
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2005–32 

 
 

UNIQUENESS CONDITIONS FOR THE INFINITE-PLANNING 
HORIZON OPEN-LOOP LINEAR QUADRATIC DIFFERENTIAL 

GAME 
 

By Jacob Engwerda 
 

February 2005 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6651936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Uniqueness conditions for the infinite-planning horizon
Open-Loop Linear Quadratic Differential Game.

Jacob Engwerda
Tilburg University

Dept. of Econometrics and O.R.
P.O. Box: 90153, 5000 LE Tilburg, The Netherlands

e-mail: engwerda@uvt.nl

February, 2005

Abstract: In this note we consider the open-loop Nash linear quadratic differential game with an
infinite planning horizon. The performance function is assumed to be indefinite and the underlying
system affine. We derive both necessary and sufficient conditions under which this game has a
unique Nash equilibrium.

Keywords: linear-quadratic games, open-loop Nash equilibrium, affine systems, solvability condi-
tions, Riccati equations.
Jel-codes: C61, C72, C73.

1 Introduction

In the last decades, there is an increased interest in studying diverse problems in economics and
optimal control theory using dynamic games. In particular in environmental economics and macro-
economic policy coordination, dynamic games are a natural framework to model policy coordination
problems (see e.g. the books and references in Dockner et al. [4] and Engwerda [10]). In these
problems, the open-loop Nash strategy is often used as one of the benchmarks to evaluate outcomes
of the game. In optimal control theory it is well-known that, e.g., the issue to obtain robust control
strategies can be approached as a dynamic game problem (see e.g. [2]).

In this note we consider the open-loop linear quadratic differential game. This problem has been
considered by many authors and dates back to the seminal work of Starr and Ho in [16] (see, e.g.,
[14], [15], [5], [12], [11], [1], [17], [6], [7], [3] and [13]). More specifically, we study in this paper
the (regular indefinite) infinite-planning horizon case. The corresponding regular definite (that is
the case that the state weighting matrices Qi (see below) are semi-positive definite) problem has
been studied, e.g., extensively in [6] and [7]. Whereas [13] studied the regular indefinite case using
a functional analysis approach, under the assumption that the uncontrolled system is stable. In
particular, these papers show that, in general, the infinite-planning horizon problem does not have
a unique equilibrium. Moreover [13] shows that whenever the game has more than one equilibrium,
there will exist an infinite number of equilibria. Furthermore the existence of a unique solution is
related to the existence of a so-called strongly stabilizing solution of the set of coupled algebraic
Riccati equations, see (4) below.

1



In [9] these results were generalized for stabilizable systems using a state-space approach, for
a performance criterion that is a pure quadratic form of the state and control variables. In this
note we generalize this result for performance criteria that also include ”cross-terms”, i.e. products
of the state and control variables. Performance criteria of this type often naturally appear in
economic policy making and have been studied, e.g., in [8] and [13]. In this paper we, moreover,
assume that the linear system describing the dynamics is affected by a deterministic variable. For a
finite-planning horizon the corresponding open-loop linear quadratic game has been studied in [3].

The outline of this note is as follows. Section two introduces the problem and contains some
preliminary results. The main results of this paper are stated in Section three, whereas Section four
contains some concluding remarks. The proofs of the main theorems are included in the Appendix.

2 Preliminaries

In this paper we assume that the performance criterion player i = 1, 2 likes to minimize is:

Ji(u1, u2) :=

∫ ∞

0

[xT (t), uT
1 (t), uT

2 (t)]Mi


 x(t)
u1(t)
u2(t)


 dt, (1)

where Mi =


 Qi Vi Wi

V T
i R1i Ni

W T
i NT

i R2i


 and Rii > 0, i = 1, 2,

and x(t) is the solution from the linear differential equation

ẋ(t) = Ax(t) +B1u1(t) +B2u2(t) + c(t), x(0) = x0. (2)

The variable c(.) here is some given vector, which growth over time is restricted by some constant
(that will be specified later on). Notice that we do not make any definiteness assumptions w.r.t.
matrix Qi.

We assume that the matrix pairs (A,Bi), i = 1, 2, are stabilizable. So, in principle, each player
is capable to stabilize the system on his own.

The open-loop information structure of the game means that we assume that both players only
know the initial state of the system and that the set of admissible control actions are functions of
time, where time runs from zero to infinity. We assume that the players choose control functions
belonging to the set

Us =
{
u ∈ L2,loc | Ji(x0, u) exists in IR ∪ {−∞,∞}, lim

t→∞
x(t) = 0

}
,

where L2,loc is the set of locally square-integrable functions, i.e.,

L2,loc = {u[0,∞) | ∀T > 0,

∫ T

0

uT (s)u(s)ds <∞}.

For notational convenience we introduce next some shorthand notation. The next notation will be
used throughout this paper:

Si := BiR
−1
ii B

T
i ; G :=

[
[0 I 0]M1

[0 0 I]M2

] 
 0 0
I 0
0 I


 =

[
R11 N1

NT
2 R22

]
;
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where it will be assumed throughout that this matrix G is invertible,

A2 := diag{A,A}; B := [B1, B2]; B̃
T := diag{BT

1 , B
T
2 }; B̃T

1 :=

[
BT

1

0

]
; B̃T

2 :=

[
0
BT

2

]
;

Z :=

[
[0 I 0]M1

[0 0 I]M2

]
 I0

0


 =

[
V T

1

W T
2

]
; Zi := [I 0 0]Mi


 0 0
I 0
0 I


 = [Vi, Wi], i = 1, 2;

Ã := A−BG−1Z; S̃i := BG−1B̃T
i ; Q̃i := Qi − ZiG

−1Z; ÃT
2 := AT

2 −
[
Z1

Z2

]
G−1B̃T and

M :=

[
Ã −S̃
−Q̃ −ÃT

2

]
, where S̃ := [S̃1, S̃2], Q̃ :=

[
Q̃1

Q̃2

]
.

Notice that

M =


 A 0 0

−Q1 −AT 0
−Q2 0 −AT


 +


 −B
Z1

Z2


G−1

[
Z, B̃T

1 , B̃
T
2

]
.

In the rest of the paper the algebraic Riccati equations

ATKi +KiA− (KiBi + Vi)R
−1
ii (BT

i Ki + V T
i ) +Qi = 0, i = 1, 2. (3)

and the set of (coupled) algebraic Riccati equations

0 = ÃT
2 P + PÃ− PBG−1B̃TP + Q̃. (4)

or, equivalently,

0 = AT
2 P + PA− (PB +

[
Z1

Z2

]
)G−1(B̃TP + Z) +Q.

play a crucial role.

Definition 2.1 A solution P T =: (P T
1 , P

T
2 ), with Pi ∈ IRn, of the set of algebraic Riccati equations

(4) is called

a. stabilizing, if σ(Ã−BG−1B̃TP ) ⊂ lC−; 1

b. strongly stabilizing if

i. it is a stabilizing solution, and

ii. σ(−ÃT
2 + PBG−1B̃T ) ⊂ lC+

0 ;

The next relationship between certain invariant subspaces of matrix M and solutions of the Riccati
equation (4) is well-known (see e.g. Engwerda et al. [8])

1σ(H) denotes the spectrum of matrix H; lC− = {λ ∈ lC | Re(λ) < 0}; lC+
0 = {λ ∈ lC | Re(λ) ≥ 0}.
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Lemma 2.2 Let V ⊂ IR3n be an n-dimensional invariant subspace of M , and let Xi ∈ IRn×n, i =
0, 1, 2, be three real matrices such that

V = Im
[
XT

0 , X
T
1 , X

T
2

]T
.

If X0 is invertible, then Pi := XiX
−1
0 , i = 1, 2, is a solution to the set of coupled Riccati equations

(4) and σ(A − BG−1(Z + B̃TP ) = σ(M |V ). Furthermore, the solution (P1, P2) is independent of
the specific choice of basis of V . �

Lemma 2.3

1. The set of algebraic Riccati equations (4) has a strongly stabilizing solution (P1, P2) if and only
if matrix M has an n-dimensional stable graph subspace and M has 2n eigenvalues (counting
algebraic multiplicities) in lC+

0 .

2. If the set of algebraic Riccati equations (4) has a strongly stabilizing solution, then it is unique.

Proof.
1. Assume that (4) has a strongly stabilizing solution P . Then with

T :=

[
I 0

−P I

]
and consequently T−1 =

[
I 0
P I

]
,

we have that

TMT−1 =

[
Ã− S̃P −S̃

0 −ÃT
2 + PS̃

]
.

Since P is a strongly stabilizing solution, by Definition 2.1, matrixM has exact n stable eigenvalues
and 2n eigenvalues (counted with algebraic multiplicities) in lC+

0 . Furthermore, obviously, the stable
subspace is a graph subspace.

The converse statement is obtained similarly using the result of Lemma 2.2.
2. See, e.g., Kremer [13, Section 3.2]. �

3 Main results

Using the previous results, in the Appendix the following theorem is proved.

Theorem 3.1 If the linear quadratic differential game (1,2) has an open-loop Nash equilibrium for
every initial state, then

1. M has at least n stable eigenvalues (counted with algebraic multiplicities). More in particular,
there exists a p-dimensional stable M-invariant subspace S, with p ≥ n, such that

Im


 I

Ṽ1

Ṽ2


 ⊂ S,

for some Ṽi ∈ IRn×n.
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2. the two algebraic Riccati equations (3) have a stabilizing solution.

Conversely, if the two algebraic Riccati equations (3) have a stabilizing solution and vT (t) =:
[xT (t), ψT

1 (t), ψT
2 (t)] is an asymptotically stable solution of

v̇(t) = Mv(t) +


 c(t)0

0


 , x(0) = x0,

then, [
u∗1(t)
u∗2(t)

]
= −G−1

[
BT

1 ψ1(t) + V T
1 x(t)

BT
2 ψ2(t) +W T

2 x(t)

]
,

provides an open-loop Nash equilibrium for the linear quadratic differential game (1,2). �

Remark 3.2 Similar conclusions as [9] can be drawn now. A general conclusion is that the number
of equilibria depends critically on the eigenstructure of matrix M . With s denoting the number
(counting algebraic multiplicities) of stable eigenvalues of M we have.
1. If s < n, still for some initial state there may exist an open-loop Nash equilibrium.
2. In case s ≥ 2, the situation might arise that for some initial states there exists an infinite
number of equilibria.
3. In case matrix M has a stable graph subspace, S, of dimension s > n, for every initial state x0

there exists, generically, an infinite number of open-loop Nash equilibria. �

The next theorem shows that in case the set of coupled algebraic Riccati equations (4) have a
stabilizing solution, the game always has at least one equilibrium.

Theorem 3.3 Assume that

1. the set of coupled algebraic Riccati equations (4) has a set of stabilizing solutions Pi, i = 1, 2;
and

2. the two algebraic Riccati equations (3) have a stabilizing solution Ki(.), i = 1, 2.

Let α := maxσ(Ã2 − PBG−1B̃T ).
Assume that |c(t)| < βe−αt, for some constant β and for all t > 0. Then the linear quadratic
differential game (1,2) has an open-loop Nash equilibrium for every initial state.
Moreover, one set of equilibrium actions is given by:[

u∗1(t)
u∗2(t)

]
= −G−1(Z + B̃TP )Φ̃(t, 0)x0 −G−1B̃Tm(t)), (5)

where Φ̃(t, 0) is the solution of the transition equation

˙̃Φ(t, 0) = (A−BG−1(Z + B̃TP ))Φ̃(t, 0); Φ̃(0, 0) = I

and

m(t) =

∫ ∞

t

e(−Ã2+PBG−1B̃T )(t−s)Pc(s)ds. �
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Corollary 3.4 An immediate consequence of Lemma 2.2 and Theorem 3.3 is that if M has a stable
invariant graph subspace and the two algebraic Riccati equations (3) have a stabilizing solution, the
game will have at least one open-loop Nash equilibrium. �
Remark 3.5 In case c(.) = 0 it can be shown, similar to [6], that the costs by using the actions
(5) for the players are

xT
0 M̄ix0, i = 1, 2,

where, with Acl := A−BG−1(Z + B̃TP ), M̄i is the unique solution of the Lyapunov equation

AT
clM̄i + M̄iAcl + [I, −G−1(Z + B̃TP )]Mi[I, −G−1(Z + B̃TP )]T = 0. �

Notice that in case the set of algebraic Riccati equations (4) has more than one set of stabilizing
solutions, there exists more than one open-loop Nash equilibrium. Matrix M has then a stable
subspace which dimension is larger than n. Consequently (see Remark 3.2, item 3) for every initial
state there will exist, generically, an infinite number of open-loop Nash equilibria. This point was
first noted by Kremer in [13] in case matrix A is stable.

The above reflections raise the question whether it is possible to find conditions under which the
game has a unique equilibrium for every initial state. The next Theorem 3.6 gives such conditions.
Moreover, it shows that in case there is a unique equilibrium the corresponding actions are obtained
by those described in Theorem 3.3. The proof of this theorem is provided in the Appendix.

Theorem 3.6 Consider the linear quadratic differential game (1,2) with c(.) = 0.
This game has a unique open-loop Nash equilibrium for every initial state if and only if

1. The set of coupled algebraic Riccati equations (4) has a strongly stabilizing solution, and

2. the two algebraic Riccati equations (3) have a stabilizing solution.

Moreover, in case this game has a unique equilibrium, also the corresponding affine linear quadratic
differential game, where c(.) satisfies the growth constraint formulated in Theorem 3.3, has a unique
equilibrium and the unique equilibrium actions are given by (5). �

4 Concluding Remarks

In this note we considered the affine regular indefinite infinite-planning horizon linear-quadratic
differential game. Both necessary conditions and sufficient conditions were derived for the existence
of an open-loop Nash equilibrium. Moreover, conditions were presented that are both necessary
and sufficient for the existence of a unique equilibrium.

The prove our results we basically proceeded along the lines of the proofs of the paper [9].
By adapting those proofs (in a not always trivial manner) we were able to show that the results
obtained in that paper carry over to this extended model.

The above results can be generalized straightforwardly to the N -player case. Furthermore, since
Qi are assumed to be indefinite, the obtained results can be directly used to (re)derive properties
for the zero-sum game, which plays, e.g., an important role in robustness analysis. If players dis-
count their future loss, similar to [6], it follows from Theorem 3.6 that if the discount factor is
”large enough” the game has generically a unique open-loop Nash equilibrium. Finally we conclude
from (23) that the conclusion in [13], that if the game has an open-loop Nash equilibrium for every
initial state either there is a unique equilibrium or an infinite number of equilibria, applies in general.
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Appendix

Theorem 4.1 Consider the minimization of the linear quadratic cost function
∫ ∞

0

xT (t)Qx(t) + 2pT (t)x(t) + uT (t)Ru(t)dt (6)

subject to the state dynamics

ẋ(t) = Ax(t) +Bu(t) + c(t), x(0) = x0, (7)

and u ∈ Us(x0). Then, with S := BR−1BT , we have the following result.
Consider the linear quadratic problem (6,7), with c(.) = p(.) = 0. This problem has a solution for
all x0 ∈ IRn if and only if the algebraic Riccati equation

ATK +KA−KSK +Q = 0 (8)

has a symmetric stabilizing solution K(.) (i.e. A− SK is a stable matrix).
Moreover, if this linear quadratic control problem has a solution, consider the affine linear quadratic
control problem where both c(.) and p(.) satisfy the growth condition:

|c(t)| < β1e
−αt and |p(t)| < β2e

−αt

for some constants βi and α = maxσ(A− SK). Then this problem has a unique optimal control

u∗(t) = −R−1BT (Kx∗(t) +m(t)).

Here m(t) is given by

m(t) =

∫ ∞

t

e−(A−SK)T (t−s)(Kc(s) + p(s))ds, (9)

and x∗(t) is the through this optimal control implied solution of the differential equation

ẋ∗(t) = (A− SK)x∗(t) − Sm(t) + c(t), x∗(0) = x0.

Proof. ”⇐ part” Let K be the stabilizing solution of the algebraic Riccati equation (8) and m(t)
as defined in (9). Next consider (the value) function

V (t) := xT (t)Kx(t) + 2mT (t)x(t) + n(t),

where

n(t) =

∫ ∞

t

{−mT (s)Sm(s) + 2mT (s)c(s)}ds.

Note that ṅ(t) = mT (t)Sm(t) − 2mT (t)c(t) and ṁ(t) = −(A − SK)Tm(t) − (Kc(t) + p(t)) .
Substitution of ṅ, ẋ and ṁ into V̇ , using the fact that ATK +KA = −Q+KSK (see (8)) yields

V̇ (t) = ẋT (t)Kx(t) + xT (t)Kẋ(t) + 2ṁT (t)x(t) + 2mT (t)ẋ(t) + ṅ(t)

= −xT (t)Qx(t) − 2pT (t)x(t) − uT (t)Ru(t) +

[u(t) +R−1BT (Kx(t) +m(t))]TR[u(t) +R−1BT (Kx(t) +m(t))].
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Since m(t) converges exponentially to zero lim
t→∞

n(t) = 0 too. Since lim
t→∞

x(t) = 0 too,

∫ ∞

0

V̇ (s)ds = −V (0).

Substitution of V̇ into this expression and rearranging terms gives

∫ ∞

0

xT (t)Qx(t) + 2pT (t)x(t) + uT (t)Ru(t)dt = V (0)+

∫ ∞

0

[u+R−1BT (Kx(t) +m(t))]TR[u+R−1BT (Kx(t) +m(t))]dt.

Since V (0) does not depend on u(.) and R is positive definite, the advertized result follows.
”⇒ part” This follows, e.g., similar to the proof of Theorem 5.16 of [10]. �

The next Lemma is used in the proof of Theorem 3.1. Its proof can be found, e.g., in [10].

Lemma 4.2 Let x0 ∈ IRp, y0 ∈ IRn−p and Y ∈ IR(n−p)×p. Consider the differential equation

d

dt

[
x(t)
y(t)

]
=

[
A11 A12

A21 A22

] [
x(t)
y(t)

]
,

[
x(0)
y(0)

]
=

[
x0

y0

]
.

If lim
t→∞

x(t) = 0, for all

[
x0

y0

]
∈ Span

[
I
Y

]
, then

1. dim Es ≥ p, and

2. there exists a matrix Ȳ ∈ IR(n−p)×p such that Span

[
I
Ȳ

]
⊂ Es. �

Proof of Theorem 3.1.
”⇒ part” Suppose that u∗1, u

∗
2 are a Nash solution. That is,

J1(u1, u
∗
2) ≥ J1(u

∗
1, u

∗
2) and J2(u

∗
1, u2) ≥ J2(u

∗
1, u

∗
2).

From the first inequality we see that for every x0 ∈ IRn the (nonhomogeneous) linear quadratic
control problem to minimize

J1 =

∫ ∞

0

{xT (t)Q1x(t) + 2uT
1 (t)V T

1 x(t) + 2u∗
T

2 (t)W T
1 x(t) + uT

1 (t)R1u1(t) +

2uT
1 (t)N1u

∗
2(t) + u∗

T

2 (t)R21u
∗
2(t)}dt, (10)

subject to the (nonhomogeneous) state equation

ẋ(t) = Ax(t) +B1u1(t) +B2u
∗
2(t) + c(t), x(0) = x0, (11)

has a solution. Or, equivalently, with

v1(t) := u1(t) +R−1
11 V

T
1 x1(t) +R−1

11 N1u
∗
2 (12)
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the optimization problem

J1 =

∫ ∞

0

{xT
1 (t)(Q1 − V1R

−1
11 V

T
1 )x1(t) + vT

1 (t)R11v1(t) + 2(u∗
T

2 (t)W T
1 − u∗T

2 (t)NT
1 R

−1
11 V

T
1 )x1(t) +

u∗
T

2 (t)(R21 −NT
1 R

−1
11 N1)u

∗
2(t)}dt, (13)

subject to the (nonhomogeneous) state equation

ẋ1(t) = (A−B1R
−1
11 V

T
1 )x1(t) +B1v1(t) + (B2 −B1R

−1
11 N1)u

∗
2(t) + c(t), x(0) = x0, (14)

has a solution. This implies, see Theorem 4.1, that the algebraic Riccati equation

(A−BiR
−1
ii V

T
i )TKi +Ki(A−BiR

−1
ii V

T
i ) −KiSiKi +Qi − ViR

−1
ii V

T
i = 0

has a stabilizing solution. It is easily verified that this equation can be rewritten as (3), with i = 1.
In a similar way it follows that also the second algebraic Riccati equation must have a stabilizing
solution. Which completes the proof of point 2.
To prove point 1. we consider Theorem 4.1 in some more detail. According Theorem 4.1 the
minimization problem (13,14) has a unique solution. Its solution is

ṽ1(t) = −R−1
11 B

T
1 (K1x1(t) +m1(t)) with m1(t) =

∫ ∞

t

e−(A−B1R−1
11 V T

1 −S1K1)T (t−s)(K1n1(s) + p1(s))ds,

(15)
where pT

1 (s) = u∗
T

2 (s)(W T
1 −NT

1 R
−1
11 V

T
1 ), n1(s) = (B2−B1R

−1
11 N1)u

∗
2(s)+c(s) and K1 the stabilizing

solution of the algebraic Riccati equation (3), with i = 1. Consequently, see (12),

ũ1(t) := ṽ1(t) − (R−1
11 V

T
1 x1(t) +R−1

11 N1u
∗
2) (16)

solves the original optimization problem. Notice that, since the optimal control for this problem is
uniquely determined, and by definition the equilibrium control u∗1 solves the optimization problem,
u∗1(t) = ũ1(t). Consequently,

d(x(t) − x1(t))

dt
= Ax(t) +B1u

∗
1(t) +B2u

∗
2(t) − (A−B1R

−1
11 V

T
1 − S1K1)x1(t) +

S1m1(t) − (B2 −B1R
−1
11 N1)u

∗
2(t)

= Ax(t) − S1(K1x1(t) +m1(t)) − (BT
1 R

−1
11 V

T
1 x1(t) +B1R

−1
11 N1u

∗
2) − Ax1(t)

+S1(K1x1(t) +m1(t)) +B1R
−1
11 V

T
1 x1(t) +B1R

−1
11 N1u

∗
2(t)

= A(x(t) − x1(t)).

Since x(0) − x1(0) = x0 − x0 = 0 it follows that x1(t) = x(t).
In a similar way we obtain from the minimization of J2, with u∗1 now entering into the system as
an external signal, that

u∗2(t) := −R−1
22 B

T
2 (K2x(t) +m2(t)) − (R−1

22W
T
2 x(t) +R−1

22 N
T
2 u

∗
1) (17)

with m2(t) =
∫ ∞

t
e−(A−B2R−1

22 V T
2 −S2K2)T (t−s)(K2c2(s) + p2(s))ds, p

T
2 (s) = u∗

T

1 (s)(W T
2 − NT

2 R
−1
22 V

T
2 ),

n2(s) = (B1−B2R
−1
22 N2)u

∗
1(s)+c(s) and K2 the stabilizing solution of the algebraic Riccati equation

(3), with i = 2.
By straightforward differentiation of mi(t) in (15) and (17), respectively, we obtain

ṁ1(t) = −(A−B1R
−1
11 V

T
1 − S1K1)

Tm1(t) − (K1B2 −K1B1R
−1
11 N1 +W1 − V1R

−1
11 N1)u

∗
2(t),

−K1c(s) (18)
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and

ṁ2(t) = −(A−B2R
−1
22 V

T
2 − S2K2)

Tm2(t) − (K2B1 −K2B2R
−1
22 N2 +W2 − V2R

−1
22 N2)u

∗
1(t)

−K2c(s). (19)

Next, introduce ψi(t) := Kix(t) +mi(t), i = 1, 2. Using (14,15) and (18) we get

ψ̇1(t) = K1ẋ(t) + ṁ1(t)

= K1(A−B1R
−1
11 V

T
1 − S1K1)x(t) −K1S1m1(t) +K1(B2 −B1R

−1
11 N1)u

∗
2(t) +K1c(s) −

(A−B1R
−1
11 V

T
1 − S1K1)

Tm1(t) − (K1B2 −K1B1R
−1
11 N1 +W1 − V1R

−1
11 N1)u

∗
2(t) −K1c(s)

= −Q1x(t) − AT (K1x(t) +m1(t)) + (V1R
−1
11 B

T
1K1 + V1R

−1
11 V

T
1 )x(t) + V1R

−1
11 B

T
1m1(t) +

V1R
−1
11 N1u

∗
2(t) −W1u

∗
2(t) (20)

= −Q1x(t) − ATψ1(t) − V1u
∗
1(t) −W1u

∗
2(t). (21)

Similarly it follows that ψ̇2(t) = −Q2x(t) − ATψ2(t) − V2u
∗
1(t) −W2u

∗
2(t).

From (15,17) it follows that (u∗1, u
∗
2) satisfy

R11u
∗
1 +N1u

∗
2(t) = −BT

1 ψ1(t) − V T
1 x(t)

NT
2 u

∗
1 +R22u

∗
2(t) = −BT

2 ψ2(t) −W T
2 x(t),

respectively. Due to our invertibility assumption on matrix G we can rewrite this as
[
u∗1(t)
u∗2(t)

]
= −G−1

[
BT

1 ψ1(t) + V T
1 x(t)

BT
2 ψ2(t) +W T

2 x(t)

]
. (22)

Consequently, vT (t) = [vT
1 (t), vT

2 (t), vT
3 (t)] := [xT (t), ψT

1 (t), ψT
2 (t)], satisfies

v̇(t) = Mv(t) +


 c(t)0

0


 , with v1(0) = x0.

Since by assumption, for arbitrary x0, v1(t) converges to zero it is clear from Lemma 4.2 by choosing
consecutively x0 = ei, i = 1, · · · , n, that matrixM must have at least n stable eigenvalues (counting
algebraic multiplicities). Moreover, the other statement follows from the second part of this lemma.
Which completes this part of the proof.
”⇐ part” Let u∗2 be as claimed in the theorem, that is

u∗2(t) = −[0 I]G−1

[
BT

1 ψ1(t) + V T
1 x(t)

BT
2 ψ2(t) +W T

2 x(t)

]
,

where x(t) satisfies the differential equation

ẋ(t) = (A−BG−1Z)x(t) −BG−1B̃T
1 ψ1(t) −BG−1B̃T

2 ψ2(t), x(0) = x0.

We next show that then necessarily u∗1 solves the optimization problem (10,11). Since, by as-
sumption, the algebraic Riccati equation (3) has a stabilizing solution, according Theorem 4.1, the
minimization problem (10,11) has a solution. Following the notation of the ”⇒” part of the proof
this solution is given by (see (16,15))

ũ1(t) = −R−1
11 B

T
1 (K1x1(t) +m1(t)) − (R−1

11 V
T
1 x1(t) +R−1

11 N1u
∗
2)
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Next, introduce

ψ̃1(t) := K1x1(t) +m1(t).

Then, similar to (21) we obtain

˙̃ψ1(t) = −Q1x1(t) − AT ψ̃1(t) − V1ũ1(t) −W1u
∗
2(t).

Consequently, with xd(t) := x(t) − x1(t) and ψd(t) := ψ1(t) − ψ̃1(t) we have:

ẋd(t) = ẋ(t) − ẋ1(t)

= (A−BG−1Z)x(t) −BG−1B̃T
1 ψ1(t) −BG−1B̃T

2 ψ2(t) −
(A−B1R

−1
11 V

T
1 )x1(t) + S1ψ̃1(t) − (B2 −B1R

−1
11 N1)u

∗
2(t)

= (A−BG−1Z)x(t) −BG−1

[
BT

1 ψ1(t)
BT

2 ψ2(t)

]
−

(A−B1R
−1
11 V

T
1 )x1(t) + S1ψ̃1(t) + (B2 −B1R

−1
11 N1)[0 I]G

−1(

[
BT

1 ψ1(t)
BT

2 ψ2(t)

]
+ Zx(t))

= (A− [B1 0]G−1Z)x(t) − [B1 0]G−1

[
BT

1 ψ1(t)
BT

2 ψ2(t)

]
−

(A−B1R
−1
11 V

T
1 )x1(t) + S1ψ̃1(t) − [0 B1R

−1
11 N1]G

−1(

[
BT

1 ψ1(t)
BT

2 ψ2(t)

]
+ Zx(t))

= Ax(t) −B1R
−1
11 [R11 N1]G

−1(

[
BT

1 ψ1(t)
BT

2 ψ2(t)

]
+ Zx(t)) −

(A−B1R
−1
11 V

T
1 )x1(t) + S1ψ̃1(t)

= (A−B1R
−1
11 V

T
1 )xd(t) − S1ψ̃d(t).

Furthermore, using (20),

ψ̇d(t) = ψ̇1(t) − ˙̃ψ1

= −Q1x(t) − (AT − V1R
−1
11 B

T
1 )ψ1(t) + V1R

−1
11 V

T
1 x(t) + V1R

−1
11 N1u

∗
2(t) −W1u

∗
2(t) +

Q1x1(t) + AT ψ̃1 + V1ũ1(t) +W1u
∗
2(t)

= −Q1x(t) − (AT − V1R
−1
11 B

T
1 )ψ1(t) + V1R

−1
11 V

T
1 x(t) + V1R

−1
11 N1u

∗
2(t) +

Q1x1(t) + AT ψ̃1 − V1R
−1
11 B

T
1 ψ̃1 − V1R

−1
11 V

T
1 x1(t) − V1R

−1
11 N1u

∗
2(t)

= (−Q1 + V1R
−1
11 V

T
1 )xd(t) − (A−B1R

−1
11 V

T
1 )Tψd(t).

So, for some p ∈ IRn,[
ẋd(t)

ψ̇d(t)

]
=

[
A−B1R

−1
11 V

T
1 −S1

−Q1 + V1R
−1
11 V

T
1 −(A−B1R

−1
11 V

T
1 )T

] [
xd(t)
ψd(t)

]
,

[
xd(0)
ψd(0)

]
=

[
0
p

]
.

Notice that matrix

[
A−B1R

−1
11 V

T
1 −S1

−Q1 + V1R
−1
11 V

T
1 −(A−B1R

−1
11 V

T
1 )T

]
is the Hamiltonian matrix associated

with the algebraic Riccati equation (3). Recall that the spectrum of this matrix is symmetric w.r.t.
the imaginary axis. Since by assumption the Riccati equation (3) has a stabilizing solution, we
know that its stable invariant subspace is given by Span[I K1]

T . Therefore, with Eu representing a
basis for the unstable subspace, we can write[

0
p

]
=

[
I
K1

]
v1 + Euv2,
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for some vectors vi, i = 1, 2. However, it is easily verified that due to our asymptotic stability as-
sumption both xd(t) and ψd(t) converge to zero if t→ ∞. So, v2 must be zero. From this it follows
now directly that p = 0. Since the solution of the differential equation is uniquely determined, and
[xd(t) ψd(t)] = [0 0] solve it, we conclude that x1(t) = x(t) and ψ̃1(t) = ψ1(t). Or stated differently,
u∗1 solves the minimization problem.
In a similar way it is shown that for u1 given by u∗1, player two his optimal control is given by u∗2.
Which proves the claim. �.

Proof of Theorem 3.3.
Since (4) has a stabilizing solution, we can factorize M as in the proof of Lemma 2.3. That is,

M = T−1

[
A−BG−1(Z + B̃TP ) −BG−1B̃T

0 −ÃT
2 + PBG−1B̃T

]
T.

Next consider

ψ(t) := Px(t) +m(t) with m(t) =

∫ ∞

t

e(−ÃT
2 +PBG−1B̃T )(t−s)Pc(s)ds,

and x(.) the solution of the differential equation

ẋ(t) = (A−BG−1(Z + B̃TP ))x(t) −BG−1B̃Tm(t) + c(t), x(0) = x0.

Notice that both x(t) and ψ(t) converges to zero if t→ ∞. By direct substitution of this x(t) and
ψ(t) into the differential equation

v̇(t) = Mv(t) +


 c(t)0

0


 , x(0) = x0

it is straightforwardly verified (using the above decomposition ofM) that v(t) := [xT (t) ψT (t)] is an
asymptotically solution of this differential equation. So, according Theorem 3.1, the control actions

[
u∗1(t)
u∗2(t)

]
= −G−1

[
BT

1 ψ1(t) + V T
1 x(t)

BT
2 ψ2(t) +W T

2 x(t)

]

= −G−1((Z + B̃TP )x(t) + B̃Tm(t)),

provides an open-loop Nash equilibrium for the linear quadratic differential game (1,2). �

A proof of the next Lemma, that will be used in the proof of Theorem 3.6 can, e.g., also be found
in [10].

Lemma 4.3 Assume there exists an initial state x0 �= 0 such that

x(t) = e−AT tx0 → 0 if t→ ∞ and BTx(t) = 0.

Then (A,B) is not stabilizable. �

12



Proof of Theorem 3.6.
”⇒ part” That the Riccati equations (3) must have a stabilizing solution follows directly from
Theorem 3.1.
Assume that matrixM has a s-dimensional stable graph subspace S, with s > n. Let {b1, · · · , bs} be
a basis for S. Denote di := [I, 0, 0]bi and assume (without loss of generality) that Span [d1, · · · , dn] =
IRn. Then dn+1 = µ1d1+· · ·+µndn for some µi, i = 1, · · · , n. Furthermore, let x0 = α1d1+· · ·+αndn.
Then also for arbitrary λ ∈ [0, 1],

x0 = λ(α1d1 + · · · + αndn) + (1 − λ)(dn+1 − µ1d1 − · · · − µndn)

= [I, 0, 0]{λ(α1b1 + · · · + αnbn) + (1 − λ)(bn+1 − µ1b1 − · · · − µnbn)}
= [I, 0, 0]{(λα1 − (1 − λ)µ1)b1 + · · · + (λαn − (1 − λ)µn)bn + (1 − λ)bn+1}.

Next consider

vλ := (λα1 − (1 − λ)µ1)b1 + · · · + (λαn − (1 − λ)µn)bn + (1 − λ)bn+1.

Notice that vλ1 �= vλ2 whenever λ1 �= λ2.
According Theorem 3.1 all solutions vT (t) = [xT , ψT

1 , ψ
T
2 ] of v̇(t) = Mv(t), v(0) = vλ, induce then

open-loop Nash equilibrium strategies[
u∗1(t)
u∗2(t)

]
= −G−1

[
BT

1 ψ1(t) + V T
1 x(t)

BT
2 ψ2(t) +W T

2 x(t)

]
. (23)

Since by assumption for every initial state there is a unique equilibrium strategy it follows on the
one hand that the by these equilibrium strategies induced state trajectory xλ(t) coincides for all λ
and, on the other hand, that

BT
i ψi,λ1(t) = BT

i ψi,λ2(t), ∀λ1, λ2 ∈ [0, 1]. (24)

Since ψ̇1,λ = (−Q1 − Z1G
−1Z)x1,λ(t) + (Z1G

−1B̃T
1 − AT )ψ1,λ + Z1G

−1B̃T
2 ψ2,λ it follows that

ψ̇i,λ1 − ψ̇i,λ2 = −AT (ψi,λ1 − ψi,λ2) and BT
1 (ψi,λ1(t) − ψi,λ2(t)) = 0, for i = 1. (25)

In a similar way it can be shown that the above expression also holds for i = 2.
Notice that both ψi,λ1(t) and ψi,λ2(t) converge to zero. Furthermore, since vλ1 �= vλ2 whenever
λ1 �= λ2, {b1, · · · , bn+1} are linearly independent and Span[d1, · · · , dn] = IRn, it can be easily
verified that at least for one i, ψi,λ1(0) �= ψi,λ2(0), for some λ1 and λ2. Therefore, by Lemma
4.3, it follows from (25) that (A,Bi) is not stabilizable. But this violates our basic assumption.
So, our assumption that s > n must have been wrong and we conclude that matrix M has an
n-dimensional stable graph subspace and that the dimension of the subspace corresponding with
non-stable eigenvalues is 2n. By Theorem 2.3 the set of Riccati equations (4) has then a strongly
stabilizing solution.
”⇐ part” Since by assumption the stable subspace, Es, is a graph subspace we know that every
initial state, x0, can be written uniquely as a combination of the first n entries of the basisvectors
in Es. Consequently, with every x0 there corresponds a unique ψ1 and ψ2 for which the solution of
the differential equation ż(t) = Mz(t), with zT

0 = [xT
0 , ψ

T
1 , ψ

T
2 ], converges to zero. So, according

Theorem 3.1, for every x0 there is a Nash equilibrium. On the other hand we have from the
proof of Theorem 3.1 that all Nash equilibrium actions (u∗1, u

∗
2) satisfy (23). where ψi(t) satisfy the

differential equation 
 ẋ(t)

ψ̇1(t)

ψ̇2(t)


 = M


 x(t)
ψ1(t)
ψ2(t)


 , with x(0) = x0.
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Now, consider with zT := [xT ψT
1 ψ

T
2 ] and yT := [xT u∗

T

1 u∗
T

2 ] the system

ż(t) = Mz(t); y(t) = Cz(t), with C :=


 I 0 0

−[I 0]G−1Z −[I 0]G−1B̃T
1 −[I 0]G−1B̃T

1

−[0 I]G−1Z −[0 I]G−1B̃T
1 −[0 I]G−1B̃T

1


 .

Then

rank

[
M − λI
C

]
= rank




A−BG−1Z − λI −BG−1B̃T
1 −BG−1B̃T

2

−Q1 + Z1G
−1Z −AT + Z1G

−1B̃T
1 − λI Z1G

−1B̃T
2

−Q2 + Z2G
−1Z Z2G

−1B̃T
1 −AT + Z2G

−1B̃T
2 − λI

I 0 0

−G−1Z −G−1B̃T
1 −G−1B̃T

2




= rank




A− λI 0 0
−Q1 −AT − λI 0
−Q2 0 −AT − λI
I 0 0

−G−1Z −G−1B̃T
1 −G−1B̃T

2




= rank




A− λI 0 0
−Q1 −AT − λI 0
−Q2 0 −AT − λI
I 0 0

Z B̃T
1 B̃T

2


 .

Since (A,Bi), i = 1, 2, is stabilizable, it is easily verified from the above expression that the pair
(C,M) is detectable. Consequently, due to our assumption that x(t) and u∗i (t), i = 1, 2, converge
to zero, we have from [18, Lemma 14.1] that [xT (t), ψT

1 (t), ψT
2 (t)] converges to zero. Therefore,

[xT (0), ψT
1 (0), ψT

2 (0)] has to belong to the stable subspace of M . However, as we argued above, for
every x0 there is exactly one vector ψ1(0) and vector ψ2(0) such that [xT (0), ψT

1 (0), ψT
2 (0)] ∈ Es.

So we conclude that for every x0 there exists exactly one Nash equilibrium.
Notice that in case the conditions 1. and 2. of this theorem are satisfied, Theorem 3.3 implies

that the unique equilibrium actions are given by (5).
Finally, it will be clear that with c(.) �= 0 (and satisfying an appropriate growth condition)

one can pursue the same analysis as above. Since this analysis brings on only some additional
technicalities and distracts the attention from the basic reasoning we skipped that analysis here. �
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