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White noise assumptions revisited:
Regression models and statistical designs for

simulation practice

Jack P.C. Kleijnen

Tilburg University, Faculty of Economics and Business Administration,Tilburg,
the Netherlands

Abstract

Classic linear regression models and their concomitant statistical designs assume a
univariate response and white noise. By de�nition, white noise is normally, inde-
pendently, and identically distributed with zero mean. This survey tries to answer
the following questions: (i) How realistic are these classic assumptions in simulation
practice? (ii) How can these assumptions be tested? (iii) If assumptions are violated,
can the simulation�s I/O data be transformed such that the assumptions hold? (iv)
If not, which alternative statistical methods can then be applied?

Key words: metamodels, experimental designs, generalized least squares,
multivariate analysis, normality, jackknife, bootstrap, heteroscedasticity, common
random numbers, validation
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0.1 Introduction

Simulation models may be either deterministic or random (stochastic). To
analyze the Input/Output (I/O) behavior of simulation models, the analysts
often use linear regression metamodels; for example, �rst-order or second-
order polynomial approximations of the underlying simulation model. A good
analysis (e.g., such as regression analysis) requires a good statistical design; for
example, a fractional factorial such as a 2k�p design. For more mathematical
details and background information see [16] and [20].

In this article, I revisit the classic assumptions for linear regression analysis
and their concomitant designs. These classic assumptions stipulate univariate
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output and white noise. In practice, however, these assumptions usually do
not hold.

In general, the simulation output (say) c� is a multivariate random variable.
For example, the simulation output (response) b�1 may estimate the mean
throughput time, and b�2 may estimate the 90% quantile of the waiting time
distribution. More examples will follow in Section 1.

White noise (say) u is Normally, Independently, and Identically Distributed
(NIID) with zero mean: u � NIID(0; �2u). This de�nition implies the following
assumptions:

(1) normally (Gaussian) distributed simulation responses
(2) no Common Random Numbers (CRN) across the (say) n factor (input)

combinations simulated
(3) a common variance (or homoscedasticity) of the simulation responses

across these n combinations
(4) a valid regression (meta)model; i.e., zero expected values for the residuals

of the �tted metamodel.

In this article, I raise the following questions:

(1) How realistic are these classic assumptions?
(2) How can these assumptions be tested if it is not obvious that the assump-

tion is violated (e.g., if CRN are used, then the independence assumption
is obviously violated)?

(3) If an assumption is violated, can the simulation�s I/O data be transformed
such that the assumption holds?

(4) If not, which alternative statistical methods can then be applied?

The answers to these questions are scattered throughout the literature on
statistics and simulation. In this article, I therefore try to answer these ques-
tions in a coherent way. For more details (including additional references and
examples) I refer to my forthcoming book [20].

The remainder of this article is organized as follows. Section 1 discusses mul-
tivariate simulation output. Section 2 addresses possible nonnormality of the
simulation output, including tests of normality, transformations of simulation
I/O data, jackkni�ng, and bootstrapping. Section 3 covers variance hetero-
geneity (or heteroscedasticity) of the simulation output. Section 4 discusses
cross-correlated simulation outputs, created through CRN. Section 5 discusses
nonvalid low-order polynomial metamodels. Section 6 summarizes the major
conclusions. An extensive list of references concludes this article.
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1 Multivariate simulation output

In practice, the simulation model usually gives multivariate output. A class of
practical examples concerns inventory simulation models with two outputs:
(i) the sum of the holding and the ordering costs, averaged over the simulated
periods; (ii) the service (or �ll) rate, averaged over the same simulation peri-
ods. The precise de�nitions of these costs and the service rate vary with the
applications; see [31] and also [1] and [15].

The case study in [18] concerns a Decision Support System (DSS) for produc-
tion planning based on a simulation model. Originally, this simulation model
had a multitude of outputs. However, to support decision making, it turned
out that it su¢ ced to consider only the following two outputs (DSS criteria, bi-
variate response): (i) the total production of steel tubes manufactured (which
was of major interest to the production manager); (ii) the 90% quantile of
delivery times (which was the sales manager�s concern).

A general notation is
w = s(d1; : : : ; dk; r0) (1)

with

w: vector of r simulation outputs, so w = (w0; : : : ; wr�1)0 (in simulation opti-
mization it is traditional to label the r outputs starting with zero instead of
one);

s(:): mathematical function implicitly de�ned by the computer code imple-
menting the given simulation model;

dj: factor (input variable) j of the simulation model, soD = (dij) is the design
matrix for the simulation experiment, with j = 1; : : : k and i = 1; : : : ; n where
n denotes the �xed number of combinations of the k factor levels (or values)
in that experiment;

r0: vector of PseudoRandom Number (PRN) seeds.

I assume that the multivariate I/O function s(:) in (1) is approximated by r
univariate low-order polynomials:

yh = X�h+eh with h = 0; : : : r � 1 (2)

with

yh: n-dimensional vector (y1;h; : : : ; yn;h)0 with the regression predictor yh for
simulation output wh;

X: common n � q matrix of explanatory variables (xij) with xij the value
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of explanatory variable j in combination i (i = 1; : : : ; n; j = 1; : : : ; q); for
simplicity, I assume that all �tted regression metamodels are polynomials of
the same order (for example, either �rst order or second order) (if q > 2
including an intercept, then the metamodel is called a multiple regression
model);

�h: q-dimensional vector (�1;h; : : : ; �q;h)
0 with the q regression parameters for

the hth metamodel;

eh: n-dimensional vector (e1;h; : : : ; en;h)0 with the residuals for the hth meta-
model, in the n combinations.

The multivariate regression model in (2) violates the classic assumptions; i.e.,
the multivariate residuals e have the following two properties:

(1) The univariate residuals eh have variances that vary with the output
variable wh (h = 1; : : : r): �2h 6= �2 (e.g., simulated inventory costs and
service percentages have di¤erent variances, �21 6= �22).

(2) The univariate residuals eh and eh0 are not independent for a given input
combination i: �h;h0;i 6= 0 for h 6= h0. Obviously, if these covariances
(like the variances) would not vary with the combination i, then this
property could be written as �h;h0;i = �h;h0 6= 0 for h 6= h0 (e.g., �unusual�
PRN streams in a given combination i may result in inventory costs
that are �relatively high�� that is, higher than expected� and a relatively
high service percentage, so these two outputs are positively correlated:
�1;2 > 0).

These two properties violate the classic assumptions. Consequently, it seems
that the univariate Ordinary Least Squares (OLS) estimators should be re-
placed by the Generalized Least Squares (GLS) estimator of the parameter
vector in the corresponding multivariate regression model. Fortunately, [35]
(a more recent reference is [36], p. 703) proves that GLS reduces to OLS com-
puted per output if the same design matrix is used (as is the case in (2)); i.e.,
the Best Linear Unbiased Estimator (BLUE) of �h in (2) is

�̂h = (X
0X)�1X0wh (h = 0; : : : ; r � 1) (3)

where wh was de�ned below (1), and D =(dij) de�ned below (1) determines
X in (2) and (3). Given this result, the simulation analysts can easily obtain
con�dence intervals and statistical tests for the regression parameters per type
of output variable; i.e., the analysts may indeed continue to use the classic
formulas.
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2 Nonnormal simulation output

Least Squares (LS) is a mathematical criterion, so LS does not assume a nor-
mal distribution. Only if the simulation analysts require statistical properties�
such as BLUE, con�dence intervals, and tests� then they usually assume a
normal distribution. In this section, I try to answer the following questions
(already formulated more generally in Section 0.1): (i) How realistic is the
normality assumption? (ii) How can this assumption be tested? (iii) How can
the simulation�s I/O data be transformed such that the normality assump-
tion holds? (iv) Which statistical methods can be applied that do not assume
normality?

2.1 Asymptotic normality

By de�nition, deterministic simulation models do not have a normally distrib-
uted output for a given factor combination; this output is a single �xed value.
In practice, simulation analysts often assume a normal distribution for the
residuals of the �tted metamodel. An example is the case study in [19] on coal
mining using deterministic System Dynamics simulation; another example is
the case study in [30] on global heating caused by the CO2 greenhouse e¤ect.
Indeed, the simulation analysts might argue that so many things a¤ect the
residuals that the classic Central Limit Theorem (CLT) applies; i.e., a normal
distribution is a good assumption for the residuals of a metamodel �tted to a
deterministic simulation�s I/O data.

In the remainder of this subsection, I focus on random simulation models.
Simulation responses within a run are autocorrelated (serially correlated). By
de�nition, a stationary covariance process has a constant mean (say) E(wt) =
� and a constant variance var(wt) = �2; its covariances depend only on the
lag jt� t0j between the variables wt and wt0; that is, cov(wt; wt0) = �jt�t0j.
The average of a stationary covariance process is asymptotically normally
distributed if the covariances tend to zero su¢ ciently fast for large lags; see
[32], Chapter 2.8. For example, in inventory simulations the output is often the
costs averaged over the simulated periods; this average is probably normally
distributed. Another output of an inventory simulation may be the service
percentage calculated as the fraction of demand delivered from on-hand stock
per (say) week, so �the�output is the average per year computed from these
52 weekly averages. This yearly average may be normally distributed� unless
the service goal is �close�to 100%, so the average service rate is cut o¤ at this
threshold and the normal distribution is a bad approximation.

Note that con�dence intervals based on Student�s t statistic are quite insen-
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sitive to nonnormality, whereas the lack-of-�t F -statistic is more sensitive to
nonnormality; see [16] for details including references.

In summary, a limit theorem may explain why random simulation outputs
are asymptotically normally distributed. Whether the actual simulation run
is long enough, is always hard to know. Therefore it seems good practice to
check whether the normality assumption holds (see the next subsection).

2.2 Testing the normality assumption

Basic statistics textbooks (also see the recent, 2006, article [2]) and simulation
textbooks (see [16] and [31]) propose several visual plots and goodness-of-�t
statistics to test whether a set of observations come from a speci�c distrib-
ution type such as a normal distribution. A basic assumption is that these
observations are IID. Simulation analysts may therefore obtain �many�(say,
m = 100) replicates for a speci�c factor combination (e.g., the base scenario)
if such an approach is computationally feasible. However, if a single simulation
run takes relatively much computer time, then only �a few�(say, 2 � m � 10)
replicates are feasible, so the plots are too rough and the goodness-of-�t tests
lack power.

Actually, the white noise assumption concerns the metamodel�s residuals e�
not the simulation model�s outputs w. The estimated residuals are bei = byi�wi
with i = 1; : : : n and byi = xi b�; an alternative de�nition is bei = byi � wi where
wi =

miP
r=1
wi;r=mi is the simulation output averaged over the mi replicates. I

assume that the simulation analysts obtain at least a few replicates, mi > 1.
For simplicity of presentation, I further assume that the number of replicates
is constant: mi = m (> 1). If the simulation outputs w have a constant
variance (�2w), then �

2
w (= �

2
w=m) is also constant. Unfortunately, the estimated

residuals do not have constant variances and are not independent; it can be
proven that

cov(be) = [I�X(X0X)�1X0]�2w (4)

where X is the n� q matrix of explanatory regression variables de�ned below
(3). Nevertheless, analysts (e.g., [4]) apply visual inspection of residual plots,
which are standard output of many statistical packages. Note that (4) uses
the well-known hat matrix H = X(X0X)�1X0. Also see [3].
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2.3 Transformations of simulation I/O data, jackkni�ng, and bootstrapping

The simulation output w may be transformed to obtain better normality.
Well-known is the Box-Cox power transformation:

v =
w� � 1
�

if � 6= 0; else v = ln(w): (5)

A complication is that the metamodel now explains not the behavior of the
original output, but the behavior of the transformed output! See [3], p. 82 and
[11].

In case of nonnormal output, outliers occur more frequently when the ac-
tual distribution has �fatter�tails. Robust regression analysis might then be
applied; see [3] and [37]. However, I have not seen any applications of this
approach in simulation.

Normality is not assumed by the following two general computer-intensive
statistical procedures that use the original simulation I/O data (D;w): jack-
kni�ng and bootstrapping (actually, the jackknife is a linear approximation of
the bootstrap; see [10]). Both procedures have become popular since powerful
and cheap computers have become available to the analysts.

2.3.1 Jackkni�ng

In general, jackkni�ng solves the following two types of problems:

(1) How to compute con�dence intervals in case of nonnormal observations?
(2) How to reduce possible bias of estimators?

Examples of nonnormal observations are the estimated service rate close to
one in inventory simulations, and extreme quantiles such as the 99.99% point
in risk simulations (see the nuclear waste simulations in [24]). Examples of
biased estimators will follow in Section 3.

Suppose the analysts want a con�dence interval for the regression coe¢ cients
� in case the simulation output has a very nonnormal distribution. So the
linear regression metamodel is still (2) with r = 1. Assume that each factor
combination i is replicated an equal number of times, mi = m > 1. The
original OLS estimator (also see (3)) is

�̂ = (X0X)�1X0w. (6)
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Jackkni�ng deletes the rth replicate among the m IID replicates, and recom-
putes the estimator for which a con�dence interval is wanted:

�̂�r = (X
0X)�1X0w�r (r = 1; : : : ;m) (7)

where w�r is the n-dimensional vector with components that are the averages
of the m� 1 replicates after deleting replicate r:

wi;�r =

Pm
r0 6=r wi;r0

m� 1 (8)

where for the case r = m the summation runs from 1 to m� 1 (not m).

Obviously, (7) gives the m correlated estimators �̂�1; : : : ; �̂�m. For ease of
presentation, I focus on �q (the last of the q regression parameters in the
vector �). Jackkni�ng uses the pseudovalue (say) J , which is the following
weighted average of b�q (the original estimator) and b�q;�r (the qth component
of the jackknifed estimator �̂�r de�ned in (7)) with the number of observations
as weights:

Jr = mb�q � (m� 1)b�q;�r: (9)

In this example both the original and the jackknifed estimators are unbiased,
so the pseudovalues also remain unbiased estimators. Otherwise it can be
proven that the bias is reduced by the jackknife point estimator

J =

Pm
r=1 Jr
m

, (10)

which is simply the average of the m pseudovalues de�ned in (9).

To compute a con�dence interval, jackkni�ng treats the pseudovalues as if
they were NIID:

P (J � tm�1;1��=2b�J < �q < J + tm�1;1��=2b�J) = 1� � (11)

where tm�1;1��=2 denotes the 1��=2 quantile (upper �=2 point) of the distri-
bution of Student�s t statistic with m� 1 degrees of freedom, and

b�J =
vuutPm

r=1(Jr � J)2
m(m� 1) :

The interval in (11) may be used to test the null-hypothesis that the true
regression parameter has a speci�c value, such as zero.

Applications of jackkni�ng in simulation are numerous. For example, jackknif-
ing gave con�dence intervals for Weighted LS (WLS) with estimated covari-
ance matrix dcov(w); see [25]. Jackkni�ng reduced the bias and gave con�dence
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intervals for a Variance Reduction Technique (VRT) called control variates or
regression sampling; see [26]. Jackkni�ng may also be applied in the renewal
analysis of steady-state simulation; see [28], pp. 202-203.

2.3.2 Bootstrapping

Textbooks on bootstrapping are [8], [10], [13], and [33]; a recent article is [7]
(more references will follow below). Bootstrapping may be used for two types
of situations:

(1) The relevant distribution is not Gaussian.
(2) The statistic is not standard.

Sub 1 : Reconsider the example used for jackkni�ng; i.e., the analysts want
a. con�dence interval for the regression coe¢ cients � in case of nonnormal
simulation output. Again assume that each of the n factor combinations is
replicated an equal number of times, mi = m > 1 (i = 1; : : : ; n). The original
LS estimator was given in (6).

The bootstrap distinguishes between the original observations w and the boot-
strapped observations (say) w� (note the superscript). Standard bootstrapping
assumes that the original observations are IID. In the example, there are
mi = m IID original simulated observations per factor combination i, namely
wi;1; : : : ; wi;m (these observations give wi, which give the vector w, which oc-
curs in (6)).

The bootstrap observations are obtained by resampling with replacement from
the original observations, while the sample size is kept constant, at m. In the
example, the bootstrapped observations w�i;1; : : : ; w

�
i;m occur with frequencies

f1; : : : ; fm such that f1+: : :+fm = m; i.e., these frequencies follow the multino-
mial (or polynomial) distribution with parameters m and p1 = : : : = pm =
1=m. This resampling is executed for each combination i (i = 1; : : : n). These
bootstrapped outputs w�i;1; : : : ; w

�
i;m give the bootstrapped average simulation

output w�. Substitution into (6) gives the bootstrapped LS estimator

�̂
�
= (X0X)�1X0w�. (12)

To reduce sampling variation, this resampling is repeated (say) B times; B is
known as the bootstrap sample size (typical values for B are 100 and 1,000).
This gives �̂

�
1; : : : ; �̂

�
B (or �̂

�
b with b = 1; : : : ; B).

Let�s again focus on the single regression parameter, �q. The bootstrap liter-
ature gives several con�dence intervals, but most popular is

P (b��q;(bB�=2c) < �q < b��q;(bB(1��=2)c)) = 1� �
9



where b��q;(bB�=2c) is the �=2 quantile of the Empirical Density Function (EDF)
of the bootstrap estimate b��q, and b��q;(bB(1��=2)c) is its 1� �=2 quantile.

Applications of bootstrapping include [21], which bootstraps to validate trace-
driven simulation models in case of serious nonnormal outputs.

Sub 2 : Besides classic statistics such as the t and F statistics, the simulation
analysts may be interested in statistics that have no tables with critical values,
which provide con�dence intervals� assuming normality. For example, [23]
bootstrapped R2 to test the validity of regression metamodels in simulation.

3 Heterogeneous simulation output variances

By de�nition, deterministic simulation models give a single �xed value for a
given factor combination, so the conditional variance is zero: var(wjx) = 0.
Simulation analysts often assume a normal distribution for the residuals of the
metamodel �tted to the I/O data of the deterministic simulation model (see
Section 2.1). Usually, the analysts then assume a normal distribution with a
constant variance (Kriging models also assume a constant variance). I do not
know a better assumption that works in practice for deterministic simulation
models.

I further focus on random simulation models, and try to answer the following
questions:

(1) How realistic is the common variance assumption?
(2) How can this assumption be tested?
(3) How can the simulation�s I/O data be transformed such that the common

variance assumption holds?
(4) Which statistical analysis methods can be applied that allow nonconstant

variances?
(5) Which statistical design methods can be applied to account for variance

heterogeneity?

Sub 1 : In practice, the variances of random simulation outputs change when
factor combinations change. For example, in the M/M/1 queueing simulation
not only the mean of the steady-state waiting time changes as the tra¢ c rate
changes� the variance of this output changes even more!

Sub 2 : Though it may be a priori certain that the variances of the simula-
tion outputs are not constant, the analysts may hope that the variances are
(nearly) constant in their particular application. Unfortunately, the variances
are unknown so they must be estimated. This estimator itself has high vari-
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ance; in case of normally distributed output,var(b�2) = 2�4=m. Actually, there
are n combinations of the k factors in the simulation experiment, so n vari-
ance estimators b�2i need to be compared. This problem may be solved in many
di¤erent ways, but I recommend the distribution-free test in [5], p. 241.

Sub 3 : The logarithmic transformation in (5) may be used not only to obtain
normal output but also to obtain outputs with constant variances. A problem
may again be that the metamodel now explains the transformed output instead
of the original output.

Sub 4 : In case of heterogeneous variances, the LS criterion still gives an unbi-
ased estimator (it su¢ ces that the residuals have zero mean, E(e) = 0). The
variance of the LS (or OLS) estimator, however, now is

cov(�̂) = (X0
NXN)

�1X0
Ncov(w)XN(X

0
NXN)

�1 (13)

where XN is N � q with N =
Pn
i=1mi, and cov(w) has the same dimensions

as this X has, and the �rst m1 elements on its main diagonal are var(w1), ...,
the last mn elements on this main diagonal are var(wn). In Section 4, I shall
present a simple method to derive con�dence intervals for the q individual
OLS estimators �̂j (see equation 24). If the number of replicates is constant
(mi = m), then the LS estimator may be written as

�̂ = (X0X)�1X0w (14)

where X is n � q and w = (wi)
0 denotes the vector with the n simulation

outputs averaged over the m replicates; also see (2).

Though the OLS estimator remains unbiased, it is no longer the BLUE. It can
be proven that the BLUE is now the Weighted LS (or WLS) estimator

e� = (X
0

N [cov(w)]
�1XN)

�1X0
N [cov(w)]

�1w: (15)

where I explicitly denote the number of rows N =
Pn
i=1 of XN , which is an

N�q matrix. The reason is that� analogously to (14)� for a constant number
of replicates (mi = m) the WLS estimator may be written as

e� = (X
0
[cov(w)]�1X)�1X

0
[cov(w)]�1w (16)

where X is n � q (also see (2)) and cov(w) = cov(w)=m. The covariance
matrix of this WLS estimator is

cov(e�) = (X0
[cov(w)]�1X)�1. (17)

In practice, cov(w) is unknown so this covariance matrix must be estimated.
The elements on this diagonal matrix are estimated through the classic unbi-
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ased variance estimator

dvar(wi) = b�2(wi) = s2i (w) =
Pm
r=1(wir � wi)2
m� 1 (i = 1; : : : n), (18)

which gives dcov(w). Substituting this estimated matrix into the classic WLS
formula (15) gives the Estimated WLS (EWLS) or Aitken estimator:

be� = (X0
[dcov(w)]�1X)�1X0[dcov(w)]�1w (19)

where X is again N � q. This EWLS is not a linear estimator. Consequently,
the statistical analysis becomes more complicated. For example, the analogue
of (17) holds only asymptotically (under certain conditions); see, for example,
[12] and [22]:

cov(
be�) t (X0

[dcov(w)]�1X)�1: (20)

Classic con�dence intervals do no longer hold.

Relatively simple solutions for this type of problem were already presented in
Sections 2.3.1 and 2.3.2, namely jackkni�ng and bootstrapping. Jackkni�ng
the EWLS estimator was done in [25], as follows. Delete the rth replicate
among the m IID replicates, and recompute the EWLS estimator (analogous
to (7)):

be��r = (X0
[dcov(w)�r]�1X)�1X0[dcov(w)�r]�1w�r (r = 1; : : : ;m)

wherew�r consists of n averages computed fromm�1 replicates after deleting
replicate r, and dcov(w)�r is computed from the same replicates. Use thesebe��r and the original be� computed through (19) to compute the pseudovalues,
which give the desired con�dence interval. Bootstrapping the EWLS estimator
is discussed in [23].

Sub 5 : If the output variances are not constant, classic designs still give the
unbiased OLS estimator �̂ and WLS estimator e�. The literature pays little
attention to the derivation of alternative designs for heterogeneous output
variances. In [29], we investigated designs in which the n factor combinations
are replicated so many times that the estimated variances of the averages per
combination are (approximately) constant. Because var(wi) = �2i =mi (i =
1; : : : ; n), the number of replicates should satisfy

mi = c0�
2
i (21)

where c0 is a common positive constant such that the mi become integers.
This equation implies that the higher the variability of the simulation output
wi is, the more replicates are simulated. The allocation of the total number
of simulation runs (N =

Pn
i=1mi) according to (21) is not necessarily opti-

mal, but it simpli�es the regression analysis and the design of the simulation
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experiment (an alternative replaces �2i by �i). Indeed the regression analysis
can now apply OLS to the averages wi to get BLUE.

In practice, however, the variances of the simulation outputs must be esti-
mated. A two-stage procedure takes a pilot sample of (say) m0 � 2 replicates
for each factor combination, and estimates the variances �2i through

s2i (m0) ==

Pm0
r=1 [wir � wi(m0)]

2

m0 � 1
(i = 1; : : : n) (22)

with wi(m0) =
Pm0
r=1wir=m0. Combining (22) and (21), [29] selects additional

replicates cmi �m0 where

cmi = m0

$
s2i (m0)

min1�i�n s2i (m0)

%

with bxc denoting the integer closest to x (so, in the second stage no addi-
tional replicates are simulated for the combination with the smallest estimated
variance). After the second stage allcmi replicates are used to estimate the aver-
age output and its variance. OLS is applied to these averages. The covariance
matrix cov(b�) is estimated through (13) with cov(w) estimated through a
diagonal matrix with diagonal elements s2i (cmi)=cmi. Con�dence intervals are
based on the classic t statistic with degrees of freedom equal to m0 � 1.

Because these s2i (cmi)=cmi may still di¤er considerably, this two-stage approach
may be replaced by a sequential approach. The latter approach adds one repli-
cate at a time, until the estimated variances of the average simulation outputs
have become constant; see [29]. The sequential procedure requires fewer sim-
ulation responses, but is harder to understand, program, and implement.

4 Cross-correlated simulation outputs: Common random numbers

Obviously, CRN implies random simulation. In this section, I try to answer
the following questions:

(1) How realistic is the assumption of independent simulation outputs?
(2) Which statistical analysis methods can be applied that allow correlated

outputs?
(3) Which statistical design methods can be applied to account for correlated

outputs?

Sub 1 : In practice, simulation analysts often use CRN; actually, CRN is the
default of much simulation software. CRN implies that the simulation outputs
of di¤erent factor combinations are correlated across these combinations. The
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goal of CRN is to reduce var(b�j) with j = 1; : : : ; q (actually, the variance of
the intercept increases when CRN are used). So CRN is useful to better explain
the factor e¤ects, and to better predict the output of combinations not yet
simulated (provided the inaccuracy of the estimated intercept is outweighed by
the accuracy of all other estimated e¤ects). Because CRN violates the classic
assumptions of regression analysis, the analysts have two options:

(i) Continue to use OLS

(ii) Switch to GLS.

Sub (i): The variance of the OLS estimator is given by (13), but now cov(w)
is not a diagonal matrix. It is simple to derive con�dence intervals and test
null-hypotheses� provided there are m � 2 replicates (also see [31], p. 630,
642). From replicate r, compute

�̂r = (X
0X)�1X0wr (r = 1; : : : ;m). (23)

The n components of the vector wr are correlated (because they use CRN)
and may have di¤erent variances, but them estimators �̂j;r of a speci�c regres-
sion parameter �j are independent (because they use non-overlapping PRN
streams) and have a common standard deviation (say) �(�̂j). So

tm�1 =
b�j � �j
s(b�j) with j = 1; : : : ; q (24)

with

s(b�j) =
vuutPm

r=1(
b�j;r � b�j)2

m(m� 1) .

Sub (ii): CRN implies that the BLUE is the GLS estimator; see (15) where
cov(w) is now not diagonal. Obviously, cov(e�) is analogous to (17). Again,
in practice cov(w) is estimated by dcov(w) which has the elements

dcov(wi; wi0) =
Xm

r=1
(wi;r � wi)(wi0;r � wi0)

m� 1 (i; i0 = 1; : : : ; n) (25)

where m = min(mi;mi0); usually, mi = mi0(= m) if CRN is applied. Thisdcov(w) is singular if the number of replicates is �too small�; that is, if m � n;
see [9]. Substituting dcov(w) into the classic GLS formula gives the Estimated
GLS (EGLS), analogous to the EWLS estimator in (19). The EGLS estima-
tor can again be analyzed through jackkni�ng and bootstrapping. In [17], I
compared OLS and EGLS relying on the asymptotic covariance matrix (20)
with nondiagonal dcov(w); [7], however, claims that �bootstrap tests ... yield
more reliable inferences than asymptotic tests in a great many cases�. In con-
clusion, CRN with EGLS may give better point estimates of the factor e¤ects
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(except for the intercept), but a proper statistical analysis may require �many�
replicates, namely m > n.

Sub 3 : The literature pays no attention to the derivation of alternative designs
for CRN. Sequential procedures are proposed in [27] and [40], to select the
next factor combination to be simulated, where the simulation model may
be either deterministic or random� assuming the simulation I/O data (D;w)
are analyzed through Kriging (instead of linear regression), which allows the
simulation outputs to be correlated.

5 Nonvalid low-order polynomial metamodel

Now, I try to answer the following questions:

(1) How can the validity of the low-order polynomial metamodel be tested?
(2) If this metamodel is not valid, how can the simulation�s I/O data be

transformed such that a low-order polynomial becomes valid ?
(3) Which alternative metamodels can be applied?

Sub 1 : A valid metamodel has zero mean residuals, so H0 : E(e) = 0. To test
this null-hypothesis, the analysts may apply the classic lack-of-�t F-statistic
assuming white noise. However, if the analysts apply CRN, then they may
apply Rao�s variant derived in [34] (and evaluated in [17]):

Fn�q;m�n+q =
m� n+ q

(n� q)(m� 1)(w �
bey)0[dcov(w)]�1(w � bey) (26)

where n > q, m > n, and bey denotes the EGLS estimator. Obviously, this
test also allows EWLS instead of EGLS. Normality of the simulation output
is an important assumption for both the classic test and Rao�s test. In case
of nonnormality, the analysts may apply jackkni�ng or bootstrapping; [23]
bootstraps Rao�s statistic and the classic R2 statistic.

An alternative test uses cross-validation and the t statistic, which is less sen-
sitive to nonnormality than the F statistic; see [17]. Moreover, this t statistic
requires fewer replications, namely m > 1 instead of m > n if EWLS or EGLS
is used.

Besides these quantitative tests, the analysts may use graphical methods to
judge the validity of a �tted metamodel (be it a linear regression model or
some other type of metamodel such as a Kriging model). Scatterplots are well
known. The recent panel publication [39] also emphasizes the importance of
visualization; also see [14]. If these validation tests reject H0, then the analysts
may consider the following alternatives.
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Sub 2 : A well-known transformation in queueing simulations combines two
simulation inputs� namely, the arrival rate � and the service rate �� into
a single independent regression variable� namely, the tra¢ c rate x = �=�.
Another transformation replaces y, �, and � by log(y), log(�), and log(�), to
make the �rst-order polynomial approximate relative changes.

Another simple transformation assumes that the I/O function of the under-
lying simulation model is monotonic. Then the dependent and independent
variables may be replaced by their ranks, which results in so-called rank re-
gression; see [6] and [38]. Note that Spearman�s correlation coe¢ cient uses the
same transformation for two correlated random variables. For example, [24]
applies rank regression and Spearman�s coe¢ cient to �nd the most important
factors in a simulation model of nuclear waste disposal.

Transformations may also be applied to make the simulation output (depen-
dent regression variable) better satisfy the assumptions of normality (see (5))
and variance homogeneity. Unfortunately, di¤erent goals of the transforma-
tion may con�ict with each other; for example, the analysts may apply the
logarithmic transformation to reduce nonnormality, but this transformation
may give a metamodel in variables that are not of immediate interest.

If classic designs do not give valid metamodels, then I recommend to look
for transformations, as discussed above. I do not recommend routinely adding
higher-order terms to the metamodel, because these terms are hard to inter-
pret. However, if the goal is not to better understand the underlying simulation
model but to better predict the output of an expensive simulation model, then
high-order terms may be added. Indeed, full factorial 2k designs enable the es-
timation of all interactions (for example, the interaction among all k factors).
If more than two levels are simulated per factor, then the following types of
metamodels may be considered.

Sub 3 : There are several alternative metamodel types; for example, Kriging
models. These alternatives may give better predictions than low-order polyno-
mials do. However, these alternatives are so complicated that they do not help
the analysts better understand the underlying simulation model� except for
sorting the simulation inputs in order of their importance. Furthermore, these
alternative metamodels require alternative design types. This is a completely
di¤erent issue, so I refer to the extensive literature on this topic (including
[20]).
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6 Conclusions

In this survey, I discussed the assumptions of classic linear regression analy-
sis and the concomitant statistical designs. In Section 1, I pointed out that
multivariate simulation output can still be analyzed through OLS. In Section
2, I addressed possible nonnormality of simulation output, including normal-
ity tests, transformations of simulation I/O data, jackkni�ng, and bootstrap-
ping. In Section 3, I presented analysis and design methods for heteroscedastic
simulation output. In Section 4, I discussed how to analyze cross-correlated
simulation outputs created by CRN. In Section 5, I discussed possible lack-of-
�t of low-order polynomial metamodels, and possible remedies. I gave many
references for further study of these issues.
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