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The two-stage constrained equal awards and

losses rules for multi-issue allocation situations∗

Silvia Lorenzo-Freire1,2 Balbina Casas-Méndez3

Ruud Hendrickx4

Abstract

This paper considers two-stage solutions for multi-issue allocation situ-
ations. Characterisations are provided for the two-stage constrained equal
awards and constrained equal losses rules, based on the properties of com-
position and path independence.

Key words: multi-issue allocation situations, constrained equal awards, con-
strained equal losses, two-stage solutions
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1 Introduction

Calleja et al. (2004) introduced multi-issue allocation situations to model
bankruptcy-like problems in which the estate is divided not on the basis of
a single claim for each agent, but several claims resulting from so-called issues.
As a solution to such a multi-issue allocation situation they present two exten-
sions of the run-to-the-bank rule for bankruptcy situations by O’Neill (1982).
These extensions deal with the question what the issues should signify for the
division of the estate in a sophisticated way, using compensation payments.

One drawback of their approach, however, is that although the compensa-
tions form an elegant mechanism to deal with the issues, the rules are difficult
to compute. Moreover, the characterisations of the two rules (using O’Neill-like
consistency properties) are rather complex.
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González-Alcón et al. (2003) solve this problem by constructing a different
extension of the run-to-the-bank rule. The idea behind their two-stage ap-
proach is simple: firstly, one should explicitly allocate money to all the issue,
and secondly, the amount allocated to each issue should be divided among the
players.1 They provide a relatively easy characterisation in terms of a property
called issue consistency.

This two-stage approach is also taken in Casas-Méndez et al. (2002). They
study bankruptcy problems with a priori unions and use the same idea to first
allocate money to the unions and then redivide the money within each union.

In this paper, we apply the two-stage idea to the constrained equal awards
and constrained equal losses rule. We characterise the two-stage constrained
equal awards rule using properties based on equal treatment (cf. O’Neill (1982)),
composition (cf. Young (1988)), independence of irrelevant claims (cf. Curiel
et al. (1987)). Our characterisation of the two-stage constrained equal losses
rule is based on duality and uses properties based on path-independence (cf.
Moulin (1987)) and composition of minimum rights (cf. Curiel et al. (1987)). A
surprising feature of these characterisations is that the two-stage construction
does not follow directly from the properties used, but is a consequence of the
strength of the composition and path independence properties.

The outline of the paper is as follows. We present some necessary prelim-
inaries in section 2 and introduce two-stage multi-issue allocation rules. We
characterise the two-stage contrained equal awards rule in section 3 and the
constrained equal losses rule in section 4.

2 Two-stage rules for multi-issue allocation si-
tuations

2.1 Preliminaries

In this preliminary subsection we give some basic definitions related to multi-
issue allocation situations that we use through our paper.

A bankruptcy problem (O’Neill (1982)) is a triple (N, E, c) such that N =
{1, . . . , n} is the set of players, E ≥ 0 represents the estate, which is the available
amount to satisfy the players’ claims, and c ∈ RN

+ is the vector of claims, where

1In fact, González-Alcón et al. (2003) do not simply apply the bankruptcy run-to-the-bank
rule twice, but rather the underlying run-to-the-bank (marginal) vectors and then take the
average.
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ci denotes the claim of player i. The main assumption of a bankruptcy problem
is that the estate is not sufficient to satisfy all the claims, ie, 0 ≤ E ≤

∑

i∈N

ci.

A bankruptcy rule is a function ψ which associates with every bankruptcy
problem (N, E, c) a vector ψ(N, E, c) ∈ RN such that

• 0 ≤ ψ(N, E, c) ≤ c,

•
∑

i∈N

ψi(N, E, c) = E.

A multi-issue allocation (MIA) situation (Calleja et al. (2004)) is a 4-tuple
(R,N,E, C), where R = {1, . . . , r} and N = {1, . . . , n} are the sets of issues
and players, respectively, E ≥ 0 is the estate to be divided and C ∈ RR×N

+ is
the matrix of claims. An element cki represents the amount claimed by player
i ∈ N according to the issue k ∈ R. We assume that there is a positive claim in
each issue and for each player. Moreover, we assume 0 ≤ E ≤

∑

k∈R

∑

i∈N

cki. Note

that a bankruptcy problem is a MIA situation with |R| = 1. For all k ∈ R,
Ck = (cki)i∈N denotes the vector of claims according to issue k ∈ R.

A multi-issue allocation (MIA) solution Ψ is a function that associates with
every MIA situation (R, N, E, C) a matrix Ψ(R, N,E, C) ∈ RR×N satisfying
reasonability and efficiency:

• 0 ≤ Ψ(R, N, E,C) ≤ C,

•
∑

k∈R

∑

i∈N

Ψki(R, N, E, C) = E.

Note that Calleja et al. (2004) and González-Alcón et al. (2003) consider vector-
valued MIA solutions (in RN ) rather than matrix solutions. We need solutions
in RR×N in order to properly define composition and path independence, both
of which deal with reduced claims matrices. Of course, any matrix outcome
gives rise to a vector solution by just adding up all the amounts over the issues.

A bankruptcy situation with a priori unions (Casas-Méndez et al. (2002))
gives rise to a MIA situation, where the issues correspond to the unions. In the
associated claims matrix, the issues are disjoint in the sense that each player
has a claim on just one issue.

2.2 Two-stage MIA rules

In this subsection we define a natural two-stage procedure to define MIA solu-
tions from bankruptcy rules.

3



Definition 1 Let ψ be a bankruptcy rule and let (R, N,E, C) be a MIA situa-
tion. The two-stage solution Ψψ(R,N,E, C) is the MIA solution obtained from
the following two-stage procedure.

First stage: Consider the so-called quotient bankruptcy problem (R, E, cR),
where cR = (cR

1 , . . . , cR
r ) ∈ RR denotes the vector of total claims in the issues,

ie, cR
k =

∑

i∈N

cki for all k ∈ R. Divide the amount E among the issues using

bankruptcy rule ψ. In this way, we obtain ψ(R, E, cR) ∈ RR.
Second stage: For each k ∈ R, consider a new bankruptcy problem for the

players (N, ψk(R,E, cR), Ck) and apply the same bankruptcy rule ψ to this new
bankruptcy problem. So, we obtain ψ(N,ψk(R, E, cR), Ck) ∈ RN for each k ∈ R.

The next figure shows the whole procedure:

(N, R,E, C) -

?
(R,E, cR) -

ψ
ψ(R, E, cR) -

-ψ
s1

-ψ
sr

...





(N, ψ1(R,E, cR), C1)
...

(N, ψr(R,E, cR), Cr)





6

Ψψ

Ψψ(N,R, E, C) =




s1
1 . . . s1

n
...

...
sr
1 . . . sr

n




From the definition, it is easy to deduce that each two-stage rule Ψψ satisfies
consistency in two stages. A rule Ψ satisfies consistency in two stages if for each
MIA situation (R,N, E, C) and for all k ∈ R, i ∈ N ,

Ψki(R, N,E, C) = Ψki

({k}, N, Ψk1(R, {1}, E, cR), Ck

)
.

Consistency in two stages is equivalent with the combination of two well-known
properties from the bankruptcy literature. The first of these is the quotient
property. A rule Ψ satisfies the quotient property if for each MIA situation
(R,N,E, C) and for all k ∈ R,

∑

i∈N

Ψki(R, N, E, C) = Ψk1(R, {1}, E, cR).

This property means that the total quantity assigned to an issue in a MIA
situation is equal to the amount assigned to the same issue in the so-called
quotient MIA situation, which is the MIA situation with only one player, where
the claim of each issue equals the sum of all the players’ claims in that issue.
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The second related property is consistency within the issues, which is a
direct translation of the (self-)consistency property introduced by Aumann and
Maschler (1985). A MIA rule Ψ satisfies consistency within the issues if for each
MIA situation (R,N, E, C) and for all k ∈ R, i ∈ N ,

Ψki(R, N, E, C) = Ψki


{k}, N,

∑

j∈N

Ψkj(R, N, E,C), Ck


 .

This property says that redividing the total amount within an issue using the
same rule Ψ should yield the same outcome.

3 The two-stage constrained equal awards rule

In this section we provide a characterisation of the two-stage constrained equal
awards rule. The constrained equal awards rule for bankruptcy situations
(CEA) is defined by CEAi(N,E, c) = min{λ, ci} for all i ∈ N , where λ is
such that

∑

i∈N

min{λ, ci} = E. The two-stage rule ΨCEA is then given, for all

(R,N,E, C) and for all k ∈ R, i ∈ N , by

ΨCEA
ki (R, N,E, C) = min{βk, cki}

where for all k ∈ R, βk is such that
∑

i∈N

min{βk, cki} = min{λ, cR
k } and λ is such

that
∑

k∈R

min{λ, cR
k } = E.

Note that ΨCEA differs from another natural extension of the CEA rule,
defined by

Ψki(R,N,E, C) = min{λ, cki} (1)

for every i ∈ N and k ∈ R with λ such that
∑

k∈R

∑

i∈N

min{λ, cki} = E. A big

distinction between the two extensions is that the latter does not satisfy the
quotient property.

Below, we list some properties which we will use to characterise the two-stage
CEA rule.

Composition. A rule Ψ satisfies composition if for all (R,N,E, C) and for
all 0 ≤ E′ ≤ E we have

Ψ(R, N,E, C) = Ψ(R, N, E′, C) + Ψ(R, N, E − E′, C −Ψ(R, N, E′, C)).

5



According to this property, we can divide the total estate among the issues and
the players using two different procedures, which result in the same outcome.
In the first procedure, we divide the total estate directly using Ψ. In the other
procedure, we first divide a part E′ of the estate and then divide remainder
E − E′ on the basis of the remaining claims, both times using Ψ.

Independence of irrelevant claims. A rule Ψ satisfies independence of irrele-
vant claims if for each MIA situation (R, N, E,C) we have

Ψ(R, N, E, C) = Ψ(R, N, E,CE),

where CE ∈ RR×N
+ is such that cE

ki = min{cki, E} for all k ∈ R and i ∈ N .
This property says that truncating each claim to the estate does not influence

the outcome.
Equal treatment for the players within an issue. A rule Ψ satisfies this

property if for each MIA situation (R, N, E,C), for all k ∈ R and i, j ∈
N such that cki = ckj , Ψki(R, N, E, C) = Ψkj(R, N, E,C).

Equal treatment for the issues. A rule Ψ satisfies equal treatment for the
issues if for all MIA situation (R, N, E, C), for all k, k′ ∈ R such that cR

k =
cR
k′ ,Ψk1(R, {1}, E, cR) = Ψk′1(R, {1}, E, cR).

Proposition 1 The two-stage constrained equal awards rule, ΨCEA, satisfies
the properties of composition, independence of irrelevant claims, equal treat-
ment for the players within an issue, equal treatment for issues and the quotient
property.

Proof: We will only check that ΨCEA satisfies the properties of composition and
independence of irrelevant claims. The remaining properties follow immediately
from the definitions. Let (R,N,E,C) be a MIA situation.
a) Composition.
As composition is satisfied by CEA for bankruptcy problems, taking (R, {1}, E, cR)
we have that for all 0 ≤ E′ ≤ E :

ΨCEA(R, {1}, E, cR) = ΨCEA(R, {1}, E′, cR)+

ΨCEA(R, {1}, E − E′, cR −ΨCEA(R, {1}, E′, cR)).

Let k ∈ R. Again we apply composition with 0 ≤ ΨCEA
k (R, {1}, E′, cR) ≤

ΨCEA
k (R, {1}, E, cR):

ΨCEA({k}, N, ΨCEA
k (R, {1}, E, cR), Ck) =

ΨCEA({k}, N, ΨCEA
k (R, {1}, E′, cR), Ck)+
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+ΨCEA({k}, N, ΨCEA
k (R, {1}, E, cR)−ΨCEA

k (R, {1}, E′, cR), C ′k),

where C ′k = Ck −ΨCEA({k}, N, ΨCEA
k (R, {1}, E′, cR), Ck).

Therefore
ΨCEA({k}, N, ΨCEA

k (R, {1}, E, cR), Ck) =

ΨCEA({k}, N, ΨCEA
k (R, {1}, E′, cR), Ck)+

+ΨCEA({k}, N, ΨCEA
k (R, {1}, E − E′, cR −ΨCEA(R, {1}, E′, cR)), C ′k),

where C ′k = Ck −ΨCEA({k}, N, ΨCEA
k (R, {1}, E′, cR), Ck).

Finally, using the definition of ΨCEA and gathering the results of all issues
in a matrix, we obtain

ΨCEA(R,N,E, C) = ΨCEA(R, N, E′, C)+

+ΨCEA(R,N,E − E′, C −ΨCEA(R, N, E′, C)).

b)Independence of irrelevant claims.
Using the definition of ΨCEA and the fact that the CEA rule for bankruptcy
problems is independent of irrelevant claims, we get for all k ∈ R and i ∈ N

ΨCEA
ki (R, N, E,CE) =

= ΨCEA
ki ({k}, N, ΨCEA

k1 (R, {1}, E, (cE)R), CE
k )

= ΨCEA
ki ({k}, N, ΨCEA

k1 (R, {1}, E, ((cE)R)E), CE
k )

= ΨCEA
ki ({k}, N, ΨCEA

k1 (R, {1}, E, (cR)E), CE
k )

= ΨCEA
ki ({k}, N, ΨCEA

k1 (R, {1}, E, cR), CE
k )

= ΨCEA
ki ({k}, N, ΨCEA

k1 (R, {1}, E, cR), (CE
k )Ψ

CEA
k1 (R,{1},E,cR))

= ΨCEA
ki ({k}, N, ΨCEA

k1 (R, {1}, E, cR), CΨCEA
k1 (R,{1},E,cR)

k )

= ΨCEA
ki ({k}, N, ΨCEA

k1 (R, {1}, E, cR), Ck)

= ΨCEA
ki (R, N, E, C). ¤

Theorem 1 There is only one rule which satisfies the properties of composition,
independence of irrelevant claims, equal treatment for the players within an
issue, equal treatment for issues and quotient property: the two-stage constrained
equal awards rule ΨCEA.

Proof: In view of Proposition 1, we only need to prove uniqueness. Let
(R,N,E, C) be a MIA situation and let Ψ be a rule satisfying the five properties.
We divide the proof into two parts. In part I, we show that CEA should be
applied in the quotient problem, ie,

Ψ(R, {1}, E, cR) = ΨCEA(R, {1}, E, cR). (2)
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In part II, we show that CEA should be used within each issue. Part I follows
the proof of Dagan (1996), but is repeated here to facilitate part II.

Part I:
We consider the corresponding quotient problem (R, {1}, E, cR) and assume,
without loss of generality, that 0 ≤ cR

1 ≤ cR
2 ≤ . . . ≤ cR

r .
If E ≤ cR

1 := E1, then because of the properties of independence of irrelevant
claims and equal treatment for the issues, the estate is split into equal parts and,
as a result, (2) holds.

If E1 < E ≤ cR
1 + cR

1 (1− 1
r ) := E2, then the first case together with com-

position yields

Ψ(R, {1}, E, cR) = ΨCEA(R, {1}, E1, cR) +

+Ψ(R, {1}, E − E1, cR −ΨCEA(R, {1}, E1, cR))

and E − E1 ≤ cR
1 (1− 1

r ) = cR
1 − ΨCEA

11 (R, {1}, E1, cR). Again, because of
independence of irrelevant claims and equal treatment for the issues, we divide
the amount E − E1 into identical parts and hence

Ψ(R, {1}, E − E1, cR −ΨCEA(R, {1}, E1, cR)) =

= ΨCEA(R, {1}, E − E1, cR −ΨCEA(R, {1}, E1, cR))

and, given that ΨCEA satisfies composition, (2) holds.
Continuing this procedure with Et := Et−1 + cR

1 (1− 1
r )t−1, t ≥ 2, we obtain

(2) for all E < rcR
1 . Furthermore, since a rule that satisfies composition is

continuous in the estate, the statement also holds for E = rcR
1 .

The next step is to show (2) if rcR
1 < E ≤ rcR

1 + (r − 1)(cR
2 − cR

1 ). To show
this, we repeat the previous procedure, with rcR

1 + (cR
2 − cR

1 ) taking the role of
E1, rcR

1 +(cR
2 −cR

1 )+(cR
2 −cR

1 )(1− 1
r−1 ) taking the role of E2, and so on. Using

composition, we first divide rcR
1 according to the first step and next we divide

the remainder equally among issues {2, . . . , r}. We use the same limit argument
as in the first step to obtain (2) for all rcR

1 < E ≤ rcR
1 + (r − 1)(cR

2 − cR
1 ).

We repeat this procedure, making one issue drop out in each step, until (2)
is shown for all possible estates. Then, by the quotient property,

∑

i∈N

Ψki(R,N, E, C) = ΨCEA
k (R, {1}, E, cR)

for all k ∈ R.
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Part II:
Define Nk = {i ∈ N : cki > 0} and ρk = |Nk|mini∈Nk

cki for all k ∈ R

and define ρ = mink∈R ρk. Without loss of generality, assume that claim c11

determines this minimum. Then rρ is the minimum estate to fully sustain claim
c11 according to ΨCEA. We first show that

Ψ(R,N, E, C) = ΨCEA(R, N, E,C) (3)

if E ≤ rρ and afterwards show it for E > rρ.

i) In case E ≤ rρ, take E1 = mink∈R mini∈Nk
cki. Note that this minimum is

not necessarily attained by c11. First, suppose that it is. If E ≤ E1, then part
I, independence of irrelevant claims and equal treatment for the players within
an issue imply (3). Then Ψki(R, N,E,C) = E

r|Nk| for all k ∈ R, i ∈ N . Next,
take E2 = E1 + mink∈R mini∈Nk

(
cki −ΨCEA

ki (R, N, E1, C)
)
. If E1 < E ≤ E2,

then by composition and the previous step, we have

Ψ(R, N, E, C) = ΨCEA(R, N, E1, C) +

+Ψ(R,N, E − E1, C −ΨCEA(R, N, E1, C)).

Then

E − E1 ≤ min
k∈R

min
i∈Nk

(
cki −ΨCEA

ki (R, N, E1, C)
)

= c11 −ΨCEA
11 (R,N,E1, C),

where the equality follows from the fact that the minimum locations for ρ and
E1 coincide. So, E2 = c11+c11(1− 1

r|N1| ). Hence, we can continue the procedure
as described in part I to show that (3) holds if E ≤ r|N1|c11 = rρ.

Next, suppose that the minimum locations for ρ and E1 do not coincide.
Then we start with the same procedure as in the previous case. The difference
is that now we cannot conclude that in each step, the minimum remaining claim
is in the same position. Two things can happen. The easy case occurs if after
a finite number of steps the estate is smaller than all remaining claims. In this
case, the procedure stops and we have (3) as a consequence of independence of
irrelevant claims, part I and equal treatment of the players within an issue.

In the other case, we need to apply a similar limit argument as before. From
the construction of ρ it follows that the remaining claim for player 1 in issue 1 is
the first to reach zero in our procedure, wherever the minimal remaining claim is
located in each step. So, at some stage in the procedure, the minimal remaining
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claim must shift to the (1,1)-position2 and stay there. From this point on, we
are faced with the easy situation with stationary minimum location as described
above and we conclude, using the same limit argument, that (3) holds for all
E ≤ rρ.3

ii) If E > rρ, we use composition to obtain

Ψ(R,N,E, C) = ΨCEA(R,N, rρ, C) +

+Ψ(R, N, E − rρ, C −ΨCEA(R, N, rρ, C)).

Note that in the matrix of remaining claims, there is at least one more zero than
in the original claims matrix. For these remaining claims, we again define Nk

and ρk for all k ∈ R and ρ in the same way and we reapply the procedure. The
only thing that we have to take care of is that there might be an issue with only
zero claims remaining. In this case, this issue is not taken into account when
determining ρ. When the estate is allocated, the players automatically receive
zero in this issue because of reasonability of Ψ and the estate is divided among
the issues according to part I.

Hence, in each step, we can apply the procedure to show that (3) holds for
ever increasing estates. Since in each step at least one remaining claim becomes
zero, we finish in a finite number of steps and conclude that (3) holds for all
possible estates. ¤

A nice feature of the characterisation in Theorem 1 is that although the
two-stage CEA rule satisfies consistency in two stages, we only need the quo-
tient property and not consistency within the issues. Apparently, composition
for MIA solutions is quite a strong generalisation of composition for bankruptcy
rules. A more straightforward, but less interesting characterisation could be
obtained by including consistency within the issues and weakening composition
by replacing it with composition between the issues and composition within the
issues.

In the remainder of this section, we show that the properties we have men-
tioned in Theorem 1 are necessary.

First, the rule defined by (1) satisfies all properties in the theorem except
the quotient property.

2It is possible that it first shifts to other positions, but this does not affect the argument.
3In fact, the only difference with the previous situation is that at the start of the procedure,

the estate is divided at a different pace. This does not effect the total division in the limit.
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Both the two-stage constrained equal losses rule (which we will discuss in
the next section) and the two-stage proportional rule (cf. O’Neill (1982)) satisfy
the properties of composition, equal treatment for the issues, equal treatment
for the players within an issue and the quotient property. Noting that the
constrained equal losses rule and the proportional rule for bankruptcy problems
satisfy composition and equal treatment, the proof is similar to the proof for
the two-stage constrained equal awards rule. However, neither of these rules is
independent of irrelevant claims.

On the other hand, the recursive completion rule (cf. O’Neill (1982)) in two
stages, the contested garment consistent rule (cf. Aumann and Maschler (1985))
in two stages and the adjusted proportional rule (cf. Curiel et al. (1987)) in two
stages satisfy independence of irrelevant claims, equal treatment for the issues,
equal treatment for the players within an issue and quotient problem but do
not satisfy the property of composition.

Let (R,N,E, C) be a multi-issue allocation situation and σ ∈ Π(N) (the
set of orders over N). We define a rule using the following procedure. First,
we consider the quotient bankruptcy problem (R, E, cR) and divide the amount
E among the issues using the bankruptcy rule CEA. In this way, we obtain
CEAk(R, E, cR) for every k ∈ R. Second, for all k ∈ R, consider a new bank-
ruptcy problem for the players, (N, CEAk(R, E, cR), Ck), and apply the bank-
ruptcy rule fσ, defined by

fσ
i (N,E, c) = = min



max



0, E −

∑

j:σ−1(j)<σ−1(i)

cj



 , ci





for every i ∈ N , where σ(p) denotes the agent in position p according to the
order σ. In this way, we have that for all i ∈ N and for all k ∈ R,

Ψki(R, N, E,C) = min



max



0,min{λ, cR

k } −
∑

j:σ−1(j)<σ−1(i)

ckj



 , cki





with λ such that
∑

k∈R

min{λ, cR
k } = E.

This multi-issue allocation solution satisfies all the properties we have mentioned
before, except equal treatment for the players within an issue. We can easily
check that this rule satisfies the properties of independence of irrelevant claims,
equal treatment for the issues and the quotient property. To prove that this
rule satisfies composition, it suffices to show that f satisfies composition in the
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context of bankruptcy problems4. Take a bankruptcy problem (N, E, c) and an
estate E′ with 0 ≤ E′ ≤ E. For every i ∈ N , we have that

fσ
i (N, E − E′, c− fσ(N,E′, c))

= min



max



0, E − E′ −

∑

j:σ−1(j)<σ−1(i)

[cj − fσ
j (N, E′, c)]



 , ci − fσ

i (N, E′, c)





with

fσ
i (N,E′, c) = min



max



0, E′ −

∑

j:σ−1(j)<σ−1(i)

cj



 , ci



 .

Moreover, we know that
∑

j:σ−1(j)<σ−1(i)

fσ
j (N,E′, c)

=





E′ if E′ −
∑

j:σ−1(j)<σ−1(i)

cj ≤ 0,

∑

j:σ−1(j)<σ−1(i)

cj if E′ −
∑

j:σ−1(j)<σ−1(i)

cj > 0,

and then,

max



0, E − E′ −

∑

j:σ−1(j)<σ−1(i)

[cj − fσ
j (N, E′, c)]





= max



0, E −max



E′,

∑

j:σ−1(j)<σ−1(i)

cj









= max



0, E −

∑

j:σ−1(j)<σ−1(i)

cj



−max



0, E′ −

∑

j:σ−1(j)<σ−1(i)

cj



 .

Thus,

fσ
i (N, E − E′, c− fσ(N,E′, c))

= min



max



0, E −

∑

j:σ−1(j)<σ−1(i)

cj





4A similar argument as for ΨCEA can then be made to show that this MIA solution satisfies
composition.
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−max



0, E′ −

∑

j:σ−1(j)<σ−1(i)

cj



 , ci − fσ

i (N,E′, c)





= min



max



0, E −

∑

j:σ−1(j)<σ−1(i)

cj



− fσ

i (N, E′, c), ci − fσ
i (N,E′, c)





= min



max



0, E −

∑

j:σ−1(j)<σ−1(i)

cj



 , ci



− fσ

i (N,E′, c)

= fσ
i (N, E, c)− fσ

i (N,E′, c),

where the second equality follows from distinguishing between cases. Hence, we
conclude that fσ satisfies composition.

Let (R, N, E,C) be a multi-issue allocation situation and let τ ∈ Π(R).
We define a rule using the following procedure. First we consider the bank-
ruptcy problem (R, E, cR) and divide the amount E among the issues using
the bankruptcy rule fτ . In this way, we obtain fk(R, E, cR) for every k ∈ R.
Second, for all k ∈ R, consider the new bankruptcy problem for the players,
(N, fk(R,E, cR), Ck), and apply the bankruptcy rule CEA. In this way, we
have that for all i ∈ N and for all k ∈ R,

Ψki(R, N,E,C) = min{βk, cki}

with βk such that
∑

i∈N

min{βk, cki} = min



max



0, E −

∑

`:τ−1(`)<τ−1(k)

cR
`



 , cR

k



.

This rule satisfies all the properties in Theorem 1 except equal treatment for
the issues.

4 The two-stage constrained equal losses rule

This section considers the constrained equal losses rule, defined for a bankruptcy
problem (N,E, c) by CELi(N, E, c) = max{0, ci − λ} for all i ∈ N , where λ

is such that
∑

i∈N

max{0, ci − λ} = E. The two-stage extenstion ΨCEL is then

given, for all (R,N, E, C) and all k ∈ R and i ∈ N , by

ΨCEL
ki (R, N, E,C) = max{0, cki − βk},

where for all k ∈ R, βk is such that
∑

i∈N

max{0, cki − βk} = max{0, cR
k − λ} and

λ is such that
∑

k∈R

max{0, cR
k − λ} = E.

13



We now mention some properties for MIA solutions, which we use to char-
acterise the two-stage constrained equal losses rule.

Path independence. A MIA solution Ψ satisfies path independence if for each
MIA situation (R,N, E, C) and for all E′ ∈ R such that E′ ≥ E,

Ψ(R, N, E, C) = Ψ(R, N,E, Ψ(R, N,E′, C)).

If a rule Ψ satisfies path independence, we can divide the estate using two
procedures yielding the same result. The first procedure is to divide the money
directly using Ψ. In the second procedure, we first divide a bigger estate E′ ≥ E

and then use the outcome Ψ(N, R, E′, C) as claims matrix to divide the real
estate E, both times using Ψ.

Composition of minimum rights. A MIA solution Ψ satisfies composition of
minimum rights if for each MIA situation (R, N, E,C)

Ψ(R,N, E, C) = m(R, N, E, C)

+Ψ

(
R, N, E −

∑

k∈R

∑

i∈N

mki(R, N, E,C), C −m(R, N,E, C)

)
,

where the minimum right of player i in issue k is given by mki(R,N, E, C) =

max





0, E −
∑

`∈R,j∈N

(`,j)6=(k,i)

c`j





.

Duality. A MIA solution Ψ∗ is the dual of another MIA solution Ψ if for
each MIA situation (R,N, E, C)

Ψ∗(R, N,E, C) = C −Ψ

(
R,N,

∑

k∈R

∑

i∈N

cki − E, C

)
.

This property asserts that one rule is the dual of another one if it assigns to each
player in each issue what this player demands minus what this agent obtains
dividing the total losses according to the other rule. A rule Ψ is called self-dual
if Ψ∗ = Ψ.

The following lemma follows immediately from the observation that both
CEA and CEL are dual rules for bankruptcy situations.

Lemma 1 (ΨCEA)∗ = ΨCEL.

The property P ∗ is the dual property of P if and only if for all MIA solution
Ψ that satisfies property P the dual MIA solution Ψ∗ satisfies property P ∗. The
next two lemmas are extensions of results from Herrero and Villar (2001). The
proofs are similar.
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Lemma 2 If the MIA solution Ψ is characterised by means of independent
properties, then the dual MIA solution Ψ∗ can be characterised with the dual
properties. Moreover, these dual properties are independent.

Lemma 3

• Composition and path independence are dual properties.

• Independence of irrelevant claims and composition of minimum rights are
dual properties.

• The quotient property, equal treatment for the players within an issue and
equal treatment in the issues are self-dual.

Using the two previous lemmas and our characterisation of the two-stage con-
strained equal awards rule, we characterise the constrained equal losses rule in
the following theorem.

Theorem 2 There is only one rule which satisfies the properties of path inde-
pendence, composition of minimum rights, equal treatment for the players within
an issue, equal treatment for issues, and the quotient property. This rule is the
two-stage constrained equal losses rule ΨCEL.

Similar to the comment following Theorem 1, one can state that path indepen-
dence for MIA solutions is quite a strong generalisation of path independence
for bankruptcy rules.
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