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Libor and Swap Market Models
for the Pricing of Interest Rate Derivatives:
An Empirical Analysis

Abstract

In this paper we empirically analyze and compare the Libor and Swap Market Models,
devel oped by Brace, Gatarek, and Musiela (1997) and Jamshidian (1997), using paneldataon
prices of US caplets and swaptions. A Libor Market Model can directly be calibrated to
observed prices of caplets, whereas a Swap Market Model is calibrated to a certain set of
swaption prices. For both one-factor and two-factor models we analyze how well they price
caplets and swaptions that were not used for calibration. We show that the Libor Market
Models in genera lead to better prediction of derivative prices that were not used for
calibration than the Swap Market Models. A one-factor Libor Market Model that exhibits
mean-reversion gives a good fit of the derivative prices, and adding a second factor only
decreases pricing errorsto asmall extent. We also find that model s that are chosen to exactly
match certain derivative prices are overfitted. Finally, a regression analysis reveals that the
pricing errors are correlated with the shape of the term structure of interest rates.

JEL Codes: G12, G13, E43.

Keywor ds: Term Structure M odels; Interest Rate Derivatives; Lognormal Pricing Models; Black Formula.



1 Introduction

Since the first interest rate swap was traded in 1981, the market for interest rate derivatives has grown
enormoudly. Both the volume and complexity of the products traded has increased. Hence, the modelling
and pricing of interest rate derivatives has been an area of research of considerable interest both for
academics and practitioners.

To determine the prices of exotic interest rate derivatives, pricing models are used as an 'extrapolation
tool'. Given the prices of liquid instruments available in the market, such as caps and swaptions, pricing
models extract information about the distribution of the underlying rates by calibrating to these market
prices. The calibrated model is then used to price and hedge the exotic instrument. For the successful
pricing of exotic options, it istherefore important to find parsimonioudy specified models that provide an
accurate fit to the prices of the liquid market derivative instruments.

A recent development in modelling interest rates and pricing interest rate derivatives are the so-called
market models. Brace, Gatarek, and Musiela (1997) and Miltersen, Sandmann, and Sondermann (1997)
present an arbitrage-freeinterest ratemodel, the Libor Market Model (LMM), inwhich forward Libor rates
follow lognormal processes, leading to the Black (1976) pricing formulafor capsand floors, whichisused
by market practitioners. A similar model for swap rates and swap rate derivatives was developed by
Jamshidian (1997). His so-called Swap Market Model (SMM) leads to the Black formulafor swaptions.

There are severd advantages of the market models in comparison with the traditional models, such as
the instantaneous spot rate models (e.g. Vasicek (1977), Hull and White (1990), and Cox, Ingersoll and
Ross (1985)) and models for instantaneous forward interest rates (Hesth, Jarrow and Morton (1992) and
Ritchken and Sankarasubramanian (1995)). First, the match to the market Black formulafor option prices
makes calibration of market models very simple, since the quoted implied Black volatilities can directly be
inserted in the model, avoiding the numerica fitting proceduresthat are needed for the spot rate or forward
ratemodels. Second, the market model sare based on observable market rates, such asLibor ratesand swap
rates. Hence, one does not need the (unobserved) instantaneous short rate or instantaneous forward rates
to price and hedge caps and swaptions.

Given the advantages of the market models, it is not surprising these models have received a lot of
attention recently*. There has been little attention however to the empirical performance of the market
models. Since the LMM and the SMM are mutually inconsistent approaches, it is an empirical question
which model isto be preferred for practical purposes. In this paper we therefore empirically analyze the
Libor and Swap Market Models. We use panel data on prices of caplets of different option maturities, and
prices of the swaption ‘matrix’ (i.e. pricesof swaptionsfor several option maturities and swap maturities).

'Recent work on the market models includes Andersen and Andreasen (1998), Barton, Brace, and Dun
(1998), Glasserman and Zhao (1998), Longstaff, Santa-Clara, and Schwartz (1999), Pedersen (1999), Rebonato
(1999), and Schlégl (1999).



The paper focuses on four important issues.

Thefirstisan empirical comparison of the LMM with the SMM. Our empirical approachisto calibrate
the LMM on a set of caplet prices, and subsequently calculate the prices for swaptions implied by the
LMM. Similarly, we calibrate the SMM to a subset of swaption prices, namely al swaptions for which
the total maturity, defined as the sum of the option and swap maturity, is equal to 10 years, and
subsequently calculate the pricesimplied by the SMM for swaptionswith total maturitieslessthan 10 years
and caplets. To comparethe LMM with the SMM, we usethe differences between model pricesand actual
pricesfor the swaptionswith atotal maturity lessthan 10 years, which are the instrumentsthat are not used
for caibration of the LMM and the SMM. The empirica results show that the LMM in general leadsto
better prediction of these swaption prices than the SMM. Also, the SMM substantially overprices caplets.
In this paper, we provide an explanation for these results.

A second important issue in calibrating the model is the specification of the volatility function. This
function plays a crucia rolein the model. We show that the usual choice of a constant volatility function
for each option maturity date is not a particularly good one, because the LMM with a constant volatility
function persistently overprices swaptions and the SMM with a constant volatility function underprices
swaptions. Much better results are obtained by specifying an exponentially increasing volatility function.
Thisfunctional form endows the model with mean-reverting behaviour of interest rates and decreases the
correlation between interest rates at different dates.

The third issue we examineis the empirically relevant number of factors. In arecent paper, Longstaff,
Santa-Clara, and Schwartz (1999) argue that for the pricing of American swaptions, a large number of
factors is required in a constant volatility SMM-like model. In contrast, we show that a (carefully
calibrated) onefactor model with an exponential volatility function (mean reversion) sufficesfor thepricing
of European caplets and swaptions. The pricing errors for two-factor models are only alittle smaller than
the pricing errors for the one-factor models, which implies that the one-factor assumption is not very
restrictive for this particular application.

Fourth, weconsider two different calibration methodol ogies: exact calibration and non-exact calibration.
In case of exact calibration, the model under consideration has as many parameters as calibration
instruments, and these parameters are chosen such that the model exactly fits caplets (in case of the LMM)
or 10-year total maturity swaptions (in case of the SMM). With non-exact calibration, the model has only
asmall number of parameters, and exact fitting of derivative pricesis not possible in general. This setup
allows us to examine whether exact calibration leads to overfitting, in the sense that some parameters are
to alarge extent fitted to noise in the derivative price quotes. We indeed find that the exactly calibrated
modelsoverfit the derivative price data, asin amost all cases non-exact calibration leadsto smaller pricing
errors for the options that are not used for calibration than exact calibration.

For al models and calibration methodologies, a specification test reveas that the market models are
rejected statistically, but given the large bid-ask spreads on these derivative instruments, the size of the
pricing errors does not seem to be economically very large. Still, the pricing errorsof al one-factor models
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are correlated with variables that are associated with the shape of the term structure, i.e. level, steepness
and curvature variables. Thiscould betheresult of the one-factor assumption. However, the pricing errors
of the two-factor models are aso correlated with the shape of the term structure. We argue that the
misspecification is more likely to be the result of the assumption of lognormally distributed interest rates.

Thispaper isrelated to previousempirical work on pricinginterest rate derivatives. Flesaker (1993) and
Aminand Morton (1994) analyzethe pricing of Eurodollar futures optionswith Hesth, Jarrow, and Morton
(HIM, 1992) models. In both articles only one-factor models are examined. The effect of mean-reversion
on the pricing of derivative pricesis analyzed by Amin and Morton (1994), but since they only use short-
maturity options on short-maturity futures, they are not able to precisely estimate the effect of mean-
reversion. As our dataset contains a wide range of option and swap maturities, we are able to precisely
estimate the strength of the mean-reversion as well as the effect of mean-reversion on the pricing of
swaptions. Amin and Morton (1994) aso examine whether models are overfitted to derivative prices by
analyzing whether model-based trading strategies are profitable. They conclude that modelswith only two
calibration parameters are overfitted to the derivative prices. In this paper, we provide a more direct
analysis of model overfitting, by studying the prediction of derivative prices that are not used for
calibration. Buhler et al. (1999) use dataon German government bond optionsto compare severa one- and
two-factor interest rate models. Buhler et al. (1999) estimate the model parameters from historical interest
rate data, which leads to very large pricing errors for the bond options. Such an estimation procedure can
be useful for the calculation of risk measures, such as VaR. For the accurate pricing of exotic interest rate
derivatives however, it seems inevitable to aso use the information in derivative prices to estimate the
model parameters. In general, our study differsfrom the current literature because we analyze the new class
of market models, and because we use both caplets and swaptions for our analysis.

The remainder of this paper is organized asfollows. In section 2, we briefly review the construction of
the market models. Section 3 describes the data. Section 4 first discusses the calibration methodology for
the LMM and then presents the results of this calibration. Section 5 presents the calibration methodology
and results for the SMM. In section 6 we analyze two-factor Libor Market Models. In section 7 we

summarize and conclude.



2 Libor and Swap Market Models

In this section we describe the market models of interest rates. We first show how a Libor Market Model
(LMM) is constructed. Thereafter, we briefly discuss the formulation of a Swap Market Model (SMM).
For a complete discussion of the Swap Market Madels, we refer to Jamshidian (1997) and Musiela and
Rutkowski (1998). For both models, we briefly discuss the pricing of caplets and swaptions.

2.1 The Libor Market Model

We describe the LMM formul ation based on afinite number of bond prices, following Jamshidian (1997).2
We start with defining afinite set of dates, the so-called tenor structure,

T, <T,<..<T, (1)

Weadsodefined, = T, , - T, i=1,.,N-1 astheso-called daycount fractions, which are determined by the
maturity of the Libor rate that is used to determine caplet payoffs and are most often equal to 3 or 6
months®. Associated with each tenor date T,, is a bond that matures at this date, and itstime t price is
denoted with P (t). Itisassumed that thesebond pricesfollow 1t processes under theempirical probability

measure, i.e.
dP (1) = P () (ui() dt + op()"dW,), n=1,..,N 2

where W, is a standard Brownian Motion, and in this paper it is assumed to be one- or two-dimensional.
The one-dimensiona drift function u,f (t) and the bond price volatility o,F: (t), that has the same dimension
asW,, can depend on thebond price P _(t). Theforward Libor rate at timet for the accrual period [T, T, .,]
is defined as

2In Brace, Gatarek, and M usiela (1997), aformulation based on acontinuum of bond pricesis presented,
so that the LMM fitsin the framework of Heath, Jarrow, and Morton (1992). However, as noted by Jamshidian
(1997), for the pricing and hedging of caplets and swaptions it is not necessary that a continuum of bond prices
and amoney market account exist. Thisisan important difference between the market models and the framework
of Heath, Jarrow, and Morton (1992).

3Becauseof daycount conventionsthe daycount fractionsareactually functions 6,= g(T;, T;.,), that areonly

approximately equal to (T, - T.,).



1, RO
La(t) = 5=n(Pn+1(t)

1), n=1,..,N-1 (3)

Applying 1t0’ s division rule to equation (3), it follows that aforward Libor rate satisfies the following 1t6
process under the empirical probability measure

dL () = L@ (@ dt + v (O dW,), n=1,..,N-1

PO e

Yo(t) = m(on(t)‘oml(t)) 4)
_ Pn(t) P _ P _ + P

H @ = m(un(t) Hn. 1) - v,(070,.4(1)

The function p(t) isthe drift function of the forward Libor rate, and vy (t) isthe volatility function.
The idea behind the LMM is to construct an arbitrage-free interest rate model that implies a pricing
formulafor caplets that has the same structure as the Black pricing formula for a caplet, that is used by
market practitioners. Asthe Black pricing formulafor acaplet isbased on the assumption that the relevant
forward Libor rate follows alognormal process under the equivaent martingale measure, the LMM has
toimply lognormal processes (under the equivalent martingale measure) for theforward Libor ratesin (3).
It is therefore assumed that the volatility function vy (t) is adeterministic function of time, which can be
different for the different forward Libor rates. For a given forward Libor rate, this volatility function
v,(1), t<T_, describestheinstantaneous volatility of thisforward Libor rate over time, until the forward
Libor rate matures at time T, . If this volatility function is constant, i.e. if y (t) does not depend ont, the
volatility of the forward Libor rate L (t) isconstant until its maturity date T . A volatility function vy (t)
that isincreasing in timet would imply that the volatility of the forward Libor rate increases as the rate
approachesits maturity date. Such avolatility function would be consistent with mean-reverting behaviour
of interest rates, as mean-reversion typicaly implies that interest rates close to maturity have a larger
volatility than interest rates that are far from maturity.

Given these N-1 volatility functions of the forward Libor rates, the N volatility functions of the bond
prices cannot be recovered. This indeterminacy is solved by choosing one of these bond prices as
numeraire. By assuming that there are no arbitrage opportunities* amongst the N bonds, it follows (see
Jamshidian (1997) and Musidla and Rutkowski (1998)) that numeraire-denominated bond prices are

“The no-arbitrage condition used here is weaker than the usual no-arbitrage condition, because the
existence of a continuous savings account is not assumed here, see Jamshidian (1997) for details. In the
continuous-tenor case of Brace, Gatarek and Musiela (1997), the usual no-arbitrage condition is used.
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martingalesin the probability measure associated with the choice of the numeraire. One convenient choice
for the numeraire asset isthe bond with the longest maturity P, (t), and the associated probability measure
is often called the terminal measure Q". Jamshidian (1997) shows that the process of forward Libor rates
under the terminal measure is given by

N-1 6 L.(t )Ty (t
aL) = LOC Y = i)é(L)(g() dt + v, () dW,), n=1,..N-1 (5)

where W," is a standard Brownian Motion under the terminal measure. Given the QV-processes of these
N-1 forward Libor rates, all numeraire-denominated bond price processes can be determined.

The result in (5) implies that, in order to price and hedge interest rate derivatives, only the volatility
functions y, (t) haveto be determined. Furthermore, under theterminal measure, theLibor rate L, (t) has
zerodrift. Smilarly, under the probability measure Q" associated withthenumeraire P (t) , theLiborrate L ,(t)
has zero drift. This directly follows from the fact that the Libor rate L _,(t) isaratio of bond prices, with
the numeraire P (t) in the denominator, as shown in equation (3).

We now turn to the pricing of (European) interest rate derivatives, such as caplets, caps and swaptions.
A caplet with strike rate k and maturity date T, pays off 6 (L (T, -K) " at timeT,,,. The LMM-price of
this caplet at timet can be cal cul ated using the expectation of the discounted payoff under the Q™! measure

Caplet(t, T k) = P_ () E"[5, (L (T)-k)'] (6)

and because L (t) follows adriftless lognormal process under the Q™* measure, equation (6) leads to the
familiar Black pricing formulafor acaplet and this caplet price is determined by the conditional variance
(under the Q™*-measure) of the forward Libor rate over the maturity of the caplet, which is equa to
Y,(9)"y,(s)ds. Theprice of acap, which isasum of caplets of different maturities, can therefore also
analytically be determined for the LMM.
A swaption isan option on aswap. Consider aforward swap, with principal 1, where two parties agree
T, thefloating Libor rates {L (t),...,L, ., ,()} for afixed rate. The
forward swap rate is the fixed rate that gives this contract zero initial value and is given by

to exchange at dates {T

n+1'""

f:énﬂ 1 n+J(t) Ln+J 1(t) P (t P
5,0 - 12 _ P®-P,® @)

m

Z 6n+] 1 n+1(t) Z 6n+1 1 n+J(t)

=1 =1




A payers swaption with strike rate k, maturity date T, and m payment dates gives right to enter into a
swap at date T,, where floating Libor payments are received and fixed payments k are paid. Equivalently,
apayers swaption givestheright to receive the cash flow 6n+j71(§1’m(Tn) -K)" atdates T
Musiela and Rutkowski (1997)).

In equation (7), it is shown that aforward swap rate depends on several forward Libor rates, so that the

j=1,..,m (see

n+j’

variance of a swap rate is a function of both the variances and covariances (or correlations) of forward
Libor rates. Swaption prices thus depend both on conditional variances and covariances of forward Libor
rates of different maturities, whereas caplet prices only depend on the conditional variance of one forward
Libor rate. It is easy to show that forward swap rates do not follow lognormal processesin the LMM, as
theforward par swap rate in (7) isalinear combination of several forward Libor rates.  Swaptions can
not be priced analyticaly by the LMM. We will use simulation to obtain (exact) prices of swaptions, by
simulating the Euler discretization of the processes of forward Libor rates in equation (5) under the

terminal measure. The complete simulation procedure is described in Brace (1998).
2.2 The Swap Market Model

The SMM is constructed in away that is quite similar to the construction of the LMM, but the algebrais
more complicated. Therefore wewill only briefly discuss the construction of the SMM, and again refer to
Jamshidian (1997) for a detailed discussion. The SMM is also used by Longstaff, Santa-Clara, and
Schwartz (1999) in an analysis of the pricing of American swaptions.

We start with the same tenor structure as given in equation (1), and we again assume that the N bond
pricesfollow 1t6 processes. To arrive at the Black-type pricing formulafor swaptions, wewill now require
that forward swap rates follow lognormal processes. More specificaly, for the set of forward swap rates
that have the same enddate Ty, S, \ (), n=1,...,N, it is assumed that under the empirical probability

measure

dSinn® = SO N Odt + v, (07dW,), n=1,..,N-1 (8)

Given the N-1 deterministic volatility functions vy (t) of the forward swap rates, the N volatility
functions of bond prices cannot be determined and again thisindeterminacy isresolved by choosing abond
price as numeraire. For the forward swap rate S,  (t) the most convenient choice of numeraire is the
coupon process or present value of a basis point (PVBP) Zj“i’ln 6n+j 1Py (t). Equation (7) shows that,
assuming no-arbitrage and choosing this coupon process as numeraire, the forward swap rate S, (1)
follows a driftless lognormal process under the equivalent martingale measure induced by this numeraire
choice. Thisdirectly impliesthat the SMM-priceof aswaptionwith optionmaturity T andswvapmaturity T, - T,
is given by the Black formula. Hence, the N-1 swaptions that have atotal maturity, defined as the option
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maturity plus the swap maturity, equal to Ty will have a Black-type pricing formula, as the forward swap
rates that determine these swaption prices follow driftless lognormal processes under their equivalent
martingale measures. Again, determination of the volatilities vy (t) is al that is necessary to price
derivatives.

The prices of other swaptions and caplets cannot be determined using the closed-form Black formula,
as the underlying rates do not follow lognormal processesin the SMM, and we use simulation techniques
to obtain prices. Of course, we simulate all forward swap rates under the same equivalent martingale
measure, induced by a particular numeraire choice. We choose to simulate under the terminal equivalent
martingale measure, using an Euler discretization of the processes of forward swap rates under this
measure, which are derived by Jamshidian (1997).

The difference between the LMM and the SMM s therefore determined by the set of market rates that
follow lognormal processes in the model. For the LMM thisis a set of forward Libor rates, and for the
SMM thisis aset of forward swap rates.

3 Data Description

We use two types of datasets for our analysis: US term structure data to determine the underlying term
structure of forward Libor and forward swap rates, and US derivatives data on implied volatilities of
caplets and swaptions’.

The term structure data consist of daily observations on a spot Libor rate, Eurodollar futures prices,
and swap rates of different maturities, for the time period between July 1995 and September 1996. The
prices of Eurodollar futures do not directly give information about forward Libor rates, because future
pricesaredifferent from forward prices. We correct for thisdifference using an approximation for theprice
of an Eurodollar futureinthe LMM, derived by Brace (1998). To calculate this correction, we use the one-
factor constant volatility LMM, which is described in the next section. In table 1, we present some
summary statistics on these yield-curve instruments. The standard deviations of the rates reveal ahumped
volatility structure.

To determine forward Libor rates and forward swap rates for al possible (forward) maturities, some
assumption on the functional shape of the (forward) interest rates as function of the time to maturity is
often made (for example, an exponential spline function) and this shape is fitted to the observed term
structure data (spot Libor rates, Eurodollar future rates and swap rates). However, our goa isto price
derivatives and therefore we do not want to allow for pricing errors of the underlying term structure
instruments at all, because these pricing errors are directly transferred to the pricing errors for derivative

>The dataare provided by ABN-AMRO Bank. Theimplied volatilities for caplets are obtained from data
on cap implied volatilities, using bootstrap methods described in Hull (1997).
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prices. We thus choose the forward Libor rate to be a piecewise linear function of the forward maturity of
the forward Libor rate®, where the knots are determined by the dates at which the different term structure
instruments mature. This piecewise linear function is chosen such that all term structure instruments are
fitted exactly. In figure 1, we plot the behaviour of some resulting forward Libor rates. It follows that the
forward Libor rate curve is mainly an increasing function of maturity, although for very short maturities
there are some exceptions.

The second dataset we use consists of daily quotesfor caplets and swaptions. More precisely, on every
trading day between July 1995 and September 1996 we observe quotes for implied Black volatilities for
at-the-money forward capl etsof different maturitiesand for at-the-money forward swaptionswith different
option and swap maturities. In total, we have 282 daily observations. The caplet maturities range from 3
months to 10 years, the option maturities for the swaptions range from 1 month to 5 years, and the swap
maturities range from 1 year to 10 years. We will denote the observed caplet implied Black volatility for
maturity T by 1V €(T), and the observed swaption implied Black volatility with option maturity T, and
swap maturity T, by 1V 3(T,, T,). All options are at-the-money forward, i.e. the strike rate of each caplet
isthe forward Libor rate corresponding to the maturity date and the strike rate of each swaption is given
by the corresponding forward swap rate’. Thereisaone-to-onerelation between theimplied Black volatility
of each instrument and its price, so that we are able to construct prices of al caplets and swaptions.

In tables 2-4, we give the averages and standard deviations of the implied Black volatilities of the
caplets and swaptions. It follows both from the caplet and swaption data that the volatility structure, as
function of the maturity of forward Libor or swap rates, is first increasing with maturity and then
decreasing, i.e. it is humped-shaped. The maximum of the hump for forward Libor and swap rates seems
to be somewhere between 1 and 2 years. Thisobservation isin linewith other empirical studieson interest
rates and interest rate derivatives, such as Amin and Morton (1994) and Moraleda and Vorst (1997).

4 One-Factor Libor Market Models

In this section we estimate and analyze one-factor Libor Market Models. We start with adescription of the
calibration methodology and the different choices that we make for the volatility function. Thereafter, we
present the pricing results for caplets and swaptions. We end the section with a specification analysis of
the pricing errors of the LMM.

5The maturity of the Libor ratesthat is used is equal to 3 months, because caplets are based on these 3-
month rates.

"Themarket for in- and out-of-the-money options has not been liquid enough to obtain reliable historical
price data.
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4.1 Calibration Methodology
Throughout the remainder of this paper, we analyze three complementary sets of derivatives:

» Caplets.
o <10-year Snvaptions. Swaptions with atotal maturity smaller than 10 years.
o 10-year Swaptions. Swaptions with atotal maturity of 10 years.

The caplets can be priced using Black’s formulain case of the LMM, and the 10-year swaptions can be
priced by Black’s formulain case of the SMM, if the SMM is based on atotal maturity of 10 years’. The
<10-year swaptions cannot be priced anaytically by any of these two models. Our empirical setup issuch
that the LMM is calibrated using the observed implied Black volatilities of caplets, whereasthe SMM is
calibrated toimplied Black volatilities of 10-year total maturity swaptions. Hence, the pricing errors of the
LMM and SMM for the <10-year swaptions can be used to compare the accuracy of the models.

We consider both constant volatility functions and exponential volatility functions, that correspond to
mean-reverting interest rates. For these two types of volatility functions, we analyze both exact calibration
and non-exact calibration models. In total we thus analyze four different specifications for the volatility
function in the LMM.

In practice, the LMM is often parametrized such that all caplet implied volatilities arefitted exactly by
the LMM. To exactly fit implied volatilities of caplets, one needs to assume some particular form for the
volatility function of forward Libor rates vy (t) in equation (5). There are several choices for the volatility
function that lead to exact fitting of caplet prices, because for each forward Libor rate, the dependence of
y,,(t) ontimet can be chosen in many different ways. Most endogenous term structure models, such asthe
modelsin the class of Duffie and Kan (1996), imply time-homogeneous voltility functions, i.e. voldtility
functionsthat only depend on thetime-to-maturity (T,-t). However, exogenousterm structure models, such
as the Heath, Jarrow, and Morton (1992) models and the market models, do not necessarily have time-
homogeneous volatility functions. Still, one could prefer to have amarket model with atime-homogeneous
volatility function, in order to have a direct relation with endogenous term structure models. However, it
is easy to show that for the LMM, it is only possible to exactly fit caplets with a time-homogeneous
volatility function if 1V C(Tn)\/T—n is increasing with the maturity of the caplet T,. For most daysin our
dataset, the observed implied caplet Black volatilities do not satisfy this property, which is a consequence
of the humped volatility structure that is present in the data. Therefore, atime-inhomogeneous volatility
function is necessary to exactly fit caplet implied volatilities. This need for time-inhomogeneous vol atility
functions to exactly fit caplets has already been observed by Brace and Musiela (1995).

Then, the simplest choicefor v (t) that leadsto exact fitting of capletsisaflat volatility curve for each

811 the next section we motivate our choice for the total maturity in the SMM.
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forward Libor rate
v, = v, = IVE(T), n=1..,N-1 9)

For thisexact calibration, constant volatility LMM thevolatility function y (t) isconstant over timet and
equalstheimplied volatility of acaplet with maturity T,,. Becausethevolatility functionisdifferent for each
maturity date T, this is a time-inhomogeneous volatility function. Given this choice for the volatility
function of the one-factor LMM, the model is completely determined, and the pricesfor swaptionsthat are
implied by thismodel can be calculated. Notethat, because observed implied caplet volatilitieschange over
time, the parameters vy, of thismodel also change each trading day.

The choice in equation (9) implies that forward Libor rates have a constant volatility during their
evolution until their maturity date. However, it isa stylized fact that interest rates exhibit a mean-reverting
behaviour, which implies that the volatility of forward Libor rates typically decreases with their forward
maturity. To capture this effect, we also consider the following specification for the volatility function

v, = e "™V n=1,..N-1 (10)

Given avalue for k, exact fitting of caplet implied volatilities is obtained by choosing®

c 21<Tn
Y, = IVE(T) | ——", n=1..N-1 (11)
1-e "

n

Asexplained in section 2, mean-reverting behaviour is generated by a mean-reversion parameter x that is
positive. The LMM with mean-reversion will be denoted by the mean-reversion LMM

To examine whether exact calibration models are overfitted to noise in the derivative price quotes, we
also examine non-exact calibration models, and compare the pricing accuracy for swaptionswith the exact
calibration models. To obtain a non-exact calibration counterpart of the constant volatility model in (9),
anatura choiceisavolatility function that is constant both over timet and over the forward maturity of
the Libor rate T,,- t

T

n

*This follows directly from the refation T, 1V (T )? = f v, (t)’dt. We refer to the appendix for further
details. °
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v, =v, n=1..N-1 (12)

This volatility function is time-homogeneous and does not alow for a humped volatility structure. The
parameter v is estimated each trading day by minimizing the sum of squared differences between the
parameter y and the implied volatilities of caplets, i.e. the etimate is equal to the average of caplet implied
volatilities of different maturities. Because we observe 10 caplets each day, whereas the model in (12)
contains only one parameter, this model will not fit al 10 caplet prices exactly.

Similarly, a non-exact calibration version of the mean-reversion LMM is obtained by choosing the

following volatility function

v @) = e "™V n=1..N-1 (13)

The parameter v is, given avalue for the mean-reversion parameter, estimated by least squares fitting of
caplet implied volatilities. The resulting model isreferred to as the non-exact calibration, mean-reversion
LMM.

In figure 2, we plot the implied Black volatilities of caplets, that directly determine the shape of the
volatility function of the exactly calibrated LMMs through equations (9) or (11). The humped volatility
structure is clearly present, and although there is variation in the implied volatilities over time, the shape
of the volatility function seemsto be more or lessthe same. Mogt striking is the steepness of this volatility
curve at very short maturities.

For the mean-reversion LMM, the mean-reversion parameter has to be estimated. In the literature,
mean-reversion estimates are often obtained by atime-seriesanaysis of interest rates (Chan et a. (1992)),
by fitting the cross-section of bond prices (De Munnik and Schotman (1994)), or both (Bamsand Schotman
(1998), Dai and Singleton (199), and De Jong (1999)). We will follow a different approach here. As our
goal isto accurately price swaptionswiththe LMM, it isnatura to estimate this mean-reversion parameter
from the daily cross-section of observed swaption prices'®. More specificaly, we estimate the mean-
reversion parameter at each day by minimizing the sum of squared differences between the observed
implied Black volatilitiesfor al swaptions and the Black voltilitiesthat correspond to the swaption prices
that areimplied by the LMM. We choose to use Black volatilities as the way to represent swaption prices,
because thisis market practice and because our dataarein termsof Black volatilities. Astheimplied Black
voldtilities of different swaptions are of the same order (between 15% and 20%), this seems to be afair
weighting scheme, which we prefer over fitting the dollar prices, which are quite different for various
maturities. Bossaerts and Hillion (1997) also argue that using implied volatilities instead of prices leads

19 n Moraledaand Pel sser (1998) amean-reversion parameter is al so estimated from derivative price data.
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to a better weighting scheme.

For the LMM, prices of swaptions can be calculated using either simulation techniques, as described
in section 2, or the approximation price of Brace, Gatarek, and Musiela (1997), that is described in the
appendix. The nonlinear minimization, that is necessary to estimate the mean-reversion parameter, would
be very time-consuming if swaptions are priced using simulation techniques. Therefore we use the
analytical approximation of Brace, Gatarek, and Musiela (1997) for a swaption price to obtain a mean-
reversion estimate, and, given this estimate, we obtain prices using simulation techniques. The difference
between the simulated prices and the prices from the analytical approximation is always smaller than 0.08
voldtility points.

4.2 Estimation and Pricing Results

We start with the constant volatility LMM. Recall that we estimate the model parametersfor every day in
the sample using the daily cross-section of caplet prices. In the first panel of table 5, we present statistics
onthe parameter estimatesfor the non-exactly calibrated constant volatility LMM. The standard deviation
of the time-series of parameter estimates of v in equation (12) is equal to 1.4%. Thisis smaller than the
standard deviations of the caplet implied volatilities, which are above 2%, and this indicates that the
parameter of the non-exactly calibrated model is more stable than the parameters of the exactly calibrated
model. In table 6, we give the average fit of the exactly calibrated and non-exactly calibrated LMM. For
swaptions, which are the instruments that are not used for calibration, the average absolute pricing error
of the exactly calibrated model isjust above 2 volatility points, whereas the non-exactly calibrated model
has an average absolute pricing error around 1.5 volatility point. Thisimplies that the exactly calibrated
modéd isto some extent overfitted, because the more parsimonioudly specified non-exact calibration model
has smaller pricing errors on swaptions. Still, although the non-exact calibration model outperforms the
exact calibration model, there is clear evidence that the flat volatility function of the non-exact calibration
model isin fact too simple; figure 2 shows that there is a humped-shaped volatility function which is
persistent over time. The non-exact calibration model does not exactly fit caplet prices, and the
autocorrelations of the caplet pricing errors for the non-exact calibration model in table 6 are very high.

For the constant volatility LMM, the average pricing errors of swaptions are positive, both in case of
exact and non-exact calibration. This indicates that swaptions are overpriced by the constant volatility
LMM. A standard explanation for this result, used by Longstaff, Santa-Clara, and Schwartz (1999) and
Rebonato (1996, 1998), would be a missing second factor. Given the fact that the volatility of forward
Libor ratesis determined by the caplet implied volatilities, a second factor would lower the variances of
swap rates. Thisisbecause swaprates are combinations of several forward Libor rates and asecond factor
would imply nonperfect correlation between these forward Libor rates, thereby lowering the variance of
swap rates. Thislower swap rate variance in turn lowers the prices of swaptions that are implied by the
model. In section 6, we look at two-factor models.
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An dternative explanation for the overpricing of swaptions by one-factor constant volatility models,
which we fedl has been ignored in the literature, is the absence of mean-reversion. This can be explained
asfollows. The price of a swaption at timet, that has as option maturity date T, and swap maturity date
T,+md, is primarily determined by the following conditional covariance matrix A of forward Libor rates

A = Cov(Li(T),L(T)|7), i,j=n+1,..,n+m (14)

Because the LMM is always calibrated to caplets, the variance of forward Libor rates over their entire
maturity is (on average) fixed. On the other hand, mean-reversion typically implies that the volatility of
forward Libor rates increases as the rate comes closer to its maturity date, and it follows that mean-
reversion implies lower volatility for forward Libor rates far from maturity, and higher volatility for
forward Libor rates close to maturity. For the pricing of swaptions, only the conditional variance of the
forward Libor rate up to the option maturity date is relevant, as shown in equation (14), and thus mean-
reversion implies lower swaption prices, especialy for swaptions with short option and long swap
maturities. In figure 3, weillustrate this argument graphicaly, by plotting the swaption price implied by
the LMM for different values of the mean-reversion parameter k.

To investigate the effect of mean-reversion, we have estimated the mean-reverson LMM as described
above, by minimizing, at each day in the sample, squared pricing errors (in terms of Black volétilities) for
swaptions over the mean-reversion parameter k. Infigure4, the daily mean-reversion estimates are plotted
and in table 5 we give summary statistics on the parameter estimates. At al days, the estimates for x are
positive, and these estimates are not very unstable over time, although there seemsto be aregime-shift in
themiddle of thetime-period. Again, the parameter estimatesfor the non-exactly calibrated model are more
stable over timethan for the exactly calibrated model, as shownin table 5. Asthe overpricing of swaptions
islarger for the exactly calibrated constant volatility model than for the non-exact calibration model, the
mean-reversion estimates of the model with exact caibration are aso larger than for the model with non-
exact calibration. In all cases however, the mean-reversion parameter estimates are lower than what is
normally found on the basis of the autocorrelation of interest rates, but higher than what istypically found
on the basis of a cross-section of bond prices, see e.g. Dai and Singleton (1999) or De Jong (1999).

Given the fact that the mean-reversion parameter is estimated from swaption prices, it is clear that the
mean-reversion LMM will always have a better fit than the constant volatility LMM. However, as shown
intable 6, theincreasein thefit of swaption pricesislarge, both for the exactly and non-exactly calibrated
models. Also, the average errors are close to zero now. The exactly calibrated model still has aworse fit
on swaptions than the non-exactly calibrated model, although the differences are smaller in this case.
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4.3 Analysis of the Pricing Errors

In table 6, we also report the autocorrelation of daily pricing errors for caplets and swaptions. These
autocorrelations are quite high for al models, which isan indication of the systematic nature of the pricing
errors. There are also maturity effectsin the pricing errors for the swaptions, asis shown in figure 5. For
theexactly calibrated model, the pricing errors decrease with swap maturity, and swaptionswith long swap
maturities are underpriced. Also, swaptionswith very short or very long option maturities are underpriced.
In case of non-exact calibration, swaptions with short and long total maturities are overpriced, whereas
swaptions with intermediate total maturities are underpriced. This pricing error pattern is caused by the
absence of a humped volatility structure in the non-exact calibration model.

To formally test whether the models on average correctly price caplets and swaptions, we estimate the
following regression equation for every swaption separately

V(T T)-IVE(T) =

SLMM C,LMM
o+ By IV (T T)-IVTT)) = ey

1
t=1,..,282 (19

where IVtSLMM(Ti,Tj) isthe implied volatility at day t of the swaption price that isimplied by the LMM;
similar notation is used for caplets. Using regression equation (15), we thusinvestigate to what extent the
LMM explains the observed difference between swaption and caplet implied volatilities. If the model is
correct, o; isequal to zero and f3;; is equal to one. Amin and Morton (1994) estimate the same regression
equation for their analysis of Eurodollar futures options, but they use prices of optionsinstead of implied
voldtilities. This is an important difference, because prices of options are partially determined by their
intrinsic value and theinitia term structure, which are the samefor the model price and the observed price.
This explains why Amin and Morton (1994) find very high R? values, although the models they analyze
are still rgjected statistically. We prefer to use implied volatilities, because the implied volatility of an
option is a measure that corrects for the price effects of the intrinsic value and the initial term structure.
We choose to use the difference between swaption and caplet volatilities as this difference has a lower
autocorrelation than the caplet and swaption implied volatilities itself. In other words, we eliminate a
possible ‘trend’ in the implied volatilities. This decreases biases in the parameter estimates that are
associated with regressions of thistype, see e.g. Bekaert et a. (1997). The regression setup is also such
that both exact and non-exact calibration models can be analyzed with this regression.

In table 7, we present a summary of the results for this regression analysis. It follows that all models
are clearly rejected; the F-test for «;; = 0 and ;; = O rejects much more often than the 5%-confidence level
that is used. If we compare the difference of the parameter estimates with the ‘correct’” parameter values
(zero intercept and slope equal to one) and the R? values of the constant volatility LMMs and the mean-
reversion LMMs, the performance of themean-reversion LMMsisclearly better. Also, because of thelarge
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errors on caplet implied volatilities for the non-exactly calibrated models, the regression results for these
models are worse than for the exactly calibrated models.

Therelatively low values for the R-squared are remarkable. Apparently, thereisalot of variation in
the swaption and caplet pricesthat cannot be explained by the model, although apart of thisvariation could
be due to measurement errors in the data, caused by the fact that we use quotes for the implied Black
voldtilities. To analyze to what extent the pricing errors are caused by measurement errors and to what
extent they are caused by misspecification of the volatility function or amissing second (and third) factor,
weregress the pricing error for every swaption on three variables that describe the shape of the underlying

term structure

VSN, T) - IVET,T) =

o; + By, Level, + By, YIdSpr, + By ;3 Cury, + €

t=1,..,282 (16)

ijt

where we define the level variable as a short maturity interest rate, the yield spread as the difference
between interest rates with along and short maturity, and where curvature is defined as the difference
between an interest rate with intermediate maturity and the average of two interest rates with along and
short maturity. A similar regression equation is estimated for every caplet in case of non-exact calibration.
Boudoukh et al. (1997) also estimate such aregression equation, and argue that, if there are missing second
and third factors that can be associated with respectively the yield spread and the curvature of the yield
curve', one should be able to detect this using equation (16). Also, if for example the assumption of
lognormally distributed interest ratesisincorrect, one would expect correlation between the pricing errors
and the yield-curve variables.

In table 8, we present the results of this analysis. Indeed, around 30% to 50% of the variation in the
pricing errors can be explained by the yield-curve variables, and the hypothesis that there isno correlation
between pricing errors and yield-curve variables is amost always rejected. The yield-spread variable is
mostly significantly different from zero, the level and curvature variables are often not significant. Hence,
one could argue that thereis evidence for amissing second factor. In section 6 weinvestigate the hypothesis
of multiple factors in more detail.

5 One-Factor Swap Market Models

Inthissection wewill perform asimilar analysisfor the SMM asin the previous section for the LMM, and

= example, Littermann and Scheinkman (1991) use factor analysisto find that three factors, alevel
factor, ayield-spread factor and a curvature factor determine interest rate movements.
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comparetheresultsfor the different models. Wewill calibrate the SMM to the set of 10-year total maturity
swaptions and investigate the pricing implications of this model for caplets and swaptions with total
maturity less than 10 years.

5.1 Calibration Methodology

The SMM is constructed such as to obtain anaytical pricing formulas for a certain set of swaptions, and
wewill estimate the volatility function of the SMM using this set of swaptions, that all have the same total
maturity. Then, we can analyze how well the resulting model prices caplets and swaptions that have a
smaller total maturity.

For the SMM, the choice for the total maturity is not unique, because, given a choice for this total
maturity, only swaptions and caplets with a total maturity smaller than this given total maturity can be
priced with the SMM. Therefore, an obvious choice for this total maturity is 10 years, so that al caplets
and (almost) all swaptions can be priced with the SMM?*2,

Inthedata, it isnot awaysthe casethat we observe swaptionswith atotal maturity of exactly 10 years.
For example, we observe theimplied Black volatility of aswaption with an option maturity of 1 month and
swap maturities of 7 and 10 years. In this case, we follow market practice and linearly interpolate between
the 1-month/7-year swaption implied volatility and the 1-month/10-year swaption implied volatility to
obtain theimplied volatility for the swaption with option maturity 1 month and total maturity 10 years. In
figure 6, we plot the resulting implied Black volatilities of the swaptions with atotal maturity of 10 years.
It follows that this volatility curve takes different shapes through time, both increasing, decreasing and
humped shapes.

Similar to the LMM, it is only possible for a SMM to exactly fit swaption implied Black volatilities
with atime-homogeneous volatility function if 1V S‘(Tn, 10-T) ‘/T_n isincreasing with the option maturity
T, of the swaption. Again, for the swaption implied Black volatilitieswith total maturities of 10 years, this
is not always the case in the data. Therefore, we choose the same form for the volatility function of the
SMM as the choice in equations (9)-(13) for the LMM

k(T -t
Yonn® = ey L n=1,.N-1
Yonn = VST, Ty-T), it - 0 -
VST, T,-T) 2xT, o
- v INT P —— IT x #
b TN TN Lep(-2xT,)

e have al'so examined a SMM with atotal maturity of 5years. The empirical resultsare similar to the
results of the 10-year SMM.
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Thisleadsto exact fitting of theimplied Black volatilities of the 10-year total maturity swaptions. The non-
exactly calibrated Swap Market Models are also specified similar to the non-exactly calibrated LMMs.
Hence, the 10-year SMM iscalibrated, either exact or non-exact, to 10-year total maturity swaptionswith
option maturities of 1,3 and 6 months, and 1, 1.5, 2, 3, 4 and 5 years.

We both consider a constant volatility SMM and a mean-reversion SMM. For the mean-reversion
SMM, the mean-reversion parameter is estimated daily by minimizing the sum of squared differences
between observed implied Black volatilities and Black volatilities that correspond to the pricesimplied by
the SMM, where the sum is taken over all instruments that are not priced directly by the SMM, i.e.
swaptions with a total maturity smaller than 10 years, and all caplets.

The prices of these caplets and swaptions cannot be determined anaytically for the SMM, and thuswe
use simulation to price these instruments™. However, for computational reasons, we use approximate
analytical formulas for the prices of caplets and swaptions to estimate the mean-reversion parameter. In
the appendix, these approximation formulas are given. The difference between the approximation and
smulation pricesis larger than for the LMM, but is at maximum equal to 0.5 volatility point. Given the
estimated mean-reversion vaue, we use simulation to obtain prices for the caplets and swaptions.

5.2 Estimation and Pricing Results

In table 9, we give the pricing results for the constant volatility SMM. Most remarkable are the large
pricing errorsfor capletsin case of exact calibration. In figure 7, it is shown that especially short-maturity
capletsare overpriced substantialy. Thisistheresult of asometimes sharply decreasing volatility function
of the SMM for short maturities, as shown in figure 6. Thisimpliesthat the forward swap rate with a short
forward maturity (and 10 year total maturity) has a much larger variance than the forward swap rate (also
with 10 year total maturity) that has a forward maturity that is only alittle larger. This can only occur if
theforward Libor rate that determinesthe difference between these two forward swap rateshasavery high
variance. In case of non-exact cdibration, the pricing errors for caplets are much smaller and of the same
Sizeasthe caplet pricing errors of the non-exactly caibrated LMMs. We can therefore again conclude that
exact caibration leads to overfitting of the model, and in this case exact calibration resultsin very large
pricing errors for caplets. Furthermore, the average absolute pricing error on 10-year swaptions for the
non-exactly calibrated model is around 0.6 volatility points, so that the flat volatility function quite
reasonably fits the 10-year swaption implied volatilities.

For <10-year swaptions, the effect of asharply decreasing volatility function isnot asdramatic, because
the swaption prices are determined by the variances of several forward Libor rates, so that the impact of
the high variances of forward Libor rates with short forward maturities is much smaller. Hence, the
differences between the exactly and non-exactly calibrated models are small for swaptions, athough the

Bve usethe swaptions that can be priced analytically as control variates.

-18-



maximal pricing errors are larger in case of exact calibration. Also, the parameter estimate for the non-
exactly calibrated constant volatility SMM is less variable over time than the implied volatilities of the
swaptions that are used for the exactly calibrated SMM, as can been seen in tables 4 and 5.

For the constant volatility SMM, the fit on <10-year swaptions is a little worse than the constant
volatility LMM, both in the case of exact and non-exact cdibration. The constant volatility SMM typically
underprices swaptionswith total maturitieslessthan 10 years. An explanation for thisresult isthe absence
of mean-reversion. This can be seen as follows. Consider the 10-year SMM and suppose we are pricing
a swaption with option maturity and swap maturity of 1 year, in other words, a 1x1 swaption. The
conditional variance Var (S, (T,)|7,) of the 1x1 forward swaprate that determines this swaption priceis
roughly determined by the conditional variance, over the first year, of the 1x9 swap rate minus the 2x8
swap rate, Var (S, 4(T,) - S,5(T)}7,) . Mean-reversion will lower the conditional variance over the first
year of the 2x8 swap rate, whereas the conditional variance of the 1x9 swap rate is fixed and determined
by the observed implied volatility of the 1x9 swaption. Therefore, the conditional variance of the 1x1 swap
rate will increase if mean-reversion is introduced. Hence, the absence of mean-reversion implies that the
SMM underprices swaptions.

In figure 4b we plot the mean-reversion parameter estimates for every day in the dataset, and in table
5 we summarize the parameter estimates. As expected, the average mean-reversion estimates are positive,
but alittle smaller than the mean-reversion estimates for the LMM. Table 9 shows that including mean-
reversion leadsto alarge decrease in absolute pricing errorsfor swaptions, although the influence of mean-
reversion is somewhat smaller than for the LMM. Similar to the constant volatility SMMs, the mean-
reversion SMMs have larger absolute pricing errors on the <10-year swaptions than the mean-reversion
LMMs. We can thus conclude that the Libor Market Models outperform the Swap Market Models in
pricing caplets and swaptions. Barton, Brace and Dun (1998) and Rebonato (1999) show in simulation
studiesthat if the LMM (or the SMM) is the true model, the prices for caps and swaptions implied by the
SMM (or the LMM) are quite close to the true prices. In contrast, we show that empirically, calibrating
the LMM to caplets leads to very different results than calibrating the SMM to swaptions.

5.3 Analysis of Pricing Errors

In figure 7, we plot the average pricing error per caplet and swaption for the mean-reverson SMMs The
maturity effectsin the pricing errors of the exact calibration model are similar to the maturity effectsinthe
pricing errors of the non-exact calibration model. We aready mentioned above that short-maturity caplets
are overpriced by all SMMs. It aso follows that swaptions with short total maturities have the largest
pricing errors, and these pricing errors are positive on average. The swaptions with longer total maturities
are underpriced by the mean-reversion SMM.

Weagain performtheregressionin (15) of the observed difference between swaption and caplet implied
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volatilities on the difference between swaption and caplet implied volatilitiesthat follows from the SMM*,
In aimost all cases the modd is datistically rejected. The regression results for the case of non-exact
calibration are alittle better than for exact calibration. Also, the R? values are smaller than for the LMMs,
We also estimate the regression of pricing errors for caplets and swaptions on the leve, yield spread
and curvaturein equation (16). Again, between 30% and 50% of thevariationin pricing errorsis explained
by these three yield-curve variables, athough on average the explanatory power of these yield-curve
variables is smaller than for the LMMs. Hence, although the pricing errors are larger for the SMM, a
smaller part of these pricing errors can be explained by the yield-curve variables. Again, the yield-spread
is strongly correlated with the pricing errors, which could be an indication for a missing second factor.

6 Two-Factor Libor Market Models

6.1 Calibration Methodol ogy

In the previous sections we have found some indication that a second factor might (partially) explain the
pricing errorsthat werefound for the one-factor models. Also, Longstaff, Santa-Claraand Schwartz (1999)
concludethat many factors are needed to correctly price American or Bermudan swaptions. However, they
only analyze a constant volatility, exact calibration market model. Here, we will analyze whether multi-
factor models improve on one-factor models for the pricing of European instruments, even if we include
mean-reversion in the first factor and use non-exact calibration. Of course, even if one-factor models
sufficefor the pricing of European instruments, there are other motivationsto examine and use multi-factor
models, for exampleto introduce anon-perfect correl ation between contemporaneousinterest rate changes,
see Rebonato (1998).

We consider some two-factor Libor Market Modelsin this section. We choose to extend the LMM to
atwo-factor setting because thismodel outperformsthe SMM inthe one-factor setting. Thefirst two-factor
model extends the one-factor constant volatility LMM, so that the volatility function of the first factor is
given by equation (9) in case of exact calibration and by equation (12) in case of non-exact calibration. The
volatility function of the second factor is chosen to be of the exponential type, following Vasicek (1977)
and Hull-White (1990), and this second factor is the same for both exact and non-exact calibration

14 The results of regression (15) and (16) are not presented for the SMM and thetwo-factor LM M, asthey
are similar to the results for the one-factor LMM, but they are available on request.
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Yia® = v non-exact calibration
7K(Tn7t)

Yo, =€ Y, n=1..,N-1
. (18)
Yin® = Yoo exact calibration
-k(T, -t
Yo,t) = € Ty, n=1,.,N-1

In case of exact cdlibration, the volatility function of thefirst factor is chosen to exactly fit observed caplet
implied volatilities, using therelation T, IV (T )? = fOT” Y, ()7, (Ddt, where v (£) = (v,,(0), v,,(0)-
In case of non-exact calibration, the parameter v, is estimated by least squares fitting of caplet implied
volatilities, given valuesfor the other parameters. Both for the exact and non-exact calibration modd, the
parameters k and vy, are estimated by minimizing the sum of squared pricing errors for swaptions, where
the pricing error is again measured in terms of implied Black volatilities.

The second two-factor model that will be analyzed is an extension of the one-factor mean-reversion
LMM, and we extend this model by adding a second factor with a constant volatility function

Vi) = efK(T“ft)yl, non-exact calibration
You®) = ¥y n=1,..,N-1
19
_ 7K(Tn7t) . . ( )
Yia() =€ Y., exact calibration
You®) = ¥y n=1,..,N-1

Again, the parameters x and vy, are estimated by minimizing the sum of sgquared pricing errors for
swaptions, whereas v, isestimated by least squaresfitting of caplet implied volatilitiesin case of non-exact
calibration.

The two-factor modelsin (18) and (19) both have one factor that exhibits mean-reversion. In fact, the
non-exact calibration modelsin (18) and (19) are mathematically the same; the difference between these
models is whether the parameter vy, or vy, is estimated from the observed caplet implied volatilities.

All two-factor models thus have two parameters that are estimated from swaption prices, and the
observed caplet implied volatilities are either exactly matched by the model or fitted with one parameter.
Because the number of parameters estimated from swaption pricesis the same for al models, this setup
enables usto compare both exact versus non-exact calibration and the two-factor modelsin (18) and (19),
by comparing the accuracy in pricing swaptions.

6.2 Estimation and Pricing Results

In table 10 we present the parameter estimates for the two-factor LMMs. For both models of equation (18)
and (19), themean-reversion parameter estimatesarelarger than for the one-factor models. Hence, thetwo-
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factor models have one factor constant volatility factor that shiftsthe entire yield curve, and another factor
that exhibits relatively fast mean-reversion and therefore primarily influences the short end of the yield
curve. This behaviour of two-factor models has aso been found by e.g. De Jong (1999). Findly, the
parameter estimates of the two-factor models are more volatile over time than the parameter estimates of
the one-factor models.

In table 11, the pricing results of the two-factor models are given. The model with the exponential
volatility function for the second factor in (18) of course yieldslower absolute pricing errors than the one-
factor constant volatility LMM, but the pricing errorsarestill larger than for the one-factor mean-reversion
LMM. It turns out that the influence of the mean-reversion parameter in this two-factor model is not as
straightforward asin the one-factor mean-reversion model; swaption pricesarefirst decreasing inthemean-
reversion parameter in (18), but at some value of this parameter swaption prices become an increasing
function of this mean-reversion parameter. Therefore, there is still overpricing of swaptions in this two-
factor model, especially for the swaptions with long swap maturities.

For the model with the constant volatility function for the second factor in equation (19), the pricing
errors are only reduced by 0.1 volatility point relative to the one-factor mean-reversion LMM. Therefore,
we can conclude that, if we already include mean-reversion in the first factor, adding a second additive
factor to the LMM is not necessary for the pricing of caplets and swaptions. An important difference
between one- and two-factor models is the fact that interest rates of different maturities are not perfectly
correlated in atwo-factor model. Although swaption prices do depend on this correlation between interest
rates of different maturities, this turns out to be a second order effect; swaption prices are primarily
determined by the volatilities of interest rates. Thisisin contrast with the findings of Longstaff, Santa-
Clara, and Schwartz (1999). We have two explanations for this difference in results. First, Longstaff,
Santa-Clara, and Schwartz only analyze aconstant volatility, exact calibration market model, and we have
shown that these models yield much higher pricing errors than mean-reversion, non-exact calibration
models, so that Longstaff, Santa-Clara, and Schwartz might overestimate the relevant number of factors.
Second, Longstaff, Santa-Clara, and Schwartz analyze American swaptions, whereasweana yze European
instruments, and it could be that including multiple factors is especialy important for the pricing of
American swaptions. Further research is required to resolve this issue.

6.3 Analysis of Pricing Errors

The pricing errors of the two-factor models are close to the pricing errors of the one-factor models, and the
resultsfor the specification test in equation (15) are similar to the one-factor results. Again, all modelsare
statistically rejected. The R? values arelower than for the one-factor models, whereas the S ope coefficients
in (15) are closer to onefor the two-factor models, but the differenceswith the one-factor modelsare small.

The results for regression (16) show that for the two-factor models, the yield spread variable is still
strongly correlated with the pricing errors. The curvature variable is a little more significant than for the
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one-factor models. Theseresultsimply that the pricing errors still contain some systematic patterns, which
are not captured by the models that we have analyzed. From the results for the two-factor modelswe can
conclude that it is unlikely that we have used atoo low number of (additive) factors.

7 Conclusions

In this paper, we empirically examine arecently developed class of modelsto priceinterest rate derivatives,
the so-called market models of interest rates. This class of models has several advantages over the
traditional approach of Heath, Jarrow, and Morton (1992). First, these models are based directly on
observable market rates, such as Libor rates and swap rates, instead of instantaneous (forward) interest
rates. Second, the models yield pricing formulas for caplets or swaptions that correspond to the Black
pricing formulas that are used in practice. And third, as a consequence, these models can easily be
calibrated to market prices of caps or swaptions.

We analyze and compare two one- and two-factor market models: the Libor Market Model (LMM),
devel oped by Miltersen, Sandmann, and Sondermann (1997) and Brace, Gatarek, and Musiela (1997), and
the Swap Market Model (SMM), introduced by Jamshidian (1997) and Musiela and Rutkowski (1998).
We analyze constant volatility and mean-reversion specifications of the models. We also consider two
calibration methodol ogies, exact caibration, that leadsto exact fitting of aset of derivative prices, and non-
exact calibration, that does not lead to such an exact fit.

We show that a constant volatility specification for the LMM leads to overpricing of al swaptions.
Including a mean-reversion term in the volatility specification typically increases thefit of the LMM, and
the estimates for the strength of mean-reversion are quite stable over time. For this model, the average
absolute pricing error for al swaptionsisaround 1 volatility point, which is, given the size of the bid-ask
spreads for swaptions, not very large. For the SMM with a constant volatility specification, we find that
the model underprices swaptions on average. Again, if we include a mean-reversion term, this average
underpricing disappears, although there are still some maturity effects in the pricing errors. Overall, the
average fit of the LMM is better than the fit of the SMM.

Wealso show that the exact calibration methodology canlead to overfitting to derivative prices, because
using this methodology most often leads to higher pricing errors than the non-exact calibration
methodology. In other words, due to the presence of noise in derivative prices, a better fit on some set of
derivatives can lead to aworse fit of other derivative instruments. The non-exact calibration methodol ogy
therefore (partially) eliminates the noise in the derivative price quotes.

Adding a second factor to the Libor Market Models only improves the fit on derivative prices by a
smalll amount, so that we can conclude that the one-factor assumption is not very restrictive for this

particular application. However, we calibrate the market models to the daily cross-section of derivative
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prices, which is away to correct for the presence of stochastic volatility, as shown by Hull and White
(1987). It would beinteresting to assesswhether one could avoid thisdaily calibration and capturethetime-
varying behaviour of volatility by explicitly including a stochastic volatility factor in the model.

For all models, a regression analysis of model prices on observed prices shows that the models can
statistically be rejected. Also, around 30% to 50% of the variation in the pricing errors can be explained
by the shape of the term structure, which might be the result of the assumption of lognormally distributed
interest rates. It is easy to show that if interest ratesin reality follow a distribution that is different from
lognormal, the caplet and swaption pricing errors of lognormal models will be correlated with yield-curve
variables. Future research has to clarify how regtrictive this assumption of lognormality is, for example
by including a stochastic volatility factor in a market model. Such an analysis would be particularly
interesting for the modeling of the volatility smile of capsor swaptions, i.e. the pricing of caps or swaptions
with different strike rates.
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Appendix

In this appendix, we describe pricing formulas for caplets and swaptionsfor the LMM and SMM. For the
LMM, asit isdescribed in section 2, the price of acaplet isequal to

Caplet(t, T ,k) = 6,P_,(t)[L,()N(h) -kN(h-E.)I,

e - 20
. log(L(t)/K) 0.55n1 B2 = [yEMM ()T MM (o) (20)

&

Thisfollowsfrom cal culating the expectation in equation (6). Thispricing formulaisthe same asthe Black

pricing formulafor a caplet, where theterm &, is replaced by om, where o isthe Black volatility.
Swaptions cannot be priced analytically in the LMM. Brace et al. (1997) derive an approximation for

the swaption price. They make a one-factor approximation to the covariance matrix A in equation (14)

A =TT, T e R™ (21)

Then, they show that an approximation price is given by (for notational convenience we consider a
swaption that matures at T, and has m payment dates)

Saptn(t, T, mk) = Z 8P, [L,()) N(-s-d.+T) - kN(-s-d)]

gLt (22)
= Z i I, i=1,..m
e 1+6J LJ(t)
where s solves

m+1 k-1 )

kZ; C, [H (1+8,L,(t) exp(T',(s+d) -05T7))] * = 1

- =1 (23)

¢ = Kk§ ,, j=2..m ¢ ., = 1+kd

We have compared the swaption vaues based on this approximation with the values computed using
simulation. We find that the differences are dways smaller than 0.08 volatility points.
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For the SMM, the price of a swaption with a total maturity that is equal to the total maturity of the
SMM isgiven by the following formula

N
SNptn(t,Tn, N—n, k) = ( Z 61',1 Pj(t)) [%,an(t) N(h) - kN(h_En,N—n)]’

j=n+1

;
log(S, _(t)/K) +0.5E2 .,

- 4 = Eancn = [Yanen( Yanon(9)ds
n,N-n f

(24)

n

h =

Again, the Black pricing formula also has this form, where the term &, ., is replaced by om , where
o isthe Black volatility of the swaption.

Caplets and swaptions (with smaller total maturities than the total maturity of the SMM) cannot be
priced analyticaly withthe SMM. Brace, Dun and Barton (1998) derive thefollowing approximate relation
between swap rate volatilities and Libor rate volatilities, assuming driftless lognormal processes for both
forward Libor and swap rates

n+m

38, POL 00
Yon(®) = 02 (25)

n+m

Y 8 ,POL L0

j=n+1

Then, by assuming bond pricesand Libor ratesin (25) are fixed at their current values, and given the swap
rate volatilities for 10-year total maturity forward swap rates, the volatilities of other forward swap rates
and forward Libor rates can be determined. Given theseforward Libor and swap rate voltilities, the Black
formulais used to obtain approximate prices for caplets and swaptions. Compared to the LMM, more
approximation assumptions are made for the SMM, and therefore the difference between smulated and
approximated pricesis larger and at maximum equal to 0.5 volatility points.
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Table 1. Descriptive Statistics Libor rates, Eurodollar Futuresand Swap Rates.

Summary statistics are calculated from 282 daily observations from July 1995 until September 1996,
and all rates are expressed on an annual basis.

Rate (Average) Maturity Average Standard Deviation
inYears
Libor 0.25 5.61% 0.21%
100-Eurodollar 0.12 5.60% 0.20%
100-Eurodollar 0.37 5.59% 0.36%
100-Eurodollar 0.62 5.67% 0.48%
100-Eurodollar 0.87 5.79% 0.53%
100-Eurodollar 112 5.92% 0.56%
100-Eurodollar 1.37 6.04% 0.58%
100-Eurodollar 1.62 6.13% 0.56%
100-Eurodollar 1.87 6.23% 0.53%
100-Eurodollar 2.12 6.31% 0.51%
100-Eurodollar 2.37 6.38% 0.51%
100-Eurodollar 2.62 6.45% 0.50%
100-Eurodollar 2.86 6.52% 0.47%
Swap 4 6.26% 0.46%
Swap 5 6.37% 0.46%
Swap 7 6.53% 0.45%
Swap 10 6.73% 0.44%
Swap 12 6.81% 0.43%
Swap 15 6.93% 0.41%
Swap 20 7.01% 0.39%

Swap 30 7.04% 0.37%




Table 2. Descriptive Statistics Caplet Implied Black Volatilities.
Averages and standard deviations are caculated from 282 daily observations on implied volatilities of

caplets, from July 1995 until September 1996. The Black volatilities are measured in annualized
percentages (i.e. volatility points).

Average Maturity Average Standard deviation

inYears Implied Volatility Implied Volatility
0.13 105 2.8
0.38 14.9 21
0.63 18.2 21
0.88 20.4 21
1.75 23.7 2.3
2.75 194 1.7
3.75 22.9 24
475 18.0 2.8
6.75 18.3 2.3

9.75 14.9 2.3




Table 3. Averages of Swaption Implied Volatilities.

Averages are calculated from 282 daily observations on implied Black voltilities of swaptions, from July
1995 until September 1996. Each row contains swaptions with afixed option maturity and different swap
maturities. All maturities are expressed in years. The Black volatilities are measured in annualized
percentages (i.e. volatility points).

Maturity Swap| 1 2 3 4 5 7 10

Option

0.085 18.3 194 19.2 19.0 18.7 17.6 16.7
0.25 18.9 19.6 19.3 18.9 184 175 16.4
0.50 194 19.7 19.2 18.7 18.3 17.3 16.2
1.00 20.7 20.0 19.2 184 17.8 16.9 15.9
1.50 20.5 19.6 18.9 18.1 175 16.6
2.00 20.2 19.2 185 17.8 17.2 16.2
3.00 195 185 17.8 17.2 16.7 15.9
4.00 18.7 17.8 17.2 16.7 16.1
5.00 18.0 17.2 16.7 16.1 15.6




Table 4. Standard Deviations of Swaption Implied Volatilities.

Standard deviations are cal culated from 282 daily observations on implied volatilities of swaptions, from
July 1995 until September 1996. Each row contains swaptionswith afixed option maturity and different
swap maturities. All maturities are expressed in years. The Black voldtilities are measured in annualized
percentages (i.e. volatility points).

Maturity Swap| 1 2 3 4 5 7 10

Option

0.085 1.56 1.75 1.63 1.44 141 1.15 0.92
0.25 1.13 1.04 0.95 0.82 0.72 0.61 0.51
0.50 0.87 0.74 0.68 0.60 0.62 0.64 0.51
1.00 1.08 1.00 1.05 0.98 1.00 0.91 0.78
1.50 1.14 1.14 1.21 1.07 1.07 0.97
2.00 1.22 1.25 1.28 1.15 1.14 1.03
3.00 1.34 131 1.23 1.19 1.23 112
4.00 131 131 1.20 1.24 1.16
5.00 1.27 1.22 1.25 1.16 1.14




Table 5. Parameter Estimates One-Factor LM M and One-Factor SMM.

The table contains averages and standard deviations of 282 daily parameter estimates for one-factor
LMMsand SMMs, as specified in equations (9)-(13) and (17), both for the case of exact calibration and
non-exact calibration. All parameters are expressed on an annua basis.

Mode Averagey St.Dev.y Averagex  St.Dev.x

Exact Calibration

Constant Volatility LMM - - - -
Mean-Reversion LMM - - 0.092 0.032

Constant Volatility SMM - - - -
Mean-Reversion SMM - - 0.049 0.025

Non-Exact Calibration

Constant Volatility LMM 0.182 0.014 - -
Mean-Reversion LMM 0.194 0.019 0.043 0.022
Constant Volatility SMM 0.163 0.006 - -

Mean-Reversion SMM 0.168 0.006 0.033 0.011




Table 6. Pricing Resultsfor One-Factor Libor Market Model.

Thetablecontainssummary statisticson pricing errorsof one-factor LMMs, for caplets, swaptionswith
atotal maturity less than 10 years and swaptions with a total maturity equal to 10 years. Results for
four models are presented: exactly calibrated and non-exactly calibrated models with and without a
mean-reversion parameter. All pricing errors are measured in Black implied volatility points, and
defined as the Black implied volatility that isimplied by the LMM minus the observed Black implied
volatility. The Black volatilities are measured in annualized percentages (i.e. volatility points).

Mean- Exact Average Average Average of Average
Reverson Cadlibration  Pricing Error Absolute Daily Maximal  Autocorrelation
Pricing Error Errors Pricing Errors
Caplets
No No 0.00 3.28 8.03 0.717
No Yes - - - -
Yes No 0.06 3.26 9.06 0.673
Yes Yes - - - -

<10-Year Total Maturity Svaptions

No No 0.45 142 3.62 0.930
No Yes 1.84 211 441 0.736
Yes No -0.27 0.97 3.16 0.904
Yes Yes 0.30 1.08 3.88 0.716
10-Year Total Maturity Svaptions
No No 2.15 2.23 3.17 0.941
No Yes 2.01 2.08 2.99 0.736
Yes No 0.06 0.59 1.59 0.812

Yes Yes -0.80 0.90 1.93 0.715




Table 7. Difference between Swaption Volsand Caplet Vols.
Regression Resultsfor One-Factor LM M.

For every swaption with a certain option maturity and swap maturity, the regression parameters in
equation (15) are estimated:

VAT TV = e+ By AVH™MTT)-IVEMT) + ¢, t=1,..,282

Thetablereportsthe average (absolute) coefficient estimates, average (absol ute) t-va uesin bracketsand
the average of the R?. The column ‘ Percentage Rejections’ shows for how many swaptionsthe F-test for
the joint hypothesis «;; =0 and Bij = 1 is regjected at the 5% confidence level, relative to the total
number of swaptions. The t-values and F-tests are corrected for autocorrelation using the Newey-
West(1987) method with 15 lags. The bold numbersindicate averaget-valueslarger than 1.96 or smaller
than -1.96.

Mean- Exact Average Average Average Average  Average  Percentage
Reverson  Calibration o o] B-1 IB-1| R? Rejections
No No 0.01 0.02 -4.94 494 0.06 79.0%
(1.6) (2.2 (2.3 (2.3
No Yes 0.00 0.01 -0.68 0.68 0.27 98.4%
(1.3 (2.3 4.7) 4.7)
Yes No 0.01 0.01 -0.84 1.93 0.22 79.0%
(3.3 (4.5) (0.9) (3.4)
Yes Yes 0.00 0.01 -0.21 0.38 0.55 88.7%

(-0.8) (3.1) (-3.8) (4.5)




Table 8. Regression of Pricing Errorson Level, Steepness and Curvature.
Resultsfor One-Factor Libor Market Model.
For every swaption (and caplet) the time-series regression in equation (16) is estimated:

VEMMTLT) S IVE(TLT) = a ¢ By, Level, + By, YIdSpr, + By, Cury, + €, t=1,.,28
The Level-variable is defined as the 3-month discount rate. YieldSpread is defined as the difference
between aspot 3-month interest rate and the 10-year discount rate. Curvatureisdefined asthedifference
between the 2-year discount rate, and the average of the 3-month discount rate and a 10-year discount
rate. The table reports the average (absolute) coefficient estimates, average (absolute) t-vaues in
brackets and the average of the R%. The column ‘Percentage Rejections shows for how many
instruments the F-test for the joint hypothesis §, =0 and B, = 0 and B, = O isrejected at the 5%
confidence level, relative to the total number of instruments. The t-values and F-tests are corrected for
autocorrelation using the Newey-West(1987) method with 15 lags. The bold numbers indicate average

t-values larger than 1.96 or smaller than -1.96.

Mean- Exact Avg. Avg. Avg. Avg. Avg. Avg. Avg Perc
Reversion Cdliibration B, B4 B, 1B Bs Bs .R® Reect.
Caplets

No No 000 217 000 062 000 291 027 100%
01 (18 (©1) (25 (@©4 (@11

No Yes - - - - - - - -

Yes No 007 182 000 059 -001 303 023 80%
03) (18 (01 (20 (03 (13

Yes Yes - - - - - - - -

<10-Year Total Maturity Svaptions

No No 262 262 -022 055 -096 131 050 100%
(25 (25 (-08) (230 (-06) (0.8

No Yes 106 109 -063 065 -240 261 048 90.5%
a7 (18 (-36) (37 (249 (25

Yes No 118 124 -031 051 -075 127 044 94.3%
19 (21 (-06) (25 (02 (10

Yes Yes 028 080 -023 043 -075 156 036 755%
01y @7 11 (29 (07 (@7
10-Year Total Maturity Svaptions

No No 303 303 -006 041 -084 084 054 100%
24 (24 (02 (17 (05 (0.5

No Yes 047 057 -046 046 -220 220 048 88.9%
100 (16) (270 (27 (@15 (15

Yes No -035 035 -024 036 035 046 030 77.8%

(-11) (1) (01 (23) (02) (0.6)
Yes Yes 066 066 025 044 077 079 042 77.8%




Table 9. Pricing Resultsfor One-Factor Swap Market Model.

Thetable contains summary statisticson pricing errorsof one-factor SMMs, for capl ets, swaptionswith
atotal maturity less than 10 years and swaptions with atotal maturity equal to 10 years. Results for
four models are presented: exactly calibrated and non-exactly calibrated models with and without a
mean-reversion parameter. All pricing errors are measured in Black implied volatility points, and
defined as the Black implied volatility that isimplied by the SMM minus the observed Black implied

volatility.
Mean- Exact Average. Average Average of Average
Reverson Cadlibration  Pricing Error Absolute Daily Maxima  Autocorrelation.
Pricing Error Errors Pricing Errors
Caplets
No No -0.55 3.09 7.21 0.713
No Yes 2.87 6.99 26.11 0.707
Yes No 1.93 3.96 11.55 0.704
Yes Yes 5.16 7.36 28.09 0.732
<10-Year Total Maturity Svaptions
No No -1.81 2.28 5.08 0.910
No Yes -1.22 2.26 12.05 0.796
Yes No -0.22 1.24 4.78 0.897
Yes Yes 0.32 1.77 12.48 0.798
10-Year Total Maturity Svaptions
No No 0.00 0.59 1.39 0.951
No Yes - - - -
Yes No 0.00 0.42 1.10 0.939

Yes Yes - - - -




Table 10. Parameter Estimates Two-Factor LM M.

The table contains averages and standard deviations of 282 daily parameter estimates for two-factor
LMMs, as specified in equations (18) and (19), both for the case of exact calibration and non-exact

calibration. All parameters are expressed on an annual basis.

Average Std. Average Std. Average  St.Dev.

Y1 Dev. v, Y, Dev. v, K K
Exact Calibration
Exponential Second Factor - - 0.102 0.025 0.287 0.083
Constant Second Factor - - 0.084 0.029 0.133 0.074
Non-Exact Calibration
Exponentia Second Factor 0.172 0.016 0.099 0.025 0.328 0.271

Constant Second Factor 0.187 0.024 0.083 0.020 0.069 0.065




Table 11. Pricing Resultsfor Two-Factor Libor Market Model.

The table contains summary statistics on pricing errors of two-factor LMMs, for caplets, swaptions
with atotal maturity lessthan 10 years and swaptions with atotal maturity equal to 10 years. Results
for four model sare presented: the exactly calibrated and non-exactly calibrated model s of equations(18)
and (19). All pricing errors are measured in Black implied volatility points, and defined as the Black
implied volatility that isimplied by the LMM minus the observed Black implied volatility.

Second Exact Average Average Average of Average
Factor Cadlibration  Pricing Error Absolute Daily Maxima  Autocorrelation
Pricing Error Errors Pricing Errors
Caplets
Exponential No -0.08 3.29 797 0.719
Exponential Yes - - - -
Constant No -0.28 3.46 8.03 0.685
Constant Yes - - - -

<10-Year Total Maturity Svaptions

Exponential No 0.30 1.22 341 0.919
Exponential Yes 133 177 4.37 0.763
Constant No 0.19 0.87 3.04 0.639
Constant Yes 0.18 101 3.84 0.741
10-Year Total Maturity Svaptions
Exponential No 1.75 1.84 2.74 0.947
Exponentia Yes 125 143 244 0.768
Constant No 0.04 0.48 143 0.644

Constant Yes -0.68 0.79 1.82 0.802




Figure 1. Daily 3-month Forward Interest Rates. Forward rate maturities 3 months, 1 year, 5 yearsand
10 years.
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Figure 2. Daily Caplet Implied Black Volatilities.
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Figure 3. Influence of M ean-Reversion on Swaption Price. For different values of the mean-reversion
parameter x, the price and corresponding implied Black volatility of a 3x7 swaption (3 year option
maturity, 7 year swap maturity) in the exactly-calibrated one-factor LMM is calculated, using datafor the
first day in the dataset.
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Figures4a-b. M ean-Reversion Parameter Estimates. Daily estimates of mean-reversion parameter for
the exactly cdlibrated one-factor LMM (left) and SMM (right).
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Figure5. Pricing ErrorsSwaptionsfor LM M. Averagevolatility point error of swaptionsfor one-factor
mean-reversion LMM, non-exact cdibration (left) and exact calibration (right).
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Figure 6. 10-year Total Maturity Swaptions. Daily swaption implied Black volatility curve for 10-year
SMM. All swaptions have atotal maturity equal to 10 years.
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Figures 7a-d. Pricing Errors Capletsand Swaptionsfor SMM. Average volatility point errors caplets
and swaptions for one-factor mean-reversion SMM, with no exact caibration (Ieft) and exact calibration
(right). For caplets a so average absolute volatility point errors are presented.
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Figure8. Pricing ErrorsSwaptionsfor Two-Factor LM M. Averagevolatility point error swaptionsfor
two-factor LMM, no exact calibration (left) and exact calibration (right), with constant volatility second
factor of equation (19).




