5.
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4.2 A piecewise-continuous class of samplers

As noted, kernels within the exponential family of distributions offer the computa-
tional advantage of yielding auxiliary EIS regressions in (26) that are linear in at . Never-
theless, there exist potential pathologies of the integrand in (4) that cannot be replicated
efficiently within the exponential family. Examples include skewness, thick tails, and bi-
modality.

Here we propose to deal with these pathologies using an adaptable class of auxiliary
samplers that provide piecewise log-linear approximations to the integrand ϕt . The param-
eters of such approximations are the grid points a′ = (a0, ...,aR), with a0 < a1 < ... < aR.
As we shall see, lnk (.;a) then depends non-linearly on a. Furthermore, R must be suffi-
ciently large for good approximation. This prevents application of the EIS least-squares
optimization step as described in (26). Instead we implement (essentially) equal proba-
bility division of the domain of integration, which guarantees excellent adaption even for
pathological integrands.

We first describe the approximating kernel k(s;a) for a preassigned grid a. The interval
[a0,aR] is understood as being sufficiently wide to cover the support of the density kernel
ϕ(s). Note that while R represents the number of grid-points here, and the number of
auxiliary draws used to construct the EIS sampler g(st ; âl

t) in (26), this does not represent
an abuse of notation. Indeed, for the piecewise-continuous sampler, use of R grid-points
translates precisely into the use of R auxiliary draws.

The kernel k(s;a) is given by

lnk j(s;a) = α j +β js ∀s ∈ [a j−1,a j], (28)

with
β j =

lnϕ(a j)− lnϕ(a j−1)
a j−a j−1

, α j = lnϕ(a j)−β ja j. (29)

Since k is piecewise integrable, its distribution function can be written as

K j(s;a) =
χ j(s;a)
χn(a)

, ∀s ∈ [a j−1,a j], (30)

13



with

χ j(s;a) = χ j−1(a)+
1
β j

[
k j(s;a)− k j(a j−1;a)

]
, (31)

χ0(a) = 0, χ j(a) = χ j(a j;a). (32)

Its inverse c.d.f. is given by

s =
1
β j

{
ln
[
k j(a j−1;a)+β j

(
uχR(a)−χ j−1(a)

)]
−α j

}
(33)

u ∈ ]0,1[ and χ j−1(a) < uχR(a) < χ j(a).

Note that with β1 < 0 and βR > 0, we have

lim
s→−∞

k1(s;a) = lim
s→+∞

kR(s;a) = 0. (34)

Thus trivial modification of the boundary conditions extends k(s;a) to the real line.
The recursive construction of an equal-probability-division kernel k(s; â) is based upon

the non-random equal division of [0,1] with ui = i
R for i = 1, ...,R− 1. It proceeds as

follows.
Step l + 1: Given the step-l grid âl , construct the density kernel k and its c.d.f K as

described above. The step-l +1 grid is then computed as

âl+1
i = K−1(ui), i = 1, ...,R−1. (35)

The algorithm iterates until (approximate) convergence.
Extra care may be required for the tail areas i = 1 and i = R− 1, since a combination

of wide support [a0,aR] and thin tails can result in wide tail intervals and poor approxima-
tions. We address this issue here by reducing the probability of these tail intervals. Further
refinement would rely upon tail approximations for ϕ(·), a common practice in random
number generation (e.g., see Devroye, 1986).

The resulting approximation is highly adapted and computationally inexpensive. Given
a sufficiently large number of division points, it will dominate standard EIS, which is based
typically on (much) lower-dimensional parametric classes of samplers. The piecewise-
continuous class of samplers can be generalized to higher-dimensional state spaces, though
the curse of dimensionality can rapidly become acute. Thus in working with multi-dimensional
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state spaces, it is advisable to begin with standard parametric families of distributions, and
reserve the use of piecewise continuous approximations for those dimensions along which
the integrand appears to be ill-behaved.

4.3 Continuous approximations of f (st |Yt−1)

As noted, the EIS filter requires the evaluation of f (st |Yt−1) at any value of st needed
for EIS iterations. This requirement is absent under the particle filter, wherein the discrete
approximation of f (st |Yt−1) by the swarm {s1,i

t }N
i=1 is not revisited or adapted in period

t. Here we propose four operational alternatives for overcoming this hurdle. Weighted-
sum approximations, which include constant weights in its simplest version, are the easiest
to implement. Nonparameteric and full EIS approximations can deliver higher accuracy,
though at additional computational cost, and thus may be advisable to implement in patho-
logical cases. Below, S denotes the number of points used for each individual evaluation
of f (st |Yt−1).

4.3.1 Weighted-sum approximations

Combining (5) and (6), we can rewrite f (st |Yt−1) as a ratio of integrals:

f (st |Yt−1) =
∫

f (st |st−1,Yt−1) f (yt−1|st−1,Yt−2) f (st−1|Yt−2)dst−1∫
f (yt−1|st−1,Yt−2) f (st−1|Yt−2)dst−1

, (36)

where the denominator represents the likelihood integral for which an EIS sampler has
been constructed in period t−1. Following, e.g., Geweke (1989), a direct MC estimate of
f (st |Yt−1) is given by

f̂N(st |Yt−1) =

S

∑
i=1

f (st |s0,i
t−1,Yt−1) ·ω(s0,i

t−1; ât−1)

S

∑
i=1

ω(s0,i
t−1; ât−1)

, (37)

where {s0,i
t−1}S

i=1 denotes EIS draws from g(st−1|ât−1), and ω(·) denotes associated weights
(both of which are carried over from period-t−1):

ω(st−1; ât−1) =
f (yt−1|st−1,Yt−2) f (st−1|Yt−2)

g(st−1|ât−1)
. (38)
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Obviously g(st−1|ât−1) is not an EIS sampler for the numerator in (36). This can impart a
potential loss of numerical accuracy if the MC variance of f (st |st−1,Yt−1) is large over the
support of g(st−1|ât−1). This would be the case if the conditional variance of st |st−1,Yt−1

were significantly smaller than that of st−1|Yt−1. On the other hand, the fact that we are
using the same set of draws for the numerator and the denominator typically creates posi-
tive correlation between their respective MC estimators, thus reducing the variance of their
ratio. This weighted-sum approximation is the simplest of the three methods to implement,
and thus provides a good starting point.

4.3.2 A constant weight approximation

When EIS delivers a close global approximation to f (st−1|Yt−1), the weights ω(st−1; ât−1)
will be near constants over the range of integration. Replacing these weights by their arith-
metic means ω(ât−1) in (36) and (37), we obtain the following simplification:

f (st |Yt−1)'
ω(ât−1)

f (yt−1|Yt−2)

∫
f (st |st−1,Yt−1) ·g(st−1; ât−1)dst−1. (39)

This substitution yields rapid implementation if additionally the integral in (39) has an
analytical solution. This will be the case if, e.g., f (st |st−1,Yt−1) is a conditional normal
density for st |st−1, and g is either normal or piecewise continuous as described in Section
4.2. Examples are provided in Section 5. In cases for which we lack an analytical solution,
we can use the standard MC approximation

f̂S(st |Yt−1)'
ω(ât−1)

f (yt−1|Yt−2)
1
S

S

∑
i=1

f (st |s0,i
t−1,Yt−1). (40)

4.3.3 Non-parametric approximations

An obvious candidate for smoothing f (st |Yt−1) consists of replacing the discrete
swarm {s1,i

t }N
i=1 with a non-parametric approximation. In this case, care must be taken

to account for the fact that under EIS, the swarm {s0,i
t−1}N

i=1, which is transformed into
{s1,i

t }N
i=1 through the transition f (st |st−1,Yt−1), is drawn from the EIS auxiliary sampler

g(st−1|ât−1), not from f (st−1|Yt−1) itself. This requires re-weighting accordingly the indi-
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vidual factors in the non-parametric approximation of f (st |Yt−1), given by

f̂S(st |Yt−1) =
1
h

S

∑
i=1

pi,t κ

(
st − s1,i

t

h

)
, (41)

where κ(·) denotes an auxiliary density, h the bandwidth, and {pi,t} probabilities associ-
ated with s1,i

t . Regarding these probabilities, for t = 1 the swarm {s1,i
1 }S

i=1 is drawn from
f (s1|Y0), and thus pi,0 = 1

S . Beyond period 1, the EIS algorithm, including the calculation
of pi,t , is as follows.

Period t: Apply the EIS algorithm as described in Section 4.1, replacing f (st |Yt−1)
with f̂S(st |Yt−1). Drawing from f̂S(st |Yt−1) in order to initialize EIS iteration proceeds
as follows: draw an index j from the discrete distribution {1,2, ...,S} with probabilities
{pi,t}S

i=1; draw e from the density 1
hκ( e

h); then combine to obtain the desired draw s1, j
t +e.

The EIS swarm {s0,i
t }S

i=1 is transformed into a swarm {s1,i
t+1}S

i=1 through the transi-
tion density f (st |st−1,Yt−1) in the usual way. Since {s0,i

t }S
i=1 was obtained using the EIS

sampler g(st |ât), and not from f (st |Yt), we must re-weight accordingly the non-parametric
factors, using the EIS weights ω(st ; ât). Thus pi,t+1 is given by

pi,t+1 =
ω̂S(s

0,i
t ; ât)

S

∑
j=1

ω̂S(s
0, j
t ; ât)

, (42)

with

ω̂S(st ; ât) =
f (yt |st ,Yt−1) f̂S(st |Yt−1)

g(st |ât)
. (43)

4.3.4 EIS evaluation

Accurate numerical evaluation of f (st |Yt−1) can sometimes be delicate, especially in
situations prone to sample impoverishment (such as when working with degenerate tran-
sitions, discussed in Section 4.4.2 below). Under such circumstances, one might consider
applying EIS not only to the likelihood integral (“outer EIS”), but also to the evaluation of
f (st |Yt−1) itself (“inner EIS”).

While outer EIS is applied only once per period, inner EIS must be applied for every
value of st generated by the former. Also, application of EIS to (5) requires the construc-
tion of a continuous approximation to f (st−1|Yt−1). Given the preceding discussion, two
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obvious candidates are as follows. The first is a non-parametric approximation based upon
a swarm {s0,i

t−1}S
i=1:

f̂S(st−1|Yt−1) =
1

Sh

S

∑
i=1

κ

(
st−1− s0,i

t−1

h

)
.

The second is the period-(t−1) EIS sampler g(st−1; ât−1), under the implicit assumption
that the corresponding weights ω(st−1; ât−1) are near-constant, at least over the range of
integration. It is expected that in pathological cases, significant gains in accuracy resulting
from inner EIS will far outweigh approximation errors in f (st−1|Yt−1).

4.4 Special cases

4.4.1 Partial observability

Consider the case in which only a subset of the state variables is measured, thus
information on the remaining state variables is indirect. Let st partition into st = (pt ,qt),
and assume

f (yt |stYt−1)≡ f (yt |pt ,Yt−1) . (44)

In this case, likelihood evaluation requires integration only with respect to pt :

f (yt |Yt−1) =
∫

f (yt |pt ,Yt−1) f (pt |Yt−1)d pt , (45)

and the updating equation (6) factorizes into the product of the following two densities:

f (pt |Yt) =
f (yt |pt ,Yt−1) f (pt |Yt−1)

f (yt |Yt−1)
; (46)

f (qt |pt ,Yt) = f (qt |pt ,Yt−1) . (47)

Stronger conditional independence assumptions are required in order to produce fac-
torizations in (5). In particular, if pt is independent of qt given (pt−1,Yt−1), so that

f (pt |st−1,Yt−1)≡ f (pt |pt−1,Yt−1) , (48)

then
f (pt |Yt−1) =

∫
f (pt |pt−1,Yt−1) f (pt−1|Yt−1)d pt−1. (49)

Note that under conditions (44) and (48), likelihood evaluation does not require processing
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sample information on {qt} . The latter is required only if inference on {qt} is itself of
interest.

4.4.2 Degenerate transitions

When state transition equations include identities, corresponding transition densities
are degenerate (or Dirac) in some of their components. This situation requires an adjust-
ment to EIS implementation. Again, let st partition into st = (pt ,qt) , and assume that the
transition equations consist of two parts: a proper transition density f (pt |st−1,Yt−1) for pt ,

and an identity for qt |pt ,st−1 (which could also depend on Yt−1, omitted here for ease of
notation):

qt ≡ φ(pt , pt−1,qt−1) = φ(pt ,st−1) . (50)

The evaluation of f (st |Yt−1) in (5) now requires special attention, since its evaluation
at a given st (as selected by the EIS algorithm) requires integration in the strict subspace
associated with identity (50). Note in particular that the presence of identities raises a
conditioning issue known as the Borel-Kolmogorov paradox (e.g., see DeGroot, 1975,
Section 3.10). We resolve this issue here by reinterpreting (50) as the limit of a uniform
density for qt |pt ,st−1 on the interval [φ(pt ,st−1)− ε,φ(pt ,st−1)+ ε] .

Assuming that φ(pt ,st−1) is differentiable and strictly monotone in qt−1, with inverse

qt−1 = ψ(pt ,qt , pt−1) = ψ(st , pt−1) (51)

and Jacobian
J (st , pt−1) =

∂

∂qt
ψ(st , pt−1) , (52)

we can take the limit of the integral in (50) as ε tends to zero, producing the following
integral in pt only:

f (st |Yt−1) =
∫

J (st , pt−1) f (pt |qt−1,Yt−1) f (pt−1,qt−1|Yt−1) |qt−1=ψ(st ,pt−1)d pt−1. (53)

Note that (53) requires that for any st , f (st−1|Yt−1) must be evaluated along the zero-
measure subspace qt−1 = ψ(st , pt−1). This rules out use of the weighted-sum approxima-
tion introduced in Section 4.3.1, since the probability that any of the particles s0,i

t−1 lies in
that subspace is zero. The non-parametric approximation in Section 4.3.2 remains appli-
cable, since it does not require that the particles

{
s0,i
t−1

}
in (41) lie in the subspace. As in
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Section 4.3.3, we can also approximate the integral in (53) by replacing f (st−1|Yt−1) by
ω(ât−1)g(st−1|ât−1):

f̂ (st |Yt−1)=
ω(ât−1)

f (yt−1|Yt−2)

∫
J (st , pt−1) f (pt |qt−1,Yt−1)g(pt−1,qt−1|ât−1) |qt−1=ψ(st ,pt−1)d pt−1.

(54)
In this case, since g(.|ât−1)is not a sampler for pt−1|st , we must evaluate (54) either by
quadrature or its own EIS sampler.

One might infer from this discussion that the EIS filter is particularly tedious to imple-
ment under degenerate transitions, while the standard particle filter handles such degener-
acy trivially in the transition from

{
s0,i
t−1

}
to
{

s1,i
t

}
. While this is true, it is also true that

these situations are prone to significant sample impoverishment problems, as illustrated in
example 2 of Section 5.

4.5 A heuristic comparison between the standard, auxiliary and EIS
particle filters

The standard, auxiliary and EIS particle filters essentially differ by their choice of
importance samplers for the likelihood integral in (4):

• Standard: f (st |Yt−1).

• Auxiliary:

h(st ,Yt) ∝

∫
f (yt |µt(st−1),Yt−1) f (st |st−1,Yt−1) f (st−1|Yt−1)dst−1. (55)

• EIS: g(st |ât).

Note that g(st |ât) approximates the actual posterior density f (st |Yt):

f (st |Yt) ∝ f (yt |st ,Yt−1) ·
∫

f (st |st−1,Yt−1) f (st−1|Yt−1)dst−1. (56)

Thus the auxiliary particle filter essentially differs from the EIS filter in that st is replaced
by µt(st−1) in f (yt |st ,Yt−1). Assuming that µt(st−1) represents the conditional expectation
of st |st−1,Yt−1, the following variance decomposition comes into play:

Var(st |Yt−1) = Est−1|Yt−1 [Var(st |st−1,Yt−1)]+Varst−1|Yt−1 [µt(st−1)] . (57)
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This suggests that in order for the auxiliary particle filter to approach the EIS filter in terms
of numerical accuracy, the variance of st |st−1,Yt−1 must be negligible relative to that of
µt(st−1). The following analytical example provides heuristic support to our interpretation.
Assume

st−1|Yt−1 ∼ N(0,υ2), st |st−1,Yt−1 ∼ N(αst−1,s2), yt |st ,Yt−1 ∼ N(st ,σ
2).

It then follows that

st |Yt ∼ N
(

ω2

ω2 +σ2 · yt ,
ω2σ2

ω2 +σ2

)
, (58)

st |Yt−1 ∼ N(0,ω2), (59)

h(st |Yt−1)∼ N
(

α2υ2

α2υ2 +σ2 · yt ,
α2s2υ2 +ω2σ2

α2υ2 +σ2

)
, (60)

with ω2 = s2 +α2υ2. Furthermore,

ω
2 ≥(1)

α2s2υ2 +ω2σ2

α2υ2 +σ2 ≥(2)
ω2σ2

ω2 +σ2 (61)

and

0≤(1)
α2υ2

α2υ2 +σ2 ≤(2)
ω2

ω2 +σ2 , (62)

with equalities (1) obtaining i.f.f. s2 = 0, and (2) i.f.f. α2υ2 = 0. Note that the auxiliary
particle filter lies “between” the standard particle filter and the actual posterior density
(which is also the EIS sampler under normality). If s2 = 0, the auxiliary filter coincides
with EIS filter; and if α2υ2 = 0, with the particle filter. Note that the terms s2 and α2υ2 are
precisely those appearing in the variance decomposition (57).

5 Examples

Here we present two numerical examples that illustrate the relative performance of the
standard, auxiliary (zero-order Taylor series expansion), adapted (first-order Taylor series
expansion), and EIS particle filters. We begin with some lessons gleaned through these
examples regarding the selection of the three auxiliary sample sizes employed under the
EIS filter: N, the number of draws used for likelihood evaluation (e.g., see (27)); R, the
number of draws used to construct EIS samplers (e.g., see (26)); and S, the number of

21



draws used to evaluate f (st |Yt−1) (e.g., see (37)).
First, the efficiency of the EIS filter typically translates into substantial reductions (rel-

ative to the particle filter) in the number of draws N needed to reach given levels of numer-
ical accuracy: often by two to three orders of magnitude. In all but the most well-behaved
cases, this translates into efficiency gains that more than compensate for the additional
calculations required to implement the EIS filter. More importantly, the EIS filter is far
more reliable in generating numerically stable and accurate results when confronted with
ill-behaved problems (e.g., involving outliers).

Second, in every case we have considered, EIS samplers can be constructed reliably
using small values for R (e.g., 100 has sufficed for univariate applications).

Third, as with any filter, the range st |Yt−1 must be sufficiently wide to accommodate
period-t surprises (outliers in st and/or yt). At the same time, the approximation grid must
be sufficiently fine to accommodate the realization of highly informative realizations of yt ,
which generate significant tightening of the distribution of st |Yt relative to that of st |Yt−1.
Both considerations push towards relatively large values for S. The standard particle filter
implicitly sets N = S. However, repeated evaluations of f (st |Yt−1) constitute a substantial
portion of EIS computing time, thus in certain cases setting S << N can yield significant
gains in overall efficiency. Indeed, in the first example we set S = 100. (In the second
example, we have an analytical approximation for f (st |Yt−1), thus the need to set S is
eliminated.) Note that it is trivial to rerun an EIS algorithm under different values for S,
thus it is advisable to experiment with alternative values of S in trial runs before launching
full-scale analyses in complex applications.

5.1 Example 1: Univariate model with frequent outliers

This example is from Fernandez-Villaverde and Rubio-Ramirez (2004). The state-
transition and measurement equations are given by

st+1 = α+β
st

1+ s2
t

+υt+1 (63)

yt = st +ut , (64)

where υt+1 ∼ N
(
0,σ2

υ

)
and ut is t-distributed with ν degrees of freedom:

f (ut)∼
(
ν+u2

t
)−0.5(ν+1)

, Var(ut) =
ν

ν−2
for ν > 2.
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In all cases, the parameters α and β are both set to 0.5; adjustments to these settings have
minimal impact on our results. Note that the expectation of st+1|st is highly non-linear
around st = 0, and becomes virtually constant for |st |> 10.

We consider two values for ν: 2 and 50. For ν = 2, the variance of ut is infinite and the
model generates frequent outliers: e.g., Pr(|ut |> 4.303) = 0.05. For ν = 50, ut is virtually
gaussian: its variance is 1.42, and Pr(|ut |> 2.010) = 0.05. We consider four values for συ:
(1/3,1,3,10). Thus the parameterizations we consider cover a wide range of scenarios,
ranging from well-behaved (ν = 50,συ = 1/3) to ill-behaved (ν = 2,συ = 10).

We compare the relative numerical efficiency of five algorithms. The first three are the
standard, auxiliary, and adapted particle filters. These are implemented using values of N

ranging from 100 to 200,000. Recall that for each index k, the auxiliary particle filter is
based on a zero-order approximation of f (yt |st ,Yt−1) ,which is given by

f
(

yt |µk
t ,Yt−1

)
∝

[
ν+
(

yt −µk
t

)2
]− 1

2 (ν+1)

,

where

µk
t = α+β

s0,k
t−1

1+
(

s0,k
t−1

)2 .

The adapted particle filter is based on the first-order approximation defined in (18), where
h(·) in this case is given by

h
(

st ;µk
t ,Yt

)
= exp

[
(ν+1)

yt −µk
t

ν+
(
yt −µk

t
)2

(
st −µk

t

)]
.

This implies the following conditional expectation for the adapted sampler in (19):

µk
∗t = µk

t +σ
2
ν (ν+1)

yt −µk
t

ν+
(
yt −µk

t
)2 .

The remaining algorithms are the gaussian EIS filter and the piecewise-linear EIS filter.
These are implemented using N ranging from 100 to 1,000. Evaluation of f (st |Yt−1) is
based on the weighted-sum approximation introduced in Section 4.3.1 – see (37).

Results obtained using artificial data sets of size T = 100 are presented in Figure 2
and Tables 1 (ν = 2) and 2 (ν = 50). Numerical accuracy is assessed by running 100
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i.i.d. likelihood evaluations obtained under different seeds. Means of these likelihood
evaluations are interpreted as ‘final’ likelihood estimates; MC standard deviations of these
means provide a direct measure of the stochastic numerical accuracy of the final likelihood
estimates.

Figure 2 illustrates relationships between MC standard deviations and computing time
obtained using the five algorithms. The tables also report this information, along with MC
means of likelihood evaluations. In addition, the tables report a convenient measure of the
relative time efficiency of filters i and j:

RT Ei, j =
TiVi

TjVj
,

where Ti represents computing time per function evaluation, and Vi the MC variance asso-
ciated with filter i. In the tables, i represents the standard particle filter in all comparisons,
thus for ratios less than one, the standard particle filter is the relatively efficient estimator.
Reported ratios are based on N = 200,000 for the particle, auxiliary and adapted filters,
and N = 1,000 for the EIS filters.

Note first that RTEs obtained for the auxiliary particle filter range from 0.7 to 1.1 across
all cases considered. Thus roughly speaking, regardless of whether the model is well- or
ill-behaved, the efficiency gains it generates are offset by associated increases in required
computing time, which are on the order of 40%.

Next, for well-behaved cases, RTEs of the adapted particle filter are good; e.g., for
συ = 1/3, efficiency ratios are 8.2 for ν = 2 and 11.6 for ν = 50. However, its per-
formance deteriorates dramatically as συ increases. Indeed, results are not reported for
(ν = 2,συ = 10;ν = 50,συ = 3;ν = 50,συ = 10) , since in these cases estimated likeli-
hood values diverge pathologically. This reflects the general inability of local approxi-
mations to provide reliable global approximations of f (yt |st ,Yt−1) when relevant ranges
for st become too large. In the present case, problems become critical for Taylor expan-
sions around inflection points of the non-log-concave Student-t density (yt = µk

t ±
√

ν).
Note that these are precisely points where second derivatives with respect to st are zero,
which implies that the use of second-order approximations (e.g., as advocated by Smith
and Santos, 2006) would fail to provide an effective remedy in this application.
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As expected, RTEs of the gaussian EIS filter are also poor given ν = 2, especially when
συ is large. However, the gaussian EIS filter does not fail as dramatically as the adapted
filter given συ = 10. This reflects the fact that EIS approximations are global, and thus
are more robust than local ones (see RZ for further discussion). For ν = 50, the gaussian
EIS filter performs well, with impressive RTEs for large values of συ (reaching 273 for
συ = 10).

Due once again to relative computational expense, the piecewise-linear EIS filter is
also inefficient relative to the standard particle filter in well-behaved cases, but the payoff
of its adoption is dramatic in the challenging cases. For ν = 2, its RTE ranges from 0.197
to 1,545 as συ increases from 1/3 to 10; for ν = 50, its RTE ranges from 0.187 to 273.
For context in interpreting these results, an RTE of 1,545 implies that the standard particle
filter would require approximately 1 hour and 22 minutes (the time required to process
approximately 42.5 million particles) to match the numerical accuracy of the piecewise-
linear filter with N = 1,000 (which requires 3.18 seconds). These results clearly reflect the
payoffs associated with the flexibility, in addition to the global nature, of approximations
provided by the piecewise-linear filter.

In sum, the standard, auxiliary, and adapted particle filters perform relatively well un-
der well-behaved scenarios. In these cases, their relative numerical inaccuracy is more than
offset by their relative speed. However, expansions in the range of st , along with the pres-
ence of outliers, can lead to dramatic reductions in RTEs, and in the case of the auxiliary
and adapted filters, can also lead to unreliable likelihood estimates. In contrast, the EIS
filters provide insurance against these problems and exhibit superior RTEs in all but the
most well-behaved cases.

However, while relative numerical efficiency is an important feature of any likelihood
approximation procedure, it is not the only important feature. In pursuing maximum-
likelihood parameter estimates, continuity with respect to model parameters is also critical.
The next example highlights this feature.

5.2 Example 2: A dynamic stochastic general equilibrium model

Following Sargent (1989), likelihood-based analyses of dynamic stochastic general
equilibrium (DSGE) models have long involved the application of the Kalman filter to
log-linear model approximations (e.g., see DeJong, Ingram and Whiteman, 2000; Otrok,
2001; Ireland, 2004; and the survey by An and Schorfheide, 2007). However, Fernandez-
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Villaverde, Rubio-Ramirez and Santos (2006) have shown that second-order approxima-
tion errors in model solutions map into first-order effects on the corresponding likelihood
function, due to the accumulation of approximation errors on a period-by-period basis.
Fernandez-Villaverde and Rubio-Ramirez (2005) document the quantitative relevance of
this phenomenon in an empirical analysis involving estimates of a neoclassical growth
model obtained using the particle filter.

Here we demonstrate the performance of the EIS filter in an exercise constructed fol-
lowing DeJong with Dave (2007). The objective is to estimate the structural parameters of
a simple growth model via maximum likelihood. Regarding the model, let qt , kt , ct , it , and
at represent output, capital, consumption, investment, and total factor productivity (TFP).
Labor is supplied inelastically and fixed at unity. The model is of a representative agent
who seeks to maximize the expected value of lifetime utility

U = E0

∞

∑
t=0

β
t ln(ct),

subject to

qt = atkα
t (65)

qt = ct + it (66)

kt+1 = it +(1−δ)kt (67)

ln(at+1) = ρ ln(at)+ εt . (68)

Regarding parameters, α is capital’s share of output, δ is capital depreciation, ρ determines
the persistence of innovations to TFP, and the innovations εt ∼N(0,σ2). The state variables
(at ,kt) are unobserved, and the distribution of (a0,k0) is known.

The solution of this problem can be represented as a policy function for consumption
of the form c(at ,kt) . For the special case in which δ = 1, c(at ,kt) = (1−αβ)atkα

t . This is
the case studied here.

We take qt and it as observable, subject to measurement error. Combining equations,
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the measurement equations are

qt = atkα
t +uqt , (69)

it = atkα
t − c(at ,kt)+uit (70)

= αβatkα
t +uit ,

and the state-transition equations are (68) and

kt = at−1kα
t−1− c(at−1,kt−1) (71)

= αβatkα
t .

Closer examination of (68) to (71) suggests reparameterizing the state variables as

zt = ln(at) and lt = ezt kα
t , (72)

where lt denotes (unobserved) output, and st = [lt zt ]
′ denotes the state vector. The tran-

sition process (68) then takes the form of a gaussian AR(1) in zt , and the identity (71) can
be rewritten as

lt = ezt (αβlt−1)
α . (73)

Note that this example combines the two special cases discussed in Section 4.4. First,
there is partial observability, in that yt is independent of zt conditionally on lt (and Yt−1):

yt |st ,Yt−1 ≡ yt |lt ,Yt−1 ∼ N2

((
1

αβ

)
lt ,

[
σ2

q 0
0 σ2

i

])
. (74)

Second, (73) represents a degenerate Dirac transition, with inverse

lt−1 = ψ(st) =
1

αβ

(
lte−zt

) 1
α (75)

and Jacobian
J(st) =

∂ψ(st)
∂lt

=
1

α2β

(
l1−α
t e−zt

) 1
α . (76)

In view of (74), and as discussed in Section 4.4.1, the likelihood integral simplifies
into a univariate integral in lt – see (45) – whose efficient evaluation requires only an EIS
sampler for lt |Yt . Nevertheless, in period t + 1, we still need to approximate f (zt |lt ,Yt) in
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order to compute f̂ (yt |Yt−1). To efficiently capture the dependence between zt and lt given
Yt , it proves convenient to construct directly a single bivariate EIS sampler for zt , lt |Yt .

Whence the likelihood integral

f (yt |Yt−1) =
∫

f (yt |lt ,Yt−1) f (st |Yt−1)dst (77)

is evaluated under a bivariate gaussian EIS sampler g(st |ât). Next, f (st |Yt−1) is approx-
imated according to (54), where we can exploit the fact that the Jacobian J(st) does not
depend on zt−1:

f̂ (st |Yt−1) = J(st)
ω(ât−1)

f (yt−1|Yt−2)

∫
f (zt |zt−1)g(ψ(st),zt−1|ât−1)dzt−1. (78)

Note that the integrand is quadratic in zt−1|st , thus standard algebraic operations amount-
ing to the completion of a quadratic form in zt−1 yield an analytical solution for f̂ (st |Yt−1).
Thus under the implicit assumption that the EIS weights ω(st ; ât) are near constant (to
be verified empirically), we have derived a particularly fast and efficient EIS implemen-
tation based on a bivariate gaussian outer EIS, and an inner analytical approximation for
f (st |Yt−1).

Model estimates are based on artificial data simulated from the model. Parameter val-
ues used to simulate the data are as follows: α = 0.33, β = 0.96, ρ = 0.8, σ = 0.05,

σq = 0.014, σi = 0.02. The first four values are typical of this model calibrated to annual
data; and given σ, the latter two values represent approximately 5% and 20% of the uncon-
ditional standard deviations of qt and it . The unconditional mean and standard deviation
of at implied by ρ and σ equal 1.0035 and 0.08378. The following results are based on a
single data set of sample size T = 100.

To begin, we compute likelihood values at the true parameter values using from 100 to
100,000 particles for the particle filter, and from 100 to 1,000 auxiliary draws for the EIS
filter (with R held fixed at 100). We do so for 100 MC replications. Results are reported in
Table 3.

RTEs computed using as a numeraire the particle filter with N = 100,000 range from
6.825 (for N = 100 under the EIS filter) to 217.728 (for N = 1,000). That is, the time
required for the particle filter to attain the same standard of numerical accuracy exceeds
the time required by the EIS filter with N = 1,000 by a factor of approximately 217 (the
time required to process approximately 8.7 million particles). This difference in efficiency
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is due to the fact that the bivariate gaussian EIS samplers g(st |ât) provide close (global)
approximations of the densities f (st |Yt−1). Indeed, on a period-by-period basis, ratios of

standard deviations to the means of the weights
{

ω

(
s0,i
t ; ât

)}N

i=1
range from 1.14e-8 to

3.38e-3. Such small variations validate our reliance on (78) to approximate f (st |Yt−1).

Table 3: DSGE Model

STANDARD PARTICLE FILTER
N Mean Stdev Time Rel. Time Efficiency

100 434.416 3.382 0.0239 0.903
200 436.560 2.133 0.0481 1.127

1000 438.180 0.972 0.2512 1.039
10000 438.479 0.256 2.7846 1.344
20000 438.561 0.206 5.7651 1.000

100000 438.545 0.0774 29.036 1.417

GAUSSIAN-EIS PARTICLE FILTER (R = 100)
N Mean Stdev Time Rel. Time Efficiency

100 438.313 0.1027 3.425 6.825
200 438.621 0.0278 5.731 55.440

1000 438.633 0.0083 16.414 217.728

Note: Means and standard deviations are based on 100 Monte Carlo replications; Relative Time Efficiency is based on N=20,000 for
the SPF.

Next, we apply both the particle filter and the gaussian EIS filter to compute maximum
likelihood estimates (MLEs) for θ = (α,β,ρ,σ,σq,σi), under simulated samples of size
T=40, 100 and 500. Using (70), the stepwise MLE of β given α is given by

β̂ =
i

αl
,

where i and l denote sample means of it and lt . MLEs for the remaining parameters are
obtained via maximization of the concentrated log-likelihood function.

Results for the particle filter are based on N = 20,000; results for the EIS filter are based
on N = 200 and R = 100. According to Table 3, computing times for a single likelihood
evaluation are approximately the same under both methods (on the order of 5.5 seconds
for T = 100), while MC estimates of the log-likelihood function are more accurate under
the EIS filter (which has an RTE of approximately 55 given these settings for N and R). In
addition, a graphical characterization of the relative accuracy of the EIS filter is provided in
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Figure 3, which plots estimated log-likelihood functions along the α dimension for T = 100
(all other parameters being set at their ML values) for both the standard and EIS filters. In
the figure, numerical inaccuracy is manifested by choppiness in the likelihood surface; note
that the surface associated with the standard particle filter is particularly rough.

In order to minimize the impact of numerical inaccuracies, we employ the Nelder-
Meade (1965) simplex optimization routine for all MLE computations, implemented fol-
lowing Lagarias et al. (1988). Unsurprisingly, convergence towards a solution is relatively
fast under EIS, but only by a factor of approximately 1.4 to 2 depending on sample size.
Following RZ, we use i.i.d replications (30 in the present set-up) of the complete ML al-
gorithm in order to produce two sets of means and standard deviations for MLEs:

1. Statistical means and standard deviations are obtained from 30 different samples
{yt}T

t=1 under a single set of auxiliary draws {ui}N
i=1. These statistics characterize

the finite sample distribution of the MLEs. Under the EIS filter, we also compute the
asymptotic standard deviations obtained by inversion of a numerical Hessian. As in
Fernandez-Villaverde and Rubio-Ramirez (2007), we find that Hessians computed
under the standard particle filter are unreliable and often fail to be positive definite.

2. Numerical means and standard deviations are obtained under 30 different sets of
CRNs for a fixed sample {yt}T

t=1. Such means constitute our most accurate MC
estimates of the MLEs and accordingly, the numerical standard deviations we report
are those for the means.

Results of this experiment are given in Table 4. Highlights are as follows:

1. Log-likelihood functions are generally tightly peaked, as attested by the statistical
standard deviations of the MLEs. This explains why the numerical inefficiency of
the standard particle filter relative to the EIS filter is attenuated considerably for
MLEs (accounting for computing time, RTEs range from 2 to 3, instead of 55 for the
log-likelihood function MC estimates).

2. For T = 40, MLEs of α are significantly upward biased (by about 4 standard devia-
tions), which is why we also report root mean-squared errors.

3. Under the EIS filter, there is remarkably close agreement between finite sample (MC)
and asymptotic (Hessian) statistical standard deviations, especially as T increases.
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While conceptually not surprising in view of the well-behaved log-likelihood func-
tions, such concordance highlights the high numerical accuracy and reliability of EIS
filter computations (including Hessians).

4. As T increases, the numerical standard deviations of the individual MLEs (which are√
30 larger than those reported for the mean MLEs in Table 4) get closer to the cor-

responding statistical standard deviations. This does not appear to create a problem
for the EIS filter (which employs CRNs), but clearly contaminates the computation
of statistical standard deviations under the standard particle filter. For this example
at least, the number of particles would need to be increased dramatically in order
for the particle filter to provide reliable estimates of statistical standard deviations,
whether finite sample or (moreso) asymptotic.

In sum, MLEs derived using the EIS filter (N = 200, R = 100) are numerically and
statistically significantly more reliable than those derived under the standard particle filter
(N = 20,000). They are also obtained relatively more rapidly (by a factor of 25% to 50%).
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Table 4: MLE Comparisons

STANDARD PARTICLE FILTER
True Stat. Moments Num. Moments

T=40 True Mean S.D.a S.D.b RMSE Mean S.D.c S.D.d

α 0.33 0.34559 5.888E-03 1.667E-02 0.34826 3.158E-03 5.765E-04
β 0.96 0.91989 1.843E-02 4.414E-02 0.93891 8.490E-03 1.550E-03
ρ 0.8 0.82840 2.899E-02 4.058E-02 0.81292 1.735E-02 3.168E-03
σ 0.05 0.04802 4.363E-03 n/a 4.792E-03 0.05184 1.384E-03 2.527E-04
σl 0.014 0.01462 4.118E-03 4.165E-03 0.01588 6.831E-04 1.247E-04
σi 0.02 0.01955 2.030E-03 2.080E-03 0.02149 4.275E-04 7.804E-05

T=100

α 0.33 0.33404 5.701E-03 6.987E-03 0.33922 3.027E-03 5.527E-04
β 0.96 0.91995 1.568E-02 4.301E-02 0.94024 9.035E-03 1.650E-03
ρ 0.8 0.79697 1.961E-02 1.984E-02 0.82860 1.698E-02 3.100E-03
σ 0.05 0.05413 3.348E-03 n/a 5.316E-03 0.05085 1.246E-03 2.275E-04
σl 0.014 0.01350 2.958E-03 3.001E-03 0.01416 6.052E-04 1.105E-04
σi 0.02 0.01991 1.259E-03 1.262E-03 0.02030 3.544E-04 6.470E-05

T=500

α 0.33 0.33162 5.440E-03 5.739E-03 0.33399 3.498E-03 6.386E-04
β 0.96 0.95501 1.523E-02 1.611E-02 0.95049 9.930E-03 1.813E-03
ρ 0.8 0.81776 1.599E-02 2.459E-02 0.80170 1.759E-02 3.212E-03
σ 0.05 0.05238 2.579E-03 n/a 3.717E-03 0.05365 1.899E-03 3.468E-04
σl 0.014 0.01361 1.717E-03 1.849E-03 0.01400 4.898E-04 8.942E-05
σi 0.02 0.01971 5.413E-04 6.368E-04 0.01922 2.604E-04 4.754E-05

GAUSSIAN-EIS PARTICLE FILTER
T=40 True Mean S.D.a S.D.b RMSE Mean S.D.c S.D.d

α 0.33 0.34071 2.389E-03 1.974E-03 1.097E-02 0.34868 1.652E-03 3.016E-04
β 0.96 0.93364 1.085E-02 n/a 2.851E-02 0.94006 4.442E-03 8.110E-04
ρ 0.8 0.81669 1.562E-02 1.145E-02 2.286E-02 0.81811 9.791E-03 1.788E-03
σ 0.05 0.04879 3.193E-03 3.009E-03 3.416E-03 0.05425 9.340E-03 1.705E-03
σl 0.014 0.01535 2.276E-03 2.107E-03 2.646E-03 0.01594 2.415E-04 4.410E-05
σi 0.02 0.01984 1.586E-03 1.544E-03 1.594E-03 0.02155 2.349E-04 4.289E-05

T=100

α 0.33 0.33380 4.635E-03 3.977E-03 5.996E-03 0.33601 1.577E-03 2.880E-04
β 0.96 0.92038 1.557E-02 n/a 4.337E-02 0.93960 4.441E-03 8.109E-04
ρ 0.8 0.79867 1.764E-02 1.432E-02 1.769E-02 0.82182 9.667E-03 1.765E-03
σ 0.05 0.05083 3.284E-03 3.312E-03 3.388E-03 0.05041 9.492E-03 1.733E-03
σl 0.014 0.01407 2.998E-03 2.919E-03 2.999E-03 0.01448 2.471E-04 4.512E-05
σi 0.02 0.01990 1.163E-03 1.214E-03 1.167E-03 0.02183 2.144E-04 3.914E-05

T=500

α 0.33 0.33032 2.235E-03 2.243E-03 2.385E-03 0.33095 1.395E-03 2.547E-04
β 0.96 0.95610 7.478E-03 n/a 8.830E-03 0.95744 7.988E-03 1.458E-03
ρ 0.8 0.81082 6.408E-03 6.199E-03 1.275E-02 0.80102 7.142E-03 1.304E-03
σ 0.05 0.05108 1.064E-03 1.088E-03 1.559E-03 0.05031 4.068E-03 7.428E-04
σl 0.014 0.01400 7.206E-04 6.825E-04 7.623E-04 0.01400 2.193E-04 4.003E-05
σi 0.02 0.01997 2.295E-04 2.262E-04 2.444E-04 0.01998 1.891E-04 3.453E-05

a. Finite Sample S.D., b. Asymptotic S.D., c. S.D. of a single Draw, d. S.D. of the mean.
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6 Conclusion

We have proposed an efficient means of facilitating likelihood evaluation in applica-
tions involving non-linear and/or non-gaussian state space representations: the EIS filter.
The filter constructs likelihood approximations using an optimization procedure designed
to minimize numerical standard errors associated with the approximated likelihood. Re-
sulting approximations are continuous in underlying likelihood parameters, greatly facil-
itating the implementation of ML estimation procedures. Implementation of the filter is
straightforward, and as the examples we have presented demonstrate, the payoff of adop-
tion can be substantial.

As noted in the introduction, an important byproduct of filtering, if not the primary
focus in many applications, are estimates of filtered moments of the state variables. The
efficient numerical estimation of these moments is the subject of future research.
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