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Non-Parametric Inference for

Bivariate Extreme-Value Copulas

Johan SEGERS∗

Tilburg University & Catholic University Leuven

Abstract

Extreme-value copulas arise as the possible limits of copulas of com-
ponent-wise maxima of independent, identically distributed samples. The
use of bivariate extreme-value copulas is greatly facilitated by their rep-
resentation in terms of Pickands dependence functions. The two main
families of estimators of this dependence function are (variants of) the
Pickands estimator and the Capéraà-Fougères-Genest estimator. In this
paper, a unified treatment is given of these two families of estimators,
and within these classes those estimators with the minimal asymptotic
variance are determined. Main result is the explicit construction of an
adaptive, minimum-variance estimator within a class of estimators that
encompasses the Capéraà-Fougères-Genest estimator.

Key words: adaptive estimator; copula; extremes; Pickands dependence
function
JEL: C13, C14
MSC 2000: 60G70, 62G32, 62H12

1 Introduction

The most general margin-free description of the dependence structure of a mul-
tivariate distribution is through its copula (Sklar 1959). Copulas have recently
come to the attention in various sciences as a way to overcome the limitations
of classical dependence measures as exemplified by the linear correlation, see for
instance the monograph by Nelsen (1999).

A particular class of copulas are the extreme-value copulas. They arise as the
possible limits of copulas of component-wise maxima of independent, identically
distributed samples. For a bivariate sample (Xi1, Xi2), i = 1, . . . , n, the vector
of component-wise maxima is (Mn1, Mn2), with Mij =

∨n
i=1 Xij . If the pairs
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(Xi1, Xi2) are independent and if they have a common bivariate distribution
function F with continuous margins and copula CF , then the joint distribution

function of (Mn1, Mn2) is F n with copula CF n(u1, u2) = Cn
F (u

1/n
1 , u

1/n
2 ) for

(u1, u2) ∈ [0, 1]2. If there exists a copula C such that CF n(u1, u2) → C(u1, u2)
as n → ∞, then C is by definition a bivariate extreme-value copula. The
study of the limiting dependence structure of (Mn1, Mn2) dates back to Gef-
froy (1958/59), Gumbel (1960a), and Sibuya (1960), although not through the
language of copulas.

In the above setting, if for instance the pair (Xi1, Xi2) records the heights
of a certain river at day i at two different locations and if n = 365, then the
pair (Mn1, Mn2) represents the maximal heights recorded during a given year.
If (x1, x2) are the heights of the dikes at the two locations, then F n(x1, x2) is
the probability that there will not be flood during a certain year. The copula
CF n of F n describes the dependence between the occurrences of floods at the
two locations. As n is large, asymptotic theory suggests to model CF n by an
extreme-value copula. Examples of this kind are already considered in Gumbel
and Goldstein (1964). A more recent example in finance is Longin and Solnik
(2001).

The use of bivariate extreme-value copulas is greatly facilitated by a rep-
resentation discovered by Pickands (1981) and based on Balkema and Resnick
(1977) and de Haan and Resnick (1977): a copula C is an extreme-value copula
if and only if there exists a real-valued function A on the interval [0, 1] such that

C(u, v) = exp

{

log(uv)A

(

log(v)

log(uv)

)}

,

for 0 < u < 1 and 0 < v < 1. The function A is called a Pickands dependence
function. Necessary and sufficient requirements on a function A to make the
function C in the preceding display a copula are the following: (i) t ∨ (1− t) ≤
A(t) ≤ 1 for all 0 ≤ t ≤ 1, and (ii) A is convex. The upper bound A ≡ 1
corresponds to independence, C(u, v) = uv, and the lower bound A(t) = t ∨
(1 − t) to the comonotone copula, C(u, v) = u ∧ v. Dependence functions in
higher dimensions are investigated in Obrenetov (1991).

Statistical inference on a bivariate extreme-value copula C may now be re-
duced to inference on its Pickands dependence function A. Since the require-
ments on A do not confine it to a parametric model, there are two approaches
to inference. First, one may postulate a parametric model for A and estimate
the unknown parameters by for instance the (pseudo) maximum-likelihood es-
timator in Genest, Ghoudi, and Rivest (1995). Second, one may construct
non-parametric estimators of A in the full model.

A simple and popular parametric model is the Gumbel or logistic model
(Gumbel 1960b), A(t) = {t1/α + (1 − t)1/α}α, with parameter 0 ≤ α ≤ 1. The
corresponding copula happens to be the only extreme-value copula that is also
a Archimedean copula (Genest and Rivest 1989). More flexible models are the
asymmetric logistic model and the mixed model (Tawn 1988). Overviews of
the most common parametric models can be found in, for instance, Kotz and
Nadarajah (2000) and Beirlant, Goegebeur, Segers, and Teugels (2004).
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The focus of this paper, however, is on non-parametric inference on the
Pickands dependence function A. There are two main families of estimators:
first, the Pickands (1981) estimator and variants, and second, the estimator of
Capéraà, Fougères, and Genest (1997) and variants. Next to these, there is also
the non-parametric estimator by Tiago de Oliveira (1989), the convergence rate
of which, however, is too slow to make it a serious candidate in practice, see
Deheuvels and Tiago de Oliveira (1989).

The aims of this paper, then are the following: first, to give a unified treat-
ment of the Pickands and Capéraà-Fougères-Genest estimators and variants;
second, to find within these classes those estimators with the minimal asymp-
totic variances. Main result is the explicit construction of a minimum-variance
estimator within a class of estimators that encompasses the Capéraà-Fougères-
Genest estimators.

Two important issues remain open for further research. First, what are the
asymptotic distributions of the estimators in case the marginal distributions
are unknown? Second, what is the semi-parametric efficient lower bound for
estimating the Pickands dependence function in the sense of Bickel, Klaassen,
Ritov, and Wellner (1993)?

The structure of the paper is as follows. In Section 2, a tool is proposed
to compute expected values with respect to extreme-value copulas, an inter-
esting example being an explicit expression of the joint moment generating
function. The estimators of Pickands and Capéraà-Fougères-Genest and vari-
ants are treated in a unified manner in Sections 3 and 4. Section 5 contains
the construction of minimum-variance Pickands and Capéraà-Fougères-Genest
estimators. All proofs are deferred to Section 6.

2 Bivariate extreme-value copulas

2.1 Conditional distributions

Let (U, V ) be a random pair with standard uniform margins and joint distri-
bution function equal to the bivariate extreme-value copula C with Pickands
dependence function A. It is convenient to switch to standard exponential mar-
gins through X = − log U and Y = − log V . The joint survivor function of
(X, Y ) is then given by

S(x, y) := Pr[X > x, Y > y] = exp

{

−(x + y)A

(

y

x + y

)}

(1)

for 0 ≤ x < ∞ and 0 ≤ y < ∞ with x + y > 0.
For computing expectations of the form E[f(X, Y )], expression (1) is not

directly useful. Better would be to have an expression for the conditional dis-
tribution of, say, Y given X . Since X is known to be a standard exponential
random variable, the expectation E[f(X, Y )] could then be calculated as a dou-
ble integral. However, as the pair (X, Y ) in general does not possess a joint
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density with respect to two-dimensional Lebesgue measure, the conditional dis-
tribution of Y given X cannot be computed as a ratio of joint and marginal
densities.

Let µ be the probability distribution of (X, Y ). By Theorem 33.3 of Billings-
ley (1995), there exists a collection of probability measures {µx : x ∈ (0,∞)} on
(0,∞) such that µ can be desintegrated as µ(dydx) = µx(dy)e−xdx. Formally,
for a µ-integrable function f ,

∫

(0,∞)2
f(x, y)µ(dxdy) =

∫ ∞

0

(

∫

(0,∞)

f(x, y)µx(dy)

)

e−xdx.

The measure µx is called the conditional distribution of Y given X = x. The
expression in the above display states that E[f(X, Y )|X ] = g(X) with g(x) =
∫∞
0 f(x, y)µx(dy). This justifies the suggestive notation

E[f(X, Y )|X = x] :=

∫ ∞

0

f(x, y)µx(dy).

For indicator variables f = 1V , we write

Pr[(X, Y ) ∈ V | X = x] :=

∫ ∞

0

1{(x, y) ∈ V }µx(dy).

The conditional distribution of Y given X can be expressed in terms of A and
its right-hand derivative A′. Observe that A′ always exists and is non-decreasing
because A is convex.

Lemma 2.1 For (X, Y ) as in (1),

Pr[Y > y | X = x] = exS(x, y)

{

A

(

y

x + y

)

− y

x + y
A′
(

y

x + y

)}

for 0 < x < ∞ and 0 ≤ y < ∞.

Comments. From Lemma 2.1, it can be seen that the distribution of (X, Y )
is, in the terminology of Lehmann (1966), monotone regression dependent, or,
in modern terminology, stochastically increasing, that is, Pr[Y > y | X = x] is
non-decreasing in x and Pr[X > x | Y = y] is non-decreasing in y (Garralda
Guillem 2000). In particular, the distribution of (X, Y ) is positively associ-
ated (Marshall and Olkin 1983). For stochastically increasing distributions, a
conjecture by Hutchinson and Lai (1990) states that −1 +

√
1 + 3τ ≤ ρS ≤

min{(3/2)τ, 2τ − τ2}, where τ and ρS denote Kendall’s tau and Spearman’s
rho, respectively. Using explicit expressions for τ and ρS in terms of A com-
puted through Lemma 2.1, Hürlimann (2003) shows that the conjecture holds
for the class of bivariate extreme-value copulas.
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2.2 Joint moment generating function

Lemma 2.1 gives a handle to compute E[f(X, Y )] for various functions f . By
way of illustration, here is an elegant expression for the joint moment generating
function of (X, Y ).

Lemma 2.2 For (X, Y ) as in (1),

E[eaX+bY ] =
1

1 − a
+

1

1 − b
− 1 + ab

∫ 1

0

dt

{A(t) − a(1 − t) − bt}2

with (a, b) ∈ R
2 such that inf0≤t≤1{A(t) − a(1 − t) − bt} > 0.

Since A(t) ≥ 1/2 for all 0 ≤ t ≤ 1, the range for (a, b) in Lemma 2.2 certainly
includes (−∞, 1/2)2. Hence, joint moments E[XrY s] for positive integer r and s
can be found by differentiating the moment generating function at (a, b) = (0, 0).
For instance,

E[XY ] =
∂2

∂a ∂b
E[eaX+bY ]

∣

∣

∣

∣

a=b=0

=

∫ 1

0

dt

A2(t)

so that

Cov(X, Y ) =

∫ 1

0

dt

A2(t)
− 1, (2)

a result already stated in Tawn (1988).
We will have more opportunities to use Lemma 2.1 when computing the

covariance function of certain Gaussian processes arising as the limit distribution
of estimator processes for A.

3 Pickands estimator and variants

3.1 Estimators

Let the random pair (X, Y ) be distributed as in (1). For 0 ≤ t ≤ 1, define

ξ(t) =
X

1 − t
∧ Y

t
, (3)

with of course ξ(0) = X and ξ(1) = Y . The random variable ξ(t) is non-negative
and its survivor function is

Pr[ξ(t) > z] = Pr[X > (1 − t)z, Y > tz] = exp{−zA(t)}, (4)

for 0 ≤ z < ∞. Hence ξ(t) is exponentially distributed with expectation

E[ξ(t)] = 1/A(t), 0 ≤ t ≤ 1. (5)
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Let (Xi, Yi), i = 1, . . . , n, be independent random pairs with the same dis-
tribution as (X, Y ), and put

ξi(t) =
Xi

1 − t
∧ Yi

t
, 0 ≤ t ≤ 1.

Equation (5) motivates the Pickands (1981, 1989) estimator

1/Âp
n(t) = ξ̄n(t) =

1

n

n
∑

i=1

ξi(t), 0 ≤ t ≤ 1, (6)

see also Smith, Tawn and Yuen (1990).
Unfortunately, the Pickands estimator Âp

n is itself not a Pickands dependence
function. For instance, the requirements A(0) = 1 and A(1) = 1 are not fulfilled.
This was the reason for the following modification proposed by Deheuvels (1991):
for 0 ≤ t ≤ 1, set

1/Âd
n(t) = ξ̄n(t) − (1 − t)

(

X̄n − 1
)

− t
(

Ȳn − 1
)

(7)

where X̄n = n−1
∑n

i=1 Xi and Ȳn = n−1
∑n

i=1 Yi. Indeed Âd
n(0) = 1 and

Âd
n(1) = 1.

3.2 Asymptotics

It is convenient to formulate the estimators by Pickands and Deheuvels in an
abstract way. Let C[0, 1] be the space of real-valued, continuous functions on the
interval [0, 1], equipped with the topology of uniform convergence. For arbitrary
a, b ∈ C[0, 1], define the operator La,b : C[0, 1] → C[0, 1] by

La,bf(t) = f(t) − a(t)f(0) − b(t)f(1) (8)

for 0 ≤ t ≤ 1. Define the Pickands-type estimator

1/Âp
n(t; a, b) = La,bξ̄n(t) + a(t) + b(t) (9)

= ξ̄n(t) − a(t)
(

X̄n − 1
)

− b(t)
(

Ȳn − 1
)

for 0 ≤ t ≤ 1. The Pickands estimator Âp
n in (6) corresponds to the choice a ≡ 0

and b ≡ 0, while the Deheuvels estimator Âd
n in (7) corresponds to a(t) = 1 − t

and b(t) = t for 0 ≤ t ≤ 1. Denote convergence in distribution by the arrow  .

Theorem 3.1 Let (Xi, Yi), i = 1, . . . , n, be independent random pairs with
distribution (1). Then

n1/2
(

1/Âp
n − 1/A

)

 η (10)

in C[0, 1], where η is a centered Gaussian process in C[0, 1] with covariance
function

Cov(η(s), η(t)) = Cov(ξ(s), ξ(t))

=
s

t

1

A2(s)
+

1 − t

1 − s

1

A2(t)
+

1

(1 − s)t

∫ t

s

dw

A2(w)
− 1

A(s)A(t)
(11)

for 0 ≤ s ≤ t ≤ 1, with ξ as in (3).
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Since the operator L : C[0, 1] → C[0, 1] is linear and bounded with respect
to the topology of uniform convergence, the asymptotics for the Pickands-type
estimator Âp

n(·; a, b) follow easily from those for ξ̄n = 1/Âp
n.

Corollary 3.2 Under the assumptions and notations of Theorem 3.1, for a, b ∈
C[0, 1],

n1/2
(

Âp
n(·; a, b) − A

)

 A2La,bη

in C[0, 1], with La,b and Âp
n(·; a, b) as in (8) and (9), respectively.

Corollary 3.3 Under the assumptions and notations of Theorem 3.1,

n1/2
(

Âp
n − A

)

 A2η,

n1/2
(

Âd
n − A

)

 A2{η − (1 − I)η(0) − Iη(1)},

with Âp
n and Âd

n as in (6) and (7), respectively, and with I(t) = t for t ∈ [0, 1].

Theorem 3.1 and Corollary 3.3 are essentially due to Deheuvels (1991), the
novelty here being the explicit expression (11) for the covariance function.

Comments. There are of course other ways to modify the Pickands estimator
so as to make it satisfy the boundary constraints at zero and one.

(i) Take for instance L1−I,I(Â
p
n) + 1. As L1−I,I(A) = A − 1, Theorem 3.1

yields
n1/2[{L1−I,I(Â

p
n) + 1} − A] L1−I,I(A

2η)

in C[0, 1]. Observe the difference with the limit distribution A2L1−I,Iη of Âd
n.

(ii) Hall and Tajvidi (2000) proposed

1/Âht
n (t) =

1

n

n
∑

i=1

ξ∗i (t)

where ξ∗i (t) = X∗
i /(1 − t) ∧ Y ∗

i /t, with X∗
i = Xi/X̄n and Y ∗

i = Yi/Ȳn. They
proved that their estimator is n1/2-consistent, although they did not report its
asymptotic distribution. Simulations suggest that in fact it performs better
than the Deheuvels estimator.

4 Capéraà-Fougères-Genest estimator and vari-

ants

4.1 Original definition

A different family of estimators for the Pickands dependence function A was
obtained in Capéraà, Fougères, and Genest (1997). Let again (X, Y ) be a ran-
dom pair with standard exponential margins and joint survivor function given
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by (1). Define W = Y/(X + Y ). The distribution function of W can be found
using the conditional distribution of Y given X as stated in Lemma 2.1:

Pr[W ≤ w] = w + w(1 − w)
A′(w)

A(w)
, 0 ≤ w ≤ 1, (12)

see Ghoudi, Khoudraji, and Rivest (1998). Equation (12) implies

A′(w)

A(w)
=

Pr[W ≤ w] − w

w(1 − w)
, 0 < w < 1.

Since A(0) = 1 and A(1) = 1, integrating both sides of the preceding display
yields

log A(t) =

∫ t

0

Pr[W ≤ w] − w

w(1 − w)
dw

= −
∫ 1

t

Pr[W ≤ w] − w

w(1 − w)
dw.

Hence, for arbitrary p(t),

log A(t) = p(t)

∫ t

0

Pr[W ≤ w] − w

w(1 − w)
dw − (1 − p(t))

∫ 1

t

Pr[W ≤ w] − w

w(1 − w)
dw.

Now let (Xi, Yi), i = 1, . . . , n, be independent random pairs with the same
distribution as (X, Y ), and put Wi = Yi/(Xi + Yi). Estimate the distribution
function Pr[W ≤ w] by the empirical one n−1

∑n
i=1 1(Wi ≤ w), and substitute

the latter into the preceding display to get the Capéraà-Fougères-Genest (CFG)
estimator

log Âcfg
n (t; p) = p(t)

∫ t

0

n−1
∑n

i=1 1(Wi ≤ w) − w

w(1 − w)
dw

− (1 − p(t))

∫ 1

t

n−1
∑n

i=1 1(Wi ≤ w) − w

w(1 − w)
dw. (13)

By taking for instance p(t) = 1−t, the aggregate Âcfg
n (t; p) satisfies the boundary

constraints Âcfg
n (0; p) = 1 and Âcfg

n (1; p) = 1.
A variant of the CFG estimator was proposed in Jiménez, Villa-Diharce and

Flores (2001). Their estimator, however, is consistent only in case log(A) is
convex.

4.2 Simplified definition

The original expression (13) for the CFG estimator can be simplified consid-
erably. Recall ξi(t) = Xi/(1 − t) ∧ Yi/t for 0 ≤ t ≤ 1, with ξi(0) = Xi and
ξi(1) = Yi.
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Lemma 4.1 For 0 ≤ t ≤ 1, with Âcfg
n (·; p) as in (13),

log Âcfg
n (t; p) = − 1

n

n
∑

i=1

log ξi(t) + p(t)
1

n

n
∑

i=1

log(Xi) + (1 − p(t))
1

n

n
∑

i=1

log(Yi).

Lemma 4.1 suggests a much simpler interpretation of the CFG estimator.
Let

γ = −
∫ ∞

0

log(x)e−xdx = 0.577 . . .

be Euler’s constant. Observe that γ = −E[log(X)] with X a standard expo-
nential random variable. Since the distribution of ξ(t) = X/(1 − t) ∧ Y/t is
exponential with E[ξ(t)] = 1/A(t),

E[log ξ(t)] = − logA(t) − γ, 0 ≤ t ≤ 1. (14)

Based on (14), a naive estimator for log A would be

log Âcfg
n (t) = − 1

n

n
∑

i=1

log ξi(t) − γ. (15)

However, this estimator does not fulfil the constraints A(0) = A(1) = 1. The
CFG estimator then can be viewed as a modification of the naive estimator
designed to accommodate for these constraints:

log Âcfg
n (t; p) = log Âcfg

n (t) − p(t) log Âcfg
n (0) − (1 − p(t)) log Âcfg

n (1)

If p is chosen in such a way that p(0) = 1 and p(1) = 0, then indeed Âcfg
n (0; p) = 1

and Âcfg
n (1; p) = 1.

Capéraà et al. (1997) explicitly compute the function p(t) that minimizes the
asymptotic variance of the estimator. In practice, the simple choice p(t) = 1− t
turns out to work well too; see also Section 5.2.

4.3 Asymptotics

If p ∈ C[0, 1], then we can write in abstract notation

log Âcfg
n (·; p) = Lp,1−p(log Âcfg

n )

with La,b as in (8). Since A(0) = 1 and A(1) = 1, we have La,b(log A) = log A
for arbitrary a, b ∈ C[0, 1]. This suggests the definition of the more general
CFG-type estimator

log Âcfg
n (·; a, b) = La,b(log Âcfg

n ) (16)

= log Âcfg
n − a log Âcfg

n (0) − b log Âcfg
n (1)

The choice a = p and b = 1 − p gives the original CFG estimator Âcfg
n (·; p) =

Âcfg
n (·; p, 1 − p). Since the operator La,b is linear and bounded, asymptotic

properties for Âcfg
n (·; a, b) follow easily from those of Âcfg

n .
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Theorem 4.2 Let (Xi, Yi), i = 1, . . . , n, be independent random pairs with
distribution (1). Then, with Âcfg

n as in (15),

n1/2
(

log Âcfg
n − log A

)

 ζ (17)

in C[0, 1], where ζ is a centered Gaussian process in C[0, 1] with covariance
function

Cov(ζ(s), ζ(t)) = Cov(log ξ(s), log ξ(t))

=
π2

6
− log(t) log(1 − s) + log(t) log(1 − t) +

∫ t

s

log(w)
dw

1 − w

+ log

(

t

s

)

log A(s) + log

(

1 − s

1 − t

)

log A(t) +
1

2

(

log
A(s)

A(t)

)2

−
∫ t

s

log A(w)
dw

w(1 − w)
(18)

for 0 ≤ s ≤ t ≤ 1, with ξ as in (3).

Corollary 4.3 Under the assumptions and notations of Theorem 4.2, for a, b ∈
C[0, 1],

n1/2
(

Âcfg
n (·; a, b) − A

)

 ALa,bζ

in C[0, 1], with La,b and Âcfg
n (·; a, b) as in (8) and (16), respectively.

Corollary 4.4 Under the assumptions and notations of Theorem 4.2, for p ∈
C[0, 1],

n1/2
(

Âcfg
n (·; p) − A

)

 A{ζ − pζ(0) − (1 − p)ζ(1)}

in C[0, 1], with Âcfg
n (·; p) as in (13).

Corollary 4.4 is essentially due to Capéraà et al. (1997) except for the explicit
expression (18) of the limiting covariance function.

5 Minimizing the asymptotic variance

5.1 Minimal asymptotic variance

In Corollaries 3.2 and 4.3, it makes sense to look for those functions a and b
such that the asymptotic variances Var(La,bη(t)) and Var(La,bζ(t)) are minimal
for all 0 ≤ t ≤ 1. Such functions indeed exist, and they can be found from the
following simple result.
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Lemma 5.1 Let δ be a Gaussian process in C[0, 1] with covariance function
σ(s, t) = Cov(δ(s), δ(t)) for (s, t) ∈ [0, 1]2. Assume that the covariance matrix
of (δ(0), δ(1)) is non-singular. Define aδ, bδ ∈ C[0, 1] by

(aδ(t), bδ(t)) = (σ(t, 0), σ(t, 1))

(

σ(0, 0) σ(0, 1)
σ(1, 0) σ(1, 1)

)−1

(19)

for 0 ≤ t ≤ 1. Then for 0 ≤ t ≤ 1, with La,b as in (8),

Var (Laδ,bδ
δ(t)) = σ(t, t) − (aδ(t), bδ(t))

(

σ(t, 0)
σ(t, 1)

)

= min
a,b∈C[0,1]

Var (La,bδ(t)) .

Lemma 5.1 can be applied to the limiting processes η and ζ in Corollaries 3.2
and 4.3. The result is explicit expressions in terms of A for the functions a, b ∈
C[0, 1] that minimize the asymptotic variances of the estimators Âp

n(·; a, b) and
Âcfg

n (·; a, b) in (9) and (16). The only provision is that ξ(0) = X and ξ(1) = Y
are not completely dependent, that is, A(1/2) > 1/2. This is no great loss of
generality, however, as in case of complete dependence Âcfg

n (t; p) = t∨ (1− t) =
A(t) with probability one for any function p.

5.2 Special case: independence

An interesting special case is that of independence, that is, A ≡ 1. In that case,
the covariance functions ση and σζ of the processes η and ζ in Theorems 3.1
and 4.2 satisfy

σ(0, 1) = 0, σ(t, t) = σ(0, 0), σ(s, t) = σ(1 − t, 1 − s),

ση(t) := ση(0, t) = 1 − t, σζ(t) := σζ(0, t) = L2(1) − L2(t),
(20)

where L2 denotes the dilogarithm function

L2(t) = −
∫ t

0

log(1 − w)
dw

w
=

∞
∑

k=1

tk

k2
, −1 ≤ t ≤ 1,

with special value L2(1) = π2/6. Therefore, the variance-minimizing functions
in equation (19) simplify to

aδ(t) =
σ(t)

σ(0)
, bδ(t) =

σ(1 − t)

σ(0)
, (21)

with corresponding minimal variance

Var (Laδ,bδ
δ(t)) = σ(0) − σ2(t)

σ(0)
− σ2(1 − t)

σ(0)
.
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Pickands-type estimators. For the Pickands-type estimators Ân(t; a, b) in
(9), equations (20) and (21) lead to aη(t) = 1 − t and bη(t) = t. This shows

that in case of independence, the Deheuvels estimator Âd
n(t) in (7) has minimal

asymptotic variance

Var{η(t) − (1 − t)η(0) − tη(1)} = 2t(1 − t)

among all Pickands-type estimators Ân(t; a, b) as a and b range over C[0, 1].

CFG-type estimators. More interesting is the situation for the CFG-type
estimators Âcfg

n (·; a, b) in (16). By (20) and (21), the variance-minimizing func-
tions are

aζ(t) =
L2(1) − L2(t)

L2(1)
, bζ(t) =

L2(1) − L2(1 − t)

L2(1)
(22)

with corresponding minimal variance

Var{ζ(t) − aζ(t)ζ(0) − bζ(t)ζ(1)}

= L2(1) − {L2(1) − L2(t)}2

L2(1)
− {L2(1) − L2(1 − t)}2

L2(1)
.

Since aζ(t) + bζ(t) 6= 1 for 0 < t < 1, the minimum-variance estimator

Âcfg
n (t; aζ , bζ) is not a CFG estimator Âcfg

n (·; p) = Âcfg
n (t; p, 1−p) as in (13). Still,

it is interesting to compute the function pζ for which the asymptotic variance

Var({ζ(t) − ζ(1)} − p(t){ζ(0) − ζ(1)}) of Âcfg
n (t; p) is minimal as p ranges over

C[0, 1]. By Lemma 6.1 below, the variance-minimizing p is

pζ(t) =
L2(1) − L2(t) + L2(1 − t)

2L2(1)
, (23)

with corresponding minimal variance

Var({ζ(t) − ζ(1)} − pζ(t){ζ(0) − ζ(1)})

= 2L2(1 − t) − {L2(1) − L2(t) + L2(1 − t)}2

2L2(1)
.

In contrast, the simple choice p(t) = 1 − t yields

Var({ζ(t) − ζ(1)} − (1 − t){ζ(0) − ζ(1)})
= 2tL2(1 − t) + 2(1 − t)L2(t) − 2t(1− t)L2(1).

Comparisons. Figure 1 shows the asymptotic relative efficiencies (the ratio
of asymptotic variances) at independence (A ≡ 1) with respect to the optimal
CFG-type estimator Âcfg

n (t; aζ , bζ) as in (22) as function of 0 < t < 1 of the

following three estimators: the optimal CFG estimator Âcfg
n (t; pζ) as in (23);

the CFG estimator Âcfg
n (t; p) with p(t) = 1 − t; the Deheuvels estimator Âd

n(t).

12
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Figure 1: Asymptotic relative efficiencies at independence with respect to CFG
estimator with optimal a and b of: CFG estimator with optimal p (full), CFG
estimator with p(t) = 1 − t (dashed), Deheuvels estimator (dotted)

The asymptotic variance of the Deheuvels estimator, which is the optimal
Pickands-type estimator, is higher than the asymptotic variances of the three
CFG-type estimators. This is quite remarkable: both Pickands and CFG-type
estimators can be interpreted as estimators of the mean of an exponential dis-
tribution, the original Pickands estimators being the maximum-likelihood esti-
mator.

Within the class of CFG estimators Âcfg
n (t; p), the difference between the

simple choice p(t) = 1 − t and the optimal choice p = pζ of (23) is almost
negligible. The asymptotic relative efficiency of the optimal CFG estimator
Âcfg

n (t; pζ) with respect to the optimal CFG-type estimator Âcfg
n (t; aζ , bζ) is at

t = 1/2 approximately equal to 79.5%.

5.3 Adaptive estimators

The variance-minimizing functions aδ and bδ in Lemma 5.1 depend on the co-
variance structure of the process δ. In case δ represents one of the limiting
processes η or ζ in Theorems 3.1 or 4.2, the corresponding covariance structures
(11) and (18) in turn depend on the unknown Pickands dependence function A.

Replacing the optimal aδ and bδ by estimates leads to adaptive Pickands or
CFG-type estimators. In case of CFG-type estimators, the procedure could go
as follows:

1. Start with an initial estimator Ân for A (for instance Ân(t) = t∨ (1− t)∨
{Âcfg

n (t; p) ∧ 1} at p(t) = 1 − t).

2. In (18), replace A by Ân to find an estimate σ̂n of the covariance function
σ of the limiting process ζ in Theorem 4.2.

13



3. In (19), replace σ by σ̂n to find estimates (ân, b̂n) of the variance-minimizing
functions (a, b).

4. Finally, estimate A by Âcfg
n (·; ân, b̂n).

The following theorem states that the asymptotic distribution of the adaptive
estimator Âcfg

n (·; ân, b̂n) is under general conditions the same as when the true
variance-minimizing functions of (19) would have been used instead.

Theorem 5.2 Under the assumptions and notations of Theorem 4.2, if A(1/2) >
1/2, and if the initial estimator Ân satisfies t ∨ (1 − t) ≤ Ân(t) ≤ 1 and
‖Ân − A‖∞ = op(1), then

n1/2
(

Âcfg
n (·; ân, b̂n) − A

)

 ALa0,b0ζ,

where ân and b̂n are constructed according to the adaptive procedure above and
with (a0, b0) the minimizers of Var(La,bζ) as a and b range over C[0, 1].

A simple, alternative way to construct ân and b̂n is to estimate the unknown
covariance σ(s, t) in (19) not by the plug-in estimator based on (18) and an
initial estimate Ân but by the sample covariance of the pairs (log ξi(s), log ξi(t))
for i = 1, . . . , n. In fact, whatever estimator is used for the covariance function,
as long as it is uniformly consistent, the asymptotic distribution of the adaptive
estimator for A is as stated in Theorem 5.2.

A similar adaptive construction is feasible for Pickands-type estimators. The
comparisons of asymptotic variances in case of independence in Section 5.2,
however, raise the suspicion that the adaptive Pickands-type estimator will in
general have a higher asymptotic variance than the adaptive CFG-type estima-
tor.

Comment. The adaptive estimator with covariance function estimated by
sample covariances can be cast within two familiar statistical procedures.

(i) It can be seen as the least-squares estimator in the linear regression model

− log ξi(t) − γ

= β0(t) log A(t) + β1(t){− log(Xi) − γ} + β1(t){− log(Yi) − γ}+ εi(t)

with regression coefficients (β0(t), β1(t), β2(t)) = (log A(t), a0(t), b0(t)).
(ii) It can also be seen as the constrained maximum empirical likelihood esti-

mator in the sense of Owen (1991), section 3.1. In the latter approach, log A(t)
would be estimated by

∑n
i=1 pni(− log ξi(t)− γ) with pn = (pn1, . . . , pnn) being

the maximizer of the binomial likelihood
∏n

i=1 pni subject to the constraints
pni ≥ 0,

∑n
i=1 pni = 1,

∑n
i=1 pni(log Xi + γ) = 0 and

∑n
i=1 pni(log Yi + γ) = 0.

14



6 Proofs

6.1 Proofs for Section 2

Proof of Lemma 2.1

Fix 0 ≤ y < ∞. Since A is absolutely continuous, the function x 7→ S(x, y) is
absolutely continuous as well with

S(x, y) =

∫ ∞

x

S(z, y)Q

(

y

z + y

)

dz.

for 0 ≤ x < ∞, with Q(r) = A(r) − rA′(r). Hence for 0 ≤ x < ∞,

E[1(X > x) Pr[Y > y | X ]] = S(x, y)

= E

[

1(X > x)eXS(X, y)Q

(

y

X + y

)]

.

Since this holds for all 0 ≤ x < ∞, in fact

E[f(X) Pr[Y > y | X ]] = E

[

f(X)eXS(X, y)Q

(

y

X + y

)]

for all integrable f , whence the result. �

Proof of Lemma 2.2

First, fix 0 < x < ∞ and b < 0. We have

E[ebY | X = x] =

∫ 1

0

Pr[ebY > u | X = x]du

=

∫ 1

0

Pr[Y < b−1 log(u) | X = x]du

= 1 −
∫ 1

0

Pr[Y > b−1 log(u) | X = x]du

= 1 + b

∫ ∞

0

Pr[Y > y | X = x]ebydy.

For 0 ≤ b < 1, it is not hard to see that

E[ebY | X = x] = 1 + b

∫ ∞

0

Pr[Y > y | X = x]ebydy

as well. Put Q(t) = A(t) − tA′(t) for 0 ≤ t ≤ 1. By Lemma 2.1, the integral on
the right is equal to

∫ ∞

0

Pr[Y > y | X = x]ebydy

= ex

∫ ∞

0

exp

{

−(x + y)A

(

y

x + y

)}

Q

(

y

x + y

)

ebydy,
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which by changing variables t = y/(x + y) can be rewritten as
∫ ∞

0

Pr[Y > y | X = x]ebydy

=

∫ 1

0

x exp

{(

1 − A(t) − bt

1 − t

)

x

}

Q(t)
dt

(1 − t)2
.

Therefore,

E[eaX+bY ] = E[eaXE[ebY | X ]]

= E[eaX ] + b

∫ 1

0

E

[

X exp

{(

1 + a − A(t) − bt

1 − t

)

X

}]

Q(t)
dt

(1 − t)2
.

Since the distribution of X is standard exponential, E[eαX ] = (1 − α)−1 and
E[XeαX ] = (1 − α)−2 for α < 1, and infinity otherwise. Hence the inner
expectation in the previous display is finite if and only if A(t)−a(1− t)− bt > 0
for all 0 ≤ t ≤ 1. For such a and b,

E
[

eaX+bY
]

=
1

1 − a
+ b

∫ 1

0

Q(t)

{A(t) − a(1 − t) − bt}2
dt.

Finally, the integral on the right-hand side can be manipulated as follows:
∫ 1

0

A(t) − tA′(t)

{A(t) − a(1 − t) − bt}2
dt

=

∫ 1

0

dt

A(t) − a(1 − t) − bt
dt +

∫ 1

0

a(1 − t) + bt − tA′(t)

{A(t) − a(1 − t) − bt}2
dt

=

∫ 1

0

dt

A(t) − a(1 − t) − bt
dt + a

∫ 1

0

dt

{A(t) − a(1 − t) − bt}2

−
∫ 1

0

t
{A(t) − a(1 − t) − bt}′
{A(t) − a(1 − t) − bt}2

dt

= a

∫ 1

0

dt

{A(t) − a(1 − t) − bt}2
+

1

1 − b
,

the last equality following from partial integration. �

6.2 Proofs for Section 3

Proof of Theorem 3.1

Convergence of the finite-dimensional distributions follows immediately from
the multivariate central limit theorem. The proof for the covariance function in
(11) is given below. An alternative proof for tightness than the one by Deheuvels
(1991) goes as follows.

Let P be the probability distribution of (X, Y ) in (1), and let Pn be the
empirical distribution of the sample (Xi, Yi), i = 1, . . . , n. For 0 ≤ t ≤ 1, let

ft(x, y) =
x

t
∧ y

1 − t
, (x, y) ∈ (0,∞). (24)
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Observe that Pft = 1/A(t) and ξ̄n(t) = Pnft for all positive integer n and all
0 ≤ t ≤ 1.

Put F = {ft : 0 ≤ t ≤ 1}. According to Theorem 2.6.8 of van der Vaart and
Wellner (1996), the class F is P -Donsker: First, it is has a P -square integrable
envelope function because 0 ≤ ft(x, y) ≤ 2(x∨y) for all 0 ≤ t ≤ 1 and all (x, y) ∈
(0,∞)2. Second, it is point-wise separable since t 7→ ft(x, y) is continuous for
all (x, y) ∈ (0,∞)2. Third, it is a Vapnik-C̆ervonenkis subgraph (VC) class by
repeated applications of Lemmas 2.6.15 and 2.6.18 of van der Vaart and Wellner
(1996).

Let `∞([0, 1]) be the class of bounded, real-valued functions on [0, 1]. Equip
`∞([0, 1]) with the topology of uniform convergence. The property that F is
P -Donsker means weak convergence of the empirical processes

ηn =
(

n1/2 (Pnft − Pft)
)

t∈[0,1]
 η (25)

in `∞([0, 1]); here, we identified F with [0, 1]. The process η is a tight, centered
Gaussian process on [0, 1] with bounded sample paths and with covariance func-
tion (11). By Example 1.5.10 of van der Vaart and Wellner (1996), its sample
paths are uniformly continuous with respect to the standard-deviation semi-
metric

ρ(s, t) =
(

E[{η(s) − η(t)}2]
)1/2

for (s, t) ∈ [0, 1]2. Using (11), it is not difficult to see that there exists a positive
constant C such that

E[{η(s) − η(t)}2] = Var(ξ(s) − ξ(t)) ≤ C|t − s|

for all (s, t) ∈ [0, 1]2. Hence the sample paths of η are continuous with respect
to the Euclidean distance on [0, 1], so that η, like ηn, actually takes its values
in the subspace C[0, 1] of `∞([0, 1]). By Theorem 1.3.10 of van der Vaart and
Wellner (1996), we can conclude that the weak convergence in (25) also holds
true in C[0, 1]. �

Proof of equation (11)

Fix 0 < s ≤ t < 1. Since (1 − s)t ≥ s(1 − t),

ξ(s)ξ(t) =

(

X

1 − s
∧ Y

s

)(

X

1 − t
∧ Y

t

)

=
X2

(1 − s)(1 − t)
∧ XY

(1 − s)t
∧ Y 2

st
.

Hence

E[ξ(s)ξ(t)] =

∫ ∞

0

Pr[ξ(s)ξ(t) > z]dz

=

∫ ∞

0

Pr[X2 > (1 − s)(1 − t)z, XY > (1 − s)tz, Y 2 > stz]dz.
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From Lemma 2.1, we have Pr[Y > y | X = x] = exg(x, y) with g(x, y) =
S(x, y)Q(w), where Q(w) = A(w)−wA′(w) and w = y/(x+y). By the previous
display,

E[ξ(s)ξ(t)]

=

∫ ∞

0

E[1{X2 > (1 − s)(1 − t)z}Pr[Y > (1 − s)tz/X ∨ (stz)1/2 | X ]]dz

=

∫ ∞

0

∫ ∞

0

1{x2 > (1 − s)(1 − t)z}g
(

x, (1 − s)tz/x ∨ (stz)1/2
)

dxdz.

Change variables (x, z) = (x, ux2) and put v(u) = (1 − s)tu ∨ (stu)1/2 to get

E[ξ(s)ξ(t)] =

∫ 1
(1−s)(1−t)

u=0

∫ ∞

x=0

g (x, v(u)x) x2dxdu.

Observe that g(x, vx) = exp{−(1 + v)A(w)x}Q(w) with w = v/(1 + v). Hence,
denoting w(u) = v(u)/(1 + v(u)),

E[ξ(s)ξ(t)] =

∫ 1
(1−s)(1−t)

u=0

Q(w(u))

∫ ∞

x=0

x2 exp{−(1 + v(u))A(w(u))x}dxdu

= 2

∫ 1
(1−s)(1−t)

0

Q(w(u))

{(1 + v(u))A(w(u))}3
du.

Obviously, (1 − s)tu > (stu)1/2 if and only if u > s(1 − s)−2t−1. Since 0 < s ≤
t < 1 also implies s(1 − s)−2t−1 ≤ (1 − s)−1(1 − t)−1,

E[ξ(s)ξ(t)] = 2

∫ s
(1−s)2t

0

Q
(

(stu)1/2

1+(stu)1/2

)

{

(

1 + (stu)1/2
)

A
(

(stu)1/2

1+(stu)1/2

)}3 du

+ 2

∫ 1
(1−s)(1−t)

s
(1−s)2t

Q
(

(1−s)tu
1+(1−s)tu

)

{

(1 + (1 − s)tu) A
(

(1−s)tu
1+(1−s)tu

)}3 du.

In the first integral, put w = (stu)1/2/
(

1 + (stu)1/2
)

; in the second integral,
put w = (1 − s)tu/(1 + (1 − s)tu). The result is

E[ξ(s)ξ(t)] =
4

st

∫ s

0

w
Q(w)

A3(w)
dw +

2

(1 − s)t

∫ t

s

(1 − w)
Q(w)

A3(w)
dw.

Since A is absolutely continuous with density A′, the function w 7→ (w/A(w))2

is absolutely continuous with density w 7→ 2wQ(w)/A3(w). Therefore, the first
term on the right-hand side of the previous display simplifies to

4

st

∫ s

0

w
Q(w)

A3(w)
dw =

2

st

[

(

w

A(w)

)2
]s

0

= 2
s

t

1

A2(s)
,

18



while the second term can be manipulated by partial integration as

2

(1 − s)t

∫ t

s

(1 − w)
Q(w)

A3(w)
dw

=
1

(1 − s)t

[

1 − w

w

(

w

A(w)

)2
]t

s

− 1

(1 − s)t

∫ t

s

(

w

A(w)

)2

d
1 − w

w

=
1 − t

1 − s

1

A2(t)
− s

t

1

A2(s)
+

1

(1 − s)t

∫ t

s

dw

A2(w)
.

Collect the last three displays to get

E[ξ(s)ξ(t) =
s

t

1

A2(s)
+

1 − t

1 − s

1

A2(t)
+

1

(1 − s)t

∫ t

s

dw

A2(w)
.

Finally, use E[ξ(s)] = 1/A(s) to obtain the result for the case 0 < s ≤ t < 1.
The cases s = 0 and t = 1 follow from the case 0 < s ≤ t < 1 by the

continuity of the function t 7→ log ξ(t) and the bounds 0 ≤ ξ(t) ≤ 2(X ∨ Y ). �

Proof of Corollary 3.2

Since the operator La,b is linear and continuous, and since A(0) = 1 = A(1)
implies La,b(1/A) = 1/A − a − b,

n1/2
(

1/Ân(·; a, b) − 1/A
)

= n1/2
(

La,b(ξ̄n) + a + b − 1/A
)

= n1/2
(

La,b(ξ̄n) − La,b(1/A)
)

= L
(

n1/2(ξ̄n − 1/A)
)

 La,bη

in C[0, 1]. In particular, ‖1/Ân(·; a, b) − 1/A‖∞ = op(1). Since 1/2 ≤ A ≤ 1,

n1/2
(

Ân(·; a, b) − A
)

=
n1/2

(

1/Ân(·; a, b) − 1/A
)

1/Ân(·; a, b) · 1/A

 
La,bη

(1/A)2
= A2La,bη

in C[0, 1]. �

6.3 Proofs for Section 4

Proof of Lemma 4.1

Observe that log Âcfg
n (t; p) is equal to

1

n

n
∑

i=1

∫ t

0

1(Wi ≤ w) − w

w(1 − w)
dw − (1 − p(t))

1

n

n
∑

i=1

∫ 1

0

1(Wi ≤ w) − w

w(1 − w)
dw. (26)
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The integrals can be computed explicitly:

∫ t

0

1(Wi ≤ w) − w

w(1 − w)
dw = −

∫ t∧Wi

0

dw

1 − w
+

∫ t

t∧Wi

dw

w

= log{1− (t ∧ Wi)} + log(t) − log{t ∧ Wi}

= log

{

t

(

1 − t

t
∨ 1 − Wi

Wi

)}

.

Since Wi = Yi/(Xi + Yi),

∫ t

0

1(Wi ≤ w) − w

w(1 − w)
dw = log

{

(1 − t) ∨ t
Xi

Yi

}

= log{tXi ∨ (1 − t)Yi} − log(Yi)

= log(Xi) − log{Xi/(1 − t) ∧ Yi/t}. (27)

In particular,
∫ 1

0

1(Wi ≤ w) − w

w(1 − w)
dw = log(Xi) − log(Yi). (28)

Combine (26), (27) and (28) to find the stated expression for log Âcfg
n (t; p). �

Proof of Theorem 4.2

The proof for the expression for the covariance function (18) is given below.
For the rest, the proof is completely analogous to the one of Theorem 3.1, and
we indicate only the appropriate changes. The appropriate class of functions
is now G = {gt : 0 ≤ t ≤ 1}, with gt = log ft and ft as in (24). That G
has a P -square integrable envelope function follows from the bounds x ∧ y ≤
ft(x, y) ≤ 2(x ∨ y). Equation (18) leads to the existence of a positive constant
C such that Var(log ξ(s) − log ξ(t)) ≤ C|t − s| for all (s, t) ∈ [0, 1]2, and this
implies that the sample paths of the limiting process ζ are continuous.

Proof of equation (18)

Fix 0 < s ≤ t < 1. Put u = s/(1 − s) and v = t/(1 − t). Then

E[log ξ(s) log ξ(t)]

= E[{log(uX ∧ Y ) − log(s)}{log(vX ∧ Y ) − log(t)}]
= log(s) log(t) − log(s)E[log(vX ∧ Y )] − log(t)E[log(uX ∧ Y )]

+ E[log(uX ∧ Y ) log(vX ∧ Y )]. (29)

By (4),

E[log(uX ∧ Y )] = E[log ξ(s)] + log(s)

= −γ − log A(s) + log(s), (30)
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and similarly for E[log(vX ∧ Y )]. Further,

E[log(uX ∧ Y ) log(vX ∧ Y )]

= E[{log(Y ) − log(Y/(uX) ∨ 1)}{log(Y ) − log(Y/(vX) ∨ 1)}]
= E[{log(Y )}2] − E[log(Y ) log(Y/(vX) ∨ 1)] (31)

− E[log(Y ) log(Y/(uX) ∨ 1)] + E[log(Y/(uX) ∨ 1) log(Y/(vX) ∨ 1)].

As log(Y ) is a Gumbel random variable, E[{log(Y )}2] = π2/6 + γ2. Moreover,

E[log(Y ) log(Y/(uX) ∨ 1)]

= E[{log(Y/(uX)) + log(uX)} log(Y/(uX) ∨ 1)]

= E[{log(Y/(uX) ∨ 1)}2] + E[log(uX) log(Y/(uX) ∨ 1)], (32)

and similarly for E[log(Y ) log(Y/(vX) ∨ 1)].
We separately treat the two terms on the right of the preceding display.

First, as log(Y/(uX) ∨ 1)2 > z if and only if Y > ue
√

zX for 0 < z < ∞, by
Lemma 2.1, denoting Q(w) = A(w) − wA′(w),

E[{log(Y/(uX) ∨ 1)}2]

=

∫ ∞

0

E
[

Pr[Y > ue
√

zX | X ]
]

dz

=

∫ ∞

0

Q

(

ue
√

z

1 + ue
√

z

)

∫ ∞

0

exp

{

−
(

1 + ue
√

z
)

A

(

ue
√

z

1 + ue
√

z

)

x

}

dxdz.

Calculate the inner integral to obtain

E[{log(Y/(uX) ∨ 1)}2] =

∫ ∞

0

Q
(

ue
√

z

1+ue
√

z

)

(

1 + ue
√

z
)

A
(

ue
√

z

1+ue
√

z

)dz.

A change of variables w = ue
√

z/(1 + ue
√

z) gives

E[{log(Y/(uX) ∨ 1)}2] = 2

∫ 1

s

Q(w)

wA(w)
log

(

1

u

w

1 − w

)

dw

Since Q(w)/(wA(w)) = 1/w − A′(w)/A(w), partial integration gives

E[{log(Y/(uX) ∨ 1)}2] = 2

∫ 1

s

{logA(w) − log(w)} dw

w(1 − w)
. (33)

Second, denoting again Pr[Y > y | X = x] = exg(x, y) with g to be found
from Lemma 2.1,

E[log(Y/(uX) ∨ 1) | X = x] =

∫ ∞

0

Pr[Y > uezx | X = x]dz

= ex

∫ ∞

0

g(x, uezx)dz
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and thus, with Q(w) = A(w) − wA′(w),

E[log(uX) log(Y/(uX) ∨ 1)]

=

∫ ∞

0

log(ux)ex

∫ ∞

0

g(x, uezx)dze−xdx

=
1

u

∫ ∞

0

∫ ∞

0

log(x)g(x/u, ezx)dxdz

=
1

u

∫ ∞

0

Q

(

uez

1 + uez

)
∫ ∞

0

log(x) exp

{

−1 + uez

u
A

(

uez

1 + uez

)

x

}

dxdz.

The inner integral can be calculated explicitly, yielding

E[log(uX) log(Y/(uX) ∨ 1)]

=

∫ ∞

0

Q
(

uez

1+uez

)

(1 + uez) A
(

uez

1+uez

)

[

−γ − log

{

1 + uez

u
A

(

uez

1 + uez

)}]

dz.

Change variables w = uez/(1 + uez) to obtain

E[log(uX) log(Y/(uX) ∨ 1)]

=

∫ 1

s

Q(w)

wA(w)

[

−γ − log

{

A(w)

u(1 − w)

}]

dw

=

∫ 1

s

(

1

w
− A(w)

A′(w)

)

{log(1 − w) + log(u) − γ}dw

−
∫ 1

s

log A(w)
dw

w
+

∫ 1

s

A′(w)

A(w)
log A(w)dw.

The first integral on the right can be rewritten using partial integration, while
the last one can be calculated explicitly, leading to

E[log(uX) log(Y/(uX) ∨ 1)]

= log(s){log A(s) − log(s)} +

∫ 1

s

log(w)
dw

1 − w

−
∫ 1

s

log A(w)
dw

w(1 − w)
− 1

2
(log A(w))2. (34)

A formula for E[log(Y ) log(Y/(uX)∨ 1)] now arises from the combination of
equations (32), (33), and (34). Replace u by v and s by t to get a formula for
E[log(Y ) log(Y/(vX) ∨ 1)] as well. This takes care of the two middle terms in
(31). The last term in (31) can be dealt with as follows: as 0 < u ≤ v < ∞,

E[log(Y/(uX) ∨ 1) log(Y/(vX) ∨ 1)]

= E[{log(v/u) + log(Y/(vx) ∨ 1)} log(Y/(vX) ∨ 1)]

= log(v/u)E[log(Y/(vX) ∨ 1)] + E[{log(Y/(vX) ∨ 1)}2]. (35)
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The first term in (35) is

E[log(Y/(vX) ∨ 1)] = E[log{X/(1− t) ∨ Y/t}] − E[log{X/(1− t)}]
= E[log{Y/t}] − E[log ξ(t)]

= − log(t) + log A(t),

while the second term in (35) can be found through (33) with u and s replaced
by v and t, respectively.

All the terms in (31) have now been computed. In combination with (29)
and (30), this results in a formula for E[log ξ(s) log ξ(t)]. As we already knew
that E[log ξ(s)] = −γ−logA(s), all is in place to compute Cov(log ξ(s), log ξ(t)).
Aggregating all the obtained expressions leads after some manipulation to the
expression in the statement of the lemma.

The cases s = 0 and t = 1 follow from the case 0 < s ≤ t < 1 by the
continuity of the function t 7→ log ξ(t) and the bounds X∧Y ≤ ξ(t) ≤ 2(X∨Y ).

�

Proof of Corollary 4.3

Analogous to the proof of Corollary 3.2. �

6.4 Proofs for Section 5

Proof of Lemma 5.1

This is a consequence of Lemma 6.1 below applied to X = (δ(0), δ(1))′ and
Y = δ(t).

Lemma 6.1 Let Z = (X ′, Y ′)′ be a (p + q)-dimensional random vector with
non-singular covariance matrix

Var(Z) =

(

Σxx Σxy

Σyx Σyy

)

∈ R
(p+q)×(p+q).

Put β = ΣyxΣ
−1
xx ∈ R

q×p. For arbitrary γ ∈ R
q×p,

Var(Y − γX) = Σyy −ΣyxΣ
−1
xx Σxy + (β − γ)Σxx(β − γ)′.

Proof. Assume without loss of generality that X and Y are centered. Then
E[(Y − βX)X ′] = Σyx − βΣxx = 0. Hence for γ ∈ R

q×p,

Var(Y − γX) = E[{(Y − βX) + (β − γ)X}{(Y − βX)′ + X ′(β − γ)′}]
= E[(Y − βX)(Y − βX)′] + (β − γ)Σxx(β − γ)′.

Finally,

E[(Y − βX)(Y − βX)′] = Σyy −Σyxβ′ − βΣxy + βΣxxβ′

= Σyy −ΣyxΣ
−1
xx Σxy.

�

23



Proof of Theorem 5.2

Note that the assumption A(1/2) > 1/2 is needed since otherwise the variance-
minimizing functions (a0, b0) in (19) are not well-defined. We can write

n1/2
(

log Âcfg
n (t; ân, b̂n) − log Âcfg

n (t; a0, b0)
)

= {a0(t) − ân(t)}n1/2 log Âcfg
n (0) + {b0(t) − b̂n(t)}n1/2 log Âcfg

n (1).

As n1/2 log Âcfg
n (0) = Op(1) and n1/2 log Âcfg

n (1) = Op(1) by the central limit

theorem, it is therefore sufficient to show that |ân(t)−a0(t)| = op(1) and |b̂n(t)−
b0(t)| = op(1) uniformly over t ∈ [0, 1]. But since ân and b̂n are constructed
through (19) with σ replaced by σ̂n, it is sufficient that |σ̂n(s, t)−σ(s, t)| = op(1)

uniformly over (s, t) ∈ [0, 1]2. If σ̂n arises by replacing A by Ân in (18), the
result now follows from the stated conditions on Ân. �
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Gumbel, E.J. (1960b) “Bivariate exponential distributions”, Journal of the American

Statistical Association 55, 698–707.

Gumbel, E.J. and Goldstein, N. (1964) “Analysis of empirical bivariate extremal dis-
tributions”, Journal of the American Statistical Association 59, 794–816.

de Haan, L. and Resnick, S.I. (1977) “Limit theory for multivariate sample extremes”,
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 40, 317–337.

Hall, P. and Tajvidi, N. (2000) “Distribution and dependence-function estimation for
bivariate extreme-value distributions”, Bernoulli 6, 835–844.

Hürlimann, W. (2003) “Hutchinson-Lai’s conjecture for bivariate extreme value cop-
ulas”, Statistics & Probability Letters 61, 191–198.

Hutchinson, T.P. and Lai, C.D. (1990) Continuous bivariate distributions, emphasiz-

ing applications. Rumsby Scientific, Adelaide.
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