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Abstract

In this paper we analyze different schemes for obtaining gradient estimates

when the underlying function is noisy. Good gradient estimation is e.g. important

for nonlinear programming solvers. As an error criterion we take the norm of the

difference between the real and estimated gradients. This error can be split up

into a deterministic and a stochastic error. For three finite difference schemes and

two Design of Experiments (DoE) schemes we analyze both the deterministic and

the stochastic errors. We also derive optimal step sizes for each scheme, such that

the total error is minimized. Some of the schemes have the nice property that this

step size also minimizes the variance of the error. Based on these results we show

that to obtain good gradient estimates for noisy functions it is worthwhile to use

DoE schemes. We recommend to implement such schemes in NLP solvers.

Key words: Design of Experiments, finite differences, gradient estimation,

noisy functions

1 Introduction

We are interested in a function f : Rn → R and more specifically its gradient ∇f(x).

The function f is not explicitly known and we cannot observe it exactly. All observations

are the result of function evaluations, which are subject to certain perturbation errors.
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Hence, for a fixed x ∈ R
n we observe an approximation

g(x) = f(x) + ε(x). (1)

The error term ε(x) represents a random component. We assume that the error terms

in (1) are i.i.d. random errors with E[ε(x)] = 0 and V [ε(x)] = σ2, hence the error terms

do not depend on x. Note that g can also be a computer simulation model. Even

deterministic simulation models are often noisy due to all kind of numerical errors.

In this paper we analyze both finite difference schemes and Design of Experiments (DoE)

schemes for obtaining gradient estimations. In all these schemes the gradient is estimated

by observing the function value in several points in the neighborhood of x, using finite

step sizes h. We compare the resulting errors made in the gradient estimations due to

both the presence of noise and the deterministic approximation error (’lack of fit’). It

will appear that DoE schemes are worthwhile alternatives for finite difference schemes

in the case of noisy functions. Moreover, we will derive efficient step sizes for the

different schemes, such that the total error (sum of deterministic and stochastic error)

is minimized. We will compare these step sizes to those which minimize the variance of

the total error.

Gradients play an important role in all kind of optimization techniques. In most non-

linear programming (NLP) codes, first-order or even second-order derivatives are used.

Sometimes these derivatives can be calculated symbolically: in recent years automatic

differentiation has been developed; see e.g. [7] and [3]. Although this is becoming

more and more popular, there are still many optimization techniques in which finite

differencing is used to approximate the derivatives. In almost every NLP code such

finite difference schemes are implemented.

Finite difference schemes have also been applied to problems with stochastic functions.

Kiefer and Wolfowitz [8] were the first to describe the so-called stochastic (quasi) gra-

dients; see also [2]. Methods based on stochastic quasi gradients are still subject of

much research; for an overview see [6]. So, although finite difference schemes originate

from obtaining gradient estimations for deterministic functions, they are also applied to

stochastic functions.

Also in the field of Design of Experiments (DoE), schemes are available for obtaining

gradient estimations. Some popular schemes are full or fractional factorial schemes,

including Plackett-Burman schemes. Contrary to finite differencing, these schemes take
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noise into account. The schemes are such that, for example, the variance of the estima-

tors is as small as possible. However, most DoE schemes assume a special form of the

underlying model, e.g. polynomial, and lack of fit is usually not taken into account.

In [4] and [5] also lack of fit is taken into account besides the noise. In those papers

it is analyzed what happens when the postulated linear (resp. quadratic) model is

misspecified, due to the true model structure being of second (resp. third) order. In these

two papers new DoE schemes are derived by minimizing the integrated mean squared

error for either the predictor or the gradient. However, we think that such estimations

are less valuable for optimization purposes since the integrated mean squared error is

not a good measure for the gradient in one point. Moreover, the underlying assumption

in those papers is still that the real model is quadratic (in [4]) or third order (in [5])

which is not necessarily true.

The remainder of this paper is organized as follows. In Section 2 we analyze three finite

difference schemes for obtaining gradient estimations. In Section 3 we do the same for

two DoE schemes. In Section 4 we compare the errors of all the five schemes. We end

with some conclusions in Section 5.

2 Gradient estimation using finite differencing

2.1 Forward finite differencing

One classical approach to estimate the gradient of f is to apply forward finite differencing

(FFD) to the approximating function g, defined in (1). In this scheme, an estimator of

the partial derivative, ∂f(x)

∂xi

(i = 1, . . . , n), is obtained by

β̂
FFD

i
(h) =

g(x+ hei)− g(x)

h
, h > 0, (2)

where h is the step size and ei is the i-th unit vector. Using (1) and Taylor’s formula,

we can rewrite the estimator as

β̂
FFD

i
=

f(x+ hei)− f(x) + ε(x+ hei)− ε(x)

h
(3)

=
∂f(x)

∂xi
+

1

2
heT

i
∇2f(x+ ζhei)ei +

ε(x+ hei)− ε(x)

h
, (4)

in which 0 ≤ ζ ≤ 1. We are now interested in how good this estimator is. Note that

E[β̂
FFD

i
] =

∂f(x)

∂xi
+O(h) (5)
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VAR[β̂
FFD

i
] =

2σ2

h2
. (6)

The estimators β̂
FFD

i
and β̂

FFD

j
are correlated, because both depend on the random

error ε(x):

Cov[β̂
FFD

i
, β̂

FFD

j
] = E

(
(β̂

FFD

i
−E[β̂

FFD

i
])(β̂

FFD

j
−E[β̂

FFD

j
])
)

=
1

h2
E ((ε(x+ hei)− ε(x))(ε(x+ hej)− ε(x)))

=
1

h2
E
(
ε(x)2

)
=

σ2

h2
, i �= j.

However, we are not only interested in the errors of the individual derivatives, but more

in the error made in the resulting estimated gradient. A logical measure for the quality

of our gradient estimation is the mean squared error:

E

(∥∥∥β̂FFD −∇f(x)
∥∥∥2) .

Not only the expectation is important, but also the variance

V AR

(∥∥∥β̂FFD −∇f(x)
∥∥∥2) ,

since high variance means that we run the risk that the error in a real situation is much

higher (or lower) than expected. Suppose for example that two simulation schemes

have the same expected mean squared error, then we prefer the scheme with the lowest

variance. The variance can also be used in determining the optimal step size h, as we

will see in Section 4. By defining the deterministic error

errorFFD
d

=




f(x+he1)−f(x)

h

...
f(x+hen)−f(x)

h


−∇f(x)

and the stochastic error

errorFFD
s

=




ε(x+he1)−ε(x)

h

...
ε(x+hen)−ε(x)

h




we get

E

(∥∥∥β̂FFD −∇f(x)
∥∥∥2) =

∥∥errorFFD
d

∥∥2 + E
(∥∥errorFFD

s

∥∥2) .



5

From (3) we easily derive that

∥∥errorFFD
d

∥∥2 ≤ 1

4
nh2D2

2,

in which D2 is the maximal second order derivative of f(x). Let us now analyze the

stochastic error. The first part of the following theorem is well-known in the literature;

see ([10]).

Theorem 1 For FFD we have

E
(∥∥errorFFD

s

∥∥2) =
2nσ2

h2

V AR
(∥∥errorFFD

s

∥∥2) =
n

h4
[
n(M4 − σ4) +M4 + 3σ4

]
V AR

(∥∥∥β̂FFD −∇f(x)
∥∥∥2) ≤ V AR

(∥∥errorFFD
s

∥∥2)+ 2nσ2D2

2

in which M4 is the fourth moment of ε(x) in (1), i.e. M4 = E(ε(x)4).

Proof. By defining εi = ε(x + hei), i = 1, ..., n, and ε0 = ε(x), we have for forward

finite differencing

E(
∥∥errorFFD

s

∥∥2) =
1

h2
E

(∑
i

(εi − ε0)
2

)
=

1

h2
E

(∑
i

(ε2
i
+ ε20 − 2εiε0)

)
(7)

=
2nσ2

h2
, (8)

which proves the first part of the theorem. Considering the second part, we have

V AR(
∥∥errorFFD

s

∥∥2) = E(
∥∥errorFFD

s

∥∥4)−E2(
∥∥errorFFD

s

∥∥2). (9)

Let us now concentrate on the first term of the right-hand side of (9):

E(
∥∥errorFFD

s

∥∥4) =
1

h4
E

[∑
i

(ε2
i
+ ε20 − 2εiε0)

∑
j

(ε2
j
+ ε20 − 2εjε0)

]

=
1

h4
[E

(∑
ε2
i

∑
ε2
j

)
+ E

(∑
ε2
i

∑
ε20
)− 2E

(∑
ε2
i

∑
εjε0

)
+E

(∑
ε20

∑
ε2
j

)
+ E

(∑
ε20

∑
ε20
)− 2E

(∑
ε20

∑
εjε0

)
−2E

(∑
εiε0

∑
ε2
j

)− 2E
(∑

εiε0
∑

ε20
)
+ 4E (

∑
εiε0

∑
εjε0)]

=
1

h4
[(nM4 + n(n− 1)σ4) + n2σ4 + 0 + n2σ4 + n2M4 + 0 + 0 + 0 + 4nσ4]

=
1

h4
[n2(M4 + 3σ4) + n(M4 + 3σ4)]

Substituting this result and the square of (8) into (9), we have the second part of the

theorem. To prove the third part, first observe that
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V AR

(∥∥∥β̂FFD −∇f(x)
∥∥∥2) = V AR(

∥∥errorFFD
d

+ errorFFD
s

∥∥2)
= E(

∥∥errorFFD
d

+ errorFFD
s

∥∥4)−E2(
∥∥errorFFD

d
+ errorFFD

s

∥∥2)
=

∥∥errorFFD
d

∥∥4 + E(
∥∥errorFFD

s

∥∥4) + 2
∥∥errorFFD

d

∥∥2E(
∥∥errorFFD

s

∥∥2
+4E((errorFFD

d
)T errorFFD

s
)2

+4E
(∥∥errorFFD

s

∥∥2 (errorFFD
d

)T errorFFD
s

)
+4

∥∥errorFFD
d

∥∥2E(
(
errorFFD

d
)T errorFFD

s

)
−∥∥errorFFD

d

∥∥4 − 2
∥∥errorFFD

d

∥∥2E(
∥∥errorFFD

s

∥∥2)
−E2(

∥∥errorFFD
s

∥∥2)
= V AR(

∥∥errorFFD
s

∥∥2) + 4E((errorFFD
d

)T errorFFD
s

)2 +

4E
(∥∥errorFFD

s

∥∥2 (errorFFD
d

)T errorFFD
s

)
= V AR(

∥∥errorFFD
s

∥∥2) + 4
∑

(errorFFD
d

)2
i
E(errorFFD

s
)2
i
+

4
∑

(errorFFD
d

)
i
E(errorFFD

s
)3
i
. (10)

Further note that

∑
(errorFFD

d
)2
i
E(errorFFD

s
)2
i
≤ n

(
1

4
h2D2

2

)(
2σ2

h2

)
=

1

2
nσ2D2

2 (11)

and

∑
(errorFFD

d
)
i
E(errorFFD

s
)3
i
= 0, (12)

since

E(errorFFD
s

)3
i
=

1

h3
E(εi − ε0)

3 =
1

h2
E

(∑
i

(ε3
i
− 3ε2

i
ε0 + 3εiε

2

0 − ε30)

)
= 0. (13)

Finally, substituting (11) and (12) into (10) results into the third part of the theorem

2.2 Central finite differencing

A variant of the forward finite differencing (FFD) is the central finite differencing (CFD)

approach. In this scheme, an estimation of the partial derivative, ∂f(x)

∂xi
(i = 1, . . . , n), is

obtained by

β̂
CFD

i
(h) =

g(x+ hei)− g(x− hei)

2h
, h > 0, (14)
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where h is the step size and ei is the i-th unit vector. Using (1) we can rewrite the

estimate as

β̂
CFD

i
=

f(x+ hei)− f(x− hei) + ε(x+ hei)− ε(x− hei)

2h
(15)

=
∂f(x)

∂xi
+

h2

12
∇3f(x+ ζ1hei)[ei, ei, ei] +

h2

12
∇3f(x+ ζ2hei)[ei, ei, ei] (16)

+
ε(x+ hei)− ε(x− hei)

2h
, (17)

where the last equality follows from Taylor’s formula

f(x+ hei) = f(x) + h
∂f(x)

∂xi
+

1

2
h2eT

i
∇2f(x)ei +

h3

6
∇3f(x+ ζ1hei)[ei, ei, ei]

in which 0 ≤ ζ1 ≤ 1, and

f(x− hei) = f(x)− h
∂f(x)

∂xi
+

1

2
h2eT

i
∇2f(x)ei − h3

6
∇3f(x+ ζ2hei)[ei, ei, ei]

in which 0 ≤ ζ2 ≤ 1. Let us first analyze the individual derivatives:

E[β̂
CFD

i
] =

∂f(x)

∂xi
+O(h2) (18)

and

VAR[β̂
CFD

i
] =

σ2

2h2
. (19)

Contrary to the FFD estimations, the estimations β̂
CFD

i
and β̂

CFD

j
are not correlated:

Cov[β̂
CFD

i
, β̂

CFD

j
] = E

(
(β̂

CFD

i
−E[β̂

CFD

i
])(β̂

CFD

j
−E[β̂

CFD

j
])
)

=
1

h2
E[(ε(x+ hei)− ε(x− hei))(ε(x+ hej)− ε(x− hej))]

= 0, i �= j.

We now analyze the mean squared error criterion

E

(∥∥∥β̂CFD −∇f(x)
∥∥∥2) ,

and its variance

V AR

(∥∥∥β̂CFD −∇f(x)
∥∥∥2) .
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By defining

errorCFD
d

=




f(x+he1)−f(x−he1)

2h

...
f(x+hen)−f(x−hen)

2h


−∇f(x)

and

errorCFD
s

=




ε(x+he1)−ε(x−he1)

2h

...
ε(x+hen)−ε(x−hen)

2h




we get

E

(∥∥∥β̂CFD −∇f(x)
∥∥∥2) =

∥∥errorCFD
d

∥∥2 + E
(∥∥errorCFD

s

∥∥2)

From (15) it is easy to verify that

∥∥errorCFD
d

∥∥2 ≤ 1

36
nh4D2

3,

in which D3 is the maximal third order derivative of f(x). Let us now analyze the

stochastic error. The first part of the following theorem is well-known in the literature;

see ([10]).

Theorem 2 For CFD we have:

E
(∥∥errorCFD

s

∥∥2) =
nσ2

2h2

V AR
(∥∥errorCFD

s

∥∥2) =
n

8h4
[
M4 + σ4

]
V AR

(∥∥∥β̂CFD −∇f(x)
∥∥∥2) ≤ V AR(

∥∥errorCFD
s

∥∥2) + 1

18
nh2σ2D2

3.

Proof. By defining εi = ε(x+hei), ε−i = ε(x−hei), i = 1, ..., n, and ε0 = ε(x) we have

for CFD

E(
∥∥errorCFD

s

∥∥2) =
1

4h2
E

(∑
i

(εi − ε−i)
2

)
=

1

4h2
E

(∑
i

(ε2
i
+ ε2

−i
− 2εiε−i)

)
(20)

=
nσ2

2h2
, (21)

which proves the first part of the theorem. For the variance we have:

V AR(
∥∥errorCFD

s

∥∥2) = E(
∥∥errorCFD

s

∥∥4)− E2(
∥∥errorCFD

s

∥∥2) (22)
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Let us now concentrate on the first term of the right-hand side in (22):

E(
∥∥errorCFD

s

∥∥4) =
1

16h4
E
∑
i

(ε2
i
+ ε2

−i
− 2εiε−i)

∑
j

(ε2
j
+ ε2

−j
− 2εjε−j)

=
1

16h4
[E

(∑
ε2
i

∑
ε2
j

)
+ E

(∑
ε2
i

∑
ε2
−j

)− 2E
(∑

ε2
i

∑
εjε−j

)
+E

(∑
ε2
−i

∑
ε2
j

)
+ E

(∑
ε2
−i

∑
ε2
−j

)− 2E
(∑

ε2
−i

∑
εjε−j

)
−2E

(∑
εiε−i

∑
ε2
j

)− 2E
(∑

εiε−i
∑

ε2
−j

)
+ 4E (

∑
εiε−i

∑
εjε−j)]

=
1

16h4
[(nM4 + n(n− 1)σ4) + n2σ4 + 0 + n2σ4 + (nM4 + n(n− 1)σ4)

+0 + 0 + 0 + 4nσ4]

=
1

8h4
(
nM4 + n(2n + 1)σ4

)
Substitution of this result and the square of (21) into formula (22) proves the second

part of the theorem. The last part of the theorem follows similar as in the proof of the

last part of the previous theorem:

V AR

(∥∥∥β̂CFD −∇f(x)
∥∥∥2) = V AR(

∥∥errorCFD
s

∥∥2) + 4
∑

(errorCFD
d

)2
i
E(errorCFD

s
)2
i
+

4
∑

(errorCFD
d

)
i
E(errorCFD

s
)3
i

≤ V AR(
∥∥errorCFD

s

∥∥2) + 4n(
1

36
h4D2

3)(
σ2

2h2
) + 0

= V AR(
∥∥errorCFD

s

∥∥2) + 1

18
nh2σ2D2

3.

This concludes the proof.

The result of this theorem can be simply checked for a special case. Suppose that all

ε(x) are standard normal distributed. Then by normalizing the stochastic error through

the variance (see (19)), we know that

2h2

σ2
∥∥errorCFD

s

∥∥2 (23)

is the sum of n squared stochastic normally distributed variables, since
(
errorCFD

s

)
i
=

εi−ε−i is normally distributed. Hence (23) is χ2(n) distributed, with expectation n and

variance 2n. So, we get

E(
∥∥errorCFD

s

∥∥2) = n
σ2

2h2
,

which is exactly the result of the theorem. Furthermore,

VAR(
∥∥errorCFD

s

∥∥2) = 2n
σ4

4h4
=

nσ4

2h4
,

which also agrees with the result of the theorem, since for a normal distribution we have

M4 = 3σ4.
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2.3 Replicated central finite differencing

To decrease the stochastic error one can repeat central finite differencing K times. We

call this replicated central finite differencing (RCFD). Of course the deterministic error

will not change by doing replications. The next theorem shows the expectation and

variance of the resulting stochastic error.

Theorem 3 For RCFD we have:

E
(∥∥errorRCFD

s

∥∥2) =
nσ2

2h2K

VAR
(∥∥errorRCFD

s

∥∥2) =
n

8h4K3

[
M4 + (4K − 3)σ4

]
V AR

(∥∥∥β̂RCFD −∇f(x)
∥∥∥2) ≤ V AR(

∥∥errorRCFD
s

∥∥2) + 1

18K
nh2σ2D2

3.

Proof. By defining εik = εk(x+ hei), ε−i,k = εk(x− hei), i = 1, ..., n, k = 1, ...,K and

ε0k = εk(x), where k denotes the k-th replicate, we have for RCFD

E(
∥∥errorRCFD

s

∥∥2) =
1

4h2K2
E

(∑
i

(∑
k

(εik − ε−i,k)

)2
)

(24)

=
1

4h2K2
E

(∑
i,k,l

(εikεil − ε−i,kεi,l + ε−i,kε−i,l − εi,kε−i,l)

)
(25)

=
nσ2

2h2K
, (26)

which proves the first part of the theorem. For the variance we have:

VAR(
∥∥errorRCFD

s

∥∥2) = E(
∥∥errorRCFD

s

∥∥4)− E2(
∥∥errorRCFD

s

∥∥2) (27)
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Let us now concentrate on the first term of the right-hand side in (27):

E(
∥∥errorRCFD

s

∥∥4) =
1

16h4K4
E

(∑
i,k,l

(εikεil − ε−i,kεi,l + ε−i,kε−i,l − εi,kε−i,l)

)2

=
1

16h4K4
[E

(∑
i,k,l

εikεil

)2

+ E

(∑
i,k,l

εikεil
∑
i,k,l

ε−i,kε−i,l

)

+E

(∑
i,k,l

ε−i,kεi,l

)2

+ E

(∑
i,k,l

ε−i,kεi,l
∑
i,k,l

εi,kε−i,l

)

+E

(∑
i,k,l

ε−i,kε−i,l
∑
i,k,l

εikεil

)
+ E

(∑
i,k,l

ε−i,kε−i,l

)2

+E

(∑
i,k,l

εi,kε−i,l
∑
i,k,l

ε−i,kεi,l

)
+ E

(∑
i,k,l

εi,kε−i,l

)2

]

=
1

16h4K4
[[KnM4 +K2n(n− 1)σ4 + 3nK(K − 1)σ4] + [K2n2σ4]

+[K2nσ4] + [K2nσ4]

+[K2n2σ4] + [KnM4 +K2n(n− 1)σ4 + 3nK(K − 1)σ4]

+[K2nσ4] + [K2nσ4]]

=
1

16h4K4
[2KnM4 + (2K2n(n− 1) + 6nK(K − 1) + 2K2n2 + 4K2n)σ4]

Substitution of this result and the square of formula (26) into formula (27) proves the

second part of the theorem. Finally, the third part can be derived almost identical as

in the proof of the previous theorem.

3 Gradient estimation using DoE

3.1 Plackett-Burman

We now analyze Design of Experiments (DOE) schemes for estimating the gradient.

Let us start with the Plackett-Burman scheme. Suppose that we have a set of vectors

dk ∈ R
n (k = 1, . . . , N) with ‖dk‖ = 1 and that we observe g(x+ hdk) for fixed x ∈ R

n

and h > 0. Define the matrix

X :=



1 hdT1
...

...

1 hdT
N


 . (28)



12

Now suppose that N, with n+1 ≤ N ≤ n+4, is a multiple of four. Then the Plackett-

Burman scheme can be written as

H =



1 pT1
...

...

1 pT
N


 ,

where pk ∈ {−1, 1}n. This so-called Hadamard matrix has the property HTH = NI,

where I is the identity matrix. For more information, see [1] or [8] and for an example

see the Appendix.

Now let the vectors dk in (28) be defined by

dk =
pk√
n
, k = 1, . . . , N.

It then follows that

XTX = diag
(
N, h

2
N

n
, . . . , h

2
N

n

)
.

The vector containing the function value of f at x and the gradient can be estimated

by the OLS estimator

(
β̂
PB

0

β̂
PB

)
= (XTX)−1XT




g(x+ hd1)
...

g(x+ hdN)




= (XTX)−1XT




f(x+ hd1)
...

f(x+ hdN )


+ (XTX)−1XT




ε(x+ hd1)
...

ε(x+ hdN)


 .

First note that

E[β̂
PB

0 ] = f(x) +O(h2), V [β̂
PB

0 ] = 1

n+1
σ2

E[β̂
PB

i
] = ∂f(x)

∂xi
+O(

√
nh), V [β̂

PB

i
] = nσ

2

(n+1)h2
, i = 1, . . . , n.

(29)

Furthermore, since the columns of X are orthogonal, we have

Cov[β̂
PB

i
, β̂

PB

j
] = 0, i �= j.
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Now defining D as the X matrix excluding the first column, and

errorPB
d

=
n

h2N
DT




f(x+ hd1)
...

f(x+ hdN)


−∇f(x)

errorPB
s

=
n

h2N
DT




ε(x+ hd1)
...

ε(x+ hdN)




we have

E

(∥∥∥β̂PB −∇f(x)
∥∥∥2) =

∥∥errorPB
d

∥∥2 + E
(∥∥errorPB

s

∥∥2) .

Let us now concentrate on the deterministice error. Using Taylor’s formula

f(x+ hdk) = f(x) + hdT
k
∇f(x) +

h2

2
dT
k
∇2f(x+ ζhdk)dk.

in which 0 ≤ ζ ≤ 1, it is easy to derive that

∥∥errorPB
d

∥∥2 ≤ n2h2D2
2

4

in which D2 is an overall upper bound for the second order derivative. Concerning the

expectation and the variance of the stochastic error we have the following theorem.

Theorem 4 For Plackett-Burman designs we have:

E
(∥∥errorPB

s

∥∥2) =
n2σ2

Nh2

V AR
(∥∥errorPB

s

∥∥2) =
n4

N 3h4

(
M4 + (

2N

n
− 3)σ4

)

V AR

(∥∥∥β̂PB −∇f(x)
∥∥∥2) ≤ V AR(

∥∥errorPB
s

∥∥2) + n3σ2D2
2

N

Proof. For the Plackett-Burman schemes we have:

errorPB
s

=
n

h2N
DTν =

√
n

hN
P Tν

in which P is the H matrix excluding the first column, and

ν =




ε(x+ hd1)
...

ε(x+ hdN))


 .
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We can now derive the following:

E(
∥∥errorPB

s

∥∥2) =
n

h2N2
E(

∥∥P Tν
∥∥2) (30)

=
n

h2N2
nNσ2

=
n2σ2

Nh2
(31)

which proves the first part of the theorem. For the variance we have:

VAR(
∥∥errorPB

s

∥∥2) = E(
∥∥errorPB

s

∥∥4)−E2(
∥∥errorPB

s

∥∥2). (32)

Let us now concentrate on the first term of the right-hand side of (32):

E(
∥∥errorPB

s

∥∥4) =
n2

h4N4
E

(∑
j

(∑
i

(Pijεi)
∑
k

(Pkjεk)

))2

=
n2

h4N4
E

(∑
i,j,k

PijPkjεiεk

)2

=
n2

h4N4
E

( ∑
i,j,k,r,s,t

PijPkjPsrPtrεiεkεsεt

)

=
n2

h4N4
[2E

( ∑
i,j,k �=i,r

PijPkjPirPkrε
2

i
ε2
k

)

+E

( ∑
i,j,s�=i,r

PijPijPsrPsrε
2

i
ε2
s

)

+E

(∑
i,j,r

PijPijPirPirε
4

i

)
],

where the last equality holds since the expectations of the terms εiεkεsεt, ε
3
i
εk and ε2

i
εkεs

are zero. We now concentrate on the three terms in the last equality. For the first term

we have

E

( ∑
i,j,k �=i,r

PijPkjPirPkrε
2

i
ε2
k

)
=

( ∑
i,j,r �=j

PijPir

∑
k �=i,

PkjPkr

)
σ4 +

(∑
i,j

PijPij

∑
k �=i,

PkjPkj

)
σ4

=
∑

i,j,r �=j

PijPir(−PijPir) + n(N − 1)σ4

= −n(n− 1)N + n(N − 1)σ4

= nN(N − n)σ4.

Moreover, for the second term it holds

E

( ∑
i,j,s�=i,r

PijPijPsrPsrε
2

i
ε2
s

)
= n2N(N − 1)σ4.
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For the third term we have:

E

(∑
i,j,r

PijPijPirPirε
4

i

)
= n2NM4.

Substituting these results and the square of (31) into (32), we have proved the second

part of the theorem. The third part of the theorem follows similar as in the proof of the

last part of Theorem 1:

V AR

(∥∥∥β̂PB −∇f(x)
∥∥∥2) = V AR(

∥∥errorBP
s

∥∥2) + 4
∑

(errorPB
d

)2
i
E(errorPB

s
)2
i
+

4
∑

(errorPB
d

)
i
E(errorPB

s
)3
i

≤ V AR(
∥∥errorPB

s

∥∥2) + 4n(
1

4
nh2D2

2)(
nσ2

Nh2
) + 0

= V AR(
∥∥errorPB

s

∥∥2) + n3σ2D2
2

N
.

This concludes the proof.

3.2 Factorial designs

Factoral designs are based on the same principle as Plackett-Burman scheme, but now

N = 2n for full factorial designs and N = 2n−p, p ≤ n, for fractional factorial designs;

for more information see [1] or [8], and for an example see the Appendix.

For the deterministic error we can derive a better bound than for Plackett-Burman

schemes. Again we have

errorFD
d

=
n

h2N
DT




f(x+ hd1)
...

f(x+ hdN)


−∇f(x).

Now using Taylor’s formula

f(x+hdk) = f(x)+hdT
k
∇f(x)+

h2

2
dT
k
∇2f(x)dk+

h3

6
∇3f(x+ ζhdk)[dk, dk, dk], (33)

in which 0 ≤ ζ ≤ 1, and using the fact that in factorial designs for each vector dk there

exists exactly one other vector dj in the factorial design scheme such that dk = −dj, we

obtain by adding these two vectors:

|f(x+ hdk)− f(x+ hdj)| ≤ 2hdT
k
∇f(x) +

h3

3
D3
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in which D3 is an overall upper bound for the third order derivative. Combining all N/2

pairs of vectors we get

∥∥errorFD
d

∥∥2 =

∥∥∥∥∥∥∥∥
n

h2N
DT




f(x+ hd1)
...

f(x+ hdN)


−∇f(x)

∥∥∥∥∥∥∥∥

2

≤ n2h4D2
3

36
.

Concerning the stochastig error we can derive the following results.

Theorem 5 For factorial designs we have:

E
(∥∥errorFD

s

∥∥2) =
n2σ2

Nh2

V AR
(∥∥errorFD

s

∥∥2) =
n4

N 3h4

(
M4 + (

2N

n
− 3)σ4

)

V AR

(∥∥∥β̂FD −∇f(x)
∥∥∥2) ≤ V AR(

∥∥errorFD
s

∥∥2) + 1

9N
n3h2σ2D2

3.

Proof. Concerning the first and second part we can derive the same results as for

Plackett-Burman designs in the same way. We therefore omit the proof of these parts.

The third part of the theorem follows similar as in the proof of the last part of Theorem

1:

V AR

(∥∥∥β̂FD −∇f(x)
∥∥∥2) = V AR(

∥∥errorFD
s

∥∥2) + 4
∑

(errorFD
d

)2
i
E(errorFD

s
)2
i
+

4
∑

(errorFD
d

)
i
E(errorFD

s
)3
i
.

≤ V AR(
∥∥errorFD

s

∥∥2) + 4n(
1

36
nh4D2

3)(
nσ2

Nh2
) + 0.

= V AR(
∥∥errorFD

s

∥∥2) + 1

9N
n3h2σ2D2

3.

4 Comparison of the five schemes

In the previous sections we have derived both the deterministic and the stochastic esti-

mation errors for several schemes; see Table 1. The deterministic errors are increasing in

the step size h, while the stochastic errors are decreasing in h. The expressions for the

total error are convex functions in h. It is straightforward to calculate the optimal step
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sizes for each scheme such that the total error is minimized. The results are mentioned

in the last column of Table 1.

Of course, usually we do not know the values for σ,D2 and D3. However, for a practical

problem we might estimate these values by sampling. Moreover, these optimal step sizes

give some indication; e.g., the step sizes are increasing in σ and decreasing in N,D2,

and D3, which agrees with our intuition.

#eval ‖errord‖
2

E(‖errors‖
2
) opt. he

Forward FD n+1 1

4
nh

2
D2

2
2nσ2

h2
4

√
8
σ2

D
2
2

Central FD 2n 1

36
nh

4
D2
3

nσ2

2h2
6

√
9
σ2

D2
3

Replicated CFD 2nK 1

36
nh

4
D2
3

nσ2

2h2K
6

√
9
σ2

KD2
3

Plackett-Burman n+1≤N≤n+4 1

4
n2h2D2

2
n2σ2

Nh2
4

√
4
σ2

ND2
2

Factorial N=2n−p 1

36
n2h4D2

3
n2σ2

Nh2
6

√
18

σ2

ND2
3

Table 1: Overview of the number of evaluations and the errors for both finite difference and

DoE schemes, and the optimal step sizes such that the total error is minimized.

V AR(‖errors‖
2
) V AR(‖errord+errors‖

2
) opt. hv

Forward FD n

h4
[n(M

4
−σ4)+M

4
+3σ4]

n

h4
[n(M

4
−σ4)+M

4
+3σ4]+2nσ2D2

2
−

Central FD n

8h4
(M

4
+σ4) n

8h4
(M

4
+σ4)+

1

18
nh2σ2D2

3 6

√
9(M4+σ

4)

2σ2D2
3

Replicated CFD n

8h4K3
[M4+(4K−3)σ4] n

8h4K3
[M4+(4K−3)σ4]+ 1

18K
nh2σ2D2

3 6

√
9(M4+(4K−3)σ

4)

2K2σ2D2
3

Plackett-Burman n4

N3h4
(M4+(

2N

n
−3)σ4) n4

N3h4
(M4+(

2N

n
−3)σ4)+

n3σ2D2
2

N

−

Factorial n4

N3h4
(M4+(

2N

n
−3)σ4) n4

N3h4
(M4+(

2N

n
−3)σ4)+ 1

9N
n3h2σ2D2

3 6

√
18n(M4+(

2N
n
−3)σ4)

N2σ2D2
3

Table 2: Overview of the variances of the error vectors for both finite difference and DoE

schemes and the optimal step sizes to minimize the variance.

From the literature we know that CFD gives a much lower deterministic error than

FFD. Concerning the stochastic error we see from the table that the CFD scheme is

four times better than FFD. However, the number of evaluations is two times more. To

save evaluations, we can use a Plackett-Burman design: its number of evaluations is

similar to the FFD scheme, but the stochastic error is two times lower; the determin-

istic error, however, is n times higher. Full or fractional factorial designs have a much
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lower deterministic error than Plackett-Burman schemes. The stochastic error is simi-

lar, but since the number of evaluations is higher than for a Plackett-Burman scheme

the stochastic error can be made much lower by increasing N . However this results in

more evaluations. Observe also that the deterministic errors for Plackett-Burman and

factorial schemes are independent of the number of evaluations, N . For the factorial

schemes this also means that we can decrease the stochastic error by increasing N , with-

out affecting the deterministic error. Concerning the variances of the stochastic errors it

appears that CFD, Plackett-Burman and factorial schemes are much better than FFD.

When comparing RCFD and factorial schemes it appears that the results are similar,

since for a good comparison we have to take N = 2nK. Note, however, that in the case

of numerical noise, e.g. in many deterministic simulation, RCFD is not applicable, since

replicates will lead to the same outcomes. For such cases factorial schemes are useful.

In Table 2 we have listed the variance of the stochastic errors and the total errors.

Note that in the calculations for the optimal step sizes he in Table 1 the variances of

the errors are not taken into account. One can also determine a different step size by

e.g. minimizing the expected error plus a certain number times the standard deviation.

It can easily be verified that this will increase the optimal step sizes h. In the last

column of Table 2 we have calculated the optimal step size such that the total variance

is minimized. This calculation is not possible for FFD and Plackett-Burman since those

variances are decreasing functions in h. The optimal stepsizes hv for the other schemes

resemble the corresponding he. Suppose for example that all ε(x) are standard normal

distributed, then it can easily be verified that hv =
6
√
2he ≈ 1.1he, since then M4 = 3σ4.

This means that the step size he which minimizes the total error equals approximately

the step size which minimizes the upper bound for the variance of the error. This

property is an advantage of the schemes CFD, RCFD and FD above CFD and PB.

In this paper we focus on the estimation of gradients. However, note that CFD, Plackett-

Burman, and factorial schemes also deliver better estimations for the function value.

These better estimations can also be valuable for NLP solvers.

Concerning the amount of work needed to calculate the gradient estimation, we empha-

size that the estimations based on the DoE schemes need nN additions/subtractions

and n multiplications, while FFD and CFD need n additions/subtractions and n mul-

tiplications and RCFD needs nK additions/subtractions and n multiplications. So, the

extra amount of work needed in DOE schemes is limited



19

5 Conclusions

In the previous sections we have discussed several methods for estimating the gradient

of a function that is subject to i.i.d. random errors. The error that we make when

estimating the gradient can be split into two parts: a deterministic error and a stochastic

error. The deterministic error arises because we do not observe the function exactly at

x, but in the neighborhood of x using finite step sizes h. The stochastic error arises

because of the noise. We have derived upper bounds for both the deterministic and

stochastic errors. Based on these upper bounds we have discussed the advantages and

disadvantages of three finite difference schemes and two DoE schemes.

The conclusion is that when the underlying function is indeed noisy the (fractional or

full) factorial DoE schemes are useful to reduce the stochastic error. Such schemes do

not vary the variables one at a time, but vary all variables simultaneously. The errors

for factorial schemes are exactly the same as for replicated central finite differences, but

in case of numerical noise we can use factorial schemes while replicates are meaningless.

Plackett-Burman schemes are useful when the evaluations are expensive. The stochastic

errors of these schemes are two times lower than FFD, but the deterministic error is

higher. Moreover, our error analysis indicates how to choose the step size h. It also

shows that for CFD, RCFD and FD-schemes the step sizes which minimizes the total

error, also minimizes the variance of the error. The DoE schemes can be easily included

in the NLP solvers to estimate gradients.
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relevant literature.
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Appendix: DoE schemes

In Table 3, four evaluation schemes are given for n = 4. Note that for Plackett-Burman

we have N = 8, which means that 8 evaluations are needed. In this case the number

of evalations for Plackett-Burman is the same as for CFD; in general, however, the

number of evaluations needed by CFD is more. Moreover, it is easy to verify that the

orthogonality property holds for this specific full factorial and Plackett-Burman scheme.

In fact, Plackett-Burman schemes were developed to reduce the number of evaluations,

but such that the orthogonality property still holds. There is no need for tabulating the

DoE schemes, since there is a simple procedure for generating such schemes.
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FFD CFD Plackett-Burman Full factorial

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1 1 0 0 0 1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

2 0 1 0 0 0 1 0 0 -1 1 -1 1 -1 -1 -1 1

3 0 0 1 0 0 0 1 0 -1 -1 1 1 -1 -1 1 -1

4 0 0 0 1 0 0 0 1 -1 1 1 -1 -1 -1 1 1

5 -1 0 0 0 -1 -1 -1 -1 -1 1 -1 -1

6 0 -1 0 0 -1 1 -1 1 -1 1 -1 1

7 0 0 -1 0 -1 -1 1 1 -1 1 1 -1

8 0 0 0 -1 -1 1 1 -1 -1 1 1 1

9 1 -1 -1 -1

10 1 -1 -1 1

11 1 -1 1 -1

12 1 -1 1 1

13 1 1 -1 -1

14 1 1 -1 1

15 1 1 1 -1

16 1 1 1 1

Table 3: Evaluation schemes for n = 4 factors.


