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PRELIMINARY AND INCOMPLETE

Abstract

Receiving the same fractional recovery of par at default for bonds of the same
issuer and seniority, regardless of remaining maturity, has been labelled in the aca-
demic literature as a Recovery of Face Value at Default (RFV). Such a recovery form
results from language found in typical bond indentures and is supported by empir-
ical evidence from defaulted bond values. We incorporate RFV into an exogenous
boundary structural credit risk model and compare its effect to more typical recovery
forms found in such models. We find that the chosen recovery form can significantly
affect valuation and the sensitivities produced by these models, thus having important
implications for empirical studies attempting to validate structural credit risk models.
We show that some features of existing structural models are a result of the recov-
ery form assumed in the model and do not necessarily hold under an RFV recovery
form. Some of our results complement those found in the literature which examines
the endogeneity of the default boundary. We find that some features that may have
been solely attributed to modelling the boundary as an optimal decision by the firm
can be obtained in an exogenous boundary framework with RFV. This has direct
implications for studies which attempt to determine whether endogenous or exoge-
nous models are better supported empirically. We extend our results to incorporate a
multifactor default-free term structure model and examine the impact of the recovery
form in estimating the cost of debt capital within a structural model framework.
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1 Introduction

Receiving the same fractional recovery of par at default for bonds of the same issue and

seniority, regardless of remaining maturity, has been labelled in the academic literature as

a Recovery of Face Value at Default (RFV). Such a recovery form is a result, in theory,

from the institutional framework that U.S. corporate bonds are subject to, such as the

bond indenture and bankruptcy code. Most notably, the debt acceleration clause found

in typical bond indentures leads to the principal amount of all outstanding debt to be

due immediately. Recent empirical work by Guha (2002) shows that the RFV assumption

is supported by data on defaulted bond values, providing strong evidence that it is the

appropriate recovery form to describe corporate bonds upon default.

Such ex-post evidence suggests that it may be accurate to incorporate RFV into de-

faultable debt valuation models. This paper examines the effect of the RFV recovery

form on ex-ante corporate bond valuation and hedging, and more generally analyzes the

importance of the recovery form assumption within structural credit risk models. We find

that in both constant and stochastic interest rate settings the RFV form can generate

credit spread predictions which vary with respect to other recovery forms, especially for

low credit quality bonds. In particular, the relative level of default-free interest rates to

the coupon level is a primary determinant in comparing spreads across different recovery

forms. For bonds with coupon rates higher than the appropriate default-free rate the

RFV recovery form generates spreads higher than the recovery form most typically found

in structural models. We find that the shape of the default-free yield curve also affects

the relative comparison of predicted spreads. The interaction between recovery form and

both the level and shape of the default-free term structure in determining spreads has

important implications for empirical studies attempting to validate structural credit risk

models. If we believe that RFV is the correct ex-post description of defaulted bond values

we need to interpret data via a model assuming a recovery form which can generate such

a pattern. Alternative specifications could lead to biased conclusions.

Furthermore, we find that certain features of previous structural models result from

the specific recovery form assumed. Collin-Dufresne and Goldstein (2001) introduce a
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mean-reverting leverage ratio model, unlike typical structural models, and generate an

upward-sloping term structure of credit spreads for speculative-grade bonds, consistent

with empirical evidence found in Helwege and Turner (1999). However, we show that

such a result comes from the recovery form assumed in their framework. Their model and

parameter choices combined with an RFV assumption lead to a downward-sloping credit

spread term structure for speculative-grade bonds. Moreover, we find that the RFV recov-

ery form generates features that up to now have only been seen in models where default is

modelled as an endogenous policy. Under certain parameter choices RFV corporate bond

values can actually increase with decreases in firm value and increases in asset volatility

because bondholders are better off if default becomes more likely. In addition, the RFV

recovery form can cause both low credit quality bonds to have comparatively lower dura-

tions versus alternative recovery forms and bond prices to be concave functions of interest

rates. These results have been seen in the Leland and Toft (1996) endogenous structural

model. The RFV form is also able to match an interest rate sensitivity pattern consistent

with empirical evidence found in Duffee (1998) and seen in the model of Acharya and Car-

penter (2002). In their paper the pattern is interpreted to back the claim that endogenous

models are better supported by data compared to typical exogenous default boundary

models. We provide evidence that the recovery form assumed within the exogenous model

is crucial in such an interpretation. Finally, we show that the recovery form is important

in an relevant application of structural credit risk models: estimating the cost of debt

capital for a firm.

1.1 Related Literature

Corporate bond models tend to be classified as either intensity-based models1 which pre-

sume that default is a surprise event and the risk-neutral default probability as exogenously

given, or structural-based models,2 which provide a more fundamental framework for valu-

1A partial list of such models would include Litterman and Iben (1991), Jarrow and Turnbull (1995),

Jarrow, Lando, and Turnbull (1997), Lando (1998), and Duffie and Singleton (1999).
2Duffie and Lando(2001) show the link between intensity and structural-based models by considering,

very reasonably, that firm asset values are imperfectly observed.
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ing the credit risk inherent in corporate debt. Starting from Black and Scholes (1973) and

Merton (1974) this latter approach treats the securities of a firm as contingent claims on

its asset value. Although the general empirical failure of this first set of models led to

many important extensions3, the basic intuition has remained the same.

Duffie (1998) and Lando (1998) were the initial papers to incorporate RFV into a

defaultable debt model, both within an intensity-based framework4. An initial motivation

for this study is the fact that several recovery forms are seen in the defaultable debt

literature. In the intensity models of Jarrow and Turnbull (1995) and Jarrow, Lando,

and Turnbull (1997) and in the structural model of Collin-Dufresne and Goldstein (2001)

debtholders receive a fixed fraction of the face amount at the maturity of the defaultable

bond. We label this recovery form the Recovery of Treasury-Face Value (RT-F) recovery

form. In the intensity model of Duffie and Singleton (1999) debtholders receive a fraction

of the market value of the defaultable bond just prior to default. Consistent with their

paper we label this recovery form a Recovery of Market Value (RMV). Structural models

with exogenous default boundaries such as Longstaff and Schwartz (1995), Cathcart and

El-Jahal (1998), and Saa-Requejo and Santa-Clara (1999), assume the recovery amount

is a fixed fraction of an equivalent coupon and maturity risk-free bond. We label this the

Recovery of Treasury (RT) recovery form. Another recovery form is where the debtholder

receives a fraction of the firm value at default as seen in the structural models of Merton

(1974), Black and Cox (1976), Leland (1994), and Leland and Toft (1996).

In the existent literature the comparative effect of the different recovery forms on credit

risk pricing has only been examined in the context of intensity-based models. Duffie and

Singleton (1999) compare the pricing effects of RMV and RFV within an intensity-based

model, while in a detailed empirical study Bakshi, Madan, and Zhang (2002) compare the

RT-F, RMV, and RFV recovery forms within an intensity-based model using individual

corporate bond price data. They find that their data better supports the RT-F assumption

3See Huang and Huang (2002) for a good overview of some of the main theoretical extensions to the

basic structural model setup, along with references.
4Duffie (1998) cites Brennan and Schwartz (1980) as an early example that used such a recovery

assumption in a (convertible) debt pricing model.
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in terms of pricing accuracy, while they obtain more stable implied recovery rates using

the RFV assumption. We use these papers as motivation for addressing this topic within

the other major class of credit risk models5.

From an economic perspective structural credit risk models are worth studying as

they give us a setting in which we can link asset prices to corporate financial policies.

There are also important practical reasons to focus on this particular class. First, these

models can be used to impute estimated default probabilities from market equity prices,

as seen in commercial applications e.g. Moody’s/KMV. Second, in principle these models

supply information on how one could hedge the default risk in corporate bonds using the

securities of the firm, say its equity. While these two applications have been apparent since

the original structural models were developed the growth in the credit derivatives market

has increased the use of such models.6 These facts imply that it is useful to understand

the comparative pricing and hedging effects different recovery forms have on structural

defaultable bond pricing, and in particular those models which can reliably be used in

practical applications.

We consider the largest subset of the structural model literature where default is

defined by the first time that the firm’s asset value hits some default boundary. Black and

Cox (1976), the first to introduce this idea, motivate the boundary in two different ways:

1) it can be exogenous due to safety covenants found in the bond indenture; and 2) it

can be endogenous due to an optimal decision policy by the firm. We focus in this paper

on the exogenous boundary specification. The endogenous approach, further developed

by Leland (1994), Leland and Toft (1996), and Leland (1998), allows one to address the

issue of an optimal capital structure in the presence of taxes and bankruptcy costs and is

in general more economically sensible. One limitation of this approach, however, is that

5Delianedis and Lagnado (2002) and Finkelstein (1999) compare the effect of recovery form on credit

derivative prices and find that it does matter, but neither does so within the context of a structural model
6The use of the EDF (default probability) measure by Moodys/KMV is well-cited. See their website:

www.moodyskmv.com for more details. The cover article of the December 2002 Euromoney magazine

titled “And Now for Capital Structure Arbitrage” describes the increased recent interest in using structural

models for trading debt securities (or credit derivatives) versus their equity counterpart.
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it places strong restrictions on the capital structure of the firm issuing the securities to

be valued. This makes such models cumbersome to apply to individual bonds issued by

firms with complex capital structures. Typical exogenous boundary models, starting from

Longstaff and Schwartz (1995), assume that cross-default provisions lead to a simultaneous

default for the different debt securities. This assumption allows such models to easily deal

with complex capital structures. Another reason to favor exogenous models for practical

implementation is the flexibility they allow in specifying bond recovery values. While in

endogenous models the bondholder receives what is left of the firm value after any default

costs; in exogenous models the expected recovery rate (i.e. the fraction of the form-varying

recovery claim) is typically an input into the model which can, consistent with data, vary

across industry (see e.g. Altman and Kishore (1996)) and seniority of the bond issue (see

e.g. Franks and Torous (1994)).

We compare the valuation and hedging implications of the two recovery forms typically

seen in this class of models, RT and RT-F,7 with the RFV recovery form. While the

RFV assumption, to the best of our knowledge, has not been explicitly labelled as such

within the structural modelling framework, it is a special case of the recovery forms seen

previously in Black and Cox (1976) and Leland and Toft (1996). In these models when

the firm asset value falls to a potentially endogenous boundary the bondholder receives

a fraction of the firm asset value at the default date. If we consider the boundary to be

exogenously given and that the recovery claim to be the face value of the individual bond

rather than the firm asset value we obtain what we label the Structural RFV model. The

recovery form in this case is that of a type of barrier option. While the previous papers

deserve full credit for applying the barrier option technology in modelling recovery, we

explicitly recognize that such a recovery can be consistent with RFV, and more generally

with recovery forms seen in the ex-post data and implied by certain institutional features.

The balance of the paper is organized as follows. Section 2 describes the basic structural

model setup for valuing default risk as well as the different recovery forms which will be

incorporated into the model. Section 3 compares and analyzes spreads and sensitivities

7The other major recovery form seen in intensity-based models is the RMV assumption. Since we do

not consider jumps in our setting we avoid this particular form.
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across the different recovery forms for coupon-paying bonds. Section 4 discusses how

our results are related to the literature, with special emphasis on results found in the

endogenous boundary literature. Section 5 extends the base case constant interest rate

setting to one in which we can analyze the effect of both stochastic interest rates and yield

curve shape in comparing the different recovery forms. Section 6 discusses the importance

of recovery form in estimating the cost of debt capital for a firm using structural models.

Section 7 offers some concluding remarks and planned extensions.

2 Structural Default Risk and Recovery Forms

This section introduces the default risk model and bond pricing setup we will use in

our analysis. We formalize the different recovery forms which can be incorporated into

this setup. First we show the recovery forms which have been traditionally used in the

literature and then we introduce recovery of face value at default within a structural

credit risk model, which we term the Structural RFV model. We consider the simplest

of structural models which can reasonably be applied to coupon-paying bonds8, a first-

passage time model of a firm value process with constant interest rates and a constant

default boundary. This simple model is considered the “base case” model in Huang and

Huang (2002) against which more complicated models are judged.

There are several reasons why we are initially motivated to consider such a model.

Firstly, Huang and Huang (2002) demonstrated in their paper that even when more real-

istic and economically sensible features are introduced to their base case model the main

problems that structural models have in matching data, such as spread underestimation,

remain the same. This leads us to believe that our results for studying comparative re-

covery forms under this simple model, in general, should hold under more complicated

settings. Later, we perform some robustness checks by extending the base case in perhaps

the most obvious way: by incorporating stochastic interest rates. Secondly, the setting

8For this reason we avoid the Merton(1974) model, the original and most widely cited structural model,

which can be cumbersome to apply to coupon-paying bonds. We discuss this model further in the section

on estimating the cost of debt capital.
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allows us to fully concentrate on the comparative effects of the different recovery forms,

a primary focus of this paper, rather than on issues such as sensible default boundary

specifications or other important features which have been embedded into the structural

modelling framework. Lastly, the simple setting leads to tractable closed-form solutions

which greatly eases our analysis from a computational standpoint.

2.1 Structural Model for Default

The underlying stochastic variable for default risk is the firm asset value process whose

dynamics under the risk-neutral measure are modelled as follows:

dVt = (r − δ)Vtdt + σV Vtdz
Q
V (1)

where r is the constant default-free interest rate, δ is the assumed constant firm payout

rate, and σV is the assumed constant volatility of firm’s asset value, and z
Q
V is a standard

Brownian motion under the risk-neutral probability measure. Default occurs at the first-

passage time τ of V hitting the constant default boundary, K.

τ ≡ inf

(

u > 0, xu ≡ ln

(

Vu

K

)

= 0

)

(2)

Such a boundary is usually economically justified by the presence of positive net worth

or safety covenants (Black and Cox (1976)). Defining xt as ln Vt
K ,the log of the inverse

leverage ratio9 and employing Ito’s lemma, we can write the risk-neutral cumulative de-

fault probability Qt (τ < T ) as the probability of the following process for xt hitting zero

between times t and T starting from an initial value x0 assumed greater than zero:

dxt = (r − δ − σ2
V

2
)dt + σV dz

Q
V (3)

Using the first-passage time density of x we have the well-known result (see Musiela and

Rutkowski (1997)) :

9This interpretation is correct if we assume the level of the default boundary to proxy for the value of

total liabilities of the firm.
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Qt (τ < T ) = N

(−x0 − µ∗(T − t)

σV

√
T − t

)

+ e
−

2µ∗x0
σ2

v N

(−x0 + µ∗(T − t)

σV

√
T − t

)

(4)

where N is the standard normal cumulative distribution function and µ∗ is the risk-neutral

drift for xt: µ∗ ≡ r − δ − σ2
V
2 .

2.2 Defaultable Bond Pricing

Expressions for defaultable bond prices are straightforward in this simple setting. Our

main objective is to compare the implications of the different recovery assumptions. To

make this clear we partition the value of a defaultable bond with a face value of F maturing

at time T paying semi-annual coupons10 at an annual rate of c into two components: 1)

valuation of payments in the states where no default occurs, and 2) valuation of payments

in states where default occurs.

P0,c,T = PND
0,c,T + PD

0,c,T (5)

The latter portion will vary with the recovery form we choose while the former part is

independent of the recovery value. In other words, the first expression is equal to the

value of the bond assuming a zero recovery value which can be written in closed-form in

our setting:

PND
0,c,T = D(0, T )F [1 − Q0(τ < T )] +

c

2

2T
∑

i=1

D(0, Ti/2)
[

1 − Q0(τ < Ti/2)
]

(6)

where D(0, Ti/2) is the value of the risk-free discount bond maturing at Ti/2, or in this

setting: exp
(

−rTi/2

)

. The partitioned value for the default states will depend on the

recovery form. We first present the two forms seen up to now in the literature: RT-F and

RT. We focus on the RFV assumption in the following section. In all case an expected

recovery rate of ω which is independent of firm asset value process is assumed.

10Clearly zero-coupon bond prices can be considered in this setting by setting the coupon rate to zero.
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Recovery of Treasury - Face Value (RTF):

P
D,RT−F
0,c,T = E

Q
0

[

1{τ<T} exp(−rT )ωF
]

= ωD(0, T )FQ0(τ < T ) (7)

Recovery of Treasury (RT):

P
D,RT
0,c,T = ω

[

D(0, T )FQ0(τ < T ) +
c

2

2T
∑

i=1

D(0, Ti/2)Q0(τ < Ti/2)

]

(8)

As discussed previously and apparent from the equations here, at default, RT-F bondhold-

ers receive the face value of the bond discounted to the promised maturity at the risk-free

rate, while RT bondholders receive the value of a bond with the same contractual features

of the defaultable bond but priced discounting at the risk-free rate. In both cases recovery

payments are assumed to occur at the promised coupon or bond redemption dates. In

the case of a zero coupon bond it is clear from above that the two recovery forms are the

same. With the model bond prices given as

PRT−F
0,c,T = PND

0,c,T + P
D,RT−F
0,c,T (9)

PRT
0,c,T = PND

0,c,T + P
D,RT
0,c,T

we can compute the respective yield to maturity Y0,c,T implicitly and the associated yield

spreads s0,c,T as

P
j
0,c,T = e

−Y j
0,c,T T +

c

2

2T
∑

i=1

e
−Y j

0,c,T Ti/2 (10)

s
j
0,c,T = Y

j
0,c,T − r

for j = {RT − F, RT, RFV }.
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2.3 Structural RFV Model

We now consider the RFV case where the debtholder receives a fraction of the face value

of the bond at the default date11.

Recovery of Face Value at Default (RFV):

P
D,RFV
0,c,T = E

Q
0

[

1{τ<T} exp(−rτ)ωF
]

(11)

Due to our assumptions regarding a constant expected recovery rate we can write this

expression as ωF multiplied by the value of a unit payment received at default discounting

to time zero. This latter term describes a particular type of barrier option referred to by

some as the down-and-in cash-at-hit option12 (see Haug (1998)). The closed-form solution

is as follows:

E
Q
0

[

1{τ<T} exp(−rτ)
]

=

[

e
−x0(µ∗+λ)

σ2
v N

(−x0 + λT

σV

√
T

)

+ e
−x0(µ∗−λ)

σ2
v N

(−x0 − λT

σV

√
T

)]

(12)

where λ ≡
√

µ2
∗ + 2σ2

V r and µ∗ ≡ r − δ − σ2
V

2

and N(·) denotes the standard normal cumulative distribution function. A proof for the

formula can be found in Nelken (1996). This type of expression has been applied before for

corporate bond pricing before by Black and Cox (1976) and Leland and Toft (1996) where

the bondholder receives a fraction of the firm value at default. However, neither source

explicitly considers it as an application to model a RFV-type of recovery within a complex

capital structure or state that such a recovery form may be consistent with data or certain

institutional features which generate such a recovery form as discussed in Guha (2002).

Later on we discuss how our results compare with these and other papers which consider

11In the more general form of RFV any accrued interest on the last coupon payment prior to default

should be included in the recovery payment if stipulated as such in the bond indenture. We ignore this

feature in our analysis.
12Also referred to as American binary/digital/bet options (Taleb (1997) and Zhang (1998)) or the rebate

price for a down knock-out barrier option (Cox and Rubinstein (1985) and Sbuelz (1999)).
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endogenous default boundaries. Next we analyze these different closed-form components

that affect defaultable bond pricing in this simple setting, with a particular focus on the

comparative differences between the PD
0,c,T terms.

3 Comparative Analysis: Coupon Bonds

In this section we compare spreads and sensitivities resulting from the three different

recovery forms for the case of coupon-paying bonds. The vast majority of corporate

bonds pay coupons and thus are the securities which are subject to empirical tests of

model performance.

3.1 Comparative Credit Spreads

We first compare hypothetical credit spreads as given in (10) generated by the different

recovery forms using the base case model we have assumed. It is useful to do this across

different credit rating classes and various maturities. For choosing the parameters which

do not vary across credit quality we refer to Huang and Huang (2002). These include the

constant interest rate r(8.00%), the constant payout rate δ(6.00%), the default boundary

K, assumed to be 60% of the firm’s total liabilities; and an expected recovery rate ω of

51.31%. For the parameters which would likely vary across credit quality we use mean

estimates from Davydenko and Strebulaev (2002)13. These include the leverage ratio, as

measured by the book value of total liabilities divided by the sum of the book value of total

liabilities and the market value of equity, and the asset value volatility. Table I shows their

estimates across the credit rating classes. While the credit spreads in absolute terms will

depend highly on our choice of parameters it should be noted that we are concerned here

with the relative difference in spreads across the different recovery forms. We consider

a hypothetical semiannual coupon-paying bond under three different annual coupon rate

13In Huang and Huang(2002) the asset volatility parameter is calibrated to match the data, and thus

vary for different maturities. While we could use their data on leverage ratios for the different credit rating

classes, we decide to take these two parameters from a consistent source.
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scenarios with the constant interest rate fixed at 8.00% : 1) 8.00% (par bond)14, 2) 12.00%

(premium bond), and 3) 4.50% (discount bond).

Results are found in Table II for 6 different credit rating classes and three maturities

(2, 10, and 30-year). Figure 1 plots the entire term structure of credit spreads for a

Speculative-grade (B-rated) firm. In the top three credit rating classes (Aaa, Aa, A)

the recovery form does not make much difference. This follows from default being an

extremely unlikely event. This is especially true in the 2 and 10-year bonds. In the case

of the A-rated 30-year maturity bond there is a 20 basis point difference between RT and

RT-F for the par bond case and similar numbers in the premium and discount cases. One

particular noticeable feature is how much higher the spreads in RT-F versus RT and RFV

are as we increase maturity and as we move further down the credit rating class. For

the B-rated 10-year maturity par bond the RT-F assumption results in a yield spread of

474 bps versus 319 and 324 bps for the RT and RFV forms respectively. This is not too

surprising given that we have assumed fixed the expected recovery rate across all recovery

forms15. As we increase the maturity the discounting effect leads to a smaller amount

being recovered at default for RT-F and therefore significantly larger spreads.

Spreads in the RFV case, as expected, are always smaller than the RT-F case as the

bondholder will receive the recovery amount at least as soon as in the RT-F case. Relative

to the RT case, RFV spreads can be smaller or larger depending on whether the bonds are

at a premium or discount. In the par bond case RFV and RT are virtually the same16 with

the largest difference between RFV and RT spreads being 5 bps in the 10-year maturity B-

14Of course the defaultable bonds would not be trading at par due to default risk, however we use the

terminology to distinguish among the other cases.
15One potential criticism of the analysis that follows is that using the same expected recovery rate for

the RT-F form as the others is inherently a bad assumption as it obviously implies a lower recovery value.

However, we think it useful to compare the different recovery assumptions holding this parameter constant

to concentrate on the form of the recovery. An alternative procedure would be to calibrate this parameter

such that the RT-F bond price matched the RFV bond price. This will be considered in a future version.
16In the Huang-Huang(2002) paper the authors assume a coupon of 8.162% in their calibration exercises.

This corresponds to a par coupon if yields are computed assuming semiannually compounding. Therefore,

they effectively approximate the RFV assumption, although they price bonds in their base case using a

RT assumption.
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rated bond. This is made clear in Figure 1 which plots the term structure of credit spreads

for a B-rated bond. For high coupon bonds we see that the RFV assumption can produce

noticeably larger spreads versus the RT case especially as the credit rating worsens and

the maturity increases. For the 10-year maturity B-rated premium bond RFV produces

a spread of 387 bps versus 320 bps for the RT case. These results come directly from the

fact that the assumed claim in default is higher than par in RT while the recovery claim

in RFV is fixed at par. The opposite results are seen in the discount bond case. RFV

spreads can become significantly lower than RT spreads. Again in the 10-year maturity

B-rated bond case, the RT spread is 319 bps while the RFV spread is 250 bps. Figure

2 shows this point for the Ba-rated 10-year maturity bond. An interesting feature of the

Structural RFV model is that for certain extreme parameters promised yield spreads can

become negative. We discuss this point further when discussing the bond sensitivities to

firm value.

The shape of the credit spread term structure generated by RT and RFV recovery

forms is generally consistent to that found in previous structural credit risk models, up-

ward sloping for investment-grade credits and downward sloping (starting from the 5-year

maturity17) for speculative-grade credits. In the RFV case, increasing the coupon gen-

erates a less downward-sloping curve for lower grade credits, while lowering the coupon

exacerbates the downward slope. The RT term structure shape is relatively unaffected by

changes in the coupon. Given that corporate bonds tend to pay higher coupons than a

risk-free bond issued at par (corresponding to our premium bond case) our results can be

considered supportive of the empirical results found in Helwege and Turner (1999). They

find that risky bonds can have upward-sloping credit yield curves. The RT-F assumption,

interestingly, leads to upward-sloping credit spread curves in all cases with our parameter

choices, even for speculative-grade credit ratings.

Within an RT-F recovery form setting Collin-Dufresne and Goldstein (2001) develop

an exogenous default boundary model with mean-reverting leverage ratios. They claim

17Assuming simple geometric brownian motion for firm value implies that defaults are predictable. This

leads to small default-related spreads at the short end of the maturity curve, thus the hump-shaped credit

spread curve seen in such models.
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that, unlike constant default boundary models, their mean-reversion feature results in an

upward sloping term structure of credit spreads for low-grade companies, consistent with

evidence found in Helwege and Turner (1999). Our results above contradict this claim

as our base case RT-F model can generate an upward-sloping term structure of credit

spreads. Further, we confirm that while mean-reversion does somewhat increase the slope

of the credit spread term structure compared to constant default boundary models, the

recovery form assumption is crucial in generating their results. In Figure 3 we consider

their parameter choices and plot both our base case constant default boundary model and

their model assuming RFV, RT, and RT-F recovery forms. We find that upward-sloping

credit spread term structures are generated only in the RT-F version of their model 18

While comparing spreads across recovery forms under such a simple environment may

only be of moderate use, a few conclusions can be made. Firstly, RFV does not help

much in addressing the problem of credit spread underestimation. This feature is most

puzzling for high-grade credits where we find little difference between the spreads generated

by the various recovery forms and indeed there are environments where RFV produces

comparatively the lowest spreads. Secondly, RT-F produces significantly larger spreads

than the other assumptions using the same expected recovery rate and a consistently

positively sloped credit spread curve unlike RT and RFV. Thirdly, unless bonds have very

high or low coupons relative to default-free yields the RT assumption provides a close

approximation to RFV in producing spreads. Yet there seems to be little justification

for using RT versus RFV especially since the latter embeds a theory generated by the

bond indenture and bankruptcy code. From a computational standpoint both forms can

be valued with closed-form equations in the constant interest rate case. In more realistic

models where interest rates are driven by multiple factors and possibly correlated with

the default process, advanced numerical methods would likely be needed in both recovery

forms. Lastly, it does seem at a first glance from the coupon effects seen, that interest

rate sensitivity will differ across all recovery forms, especially for low credit quality bonds.

We explore these effects later.

18Under other reasonable parameter choices we can obtain downward-sloping term structure of credit

spreads even in the RT-F case of their model.

14



3.2 Comparing Coupon Bond Sensitivities

3.2.1 Sensitivity to Firm Value

Coupon bond price sensitivities to firm value (i.e. deltas) tend to be an upward sloping

function of maturity for high-grade bonds for all three different recovery forms. For low-

grade bonds the RT and RFV deltas are humped and then slightly downward sloping

similar to their credit spread curves versus maturity. In the par case, where the coupon is

chosen to equal the risk-free rate, RT and RFV deltas are essentially identical whereas the

RT-F deltas are consistently higher. The size of the coupon with respect to the constant

risk-free rate affects the relative deltas among the recovery forms as it did for the spreads.

When the coupon rate is higher than the risk-free rate the RFV deltas are higher than

RT deltas while the opposite holds true when the coupon rate is lower, ceteris paribus.

The deltas for all three recovery forms increase in a convex manner as the credit

quality decreases. Figure 4 shows this for a 10-year maturity bond assuming the coupon

is equal to the risk-free interest rate. Differences in credit quality here is taken to mean

different assumed leverage and asset volatility. In most cases the deltas for the coupon

bonds increases with leverage, again in a convex fashion. However, the RFV delta can be

a concave function of leverage and as we saw with spreads, can become negative. Figure

5 displays this for a 30-year maturity bond with a given set of parameters. The asset

volatility (30.00%), the coupon rate (3.00% vs. the risk-free rate of 8.00%), and the

expected recovery rate (60.00%) are all parameter choices within reason. The potentially

negative delta of the Structural RFV model implies that the bondholder is better off if the

firm defaults. Essentially, the present value benefit of the immediate recovery payment is

greater than the increase in debt value due to the decrease in default risk if the firm value

were to increase. This is also the reason why we saw that Structural RFV credit spreads

could become negative. The fact that bondholders may actually prefer default was a point

made initially made in Black and Cox (1976) but not explicitly generated in their model.

With respect to the other variables, deltas increase linearly with coupon rates, decrease

linearly with expected recovery rates, and decrease as a convex function of interest rates.
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3.2.2 Sensitivity to Volatility

In the case of investment-grade bonds the sensitivities of coupon bond prices to the volatil-

ity parameter (i.e. vegas) are, in general, negative decreasing functions versus maturity

across all recovery forms. For low-grade bonds the vegas are much less sensitive to ma-

turity. When the coupon rate is set equal to the interest rate the sensitivities produced

by RT and RFV are essentially the same while the RT-F vegas show a more negative

sensitivity. When the coupon rate is higher than the risk-free rate the RFV form has

more negative vega than the RT form, while the opposite holds true when the coupon

rate is lower than the risk-free rate. Generally speaking the vegas for all recovery forms

become more negative as the credit quality decreases. However, vegas can increase in all

recovery forms with both the assumed leverage ratio and asset volatility when the leverage

and volatility levels are high. In the RT and RT-F forms the vegas are always negative,

that is bond prices decrease with increases in asset volatility. In the RFV recovery form,

however, the vegas can become positive under certain parameters. This is the same effect

discussed above in which bondholders benefit from default occurring. Figure 6 shows this

for a 30-year maturity bond with leverage and asset volatility parameters to match a hy-

pothetical B-rated company. The coupon is chosen to be a discount bond (4.50% vs. the

risk-free rate of 8.00%). For quite reasonable expected recovery rates the RFV recovery

form can produce nonnegative vegas.

3.2.3 Sensitivity to Expected Recovery Rate

Figure 7 plots the sensitivity of coupon bond price to the expected recovery rate parameter

across different maturities for a Baa-rated company using the three recovery forms. The

coupon is chosen to equal the risk-free rate so again we see the equivalence between the

RT and RFV forms. The sensitivity in these two forms are considerably higher than

the RT-F form. These sensitivities are independent of the initial recovery rate assumed.

Thus, if one were to assume the RT-F form of recovery in a model but with a substantially

higher initial ω, the differences seen in these recovery sensitivities would still remain. As

is apparent in the plot the RT-F recovery sensitivity can decrease with maturity due to a
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discounting effect while RT and RFV are strictly increasing.

The sensitivity to the expected recovery rate increases with a decline in credit rating for

all three forms though both RT and RFV have greater sensitivity to increases to leverage

and asset volatility than the RT-F form. When the coupon rate is higher than the risk-free

rate the RT form has a greater sensitivity to the recovery rate versus the RFV form, while

the opposite holds true when coupon rates are lower than the risk-free rate. In fact, the

recovery sensitivities for the RFV and RT-F recovery forms as defined are independent of

the coupon rate, while the RT sensitivity increases linearly with the coupon rate.

3.2.4 Sensitivity to Interest Rate

Intuition suggests that due to differences in timing of the cash flow payments for the

different recovery forms we should expect different interest rate sensitivities. An under-

standing of these sensitivities is important for bondholders as they represent in most cases

the major risk which can be hedged. We consider two measures of this interest rate risk:

1) the derivative:
∂P j

0,c,T

∂r , and 2) the negative elasticity with respect to the model bond

price, or the model modified duration:

Dur
j
0,c,T = − 1

P
j
0,c,T

∂P
j
0,c,T

∂r
(13)

for j = {RT − F, RT, RFV }. The negative of the derivative is also often referred to

as the dollar duration. For investment-grade credit the sensitivities are essentially the

same across all recovery forms due to default being an unlikely event. However, as the

credit quality decreases the sensitivity as implied by the three recovery forms diverge.

This is shown in Figure 8 which plots the derivative against maturity for a hypothetical

speculative-grade (B-rated) bond. The coupon rate is chosen to be equal to the risk-

free rate (8.00%). The same plot in terms of the model modified duration is shown in

Figure 9. The RT form has a significantly more negative sensitivity to interest rates and

a considerably higher modified duration. For example, in the 30-year maturity case the

RT modified duration is 8.69 while the RFV and RT-F modified durations are 5.32 and

4.94 respectively. The RT-F recovery form has the least negative sensitivity, but once

transformed into a modified duration measure it is higher than the RFV form except for
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very long-dated maturities. The RT-F interest rate sensitivities (durations) can actually

increase (decrease) with maturity. This is driven by the recovery payment term, PD
0,c,T . In

RT-F, the claim paid at default is a fraction of a zero-coupon bond maturing at the final

redemption date. Such a security can have an increasing (less negative) sensitivity with

respect to interest rates as maturity increases, unlike the claims paid at default under the

RT and RFV recovery forms.

An important point here is that the coupon in these figures is equal to the risk-free

rate. Previously when this was the case the RT and RFV recovery forms produced nearly

identical numbers for both spreads and sensitivities. However, with regard to arguably

the most important sensitivity from an investor’s point of view, the interest rate hedge

ratio, they can imply significantly different numbers. In general, as the credit quality

decreases the sensitivity (modified duration) increases (decreases) for all recovery forms,

with the RFV recovery form being particularly affected. That is, as volatility and leverage

increases the modified duration of an RFV bond decreases substantially more than RT or

RT-F.

We finally plot the model bond prices against the risk-free interest rate. This will

allow us to examine the implied bond convexity exhibited by the different recovery forms.

When the credit rating is high there is a decreasing convex relation between bond prices

and interest rates, as in the case with default-free bonds. However, as the credit quality

decreases this behavior is not necessary. Figure 10 plots the bond prices versus the risk-

free interest rate for 20-year maturity bond using parameters for a B-rated issuer. We find

that while the RT and RT-F bonds are still convex, the RFV bond is slightly concave with

respect to interest rates. This is a result of the following. If we consider only the recovery-

independent portion of the bond, the PND
0,c,T term described above, low-grade bonds would

be concave with respect to interest rates due to a effect driven by the probability of default.

A decrease in r would produce such an increase in the default probability that PND
0,c,T

increases weakly with respect to r, or even decreases. Considering now the recovery portion

PD
0,c,T , of the different recovery forms, RFV is the least convex due to the insensitivity of

its recovery claim F to interest rates. RT and RT-F embed enough convexity in their
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PD
0,c,T terms to offset the concavity of the PND

0,c,T term.

To summarize this section, we have provided convincing evidence that the recovery

form, in general, matters for the fundamental valuation and hedging of corporate debt

within exogenous boundary structural credit risk models. This conclusion is most applica-

ble for the case of long-maturity low credit quality bonds. Model interest rate sensitivities,

in particular, look to be an important feature which can be affected by the recovery form

chosen. This has obvious practical implications in terms of relative valuation and risk

management.

4 Relationship to Endogenous Bankruptcy Literature

It is interesting to note that some of the results seen in the previous section are closely

related to those found in the endogenous boundary literature. Black and Cox (1976) were

the first to motivate the fact that the default boundary could be an endogenous outcome of

a firm’s optimal decision policy. Essentially, the optimal default boundary is the level of the

asset value where the firm can no longer issue new securities, such as equity, to service the

debt. In both their endogenous model and exogenous case if default happens bondholders

receive the firm value at the default date. The modelling of the timing of the recovery

payment leads to a type of barrier option which is seen in the Structural RFV model

above. Leland (1994) extends the Black and Cox (1976) paper to include bankruptcy

costs and taxes which leads to considering the problem of the optimal debt contract a firm

should issue ex-ante. Thus, he is able to link debt values and optimal capital structure

decisions to the firm’s asset value, asset volatility, taxes, bankruptcy costs, and interest

rates. As these types of papers attempt to focus on important economic issues rather than

practical bond valuation they necessarily work in stylized settings. For example, these two

last papers focus on a hypothetical consol bond as it considerably simplifies the valuation

equation. However, these early papers have been extended somewhat to consider more

realistic situations. We address how our results complement two such papers: Leland and

Toft (1996) (“LT”) and Acharya and Carpenter (2002) (“AC”).

19



LT extend Leland (1994) to consider finite maturity debt that is constantly rolled over

such that the debt structure remains time-independent. This allows them to additionally

consider the optimal maturity of the debt contract. We focus here on some of their pricing

and hedging results. Their model generates term structure of credit spreads consistent

with the much of the structural model literature: upward-sloping for low leverage firms

and downward-sloping after an initial hump for high leverage firms. One interesting result

they obtain is that bond prices increase when the asset volatility parameter increases

if leverage is very high. They attribute this feature to the endogeneity of the default

boundary. However, we have shown in Figure 6 that under reasonable scenarios a purely

exogenous model can also produce a similar result. In the LT model, as in Black and Cox

(1976) and Leland (1994), the default boundary decreases with increases in asset volatility.

Thus, the endogeneity surely would increase the magnitude of this sensitivity to volatility

result but we show evidence that, in general, it is not a necessary condition19 for it to

exist. Another feature of their model that LT highlight is the sensitivity of their model

debt values to interest rates. They show that for very risky bonds the effective duration

becomes considerably shorter than the duration for a corresponding risk-free bond. They

also show that very risky bond prices can be concave to interest rates. We can generate

both of these results in the Structural RFV model. We already showed evidence in Figure

10 that the RFV recovery form can lead to concavity to a degree much higher than other

recovery forms. In Figure 11 we show a similar plot to Figure 5 in LT (pg. 1005) plotting

the modified durations of A-rated and B-rated bonds against modified durations of the

corresponding default risk-free bonds for both the RT and RFV recovery forms. We show,

similar to the LT result, that when an RFV recovery form is assumed that the modified

duration becomes insensitive to the maturity of the bond. While the setting of the LT

paper is different than ours and has alternative aims, the consistent pricing and hedging

results found in both lead us to conjecture that the similar timing of the recovery payment

is playing a fundamental part.

AC make the same general point we have done which is that the bankruptcy rule affects

19LT does provide some comparative results assuming the boundary is exogenously fixed, but it is not

entirely clear if the volatility result holds or does not hold in such a setting.
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corporate bond sensitivity to interest rates and firm value. They work in a setting where

a firm has a single bond outstanding with a finite-maturity and paying a fixed continuous

coupon. This implies that their assumed endogenous default boundary is time-dependent.

They assume interest rates to be a one-factor diffusion process and also allow the bond

to be callable in addition to defaultable. In such a setting they are able to treat both the

default option and the issuer call option as options on an underlying host bond. This gives

them the ability to understand the non-negligible interaction between the two options.

One result of their model is that corporate bond price sensitivities to interest rates are

guaranteed to be negative, a feature found neither in typical exogenous default boundary

models nor in the endogenous boundary models of Leland (1994) and Leland and Toft

(1996). The authors then go on to claim that endogenous models explain the empirical

evidence regarding sensitivities to interest rates better than typical exogenous boundary

models. In particular, one piece of evidence they cite from Duffee (1998) is that for

noncallable bonds the sensitivity to interest rates becomes monotonically less negative

as the credit quality improves. Plotting duration versus firm value in their model they

are able to generate such a result while doing the same in the Longstaff and Schwartz

(1995) model leads to potentially U-shape plots. In Figure 12 we plot the model modified

duration versus firm value (assumed as a multiple of total liabilities) for a generic 8.00%

coupon 10-year bond using both the RT and RFV recovery forms. Using the RFV recovery

form we can generate the upward-sloping duration curve that they show in their Figure

4 for an endogenous model, while the RT case corresponds to their Figure 6 showing the

LS model. This provides evidence that their criticism of typical exogenous models is more

of a criticism of the RT recovery form found in typical exogenous models rather than

exogeneity per se. In short, it is not decidedly clear from their results that endogenous

models explain the data better than exogenous models, however, they do provide indirect

evidence that the RFV recovery form matches sensitivities seen in the data better than

other recovery forms.

To summarize this section, some of our results from comparing different recovery forms

within a simple exogenous boundary models complement those seen in the endogenous
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boundary literature. In particular, the RFV recovery form seems to generate some features

which previously may have been solely attributed to modelling the default boundary as

an optimal policy by the firm. While studies such as Leland (1994) have studied the

theoretical differences between the exogenous and endogenous boundary models in very

stylized settings, work is needed to properly isolate the quantitative effects of endogeneity

in more realistic settings. Leland (2002) accomplishes this to some extent by focusing on

default probabilities, but more work is needed. Empirically speaking, we believe it is still

an open question whether endogeneity better explains the data.

5 Robustness Check: Incorporating Stochastic Interest Rates

5.1 Choosing a Term Structure Model

It is useful to see how the different recovery forms affect pricing within the setting of

stochastic default-free interest rates. First, it provides a robustness check on our results

in the base-case setting. Second, in any practical implementation of valuing corporate

debt, the stochastic nature of interest rates should be taken into account. This requires us

to choose a sensible term structure model. While most of literature on structural credit

risk pricing with stochastic interest rates assume simple one-factor models for the risk-free

rate (e.g.Kim, Ramaswamy, and Sundaresan (1993), Longstaff and Schwartz (1995), Cath-

cart and El-Jahal (1998), Collin-Dufresne and Goldstein (2001), Acharya and Carpenter

(2002)) we believe a model with multifactor dynamics is more sensible. The empirical lit-

erature shows vast evidence (e.g. Nelson and Schaefer (1983) , Litterman and Scheinkman

(1991) ) across all major interest rate markets that two or three factors are necessary

to adequately describe the empirical behavior of yield curve movements. In addition, to

jointly examine how different initial risk-free yield curve shapes can affect credit risk pric-

ing across the different recovery forms, we would like that a model can be calibrated to fit

the initial yield curve. Since the initial yield curve would be an input to the model we can

determine whether recovery forms matter more in a certain interest rate environment, say
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an upward-sloping yield curve, versus another, say a humped-shaped yield curve. Our last

requirement for choosing a term structure model is that it allows us to consider non-zero

correlation between the stochastic terms driving the risk-free rate and those driving the

default risk of the corporate bonds, in this case the firm-value process. Such covariation

would be consistent with empirical studies (e.g. Duffee (1998) and Collin-Dufresne, Gold-

stein, and Martin (2001)) showing a negative relation between interest rate levels and

credit spreads.

5.2 Term Structure Model

We incorporate the above elements in a relatively simple two-factor affine term structure

model as described by Brown and Schaefer (1994) and Duffie and Kan (1996) , and which

is admissible (see Dai and Singleton (2000) ). The short rate path r(t) is assumed as the

sum of two stochastic factors, l(t) and s(t), and a deterministic factor g(t). The dynamic

system of equations, under the risk-neutral measure, is

dl(t) = −κll(t)dt + σldz
Q
l (14)

ds(t) = −κss(t)dt + σsdzQ
s

r(t) = g(t) + l(t) + s(t)

where E(dz
Q
l dz

Q
s ) = ρlsdt, E(dz

Q
l dz

Q
V ) = ρlV dt, E(dz

Q
s dz

Q
V ) = ρsV dt and the initial values

of both l and s are equal to zero. We can refer to κl and κs as reversion parameters

of the two factors; while σl and σs can be termed volatility parameters. By making the

deterministic term, g(t), time dependent we can calibrate the model to the initial yield

curve. A full description of this particular specification as well its solution and calibration

procedure can be found in the Appendix.

Implementing the model requires values for the parameters which are assumed con-

stant. In two-factor gaussian models as the one described, typically one factor can be

thought of as the interest rate level factor while the other factor can be interpreted as a

slope factor. The level factor is likely the one with a considerably smaller reversion param-

eter value, indeed usually close to zero. Using the estimates of Brown and Schaefer (2000)
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from US Treasury STRIP data we set κl = 0.0393 and κs = 0.2060 thus we consider l(t)

as the level factor and s(t) the slope factor. For the volatility parameters we set σl = 0.010

and σs = 0.015, values found in both Brown and Schaefer (1994) and He (2000). We set

the term structure correlation parameter, ρls, equal to −0.336 as estimated by Brown and

Schaefer (2000). Using our own estimates from a subset of companies and relevant interest

rate data we set ρlV = −0.15 and ρsV = 0.00. Ideally we would like these latter correlation

parameters to vary by credit rating, but given the size of data which the estimates would

have been taken from we consider only one value. Given these parameters and the initial

yield curve the term structure model has been fully specified.

5.3 Implementation and Results

We price defaultable bonds by jointly simulating the default variable process found in

(3) 20 and the interest factor processes. The three different recovery forms (RT, RT-F,

and RFV) are taken into account when determining cash flows path by path. Details

of the simulation procedure and the appropriate variance reduction techniques used for

reducing pricing bias are discussed in the Appendix. We examine 4 different initial yield

curve shapes in terms of the instantaneous forward rate across different maturities: 1) flat

curve; 2) upward-sloping curve; 3) humped-shape curve; and 4) downward-sloping curve.

The curves are chosen such that the average forward rate over the first ten years is equal

to 0.08, thus somewhat comparable to our base results found in the previous section which

assumed a constant interest rate across maturities of 0.08. Figure 13 plots the 4 different

term structure shapes. Details on how the yield curves are produced using the Nelson and

Siegel (1987) methodology is found in the Appendix.

Table III shows the results in terms of basis point spreads over the default-free promised

yield corresponding to the particular interest rate environment. The first noticeable result

is that when we assume an initial flat curve the spreads are little unchanged from our

base case result with constant interest rates, despite the fact that the firm value process

is correlated with the interest rate process. This result is especially valid when we are

20Now with the short rate a stochastic variable rather than a deterministic constant.
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concerned with the relative effects of the different recovery forms.

The results from the other interest rate environments assumed support our argument

that the form of the recovery assumption can affect pricing significantly. This is true even

if the coupon rate of the bond is not markedly high or low. Consistent with our base

case result is that spreads produced by the RT-F assumption are consistently and in some

cases dramatically higher than those produced by RT and RFV. Going forward we will

concentrate on comparing the RT and RFV assumptions. As we saw in our base case

analysis, as the maturity of the bond increases and the credit quality decreases the model

spreads for the various recovery forms can differ significantly. Here, in addition, we can

examine the effect of different yield curve shapes.

In the upward-sloping yield curve, the respective default-free promised yields for the

three different maturities are: 4.67%(2-year), 8.00%(10-year), and 9.07% (30-year). For

the short-dated bond the RFV spread is slightly higher than RT spread in the B-rated

bond due to the coupon of the bond considered being at a significant premium. In the

medium term bond, while the bond coupon rate is the same relative to the default-free

promised yield the RT spread is higher than RFV, by up to 30 basis points for the B-rated

bond. This is a result of the fact that since the payments upon default will be paid at

their promised maturity in the RT case, the higher long-dated interest rates decreases the

value of the RT bond relative to the RFV bond

In the humped-shape yield curve, the respective default-free promised yields for the

three different maturities are: 9.46%(2-year), 8.25%(10-year), and 7.74% (30-year). The

results in the case are similar to the flat curve case since the forward rates assumed flatten

out to a constant 7.00% after the humped-shape rise in the early maturities. The positive

difference between the RFV and RT assumptions in the 2 and 10-year case even though

the hypothetical bond would be a discount coupon bond can be attributed to the higher

interest rates assumed in the shorter maturities making any immediate recovery attained

in an RFV setting worth relatively less. The difference between the two forms increases

as the maturity increases to 30 years as the bond considered becomes a premium coupon

bond.
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In the downward-sloping yield curve, the respective default-free promised yields for

the three different maturities are: 9.59%(2-year), 8.36%(10-year), and 6.07% (30-year).

Contrasting with the upward-sloping case we find that for the medium term bonds RFV

produces a slightly higher spread compared with the RT assumption despite the fact that

the bond is at slight discount to the promised default-free yield. This is the opposite effect

seen in the upward sloping case. Lower interest rates increase the recovery value under an

RT assumption on a relative basis versus RFV. In the case of the 30-year maturity bond

the significant premium of the coupon rate versus the default-free yield (8.00% versus

6.07%) exacerbates the difference between RFV and RT spreads.

5.4 Implication of Results

Several conclusions can be made from our analysis under a stochastic interest rate setting.

First, our base case results, though assuming constant interest rates, are in general robust

as long as the yield curve is not too extensively upward or downward-sloping. This implies

that using the closed-form solutions presented earlier can be used with confidence in

defaultable debt analysis in many interest rate environments. Second, while the coupon

premium/discount effect is strong, the yield curve shape can also affect how the recovery

form affects model credit spreads. Ceteris paribus, in an upward-sloping curve spreads

under RT will be higher than RFV spreads, while the opposite holds in a downward-

sloping yield curve. This has clear implication for practitioners using exogenous boundary

structural credit risk models for relative valuation and risk management. In addition,

these results are potentially important for researchers doing empirical work using such

models.

Papers such as Eom, Helwege, and Huang (2002) empirically test such models using

individual corporate bond price data and often study the prediction errors. Understanding

the source of these errors is necessary if we would like to improve on current structural

models. However, as these studies are typically done over a long period of time, the term

structure setting could vary considerably from one period to another. If recovery forms

have an impact on model spreads in a way which depend on both the level and shape of
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the default-free term structure of interest rates, it is possible that conclusions from such

studies may be affected due to the recovery form one is assuming within the model. If the

evidence were to convincingly show that one recovery form was consistently used by the

market to value bonds, then the results of such studies could be biased.

6 Estimating the Cost of Debt Capital

The final piece of evidence we show in arguing the importance of the recovery form as-

sumption is in its effect on estimating the cost of debt capital for a firm. Since the first

structural models were developed it was understood that such models could be used for

estimating the expected return premium on debt. A recent paper by Cooper and Davy-

denko (2002) (“ CD” ) advocates the use of such models for this task as well as estimating

the expected risk premium on equity by extracting them from corporate yield spreads. Ex-

traction of the expected return premium or cost of debt capital comes from the following

decomposition

promised yield spread = expected default loss + tax effect + liquidity effect + expected return premium

A primary motivation is the fact that a firm’s cost of debt is used in calculating its overall

cost of capital. As CD mention, this latter number is used in valuation, capital budgeting,

goal-setting, performance measurement, regulation, and is perhaps the most important

number in corporate finance. While for many firms the promised yield spread can provide

a good approximation for this cost of debt, for firms with a significant probability of

default this can significantly overestimate the expected return on debt. CD apply the

Merton model on individual bond credit spread data taking into account non-default

sources of premia, such as liquidity and taxes and are able to obtain sensible estimates.

6.1 Using the Merton Model

There are clear advantages for using a model as simple as the Merton model for such an

application. In this model the equity of the firm is directly priced as well. Thus, one can

more easily calibrate the model to more observable variables such as equity volatility and

equity risk premia rather than unobservable variables such as asset volatility and asset

risk premia. In fact, in the calibration method CD propose, only four observable inputs
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are needed to estimate the cost of debt capital, abstracting from measuring non-default

sources of premia: 1) leverage of the firm; 2) bond yield spread; 3) equity volatility; and

4) equity risk premium. They are able to do this by calibrating the maturity of the debt

to observable variables. This is due to the fact that the Merton model assumes a single

class of zero-coupon debt which makes it quite stylized relative to capital structures ob-

served in reality. However, a single calibrated maturity may be an unneeded constraint in

typical capital budgeting applications since financial managers may face project-specific

time horizons. Exogenous boundary structural models, as described here, help in over-

coming such rigidities. In particular, we can incorporate the contractual details of a firm’s

individual bond such as the maturity and coupon rate when calculating the expected re-

turn premium. This may be particularly relevant if a firm’s bonds exhibit a non-flat term

structure of credit spreads. In cases where a term structure of expected return premia can

be calculated, the cost of debt capital can be chosen to match the project-specific time

horizon or be computed as a proper average of these premia.

6.2 Impact of Recovery Forms

We follow both CD and Huang and Huang (2002) (“HH” ) in calculating the expected

return on debt over the holding period of the bond21. To do this we need to rewrite the

dynamics of the underlying firm asset value under the objective measure:

dVt = (r + π − δ)Vtdt + σV VtdzP

V (15)

where π is the asset risk premium. As we are again primarily concerned about the impact

of the recovery form we assume this to be constant22. The objective cumulative probability

of default is

Pt (τ < T ) = N

(−x0 − (µ∗ + π) (T − t)

σV

√
T − t

)

+ e
−

2(µ∗+π)x0
σ2

v N

(−x0 + (µ∗ + π) (T − t)

σV

√
T − t

)

(16)

21In contrast to an instantaneous expected return. HH compute the bond risk premia in order to relate

equity risk premium to asset risk premium in their calibration exercise.
22HH extend their base case to model the asset risk premia as a stochastic variable.
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We assume in our analysis that all the parameters are estimated from observable variables.

Using the objective probability of default and the structure of the different recovery forms

we can compute the expected return premium of an individual bond given the market

credit spread. The detailed equations are found in the Appendix, however, we outline the

process here without considering tax or liquidity effects23. Given the market spread the

bond price is calculated easily. We then implicitly solve for the annualized continuously

compounded expected return for each recovery form which matches the market bond

price. The spread of this expected return over a comparable default-free bond yield is the

expected return premium or cost of debt capital as implied by the individual bond.

Figure 14 plots the expected return premia across the different credit ratings for a

hypothetical 10-year maturity 8.00% coupon bond. The relevant information needed for

each credit rating (market credit spread, leverage ratio, asset volatility) are all taken from

Table I. We assume that the asset risk premium is constant across all credit rating classes

at 4.50%. This is consistent with evidence found in CD. As we have before we consider

the expected recovery rate to be 51.31% and the default boundary to be 60% of total

liabilities. The figure also plots the corresponding promised yield spread for each credit

rating. The results are consistent with CD which find that for low credit ratings the

promised yield spread can differ substantially from the expected return premium. Only

in the lowest two credit ratings, Ba and B, do we find that the expected return premium

is noticeably different from the promised yield spread. This is especially the case for the

B-rating class. In this case the promised yield spread is taken as 400 bps while the cost

of debt capital for the three recovery forms are 167 bps (RT), 187 bps (RFV), and 60 bps

(RTF). It follows that the recovery form can affect the cost of debt capital as estimated

within these types of model in the relevant case of low-grade bonds.

We earlier hypothesized that a case where using an exogenous default boundary ap-

proach might have an advantage over the CD implementation of the Merton model is if a

firm has a non-flat term structure of credit spreads. It is useful to know how important

the maturity parameter is in affecting the results. Figure 15 and Table IV show the calcu-

23In practice, doing so would be important but such factors do not help in distinguishing between the

different recovery forms. If one were to want to do this the methods proposed by CD could be implemented.
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lated cost of debt capital versus maturity for a 8.00% coupon B-rated bond for the three

different recovery forms assuming that the promised yield spread stays fixed at 400 bps

and the risk-free interest rate is 8.00%. We see that the maturity of the bond considered

does matter in calculating the cost of debt within these models. For example, in the RFV

case if we take the spread from a 30-year bond the expected return premium calculated

will be 277 bps while for a 5-year bond it will be 151 bps. An interesting feature seen

in this figure is that, although the parameters are chosen such that the RT and RFV

recovery forms would produce identical theoretical prices, they produce different model

expected return premia (RFV is higher than RT) under the objective measure. This is a

result of calibrating the cost of debt capital to market prices. For the case examined, the

sensitivities of the expected payoffs to the implied expected return (y∗) is more negative

for RT than RFV, a similar point to that seen in Figure 8. As a result, since expected

payoffs have changed due to moving from the risk-neutral to the objective measure, the

y∗ that makes the discounted value of such payoffs equal to the market price will need

to increase more in the RFV case compared to the RT case. In turn, for this particular

example, the RFV expected return premia is higher than that implied by the RT recovery

form.

As a point of reference we also show how results from the Merton model would change

if we were to assume the same relevant parameters and changed the maturity. The reason

that the Merton model generates lower return premia at early maturities is due to our

assuming the default boundary in the base case exogenous boundary model to be 60%

of the total liabilities rather than 100%. As the maturity increases the potential for a

default occurring before maturity (which is restricted in the Merton model) increases the

default portion of the boundary models making the expected return premium higher for

the Merton model.

However, our objective here is not to compare and contrast exogenous boundary models

with the Merton model. That is an empirical question which can only be answered with

a suitable time series of data. We focused on showing that the recovery form can matter

in estimating the cost of debt capital using a structural model. There are trade-offs
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one has to make in deciding whether to use the Merton model as suggested by CD or

the slightly more complicated exogenous boundary model. The former leads to a more

straightforward24 implementation using observable variables while the latter can take into

account the contractual features of the individual bond which serves as the input to the

calculation.

7 Concluding Remarks

We set out in this paper to answer the question: “How important is the RFV assump-

tion for the fundamental valuation and hedging of corporate debt securities?” This was

done by analyzing the impact of different recovery forms on prices and sensitivities within

exogenous boundary structural credit risk models. We found that, indeed, the recovery

form can be extremely important for those bonds with a non-trivial probability of default.

Different recovery forms have been seen in exogenous boundary models found in the lit-

erature and we have shown here that such an assumption can have implications for the

predictions of the models. Previous literature may have attributed features to a particular

model that were directly related to a chosen recovery form. We provided most results in a

simple constant boundary setting holding interest rates constant. However, our extension

to a multifactor stochastic default-free term structure provided a robustness check for our

main results.

Our results on comparative prices and sensitivities answer our primary question. Fur-

ther contributions are shown in this paper. We demonstrated that implications from

assuming a RFV recovery form within an exogenous model can generate certain results

which up to now have only been seen in endogenous models. Our results from the stochas-

tic interest rate setting showed that empirical studies on exogenous boundary models need

to understand the effect of the recovery form assumed before making any definite conclu-

sions. On the practical side, our research should have direct relevance for the relative

valuation and risk management of junk bonds as well as the estimation of the cost of debt

24It should be noted that within the exogenous boundary models that we can impute the asset volatility

from equity volatility if we make an assumption about how equity is valued.
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capital for low-grade firms.

There are some direct extensions to our work here. One issue we ignored for exposition

is the inclusion of any accrued interest from the last due coupon payment prior to default.

Many indentures allow debtholders this partial coupon as part of their claim. The effect of

such an extension can easily be analyzed in our simulation framework. A major assumption

we have made, as is typical in this literature, is that the expected recovery rate is constant

and the same for all recovery forms. Using a constant value for this parameter allows us to

easily use historical information on recovery rates, which indeed are typically measured as

a recovery of face value at default. However, evidence shows that recovery rates decrease

with default rates and in general are subject to economic conditions which may be firm-

specific, industry-specific, as well as economy-wide. Although we have not attempted to

construct such a robust specification of the recovery process, we argue that such a model

would be affected by the choice of the recovery form. More specifically, the chosen form

needs to be consistent with empirical evidence on defaulted bond values. We believe RFV

is the most natural assumption to make given the evidence.

A criticism of the constant exogenous default boundary model we analyzed is that it

implies that expected leverage ratios will decline exponentially over time. We made such

an assumption for computational tractability and because we were mainly interested in

comparing the alternative recovery forms. Figure 3 provides evidence that our analysis

is robust to richer specifications of the default boundary process, such as that found in

Collin-Dufresne and Goldstein (2001).

Other planned extensions involve empirical data. Although there may be evidence

that RFV is the most appropriate recovery form to describe corporate debt securities at

default, we cannot necessarily say that this is the recovery form incorporated into bond

prices prior to default. Both in RT and RT-F the expected recovery rate can potentially

be made a function of time to produce RFV-consistent recovery values at default. Indeed,

Bakshi, Madan, and Zhang (2002) found in an intensity-model framework that a robust

implementation of RT-F fit their sample of bond prices the best. Performing a similar
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study in a structural credit risk market would be useful. A way which we can compare the

recovery forms that the previous study does not consider is by determining which recovery

form best matches empirical sensitivities. As an example, studies have consistently shown

that credit spreads and interest rates are negatively related. An often ignored important

feature of structural credit risk models is that they provide an economic theory on how

interest rates should affect credit spreads. We have shown here that the recovery form

plays an important part in this theory but what remains to be seen is if the data supports

the sensitivity to interest rates of one form versus another. Acharya and Carpenter (2002)

have provided some indirect evidence concerning this which supports RFV, but more work

is needed directly applying such models on individual corporate bond prices in a dynamic

term structure setting. In future research we plan to conduct such an analysis.

While an empirical-based comparison and validation of the different recovery forms

is useful, another approach could be taken. As seen in Table III the different recovery

forms can generate much different term structure of credit spreads for low-grade firms

under realistic term structure environments. With an appropriate dataset we could use

the model spreads predicted by each recovery form as a relative valuation tool considering

bonds of the same issuer and seniority. Using a feasible trading strategy and comparing

the excess returns from implementing models using each recovery form would provide an

additional test.
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Table I: Parameter Values for Various Credit Grades

The table shows the leverage ratio and asset volatility parameters across credit ratings used for computing

model spreads for representative companies of that particular credit rating. Assumed “market” credit

spreads for the different credit ratings are also given. The numbers are taken from Davydenko and

Strebulaev(2002). Parameters used in the model which are invariant across credit rating classes are taken

from Huang and Huang (2002).

Credit Rating Leverage Ratio Asset Vol Credit Spread

Aaa .12 .22 48

Aa .15 .24 55

A .29 .24 81

Baa .36 .25 120

Ba .45 .28 223

B .64 .37 400
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Table II: Recovery Form and Credit Spreads: Constant Interest Rates

Calculated yield spreads are shown in basis points across different credit rating classes for 2, 10, and

30-year maturities using a first passage defaultable debt model. Parameter assumptions are described in

Table I and Section 3. The hypothetical bond pays a semi-annual coupon at an annual rate of either 8.00%

(Par Bond), 12.00% (Premium Bond), or 4.50% (Discount Bond). The recovery assumptions considered

are: 1) Recovery of Treasury (RT), 2) Recovery of Treasury - Face Value (RT-F), and 3) Recovery of Face

Value (RFV).

Panel A: 2-Year Maturity

Par Bond Premium Bond Discount Bond

RT RT-F RFV RT RT-F RFV RT RT-F RFV

Aaa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Baa 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04

Ba 2.97 3.13 3.07 2.91 3.12 3.05 3.05 3.13 3.08

B 224.73 240.15 229.62 221.29 243.38 233.33 228.01 237.06 226.08

Panel B: 10-Year Maturity

Par Bond Premium Bond Discount Bond

RT RT-F RFV RT RT-F RFV RT RT-F RFV

Aaa 0.07 0.08 0.07 0.06 0.07 0.07 0.08 0.08 0.07

Aa 0.78 0.88 0.79 0.70 0.83 0.76 0.87 0.94 0.83

A 10.58 12.57 10.76 9.77 12.31 10.78 11.55 12.88 10.74

Baa 27.67 33.91 28.13 25.94 33.86 28.97 29.79 33.95 27.12

Ba 83.55 107.94 84.90 80.08 111.04 91.46 87.82 104.14 76.88

B 319.45 473.63 324.31 320.14 517.02 386.64 318.59 420.74 250.63

Panel C: 30-Year Maturity

Par Bond Premium Bond Discount Bond

RT RT-F RFV RT RT-F RFV RT RT-F RFV

Aaa 2.67 4.00 2.70 2.39 3.84 2.89 3.18 4.31 2.35

Aa 8.14 12.86 8.22 7.49 12.61 9.25 9.33 13.32 6.36

A 27.13 46.67 27.33 26.01 47.15 33.12 29.18 45.79 16.94

Baa 46.20 83.15 46.50 45.06 84.98 58.28 48.30 79.77 25.58

Ba 92.70 180.48 93.20 92.27 186.94 122.54 93.49 168.45 42.73

B 249.71 617.81 250.76 255.22 652.11 364.25 239.21 551.45 80.97
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Table III: Recovery and Credit Spreads: Stochastic Interest Rates

Calculated yield spreads are shown in basis points across different credit rating classes for 2, 10, and 30-year maturities using the first passage firm value model

described in Section 2 combined with the default-free multifactor term structure model described in Section 5. The parameters for the firm value model are described

in Table I while the parameters for the term structure model are described in Section 5. We consider a hypothetical bond paying a semi-annual coupon at an annual

rate of 8.00%. We consider four different initial interest rate environments as described in the Appendix: 1) Flat Curve, 2)Upward Sloping Curve, 3)Humped Shape

Curve, and 4)Downward Sloping Curve. The respective default-free promised yields for the 2,10, and 30-year maturity bonds under the different environments are:

1)8.00%(2-year), 8.00%(10-year), 8.00%(30-year); 2)4.67%, 8.00%, 9.07%; 3)9.46%, 8.25%, 7.74%; and 4)9.59%, 8.36%, 6.07%. The recovery assumptions considered

are: 1) Recovery of Treasury (RT), 2)Recovery of Treasury - Face Value (RT-F), and 3) Recovery of Face Value (RFV).

Panel A: 2-Year Maturity

Flat Curve Upward Sloping Humped Shape Downward Sloping

RT RT-F RFV RT RT-F RFV RT RT-F RFV RT RT-F RFV

Aaa 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.02 0.02 0.02

Aa 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.00 0.00 0.00

A 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.02

Baa 0.00 0.00 0.00 0.17 0.17 0.17 0.07 0.08 0.07 0.02 0.02 0.02

Ba 2.53 2.65 2.59 4.57 4.79 4.71 2.07 2.15 2.11 2.18 2.27 2.22

B 226.97 242.49 231.70 279.29 298.51 289.08 204.74 219.08 205.77 204.90 218.96 207.65

Panel A: 10-Year Maturity

Flat Curve Upward Sloping Humped Shape Downward Sloping

RT RT-F RFV RT RT-F RFV RT RT-F RFV RT RT-F RFV

Aaa 0.25 0.26 0.25 0.21 0.22 0.21 0.16 0.16 0.16 0.03 0.03 0.03

Aa 0.93 1.03 0.94 0.84 0.95 0.81 0.64 0.73 0.67 0.41 0.48 0.44

A 9.98 11.79 10.18 10.27 12.53 9.78 10.33 12.12 10.70 9.99 11.69 10.43

Baa 26.75 32.87 27.24 27.01 33.97 25.45 26.82 32.45 27.94 24.52 29.53 25.61

Ba 83.22 107.32 84.22 82.65 110.17 76.27 76.28 96.86 79.27 77.11 98.21 80.25

B 315.85 467.62 318.48 328.43 504.93 299.58 307.38 448.29 317.68 306.73 447.28 315.66

Panel A: 30-Year Maturity

Flat Curve Upward Sloping Humped Shape Downward Sloping

RT RT-F RFV RT RT-F RFV RT RT-F RFV RT RT-F RFV

Aaa 3.46 5.23 3.71 1.28 1.77 1.17 4.91 7.33 5.59 17.67 23.91 23.29

Aa 9.85 15.24 10.27 3.25 5.36 2.69 13.02 19.89 14.39 31.76 45.35 43.31

A 29.63 50.70 30.68 14.64 26.67 10.77 35.51 59.61 39.76 67.72 104.12 95.29

Baa 47.74 85.47 48.88 29.14 54.59 20.54 55.31 97.64 61.88 89.52 145.64 128.47

Ba 93.70 182.24 94.97 71.71 143.45 48.35 100.73 192.27 112.52 134.75 239.87 197.62

B 246.70 608.51 246.03 240.81 610.73 158.81 250.35 605.49 278.83 266.79 604.24 400.51
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Table IV: Cost of Debt Capital versus Maturity: B-rated Bond

The table the expected return premium (cost of debt capital) in basis points as described in Section 6 for

a hypothetical B-rated 8.00% coupon bond for different maturities. The promised yield spread is assumed

equal to 400 bps across all maturities. Three different recovery forms within the base case exogenous

default boundary model are considered: Recovery of Treasury (RT), Recovery of Face Value at Default

(RFV), and Recovery of Treasury-Face Value (RT-F). Also presented are calculations using the Merton

(1974) model. The promised yield spread, leverage ratio and asset volatility for the B credit rating are

taken from Table I. The asset risk premium is assumed constant at 4.50%. The remaining parameter are

the constant interest rate (8.00%), payout rate (6.00%), default boundary (60% of total liabilities), and

expected recovery rate (51.31%).

Maturity (yrs) RT RFV RT-F Merton

2 235 234 224 115

5 147 151 96 141

10 167 187 60 220

20 201 251 22 306

30 211 277 -8 344
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Figure 1: Term Structure of Credit Spreads: B Rating

The plot shows the term structure of credit spreads of a hypothetical company with an speculative-grade

B-credit rating for the Recovery of Treasury (RT), Recovery of Treasury-Face Value (RT-F), and Recovery

of Face Value (RFV) recovery assumptions. The coupon (8.00%) is chosen to equal the risk-free interest

rate. The leverage ratio (64%) and asset volatility (37%) parameters are taken from Table I. Other

parameters, include the constant interest rate (8.00%), constant payout ratio (6.00%), default boundary

(60% of total liabilities) and expected recovery rate (51.31%).
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Figure 2: Credit Spreads vs. Coupon Rates: 10-Year Ba Rated Bond

The plot shows credit spreads of a hypothetical 10-year bond issued by a Ba-rated firm with different coupon

rates assuming a constant risk-free interest rate of 8.00%. The Recovery of Treasury (RT), Recovery of

Treasury-Face Value (RT-F) and Recovery of Face Value (RFV) recovery assumptions are shown. The

leverage ratio (45%) and asset volatility (28%) parameters are taken from Table I. Other parameters,

include the constant payout ratio (6.00%), default boundary (60% of total liabilities) and expected recovery

rate (51.31%).
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Figure 3: Constant Default Boundary vs. Mean-Reversion Model:

Speculative-Grade Bonds

The plot shows the term structure of credit spreads for speculative-grade bonds in both the base-

case constant default boundary model and the mean-reversion model of Collin-Dufresne and Goldstein

(2001)(“CDG”) for three different recovery forms (RFV, RT, RT-F). In their paper CDG assume an RT-F

recovery form only. The parameters used are taken from Figure 3 in their paper. Parameters common to

both models include the constant risk-free interest rate (6.00%), coupon rate (7.50%), payout rate (3.00%),

asset volatility (20%), expected recovery rate (44%), and the initial leverage ratio (65%). For the constant

boundary model the default boundary is set to equal 100% of total liabilities. For the mean-reversion

model the long-term leverage ratio is set equal to 40% and the mean-reversion parameter λ is set to 0.18.
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Figure 4: Coupon Bond Deltas vs. Credit Rating: 10-year Maturity

The plot shows the sensitivities to firm asset value (deltas) across different credit ratings for a 10-year

maturity bond with a coupon equal to the risk-free interest rate (8.00%). The Recovery of Treasury

(RT), Recovery of Treasury-Face Value (RT-F), and Recovery of Face Value (RFV) recovery assumptions

are considered. The assumed leverage ratio and asset volatility parameters which vary by credit rating

are given in Table I. The remaining parameters assume are the constant payout ratio (6.00%), default

boundary (60% of total liabilities) and expected recovery rate (51.31%).
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Figure 5: Coupon Bond Deltas vs. Leverage: 30-year Maturity

The plot shows the sensitivities to firm asset value (deltas) against the leverage ratio for a 30-year maturity

bond. The coupon rate assumed for the bond is 3.00%. The Recovery of Treasury (RT), Recovery of

Treasury-Face Value (RT-F), and Recovery of Face Value (RFV) recovery assumptions are considered.

The parameters assumed are the constant risk-free interest rate (8.00%), the asset volatility (30.00%),

the constant payout ratio (6.00%), default boundary (60% of total liabilities) and expected recovery rate

(60.00%).
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Figure 6: Coupon Bond Vegas vs. Expected Recovery Rate: 30-year Maturity

B-Rated Bond

The plot shows the sensitivities to firm asset volatility(vegas) against the expected recovery rate for a

30-year maturity bond. The coupon rate assumed for the bond is 4.50%. The Recovery of Treasury (RT),

Recovery of Treasury-Face Value (RT-F), and Recovery of Face Value (RFV) recovery assumptions are

considered. The leverage (65%) and asset volatility (37%) parameters are chosen to match a B-rated

company. The other parameters assumed are the constant risk-free interest rate (8.00%), the constant

payout ratio (6.00%), and default boundary (60% of total liabilities).
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Figure 7: Term Structure of Recovery Sensitivity: Baa Rating

The plot shows the term structure of sensitivities to the expected recovery rate parameter of a hypothetical

company with a Baa credit rating for the Recovery of Treasury (RT), Recovery of Treasury-Face Value

(RT-F), and Recovery of Face Value (RFV) recovery assumptions. The coupon (8.00%) is chosen to equal

the risk-free interest rate. The leverage ratio (36%) and asset volatility (25%) parameters are taken from

Table I. Other parameters, including the constant interest rate (8.00%), constant payout ratio (6.00%),

default boundary (60% of total liabilities) and expected recovery rate (51.31%) are taken from Huang and

Huang(2002).

44



0 5 10 15 20 25 30
−7

−6

−5

−4

−3

−2

−1

0

maturity

se
ns

iti
vi

ty
 to

 in
te

re
st

 r
at

e

RT
RTF
RFV

Figure 8: Term Structure of Interest Rate Sensitivity: B Rating

The plot shows the term structure of sensitivities of coupon bond prices to the interest rate for a hypo-

thetical company with a speculative-grade B credit rating using the Recovery of Treasury (RT), Recovery

of Treasury-Face Value (RT-F), and Recovery of Face Value (RFV) recovery assumptions. The negative

of the derivative values shown on the y-axis can be interpreted as the dollar duration of the relevant bond.

The coupon (8.00%) is chosen to equal the risk-free interest rate. The leverage ratio (64%) and asset

volatility (37%) parameters are taken from Table I. Other parameters, include the constant interest rate

(8.00%), constant payout ratio (6.00%), default boundary (60% of total liabilities) and expected recovery

rate (51.31%).
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Figure 9: Term Structure of Modified Durations: B Rating

The plot shows the term structure of modified durations for a hypothetical company with a speculative-

grade B credit rating using the Recovery of Treasury (RT), Recovery of Treasury-Face Value (RT-F), and

Recovery of Face Value (RFV) recovery assumptions. The modified duration is defined as the negative of

the derivative divided by the relevant model price. The coupon (8.00%) is chosen to equal the risk-free

interest rate. The leverage ratio (64%) and asset volatility (37%) parameters are taken from Table I. Other

parameters, include the constant interest rate (8.00%), constant payout ratio (6.00%), default boundary

(60% of total liabilities) and expected recovery rate (51.31%).
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Figure 10: Coupon Bond Prices vs. Interest Rate: 20-year Maturity B-Rated

Bond

The plot shows the model bond prices against the risk-free interest rate for a 20-year maturity bond. The

leverage ratio (64%) and asset volatility (37%) are chosen to match that of a B-rated company. The coupon

rate assumed for the bond is equal to the risk-free interest rate (8.00%). The Recovery of Treasury (RT),

Recovery of Treasury-Face Value (RT-F), and Recovery of Face Value (RFV) recovery assumptions are

considered. The remaining parameters assumed are the constant payout ratio (6.00%), default boundary

(60% of total liabilities) and expected recovery rate (51.31%).
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Figure 11: Risky Bond Modified Duration vs. Risk-Free Modified Duration

The plot shows the model modified duration as a function of the risk-free modified duration for A-rated and

B-rated 8.00% coupon bonds using the RT and RFV recovery forms. The leverage ratio and asset volatility

parameters for the different credit ratings come from Table I. The remaining parameters are: interest

rate (8.00%), payout rate (6.00%), default boundary (60% of total liabilities) and expected recovery rate

(51.31%). This plot is similar to Figure 5 found in Leland and Toft (1996) which considers an endogenous

default boundary model in that the modified duration for the very risky bond flattens out considerably in

the RFV case.
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Figure 12: RT and RFV Modified Duration vs. Firm Value

The plot shows the model modified duration of a 8.00% 10-year maturity coupon bond as a function

of firm value where firm value is defined as a multiple of total liabilities. We consider two recovery

forms: RT and RFV. The parameters assumed are asset volatility (35.00%), interest rate (8.00%), payout

rate (6.00%), default boundary (60% of total liabilities) and expected recovery rate (51.31%). This plot is

complementary to Figure 4-6 of Acharya and Carpenter (2002) for a pure defaultable bond which compares

durations implied by endogenous and exogenous default boundary models. RFV generates a similar shape

to their endogenous model.
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Figure 13: Hypothetical Yield Curve Shapes used in Bond Pricing

The plot shows the 4 different yield curve shapes we assume in comparing defaultable bond pricing in a

stochastic interest rate environment. The yield curves are in terms of the instantaneous forward rates and

are generated by Nelson-Sielgel(1987) methodology using the parameters given in the Appendix.
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Figure 14: Cost of Debt Capital vs. Credit Rating

The plot shows the expected return premium (cost of debt capital) in basis points for a hypothetical 10-

year maturity 8.00% coupon bond by credit rating using three different recovery forms within the base case

model: Recovery of Treasury (RT), Recovery of Treasury-Face Value (RT-F), and Recovery of Face Value

(RFV). The stars represent the promised yield spreads for each credit rating. The promised yield spread,

leverage ratio, and asset volatility for each credit rating are taken from Table I. The asset risk premium

is assumed constant across all credit ratings at 4.50%. The remaining parameter are the constant interest

rate (8.00%), payout rate (6.00%), default boundary (60% of total liabilities), and expected recovery rate

(51.31%).
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Figure 15: Cost of Debt Capital vs. Maturity: B-rated Bond

The plot shows the expected return premium (cost of debt capital) in basis points for a hypothetical B-

rated 8.00% coupon bond versus maturity using three different recovery forms within the base case model:

Recovery of Treasury (RT), Recovery of Treasury-Face Value (RT-F), and Recovery of Face Value (RFV),

as well as using the Merton model. The promised yield spread, leverage ratio, and asset volatility for

the B credit rating are taken from Table I. The asset risk premium is assumed constant at 4.50%. The

remaining parameter are the constant interest rate (8.00%), payout rate (6.00%), default boundary (60%

of total liabilities), and expected recovery rate (51.31%).
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APPENDIX

A Default-Free Term Structure Model Specification

Under the standard assumption of no-arbitrage we can write the value of a default-free riskless zero coupon
bond at time t with maturity date T as

P (t, T ) = E
Q
t

[

exp

(

−
∫ T

t

r(s)ds

)]

(A1)

where the expectation is taken under the risk-neutral probability measure Q, and r(t) is the process for

instantaneous riskless nominal short rate. We consider a term structure model in the multivariate affine
class as described by Brown and Schaefer (1994) , Duffie and Kan (1996) and Dai and Singleton (2000).
We introduce as the two factors: l(t) and s(t). The new dynamic system of equations, again under Q, is

dl(t) = −κll(t)dt + σldz
Q
l (A2)

ds(t) = −κss(t)dt + σsdz
Q
s

r(t) = g(t) + l(t) + s(t)

where E(dz
Q
l dzQ

s ) = ρlsdt and the initial values of both l and s are equal to zero. We can refer to κl and

κs as reversion parameters of the two factors; while σl and σs can be termed volatility parameters.

Solution and Calibration of Model We substitute our affine representation of the short rate
into the basic bond valuation equation (A1)

P (t, T ) = E
Q
t

[

exp

(

−
∫ T

t

(g(u) + l(u) + s(u))du

)]

= (A3)

exp

(

−
∫ T

t

g(u)du

)

· EQ
t

[

exp

(

−
∫ T

t

(l(u) + s(u))du

)]

We see from the right hand side of the equation that the bond value can be viewed as the product of a

deterministic factor and a “bond price” with zero mean factors. The expectation on the right hand side
has a well-known solution form as seen in Duffie and Kan (1996) so we can write the bond value as

P (t, T ) = exp

(

−
∫ T

t

g(u)du

)

· exp [A(T − t) − Bl(T − t)l(t) − Bs(T − t)s(t)] (A4)

where after solving the PDE and denoting τ = T − t, we find

Bl(τ) =
1 − exp(−κlτ)

κl
By(τ) =

1 − exp(−κsτ)

κs
(A5)

A(τ) =

∫ τ

0

A
′(u)du where A

′(τ) =
1

2
σ

2
l B

2
l (τ) +

1

2
σ

2
sB

2
s (τ) + ρlsσlσsBl(τ)Bs(τ)

We would like to calibrate the model to be able to fit the initial yield curve. First we write the equation

for the short rate path which is the solution to the term structure model (A2)

r(t) = g(t) + σle
−κlt

∫ t

0

e
κludzl(u) + σse

−κst

∫ t

0

e
κsu

dzs(u) (A6)

It is evident that the time dependent intercept g(t) will embed any information regarding the initial yield
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curve. From (A4) we can express the initial yield curve as the set of zero coupon bond prices at time 0

P (0, T ) = exp

[

−
∫ T

0

g(u)du + A(T )

]

(A7)

since l0 = 0 and s0 = 0 by construction. Taking logs and differentiating with respect to T on both sides

of the equation and then substituting from (A5)we arrive at

g(T ) = −d log P (0, T )

dT
+

dA(T )

dT
= (A8)

f(0, T ) +
1

2
σ

2
l B

2
l (T ) +

1

2
σ

2
sB

2
s (T ) + ρlsσlσsBl(T )Bs(T ) (A9)

where f(0, T ) is the initial instantaneous forward rate curve. We can substitute this term into [A6] to

arrive at our new expression for the short rate path

r(t) = f(0, t) +
1

2
σ

2
l B

2
l (t) +

1

2
σ

2
sB

2
s (t) + ρlsσlσsBl(t)Bs(t) (A10)

+σle
−κlt

∫ t

0

e
κludzl(u) + σse

−κst

∫ t

0

e
κsu

dzs(u)

From this expression it is clear how the short rate path used to value all interest rate sensitive claims can

be calibrated to initial market data – via the forward rate curve. All that is needed for implementation
are the time-invariant parameters: κl, κs, σl, σs, and ρls.

B Simulation Pricing Procedure

This section describes the Monte Carlo simulation procedure used for pricing the defaultable bonds under
a stochastic interest rate environment with the term structure model specified above in (14). The dynamic
system of equations with the correlated processes are:

dl(t) = −κll(t)dt + σldz
Q
l

ds(t) = −κss(t)dt + σsdz
Q
s

dxt = (r(t) − δ − σ2
V

2
)dt + σV dz

Q
V (B1)

r(t) = g(t) + l(t) + s(t)

where E(dz
Q
l dzQ

s ) = ρlsdt, E(dz
Q
l dz

Q
V ) = ρlV dt, E(dzQ

s dz
Q
V ) = ρsV dt. The initial values of l(t) and s(t) are

equal to zero, while the initial value of x(t) is x0. Default occurs the first time x(t) hits zero. It is useful
to do a Cholesky factorization of the correlation matrix Σ of the random processes zi, i = {V, l, s} so we
can write the system in terms of independent Wiener processes wi, i = {V, l, s}. That is we find the lower
triangular matrix M such that

z = Mw

and
MM′ = Σ

After we have rewritten the dynamics in terms of the independent processes wi, i = {V, l, s} we dis-
cretize our continuous time equations at equal time steps ∆t. For x(t), we do a simple Euler discretization.
For l(t) and s(t) we discretize their continuous closed-form solutions25.

Once we have discretized our dynamic processes and chosen an appropriate time step we produce N

random paths as follows. First we generate independent standard normal variates εi, i = {l, s, V } each

25The increments of the correlated processes would be replaced by independent Wiener processes mul-
tiplied by the Cholesky factorization matrix.
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vectors of length N
2

at each time step for the three independent stochastic terms. We then use the antithetic
variable technique which means that for the remaining N

2
paths we use -εi. Thus, for each time step we

generate

[

εi

−εi

]

, i = {l, s, V }. With this methodology we can generate N paths of x and the short rate

r. Bond valuation is attained as follows. First, the promised cash flows would be generated for each path.
Second, if default has occurred for a specific path the promised cash flows would be altered in a way
specific to the recovery form assumed. Once the default-adjusted cash flow paths have been generated we
discount each cash flow path at the relevant riskfree short rate path. That is the rate path which produced
the default path associated with the default-adjusted cash flow path. The mean of these N values can be
considered the crude Monte Carlo estimated bond price.

A problem with using the crude Monte Carlo price as the estimate is that in almost all practical cases
there will be an overpricing bias. This is due to the fact that default, i.e. when x(t) reaches the zero barrier,
is in general a highly improbable event, and once we sample our continuous time processes at discrete time
intervals we do not get as many “hits” in our simulation as we would expect under our risk-neutral pricing
measure. This is due to the fact that for any nonzero time interval discretization induces a bias since many
time points at which low values of the variable could occur are ignored. Narrowing the time step shrinks
the bias toward zero, but time steps small enough to produce accurate answers may be computationally
quite burdensome. To correct this bias we implement the technique developed by Beaglehole, Dybvig,
and Zhou (1997). Their technique draws on the theory of the Brownian bridge. After we have generated
the paths for x(t) in our crude simulation we treat each discrete time interval as two ends of a Brownian
bridge. We then draw the minimum (as we are interested in x(t) reaching zero) of the path process on the
interval using the known theoretical distribution of a Brownian bridge on an interval.

C Generating Hypothetical Yield Curves

We generate 4 yield curve shapes: 1) flat curve; 2) upward-sloping curve; 3) humped-shape curve; and 4)
downward sloping curve. We produce curves in terms of the instantaneous forward rate curve. Generating
the flat curve is straightforward. For the remaining types we used the Nelson and Siegel(1987) methodology
which fits term structures using the following form for the initial instantaneous forward rate curve:

f(0, m) = β0 + β1 exp
(−m

τ

)

+ β2

(m

τ
exp

(−m

τ

))

(C1)

where m is a particular maturity point on the yield curve while β0, β1, β2,and τ are parameters. We choose
parameters such that the sought for shapes are generated and that the average instantaneous forward rate
over the first ten years is equal to 0.08. The curves are shown in Figure 13. The parameter values chosen
are as follows:

Flat: β0 = 0.08, β1 = 0, β2 = 0

Upward-Sloping: β0 = 0.08, β1 = −0.05, β2 = 0.14, τ = 12.05

Humped-Shape: β0 = 0.07, β1 = −0.04, β2 = 0.143, τ = 1

Downward-Sloping: β0 = −.01, β1 = 0.1068, β2 = 0.085, τ = 10.00

D Calculating Cost of Debt Capital

In this section we briefly discuss how we calculate the expected return premium or cost of debt capital
for the different recovery forms. The input is the market credit spread, s, assumed given in continuously
compounded percentage terms. The assumed constant interest rate is r. From this we calculate the price
of the risky bond P0 with a semiannual coupon paying an annual rate c and with a face value of F and a
redemption maturity at time T

P0 = F exp (−(r + s)T ) +
c

2

2T
∑

i=1

exp
(

−(r + s)Ti/2

)

(D1)
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Given the market bond price of the risky bond we can solve implicitly for the expected return premia for
the different recovery firms. First, let us consider a bond with the same contractual features of the risky
bond but is default free. Its price is given by D0. The risk-free yield for such a bond, y∗

rf , is defined as the
solution to the equation

−D0 + F exp
(

−y
∗
rfT

)

+
c

2

2T
∑

i=1

exp
(

−y
∗
rfTi/2

)

= 0 (D2)

D.1 Recovery of Treasury (RT)

The expected return y∗
RT under the RT case is defined as the solution to the equation

−P0 + F exp (−y
∗
RT T ) [1 − P0 (τ < T )] +

c

2

2T
∑

i=1

exp
(

−y
∗
RT Ti/2

) [

1 − P0

(

τ < Ti/2

)]

+

ω

[

F exp (−y
∗
RT T ) P0 (τ < T ) +

c

2

2T
∑

i=1

exp
(

−y
∗
RT Ti/2

)

P0

(

τ < Ti/2

)

]

= 0, (D3)

where

P0 (τ < T ) = N

(

−x0 − (µ∗ + π) T

σv

√
T

)

+ e
−

2(µ∗+π)x0
σ2

v N

(

−x0 + (µ∗ + π) T

σv

√
T

)

. (D4)

which is the real cumulative probability of default. Given the expected return the RT expected return
premium or cost of debt capital is

RPRT = y
∗
RT − y

∗
rf (D5)

D.2 Recovery of Treasury-Face Value (RT-F)

The expected return y∗
RT−F under the RT-F case is defined as the solution to the equation

−P0 + F exp (−y
∗
RT−F T ) [1 − P0 (τ < T )] +

c

2

2T
∑

i=1

exp
(

−y
∗
RT−F Ti/2

) [

1 − P0

(

τ < Ti/2

)]

+

ωF exp (−y
∗
RT−F T ) P0 (τ < T ) = 0. (D6)

As above the RT-F expected return premium follows

RPRT−F = y
∗
RT−F − y

∗
rf (D7)

D.3 Recovery of Face Value (RFV)

The expected return y∗
RFV under the RFV case is defined as the solution to the equation

−P0 + F exp (−y
∗
RFV T ) [1 − P0 (τ < T )] +

c

2

2T
∑

i=1

exp
(

−y
∗
RFV Ti/2

) [

1 − P0

(

τ < Ti/2

)]

+

ωFE
P

0

[

exp (−y
∗
RFV τ)1{τ<T}

]

(D8)

where

E
P

0

[

exp (−y
∗
RFV τ)1{τ<T}

]

=

[

e
−x0(µ∗+π+φ)

σ2
v N

(

−x0 + φT

σV

√
T

)

+ e
−x0(µ∗+π−φ)

σ2
v N

(

−x0 − φT

σV

√
T

)]

where φ ≡
√

(µ∗ + π)2 + 2σ2
V y∗

RFV and µ∗ ≡ r − δ − σ2
V

2
(D9)

The RFV expected return premium follows

RPRFV = y
∗
RFV − y

∗
rf (D10)
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