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Asymptotics of least trimmed squares regression

Pavel Č́ıžek
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Abstract

High breakdown-point regression estimators protect against large errors both in

explanatory and dependent variables. The least trimmed squares (LTS) estimator

is one of frequently used, easily understandable, and thoroughly studied (from the

robustness point of view) high breakdown-point estimators. In spite of its increasing

popularity and number of applications, there are only conjectures and hints about its

asymptotic behavior in regression after two decades of its existence. We derive here

all important asymptotic properties of LTS, including the asymptotic normality and

variance, under mild β-mixing conditions.
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1 Introduction

In statistics and econometrics, a more attention is paid to techniques that can deal with data

contamination, which can arise from miscoding or heterogeneity not captured or presumed

in a model. This can occur, for instance, if some data points come from a different data-

generating process that the majority of observations. Sakata and White (1998) evidence

data contamination in financial time series and its adverse effects on estimators such as

quasi-maximum likelihood. The sensitivity or robustness of an estimator against large

errors and data contamination is typically characterized by the breakdown point, which

measures the smallest fraction of a sample that can arbitrarily change the estimator under

contamination; see Rousseeuw and Leroy (1987) and Rousseeuw (1997) for an overview,

Stromberg and Ruppert (1992) for a breakdown point in nonlinear regression, and Sakata

and White (1995) for some finite-sample alternative definitions. In this paper, we study

a classical high breakdown-point estimator, the least trimmed squares (LTS), proposed

by Rousseeuw (1985) and derive asymptotic results allowing for nonlinear-regression and

time-series applications.
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The LTS estimator belongs to the class of affine-equivariant estimators that achieve

asymptotically the highest breakpoint 1/2 and it is generally preferred to the similar, but

slowly converging least median of squares (LMS; Rousseeuw, 1984). Thus, it has been

receiving a lot of attention from the theoretical, computational, and application points of

view. First, let us mention its extensions to nonlinear regression (Stromberg, 1993) and

regression with categorical dependent variables (Christmann, 1998). Results are also avail-

able regarding strong consistency (Chen, Stromberg, and Zhou, 1997), sensitivity analysis

(Tableman, 1994), small-sample corrections for LTS (Pison, Van Aelst, and Willems, 2002),

and bootstrap (Willems and Van Aelst, 2004). Further, there has been a significant de-

velopment in computational methods (Agulló, 2001; Bai, 2003; Gilloni and Padberg, 2002;

Rousseeuw and Van Driessen, 1999). Last, but not least, there are many application ar-

eas where LTS has been used: in economics (Beňáček, Jaroĺım, and Vı́̌sek, 1998; Temple,

1998; Zaman, Rousseeuw, and Orhan, 2001), finance (Knez and Ready, 1997; Kelly, 1997),

but also in clustering (Ye and Haralick, 2000) and pattern recognition (Wang and Sutter,

2003). Further applications could stem from areas, where LMS is suitable and applicable

(see Zinde-Walsh, 2002, for details). In spite of its many extensions and uses, rigorously

proved results are limited only to the i.i.d. setting and location model (see Hawkins and

Olive, 1999, for an overview) and the knowledge concerning the asymptotic distribution

of LTS in regression models consist of a vague conjecture on deriving asymptotic variance

made by Stromberg, Hössjer, and Hawkins (2000).

The aim of this work is to address this deficiency and derive the asymptotic distribution

of LTS, and as a side effect, to prove the consistency of LTS under weaker conditions than

Chen, Stromberg, and Zhou (1997). The main difficulty in deriving such a result stems from

the LTS objective function: being a sum of h smallest residuals at any given parameter

estimate, it is not differentiable at many points. Thus, the standard tools such as the

Taylor expansion of the objective function are not applicable. On the other hand, the

standard results of the empirical process theory (see for example Pollard, 1984, van der

Vaart and Wellner, 1996, and Andrews, 1993) cannot be readily employed either as noticed

by Stromberg, Hössjer, and Hawkins (2000). For this reason, we study first behavior of

ordered residual statistics and prove the asymptotic linearity of the LTS normal equations.

Next, combining the first set of results with the (uniform) law of large numbers (Andrews,

1987 and 1992) and the stochastic equicontinuity results (Arcones and Yu, 1994, and Yu,

1994) for mixing processes allows us to derive the consistency and the rate of convergence

of the LTS estimates. Finally, the consistency of LTS and the asymptotic linearity of the

LTS normal equations leads to the asymptotic normality of the LTS estimator.

In the rest of the paper, LTS and its existing extensions to nonlinear regression are in-

troduced in more details in Section 2, where we also extensively discuss assumptions needed

for the asymptotic normality of LTS. Asymptotic results are summarized and discussed in
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Sections 3 and 4. The proofs are provided in Appendix.

2 Least trimmed squares in nonlinear regression

Let us consider the nonlinear regression model (i = 1, . . ., n)

yi = h(xi, β
0) + εi, (1)

where yi represents the dependent variable, h(xi, β) is a regression function, and β0 repre-

sents the underlying parameter value. The vector xi ∈ Rk represents explanatory variables

and the error term εi is assumed to form a sequence of independent and identically dis-

tributed random variables with an absolutely continuous distribution function.1 The vector

β of unknown parameters is assumed to belong to a parametric space B ⊆ Rp.

The nonlinear least trimmed squares estimator β̂
(LTS,h)
n is then defined by

β̂(LTS,h)
n = arg min

β∈Rp

h∑
i=1

r2
[i](β), (2)

where r2
[i](β) represents the ith order statistics of squared residuals r2

i (β) = {yi − h(xi, β)}2

and β ∈ B. The trimming constant h must satisfy n
2

< h ≤ n and determines the

breakdown point of the (nonlinear) LTS estimator since definition (2) implies that n − h

observations with the largest residuals do not affect the estimator (except for the fact that

the squared residuals of excluded points have to be larger than the hth order statistics

of the squared residuals). For h(x, β) = g(xT β), where g(t) is unbounded for t → ±∞,

Stromberg and Ruppert (1992) showed that the breakdown point equals asymptotically 1/2

for h = [n/2] + 1 (most robust choice) and 0 for h = n (nonlinear least squares). For other

cases, only upper and lower bounds for the breakdown point can be established. For an

overview of the properties of LTS in linear and nonlinear regression, see Č́ıžek and Vı́̌sek

(2000), Vı́̌sek (2000), and Č́ıžek (2001), Stromberg (1993), respectively.

Naturally, the choice of the trimming constant h should vary with the sample size n.

Because the asymptotic properties of LTS are studied here, that is n → ∞, we have to

work with a sequence of trimming constants hn (for every sample size n, there has to be

a corresponding choice of h). As hn/n determines the fraction of sample included in the

LTS objective function, and consequently, the robustness properties of LTS, we want to

asymptotically fix this fraction at λ, 1
2
≤ λ ≤ 1.2 The trimming constant for a given

1Although I assume throughout the work that all variables are of stochastic nature, all presented results
hold even in the presence of nonstochastic variables (e.g., seasonal dummies).

2The case of λ = 1 will be excluded for the sake of simplicity from some proofs. This case corresponds
to the usual nonlinear least squares estimator, which is extensively studied in the literature anyway. All
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sample size n can be then defined by hn = [λn], where [x] represents the integer part of x;

in general, one can also consider any sequence {hn}n∈N such that hn/n → λ.

In the rest of this section, we discuss assumptions (Section 2.1) and an alternative

definition of LTS (Section 2.2) used throughout the paper.

2.1 Assumptions

Let us now complement the model and LTS estimator definition first by some notation

and definitions and later by assumptions on the regression function and random variables

needed for further analysis.

First, we refer to the distribution functions of εi and ε2
i as F (z) and G(z) and to the

corresponding probability density functions, if they exist, as f(z) and g(z), respectively.

Note that since G describes the distribution of the square of the random variable εi ∼ F ,

it follows that G(z) = F (
√

z) − F (−√z) for z > 0 and G(z) = 0 otherwise. Hence, if F

is absolutely continuous, G is absolutely continuous too and the corresponding probability

density function is g(z) = 1
2
√

z
{f(

√
z) + f(−√z)} for z > 0. Last, but not least, whenever

I need to refer to the quantile functions corresponding to F and G, I use F−1 and G−1,

respectively. Two purely mathematical symbols we need are indicator I(A), which equals

1 for x ∈ A and 0 elsewhere, and an open δ-neighborhood of a point x in a Euclidian space

Rl: U(x, δ) =
{

z ∈ Rl
∣∣ ‖z − x‖ < δ

}
.

Second, let us introduce the concept of β-mixing, which is central to the distributional

assumptions made here. A sequence of random variables {Xi}i∈N is said to be absolutely

regular (or β-mixing) if

βm = sup
t∈N

E sup
B∈σf

t+m

|P (B|σp
t )− P (B)| → 0

as m → ∞, where the σ-algebras σp
t = σ(Xt, Xt−1, . . .) and σf

t = σ(Xt, Xt+1, . . .); see

Davidson, 1994, or Arcones and Yu, 1994, for details. Numbers βm,m ∈ N, are called

mixing coefficients.

Another concept crucial to this paper are the Vapnik-Cervonenkis (VC) classes of func-

tions, which are rigorously defined and studied in monographs Pollard (1984) and van

der Vaart and Wellner (1996), for instance. Very closely related are also the Euclidian

classes of functions (Pollard, 1989). To avoid rather technical definitions, let us say that

VC classes cover many common functions including any set of functions forming a finite

vector space (e.g., polynomial, logarithmic, and exponential functions), functions for which

|f(x, t)− f(x, t′)| ≤ ξ(x) ‖t− t′‖α for some α > 0 and a nonnegative function ξ(x), their

the propositions given later are valid for λ = 1 too, but their proofs are slightly different or trivial in this
case.
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sums, products, maxima and minima, monotonic transformations, composed functions, and

so on.

Now, I specify all the assumptions necessary to derive the asymptotic linearity of LTS.

They form three groups: distributional Assumptions D for random variables in model (1),

Assumptions H concerning properties of the regression function h(x, β), and finally, the

identification Assumptions I.

Assumptions D

D1 Explanatory variables {xi}i∈N form an absolutely regular sequence with finite second

moments and mixing coefficients satisfying

mrβ/(rβ−2) (log m)2(rβ−1)/(rβ−2) βm → 0

as m →∞ for some rβ > 2.

D2 Let {εi}i∈N be a sequence of independent symmetrically and identically distributed

variables with finite second moments, and additionally, let εi and xi are mutually

independent. Further, the distribution function F of εi is absolutely continuous and

its probability density f is assumed to be positive, bounded from above by Mf > 0,

and continuously differentiable in a neighborhood of −
√

G−1(λ) and
√

G−1(λ).

D3 Assume that mG = infβ∈B G−1
β (λ) > 0,

mgg = inf
β∈B

inf
z∈(−δg ,δg)

gβ

(
G−1

β (λ) + z
)

> 0

for some δg > 0, and

Mgg = sup
β∈B

sup
z∈(mG,+∞)

gβ(z) < ∞,

where Gβ and gβ are the cumulative distribution function and probability density

function of r2
i (β).

Having a general regression function h(x, β), Assumption D1 is a necessary condition for the

uniform central limit theorem, see Andrews (1993) and Arcones and Yu (1994), for instance.

The first part of Assumption D2 is standard and is mainly made for the ease of presentation.

The mutual independence of εi and xi can be relaxed, although we need at least conditional

symmetry of εi given xi in the later case. The second part of Assumption D2 on distribution

function F , especially its twice differentiability around the points corresponding to the

λ-quantiles of ε2
i , is a standard condition needed for the analysis of rank statistics (see
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Zinde-Walsh, 2002, for instance). Most importantly, it bounds F and f away from zero

in a neighborhood of the mentioned quantiles: infz∈U(F−1(α),ε) min {F (z), f(z)} > 0 for

α = (1 − λ)/2 and α = (1 + λ)/2. Note that this property together with the absolute

continuity of F transfer to G due to the relation G(z) = F (
√

z) − F (−√z). Assumption

D3 formalizes this property for the distribution Gβ of squared residuals across the whole

parameter space B. Although unfamiliar, this assumption excludes above all convergence

of Gβ to a discountinuous distribution function for some β ∈ B and should not restrict us

in common regression models since B is assumed to be compact, see Assumption I below.

Finally, although Assumption D implies stochastic nature of all explanatory variables, the

presented results are valid also in the presence of nonstochastic variables, such as seasonal

dummies.

Next, several conditions on the regression function h(x, β) have to be specified. Most

of them are just regularity conditions that are employed in almost any work concerning

nonlinear regression models. For example, the regression function of a nonlinear regression

model is almost always assumed to be twice differentiable; see Amemiya (1983) and White

(1980), for example. Further, since some assumptions stated below rely on the value of β

and I do not have to require their validity over the whole parametric space, I restrict β to

a neighborhood U(β0, δ) in these cases.

Assumptions H

Let us assume that there are a positive constant δ > 0 and a neighborhood U(β0, δ) such

that the following assumptions hold.

H1 Let h(xi, β) be a continuous (uniformly over any compact subset of the support of x)

in β ∈ B and twice differentiable function in β on U(β0, δ) almost surely. The first

derivative is continuous in β ∈ U(β0, δ).

H2 Furthermore, let us assume that the second derivatives h
′′
βjβk

(x, β) satisfy locally the

Lipschitz property, that is, for any compact subset of supp x there exists a constant

Lp > 0 such that for all β, β′ ∈ U(β0, δ), and j, k = 1, . . ., p

∣∣∣h′′βjβk
(x, β)− h

′′
βjβk

(x, β′)
∣∣∣ ≤ Lp · ‖β − β′‖ .

H3 Let {h(xi, β)|β ∈ B} and {h′β(xi, β)|β ∈ U(β0, δ)} form VC classes of functions such

that their envelopes E1(x) = supβ∈B |h(x, β)| and E2(x) = supβ∈U(β0,δ)

∣∣h′β(x, β)
∣∣ have

finite rβ-th moments.

H4 Let

n−1/4 max
1≤i≤n

max
1≤j≤p

∣∣∣h′βj
(xi, β)

∣∣∣ = Op(1) (3)
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and

n−1/2 max
1≤i≤n

max
1≤j,k≤p

∣∣∣h′′βjβk
(xi, β)

∣∣∣ = Op(1) (4)

as n → +∞ uniformly over β ∈ U(β0, δ).

H5 Apart from the existence of moments implied by Assumption H3, we also have to

postulate the existence of the following expectations:

• Integrals E [r2
i (β)]

m
and E [h(x, β)]m exist and are finite for m = 1, 2 and β ∈ B.

• Let E
[
h
′′
βjβk

(xi, β)
]m

, E
[
h
′
βj

(xi, β
0)h

′
βk

(xi, β
0)

]m

, and E
[
h
′
βl

(xi, β
0)h

′′
βjβk

(xi, β
0)

]

exist and are finite for m = 1, 2, all j, k, l = 1, . . ., p, and β ∈ U(β0, δ).

Moreover, assume that E
[
h
′
β(xi, β

0)h
′
β(xi, β

0)
T
]

= Qh, where Qh is a nonsingular

positive definite matrix.

Whereas the differentiability of the regression function and the existence of some moments

are standard assumptions (Assumption H5 corresponds to the assumption of finite fourth

moments of xi in the linear case), Assumptions H3 and H4 deserve further comments. First,

Assumption H3 limits the class of regression functions h(x, β) to a VC class. Even though

this assumption does not seem to be very restrictive, it can be omitted as long as we impose

stronger distributional assumptions. More specifically, if xi and εi are independent and the

distribution function F of εi has everywhere differentiable density, it is possible to prove

the Lrβ -continuity of I
(
r2
i (β) ≤ G−1

β (λ)
)

and to limit the braketing cover numbers following

results of Andrews (1993). Consequently, the results of Doukhan, Massart, and Rio (1995)

could be employed instead of Arcones and Yu (1994) and Yu (1994) that are used in the

current paper.

Second, Assumption H4 is a nonlinear equivalent of

n−1/4 max
1≤i,j≤n

|xij| = Op(1), (5)

and actually, it is the direct consequence of (5) if h(x, β) = h(xT
i β) with bounded deriva-

tives, which implies h
′
βj

(x, β) = h′(xT
i β)xij and h

′′
βjβk

(x, β) = h′′(xT
i β)xijxik. The restriction

(5), in a nonrandom setup, was first introduced by Jurečková (1984) to be able to cope

with the discontinuous objective function (this discontinuity has to be understood from the

inclusion-of-observations point of view: every observation either fully enters the objective

function or does not enter it at all). Nevertheless, it should not pose a considerable restric-

tion on the explanatory variables: for example in the i.i.d. case, it follows from Proposition

2.1 below that equation (5) holds even for some distribution functions with polynomial

tails, namely for those that have finite second moments. Additionally, one can notice that

random variables with a finite support are not restrained by this assumption in any way.
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Proposition 2.1 Let x1, x2, . . . be a sequence of independent identically distributed ran-

dom variables with a distribution function F (z). Let b(z) be a lower bound for F (z) in a

neighborhood U1 of +∞. If b(z) can be chosen as 1− 1
P4(z)

, where P4(z) is a polynomial of

the fourth order, then it holds that n−
1
4 maxi=1,...,n xi = Op(1) as n → +∞. Analogously, let

c(z) be an upper bound for F (z) in a neighborhood U2 of −∞. If c(z) can be chosen as 1
P4(z)

,

where P4(z) is a polynomial of the fourth order, then it holds that n−
1
4 mini=1,...,n xi = Op(1)

as n → +∞.

Proof: See Appendix A. ¤
Finally, we introduce two standard identification conditions.

Assumptions I

I1 B is a compact space.

I2 For any ε > 0 and U(β0, ε) such that B\U(β0, ε) is compact, there exists α(ε) > 0 such

that it holds

min
β∈B\U(β0,ε)

E
[
r2
i (β) · I(

r2
i (β) ≤ G−1

β (λ)
)]− E

[
r2
i (β

0) · I
(
r2
i (β

0) ≤ G−1
β0 (λ)

)]
> α(ε).

To close this section, let us note that Assumptions D, H, and I are sufficient to prove the

asymptotic normality of LTS. If only consistency is needed, one can omit all assumptions

on differentiability of the regression function h(x, β) and the VC-class Assumption H3. To

prove the
√

n-rate of convergence, Assumptions H4 and H5 are superfluous.

2.2 Alternative definition

Before proving the main results of the paper, some basic properties of the LTS objective

function Sn(β) =
∑hn

i=1 r2
[i](β) and its alternative formulation, which is more suitable for

deriving asymptotic linearity, are introduced.

Lemma 2.2 Under Assumptions D2 and H1, Sn(β) is continuous on B, twice differen-

tiable at β̂
(LTS,hn)
n as long as β̂

(LTS,hn)
n ∈ U(β0, δ), and almost surely twice differentiable at

any fixed point β ∈ U(β0, δ). Furthermore,

Sn(β) =
n∑

i=1

r2
i (β) · I(

r2
i (β) ≤ r2

[hn](β)
)
, (6)

S
′
n(β)=

∂Sn(β)

∂β
= −2

n∑
i=1

ri(β)h
′
β(xi, β) · I(

r2
i (β) ≤ r2

[hn](β)
)

(7)

S
′′
n(β)=

∂2Sn(β)

∂β∂βT
= 2

n∑
i=1

{
h
′
β(xi, β)h

′
β(xi, β)T − ri(β)h

′′
ββ(xi, β)

}
I
(
r2
i (β) ≤ r2

[hn](β)
)
(8)
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almost surely at any β ∈ B and β ∈ U(β0, δ), respectively.

Proof: See Appendix A. ¤
In general, this definition is not equivalent to the one used in (2) unless all the residuals

are different from each other. However, Assumption D2 guarantees this with probability

one. Hence, we will use this notation and definition of Sn(β) in the rest of the paper.

3 Asymptotic linearity

Although the consistency of LTS can be proved directly using standard tools such as the

uniform law of large numbers (see Section 4), this is not the case of the asymptotic normality

of LTS. Hence, assuming
√

n-consistency of the LTS estimator, we have to analyze the

behavior of the normal equations ∂Sn(β)/∂β = 0 around β0 as a function of β − β0. More

specifically, we shall investigate the difference D1
n(t) = S

′
n(β0 − n−

1
2 t)− S

′
n(β0), that is,

D1
n(t) =

n∑
i=1

[{
yi − h

(
xi, β

0 − n−
1
2 t

)}
· h′β

(
xi, β

0 − n−
1
2 t

)
×

×I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
(9)

−{
yi − h

(
xi, β

0
)} · h′β

(
xi, β

0
) · I(

r2
i (β

0) ≤ r2
[hn](β

0)
)]

for t ∈ TM = {t ∈ Rp| ‖t‖ ≤ M}, where 0 < M < ∞ is an arbitrary, but fixed constant.

Intuitively, D1
n(t) describes the change in normal equations when some β = β0 − n−

1
2 t

(e.g., an estimate that converges at the
√

n-rate to β0) is used instead of the true value

β0. We show now that D1
n(t) behaves asymptotically as a linear function of n

1
2 t over the

whole set TM , which allows us later to explicitly express the first order approximation of

the difference between an estimate β̂
(LTS)
n and the true value β0.

Theorem 3.1 Let Assumptions D, H, and I hold. Given constants λ ∈ 〈
1
2
, 1

〉
and M > 0,

it holds that

n−
1
2 sup

t∈TM

∥∥∥D1
n(t) + n

1
2 Qht · Cλ

∥∥∥ = op(1)

as n → +∞, where

Cλ = λ−
√

G−1(λ) ·
{

f
(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
= λ− 2G−1(λ)g

(
G−1(λ)

)
.

Proof: See Appendix B. ¤
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4 Consistency and asymptotic normality

Let us now present the main asymptotic results concerning LTS: its consistency, rate of

convergence, and asymptotic normality. In all cases, we split the LTS objective function to

two parts:

Sn(β) =
n∑

i=1

r2
i (β) · I(

r2
i (β) ≤ r2

[hn](β)
)

=
n∑

i=1

r2
i (β) · [I(

r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]

(10)

+
n∑

i=1

r2
i (β) · I(

r2
i (β) ≤ G−1

β (λ)
)
. (11)

Whereas the first part (10) will be shown to be small because of the convergence of order

statistics to quantiles in mean, r2
[hn](β) → G−1

β (λ), the second part (11) will be dealt with

by standard asymptotic tools and shown to converge to

S(β) = E
{
r2
1(β) · I(

r2
1(β) ≤ G−1

β (λ)
)}

.

First, using the uniform law of large numbers, we prove the consistency of the LTS

estimator β̂
(LTS)
n minimizing Sn(β) on the parametric space B. It is worth noticing that

we do not have to limit the regression function h(x, β) to be from a VC class of functions.

Therefore, this consistency result is stronger than the one by Chen, Stromberg, and Zhou

(1997) both from the distributional and regression-function points of view.

Theorem 4.1 Let Assumptions D, H1, H5, and I hold. Then the least trimmed squares

estimator β̂
(LTS,hn)
n minimizing (6) is weakly consistent, that is, β̂

(LTS,hn)
n → β0 in probability

as n → +∞.

Proof: See Appendix C. ¤
Next, we will derive the rate of convergence of β̂

(LTS,hn)
n to β0, which should later allow

us to employ the asymptotic linearity of LTS. Although the auxiliary results necessary to

establish
√

n-consistency are non-trivial, the basic idea of the proof is simple. The second-

order differentiability of S(β) at β0 together with Assumption H5, Qh > 0, implies that

‖∂S(β)/∂β‖ ≥ C ‖β − β0‖ in a neighborhood U(β0, ρ) for some C > 0 and ρ > 0. Since

the consistency of LTS guarantees that β̂
(LTS,hn)
n ∈ U(β0, ρ) with probability approaching

1 as n → +∞, we just have to prove that
∥∥∥∂S(β̂

(LTS,hn)
n )/∂β

∥∥∥ = Op

(
n−

1
2

)
. This can be

done again by using decomposition (10)–(11).
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Theorem 4.2 Let Assumptions D, H, and I hold. Then β̂
(LTS,hn)
n is

√
n-consistent, that

is, √
n

(
β̂(LTS,hn)

n − β0
)

= Op(1)

as n → +∞.

Proof: See Appendix C. ¤
Finally, the asymptotic distribution of LTS can be derived by combining the

√
n-

consistency of the estimator, Theorem 4.2, and its asymptotic linearity, Theorem 3.1. We

discuss its main consequences in Section 4.1.

Theorem 4.3 Let Assumptions D, H, and I are fulfilled and Cλ = λ−2G−1(λ)g (G−1(λ)) 6=
0. Then

√
n

(
β̂(LTS,hn)

n − β0
)

= n−
1
2 Q−1

h C−1
λ ·

n∑
i=1

{
yi − h

(
xi, β

0
)}·h′β

(
xi, β

0
)·I(

ε2
i ≤ G−1(λ)

)
+op(1)

and β̂
(LTS,hn)
n is asymptotically normal

√
n

(
β̂(LTS,hn)

n − β0
)

F→ N(0, Vλ),

where Vλ = C−2
λ · Q−1

h var
[
εi · h′β(xi, β

0) · I(ε2
i ≤ G−1(λ))

]
Q−1

h = C−2
λ σ2

λ · Q−1
h , where σ2

λ =

E [ε2
i · I(ε2

i ≤ G−1(λ))].

Proof: See Appendix C. ¤
Let us note that the symmetry of the distribution function F implies that

√
G−1(λ) =

F−1((1 + λ)/2), and consequently, we can write

Cλ = λ− 2F−1

(
1 + λ

2

)
f

(
F−1

(
1 + λ

2

))
.

Therefore in the case of a location model, the asymptotic variance V derived in Theorem

4.3 corresponds to the results of Tableman (1994) and Hawkins and Olive (1999). The later

study also examines the convergence of the finite-sample LTS variance to the asymptotic

variance V0.5 and documents that the speed of convergence depend on the residual distri-

bution F to a great extent. For example, whereas the asymptotic variance V0.5 provides

us with a good variance approximation for n ≥ 30 in the case of the double exponential

distribution, one needs several hundreds of observation to claim that V0.5 approximates well

finite-sample variance in the case of the standard normal distribution.
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Figure 1: The dependence of Cλ on λ ∈ (0.5, 1) for the Gaussian (left panel) and double
exponential (right panel) distributions.

4.1 Implications

The asymptotic normality and variance derived in Theorem 4.3 have several interesting

implications that concern the constant Cλ and the variance Vλ as a function of the trimming

proportion λ.

Although one can construct a distribution such that Cλ = 0 at some specific λ > 1/2,

this is not the case of usual unimodal distributions (e.g., the normal, Student, exponential,

uniform distributions, see Figure 1). Nevertheless, one can imagine, for example, a mixture

of two distributions like F = 0.80N(0, 1) + 0.10N(c, 1) + 0.10N(−c, 1), c > 0; the “smaller”

parts of the mixture, N(c, 1) and N(−c, 1), can for a large c represent a contamination.

In this case, Cλ could be equal or very close to zero for a sufficiently large c and λ ≈ 0.80

and the LTS variance Vλ would extremely increase. This indicates and confirms a common

wisdom that even if one has an idea about the maximal contamination α in data, the

trimming constant λ should not be set to a value just below 1−α (to keep as much as data

points within the objective function), but rather to a significantly smaller value.

Therefore, the choice of the trimming constant λ is very important because it influences

both the robustness and variance of LTS. Theorem 4.3 can be used to determine whether

there is a trade-off between the high breakdown point (i.e., λ close to 0.5) and the variance

of LTS (usually, larger λ reduces variance) and how pronounced it is. To demonstrate, let

us compare the behavior of σλ/Cλ (the λ-dependent part of asymptotic variance Vλ) under

two specific distributions: the Gaussian and double exponential distributions (Figure 2). In

the case of the normal distribution, the trade-off is very significant since using the maximal
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Figure 2: The dependence of σλ/Cλ on λ ∈ (0.5, 1) for the Gaussian (left panel) and double
exponential (right panel) distributions relative to the least squares, λ = 1.

trimming, λ = 0.5, increases the LTS variance more than 10 times compared to the least

squares (λ = 1). Moreover, even a relatively minor increase to λ = 0.6 reduces Vλ by

42%. Thus, it may be preferable to keep λ above its most robust choice unless there is a

strong reason to set λ = 0.5. On the other hand, in the case of the double exponential

distribution, the trade-off between the robustness and variance of LTS is almost negligible.

Even the maximal trimming at λ = 0.5 results only in a 19% increase in variance relative

to the least squares.

Although the results mentioned here are just distribution-specific examples, one can

often have an approximate idea about the error distribution in applications; for example,

from previous evidence, distribution tests, residual analysis and so on. The demonstrated

analysis of the trade-off between the breakdown point and variance of LTS can then provide

an additional guidance in selecting λ.

5 Conclusion

We consider the least trimmed squares estimator and study its behavior in a nonlinear

regression model under mild β-mixing conditions on the explanatory variables. First, we

prove its consistency under weaker conditions than Chen, Stromberg, and Zhou (1997).

Second, the main result concerns the asymptotic distribution of LTS in regression, which

is derived under under conditions allowing for time series applications. Finally, the asymp-

totic variance of LTS is analyzed with respect to the trade-off between the robustness and

variance of LTS. Although the results are distribution-specific, they point out that while
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the trade-off is very significant under the normal model, it can be close to non-existent

under other distributional laws.

Appendix

Here we present the proofs of important lemmas on the order statistics of squared residuals

and the LTS objective function (Appendix A), on the asymptotic linearity of the LTS

normal equations (Appendix B), and finally, on the consistency and asymptotic normality

of LTS (Appendix C). Note that the alternative definition (6) of LTS is employed in all

proofs, and additionally, notation Snn(β) = Sn(β)/n is used.

We introduce now the notation used in proofs, which extends the notation used in

the body of the paper and introduced in Section 2. The dependent variable is denoted

yi : Ωy → R, the vector of explanatory variables is xi : Ωx → Rk, whereby xij refers to the

value of the jth variable (1 ≤ j ≤ k), and εi : Ωe → R represents the error term; symbols

Ωy, Ωx, and Ωε refer to the probability spaces that yi, xi, and εi, respectively, are defined

on (thus, Ω = Ωx × Ωε is the probability space of the random vector (xi, εi)). The true

underlying value of the vector β in model (1) will be referred to by β0.

Further, the order statistics r2
[i](β) used to define the LTS estimator β̂

(LTS,hn)
n in defi-

nition (2) stands for the ith order statistics of squared residuals r2
i (β) = {yi − h(xi, β)}2.

In other words, it holds that 0 ≤ r2
[1](β, ω) ≤ · · · ≤ r2

[n](β, ω) for any β ∈ B and ω ∈ Ω.3

Given an ω ∈ Ω, we understand by symbol r[i](β, ω) the value of residual rk(β, ω) such

that r2
k(β, ω) = r2

[i](β, ω); hence,
∣∣r[i](β)

∣∣ =
√

r2
[i](β). If it is necessary to refer to the order

statistics of sample r1(β), . . ., rn(β), symbol r(i)(β) is used.

To complete notation, I discuss some purely mathematical notation. As observations

and parameters considered here always belong to an Euclidean space Rl, we shall need to

define a neighborhood of a point x ∈ Rl: an open neighborhood (open ball) U(x, δ) ={
z ∈ Rl

∣∣ ‖z − x‖ < δ
}

and analogously a closed neighborhood (closed ball) Ū(x, δ) = {z ∈
Rl| ‖z − x‖ ≤ δ}. Moreover, let us denote a convex span of x1, . . ., xm ∈ Rl by [x1, . . ., xm]κ .

Finally, several symbols from linear algebra are introduced: 1n represents n-dimensional

vector of ones, In is the identity matrix of dimension n, and b1, . . ., bn are standard basis

vectors of Rn, that is, bk = (0, . . . , 0, 1, 0, . . . , 0).

3Since yi = h(xi, β) + εi and ri = yi − h(xi, β) = h
(
xi, β

0
) − h(xi, β) + εi, regression residuals can be

written as a function of β and ω ∈ Ω = Ωx × Ωε.
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A Lemmas on order statistics and LTS objective func-

tion

Proof of Proposition 2.1: We prove the proposition just for the case of the lower bound,

b(z), the other case can be derived similarly. The cumulative distribution function of

xmax = maxi=1,...,n xi is Fn(z) = F n(z). We want to show that for any ε > 0 there is

K > 0 such that P (xmax > K 4
√

n) = 1−Fn(K 4
√

n) < ε. This is equivalent to the assertion

that Fn(K 4
√

n) → 1 as K → +∞ uniformly for n > n0 and some n0. Because b(z) < F (z),

it also holds bn(z) < F n(z) = Fn(z), and thus, it is enough to verify that bn(K 4
√

n) → 1

as K → +∞ uniformly for n > n0. In general, P4(z) = a1z
4 + a2z

3 + a3z
2 + a4z + a5 and

its leading coefficient a1 has to be positive—otherwise, b(z) > 1 for z large enough and it

could not be a lower bound to a distribution function, which is at most equal to one. So,

let us assume without loss of generality that P4(z) = z4 and b(z) = 1− 1
z4 . Hence,

bn
(
K 4
√

n
)

=

(
1− 1

Kn

)n

=

[(
1− 1

Kn

)Kn
] 1

K

→
(

1

e

) 1
K

=
K

√
1

e
,

that is, bn (K 4
√

n) converges monotonically to a positive number smaller than one for a

fixed K > 0. Moreover, this number 1
K√e

as well as bn (K 4
√

n) increase with K. Therefore,

we can find n0 > 0 such that bn (K 4
√

n) > K

√
1
3

for all n > n0 and K > 1. Since K

√
1
3
→ 1

for K → +∞, also bn(K 4
√

n) → 1 as K → +∞ uniformly for n > n0. This closes the proof.

¤

Proof of Lemma 2.2: For a given sample size n, let us consider a fixed realization

ω ∈ Ωn. The objective function Sn(β) at a particular point β ∈ B equals to one of functions

T1(β), . . . , Tl(β), where Tj(β) =
∑hn

i=1 r2
kji

(β), j = 1, . . . , l =
(

n
hn

)
, and {kj1, . . . , kjhn} ∈

{1, . . . , n}hn are sets of hn indices selecting observations from the sample. Each function

Tj(β) is uniformly continuous on B and twice differentiable in a neighborhood U(β0, δ).

There are two cases to discuss:

1. If one can find an index j and a neighborhood U(β, ε) such that Sn(β) = Tj(β) for

all β ∈ U(β, ε), Sn(β) is continuous at β. Additionally, if β ∈ U(β0, δ) there is a

neighborhood U(β, ε) ⊂ U(β0, δ) and Sn(β) = Tj(β) is even twice differentiable at β.

2. In all other cases, β lies on a boundary in the sense that there are some j1, . . . , jm

such that Sn(β) = Tj1(β) = . . . = Tjm(β) (that is, some residuals being present

in the LTS objective function Sn(β) are “switching” their place with those that are

not present in the objective function and are all equal at this particular β). Since

Sn(β) = Tj1(β) = . . . = Tjm(β) and all functions Tji
, i = 1, . . . , m are continuous at
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β, Sn(β) is continuous at β as well.

Furthermore, Sn(β) is also differentiable provided that T
′
j1

(β) = . . . = T
′
jm

(β) and β ∈
U(β0, δ). This condition is always satisfied at β̂

(LTS,hn)
n as T

′
j1

(β) = . . . = T
′
jm

(β) = 0;

otherwise, β̂
(LTS,hn)
n would not minimize Sn(β).

Now, consider a fixed β ∈ U(β, δ) (n is still fixed). Assumption D2 implies that r2
i (β) =

{εi + h(xi, β
0)− h(xi, β)}2

is continuously distributed. Therefore, the probability that any

two residuals at a given β are equal is zero:

P
(
Ω0 =

{
ω ∈ Ωn

∣∣∃i, j ∈ {1, . . ., n}, i 6= j, such that r2
i (β

0, ω) = r2
j (β

0, ω)
})

= 0.

Moreover, there is a δ′ > 0 such that ri(β) is continuous on Ū(β, δ′), and therefore, it is

also uniformly continuous on Ū(β, δ′), i = 1, . . . , n. Therefore, for any given ω /∈ Ω0 and

κ(ω) = 1
2
mini,j=1,...,n;i6=j

∣∣r2
i (β)− r2

j (β)
∣∣ > 0 we can find an ε(ω) > 0 such that it holds

that supβ′∈U(β,δ′) |r2
i (β

′)− r2
i (β)| < κ(ω) for all i = 1, . . ., n. Consequently, the ordering of

residuals r2
1(β

′), . . . , r2
n(β′) is constant for all β′ ∈ U(β, δ′) and there exist j such Sn(β) =

Tj(β) on U(β, δ′) almost surely as stated in point 1 (P (Ω\Ω0) = 1). Thus, Sn(β) is twice

differentiable at β almost surely .

Finally, since we just derived that there are almost surely no i and j such that r2
i (β) =

r2
j (β) at any β ∈ B and any fixed n ∈ N and that Sn(β) is almost surely twice differentiable

at any β ∈ U(β0, δ), we can write

Sn(β) =
n∑

i=1

r2
i (β) · I(

r2
i (β) ≤ r2

[hn](β)
)

S
′
n(β) =

∂Sn(β)

∂β
= −2

n∑
i=1

ri(β)h
′
β(xi, β) · I(

r2
i (β) ≤ r2

[hn](β)
)

S
′′
n(β) =

∂2Sn(β)

∂β∂βT
= 2

n∑
i=1

{
h
′
β(xi, β)h

′
β(xi, β)T − ri(β)h

′′
ββ(xi, β)

}
· I(

r2
i (β) ≤ r2

[hn](β)
)

almost surely. ¤
The next lemma just verifies that the uniform law of large numbers is applicable for

LTS-like functions.

Lemma A.1 Let Assumptions D, H1, and I1 hold and assume that t(x, ε; β) is a real-

valued function continuous in β uniformly in x and ε over any compact subset of the

support of (x, ε). Moreover, assume that E supβ∈B |t(x, ε; β)|1+δ < ∞ for some δ > 0. Then

sup
β∈B,K∈R

∣∣∣∣∣
1

n

n∑
i=1

[
t(xi, εi; β) · I(

r2
i (β) ≤ G−1

β (λ) + K
)]

− E
[
t(xi, εi; β) · I(

r2
i (β) ≤ G−1

β (λ) + K
)]∣∣ → 0
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as n → +∞ in probability.

Proof: This result is an application of the generic uniform law of large numbers and we use

here its variant due to Andrews (1992, Theorem 4).4 Most of the conditions of the uniform

law of large numbers are satisfied trivially or by assumption: (i) the parameter space B is

compact by Assumption I1; (ii) differences

t(xi, εi; β) · I(
r2
i (β) ≤ G−1

β (λ) + K
)− E

[
t(xi, εi; β) · I(

r2
i (β) ≤ G−1

β (λ) + K
)]

are identically distributed (Assumption D1 and D2) and uniformly integrable because

E supβ∈B |t(x, ε; β)|1+δ is finite for some δ > 0 (see Davidson, 1994, Theorem 12.10); and

(iii) finally, the pointwise convergence of

1

n

n∑
i=1

[
t(xi, εi; β) · I(

r2
i (β) ≤ G−1

β (λ) + K
)]− E

[
t(xi, εi; β) · I(

r2
i (β) ≤ G−1

β (λ) + K
)] P→ 0

at any β ∈ B and K ∈ R follows from the weak law of large numbers for mixingales due

to Andrews (1988) (any mixing sequence forms a mixingale, and moreover, the differences

d(xi, εi; β, K) are L1+δ-bounded, see Andrews (1988) for more details).

Therefore, the only assumption of Andrews (1992, Theorem 4) which remains to be

verified is assumption TSE:

lim
ρ→0

P

(
sup

β∈B,K∈R
sup

β′∈U(β,ρ),K′∈U(K,ρ)

|tI(xi, εi; β
′, K ′)− tI(xi, εi; β, K)| > κ

)
= 0 (12)

for any κ > 0, where tI(xi, εi; β, K) = t(xi, εi, β) · I(
r2
i (β) ≤ G−1

β (λ) + K
)
. To simplify

the notation, we write only suprema only with the respective variables β,K, β′, K ′ without

the corresponding sets B,R, U(β, ρ), U(K, ρ), respectively, which are fixed throughout the

proof. First, note that it holds for all β ∈ B and K ∈ R

sup
β,K

sup
β′,K′

|tI(x1, ε1; β
′, K ′)− tI(x1, ε1; β,K)|

≤ sup
β,K

sup
β′,K′

∣∣t(x1, ε1; β
′) · [I(

r2
1(β

′) ≤ G−1
β′ (λ) + K ′)− I

(
r2
1(β) ≤ G−1

β (λ) + K
)]∣∣ (13)

+ sup
β,K

sup
β′,K′

∣∣[t(x1, ε1; β
′)− t(x1, ε1; β)] · I(

r2
1(β) ≤ G−1

β (λ) + K
)∣∣ (14)

Hence, we can verify assertion (12) by proving it for expressions (13) and (14). For a given

ε > 0, we find ρ0 > 0 such that the probabilities of these two expression exceeding given

κ > 0 are smaller than ε for all ρ < ρ0.

4For some function we apply this lemma to, namely to those forming a VC class, the result directly
follows from Yu (1994).
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1. Let us start with (13). First, observe that

sup
β,K

sup
β′,K′

∣∣t(x1, ε1; β
′) · [I(

r2
1(β

′) ≤ G−1
β′ (λ) + K ′)− I

(
r2
1(β) ≤ G−1

β (λ) + K
)]∣∣

≤ sup
β∈B

|t(x1, ε1; β)| · sup
β,K

sup
β′,K′

∣∣I(
r2
1(β

′) ≤ G−1
β′ (λ) + K ′)− I

(
r2
1(β) ≤ G−1

β (λ) + K
)∣∣ ,(15)

where supβ∈B |t(x1, ε1; β)| is a function independent of β possessing a finite expectation.

Because the difference
∣∣I(

r2
1(β

′) ≤ G−1
β′ (λ) + K ′)− I

(
r2
1(β) ≤ G−1

β (λ) + K
)∣∣ is always lower

or equal to one, (13) has an integrable majorant independent of β. Therefore, if we show

that the probability

lim
ρ→0

P

(
sup
β,K

sup
β′,K′

∣∣I(
r2
1(β

′) ≤ G−1
β′ (λ) + K ′)− I

(
r2
1(β) ≤ G−1

β (λ) + K
)∣∣ = 1

)
= 0, (16)

it implies, that (15) converges in probability to zero for ρ → 0 and n →∞ as well.

Second, let us derive an intermediate result regarding the convergence of distribution func-

tion Gβ′ to Gβ. Assumption H1 states that r2
1(β

′) → r2
1(β) for β′ → β uniformly over

any compact subset of the support of x, that is, r2
1(β

′) → r2
1(β) for β′ → β in probability

uniformly on B. Recalling that Gβ(x) is the cumulative distribution function of r2
1(β), it

follows that Gβ′(x) → Gβ(x) for all x ∈ R (convergence in distribution) uniformly on B

because Gβ(x) is an absolutely continuous distribution function. The absolute continuity

of Gβ also implies that G−1
β′ (λ) to G−1

β (λ) uniformly on B.

Third, given the uniform convergence result of the previous paragraph, we can find some

ρ1 > 0 such that
∣∣G−1

β′ (λ) + K ′ −G−1
β (λ)−K

∣∣ < ε
8Mgg

for any β ∈ B, β′ ∈ U(β, ρ1), and

K ′ ∈ U(K, ρ1), where Mgg is the uniform upper bound for the probability density functions

of r2
1(β) (Assumption D3). Further, we can find a compact subset Ω1 ⊂ Ω, P (Ω1) > 1− ε

2
,

and corresponding ρ2 > 0 such that supβ,β′ |r2
1(β

′, ω)− r2
1(β, ω)| < ε

8Mgg
for all ω ∈ Ω0 and

ρ < ρ2 (Assumption H1). Hence, setting ρ0 = min {ρ1, ρ2}, it follows that

P

(
sup
β,K

sup
β′,K′

∣∣I(
r2
1(β

′) ≤ G−1
β′ (λ) + K ′)− I

(
r2
1(β) ≤ G−1

β (λ) + K
)∣∣ = 1

)

≤ ε

2
+ P

(
∃β ∈ B : r2

1(β) ∈
(

G−1
β (λ)− ε

4Mgg

, G−1
β (λ) +

ε

4Mgg

))

≤ ε

2
+

2ε

4Mgg

·Mgg = ε

for any ρ < ρ0 because Mgg is the uniform upper bound for the probability density functions

of r2
1(β) over all β ∈ B. Thus, we have proved (16), and consequently, we have verified

that the expectation of (13) converges to zero for ρ → 0 in probability.
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2. We should deal now with (14) and prove that for any given κ > 0

lim
ρ→0

P

(
sup
β,K

sup
β′,K′

∣∣[t(x1, ε1; β
′)− t(x1, ε1; β)] · I(

r2
1(β) ≤ G−1

β (λ) + K
)∣∣ > κ

)
= 0. (17)

First, note that the difference

|t(x1, ε1; β
′)− t(x1, ε1; β)| ≤ |t(x1, ε1; β

′)|+ |t(x1, ε1; β)| ≤ 2 sup
β∈B

|t(x1, ε1; β)|

can be bounded from above by a function that is independent of β and has a finite expec-

tation, as follows from the assumptions of this lemma. Let 2 E supβ∈B |t(x1, ε1; β)| = UE.

Second, for an arbitrary fixed ε > 0, we can find a compact subset Aε of the support of

(x1, ε1) (and its complement Aε) such that P ((x1, ε1) ∈ Aε) > 1− κε
2UE

(both x1 and ε1 are

random variables with finite second moments) and 2
∫
Aε

supβ∈B |t(x1, ε1; β)| < κε
2
. Given

this set Aε and β ∈ B, we can employ continuity of t(x1, ε1; β) in β (uniform over all

(x1, ε1) ∈ Aε) and find a ρ0 > 0 such that

sup
(x1,ε1)∈Aε

sup
β,β′

|t(x1, ε1; β
′)− t(x1, ε1; β)| < κε

2
.

Hence,

E

{
sup
β,β′

|t(x1, ε1; β
′)− t(x1, ε1; β)|

}
≤

∫

Aε

2 sup
β∈B

|t(x1, ε1; β)| dFx(x1)dFε(ε1)

+

∫

Aε

κε

2
dFx(x1)dFε(ε1)

≤ κε

2
+

κε

2
= κε,

and consequently,

P

(
sup
β,K

sup
β′,K′

∣∣[t(x1, ε1; β
′)− t(x1, ε1; β)] · I(

r2
1(β) ≤ G−1

β (λ) + K
)∣∣ > κ

)

≤ 1

κ
E

[
sup
β,K

sup
β′,K′

∣∣[t(x1, ε1; β
′)− t(x1, ε1; β)] · I(

r2
1(β) ≤ G−1

β (λ) + K
)∣∣

]

≤ κε/κ = ε

for any ρ < ρ0. Hence, we have verified that (17).

Thus, the assumption TSE of Andrews (1992), is valid as well and the claim of this

lemma follows from the uniform weak law of large numbers. ¤

The following assertions present some fundamental properties of order statistics of re-

gression residuals.
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Lemma A.2 Let λ ∈ 〈
1
2
, 1

〉
and put hn = [λn] for n ∈ N. Under Assumptions D, H1, and

I1, it holds that

sup
β∈B

∣∣r2
[hn] (β)−G−1

β (λ)
∣∣ → 0 (18)

as n → +∞ in probability, and consequently,

EGn = E sup
β∈B

∣∣r2
[hn] (β)−G−1

β (λ)
∣∣ → 0 (19)

as n → +∞.

Proof: Let us recall that r2
i (β) ≡ [εi + h(xi, β

0)− h(xi, β)]
2 ∼ Gβ. Further, let us take

an arbitrary K1 > 0, set Kε = K1 · mgg (see Assumption D3 for definition of mgg), and

consider some ε ∈ (0, 1). For any choice of ε, we find n0 ∈ N such that for all n > n0

P

(
sup
β∈B

∣∣r2
[hn] (β)−G−1

β (λ)
∣∣ > K1

)
< ε, (20)

which proves the lemma. Without loss of generality, we can assume that K1 < δg, where

δg comes from Assumption D3.

First, denote

v1i(β, K1) = I
(
r2
i (β) ≤ G−1

β (λ) + K1

)
.

As it holds for all β ∈ B and i = 1, . . ., n

E v1i(β,K1) = P (v1i(β, K1) = 1) = P
(
r2
i (β) ≤ G−1

β (λ) + K1

) ≥ λ,

it follows that E v1i(β,K1) ∈ (λ, 1〉. Further, Lemma A.1 for choice t(x, e, β) = 1 guarantees

that we can use the weak law of large numbers for v1i(β,K1) uniformly on B×R+. Hence,

sup
β∈B,K1∈R+

∣∣∣∣∣
1

n

n∑
i=1

{ν1i(β, K1)− E ν1i(β,K1)}
∣∣∣∣∣ → 0

in probability. Consequently, we can find some n0 such that it holds for all n > n0

P

(
sup

β∈B,K1∈R+

∣∣∣∣∣
1

n

n∑
i=1

{v1i(β,K1)− E v1i(β, K1)}
∣∣∣∣∣ ≤

1

2
Kε

)
> 1− ε

2
.

Thus, it holds uniformly in β and K1 with probability greater or equal to 1− ε/2

− 1

2
Kε +

n∑
i=1

E v1i(β,K1) ≤
n∑

i=1

v1i(β, K1). (21)

Second, because K1 < δg, Assumption D3 implies E v1i(β,K1) > λ + K1 ·mgg = λ + Kε
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for all β ∈ B and K1 < δg. This result together with equation (21) implies that

nλ + (n− 1

2
)Kε = −1

2
Kε + n(λ + Kε) < −1

2
Kε +

n∑
i=1

E v1i(β, K1) ≤
n∑

i=1

v1i(β, K1).

But this means for all β ∈ B that at least nλ ≥ hn of residuals r2
i (β) are smaller than

G−1
β (λ) + K1. In other words, r2

[hn](β) ≤ G−1
β (λ) + K1 with probability at least 1− ε/2.

The corresponding lower inequality, holding also with probability at least 1− ε/2, can

be found by repeating these steps for

v2i(β, K1) = I
(
r2
i (β) ≥ G−1

β (λ)−K1

)
.

Finally, combining these two inequalities results in (18). Since r2
i (β) is uniformly integrable

due to Assumption H5 and Davidson (1994, Theorem 12.10), r2
[hn](β) is uniformly integrable

as well and the second claim follows directly from the (18) by Davidson (1994, Theorem

18.14), which shows that the convergence in probability of uniformly integrable random

variables implies the convergence in Lp-norm. ¤

Lemma A.3 Let λ ∈ 〈
1
2
, 1

〉
and put hn = [λn] for n ∈ N. Under Assumptions D, H, and

I1, there is some ε > 0 such that

√
n sup

β∈U(β0,ε)

∣∣r2
[hn] (β)−G−1

β (λ)
∣∣ = Op(1)

and

ELn = E

{
√

n sup
β∈U(β0,ε)

∣∣r2
[hn] (β)−G−1

β (λ)
∣∣
}

= O(1)

for n → +∞.

Proof: The proof has a rather similar structure to the proof of Lemma A.2. First, let us

take a fixed ε ∈ (0, 1), an arbitrary K1 > 0, and set Kε = K1 ·mg. Further, denote

v1i(β, K1) = I
(
r2
i (β) ≤ G−1

β (λ) + n−
1
2 K1

)
.

As it holds for all β ∈ B and i = 1, . . ., n

E v1i(β, K1) = P (v1i(β,K1) = 1) = P
(
r2
i (β) ≤ G−1

β (λ) + n−
1
2 K1

)
≥ λ,

it follows that E v1i(β,K1) ∈ (λ, 1〉.
Now, Assumption H3 and van der Vaart and Wellner (1996, Lemmas 2.6.15 and 2.6.18)

imply that {v1i(β, K1); β ∈ U(β0, δ), K1 ∈ R} form a VC class, which is uniformly bounded
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by 1. Because of Assumption D1 on the mixing coefficients, we can apply the uniform

central limit theorem of Arcones and Yu (1994) to see that

{
1√
n

n∑
i=1

{ν1i(β, K1)− E ν1i(β,K1)} : β ∈ U(β0, δ), K1 > 0

}

converges in distribution to a Gaussian processes with uniformly bounded and uniformly

continuous pathes. Consequently, we can find some ε > 0 and a constant U > 0

sup
n∈N

E sup
β∈U(β0,ε),K1>0

∣∣∣∣∣
1√
n

n∑
i=1

(v1i(β,K1)− E v1i(β, K1))

∣∣∣∣∣

2

< U

(functions v1i(β, K1) are bounded). By the Chebyshev inequality P (|X| > K) ≤ E |X|p/Kp,

it finally follows that

P

(
sup

β∈U(β0,ε),K1>0

∣∣∣∣∣
1√
n

n∑
i=1

(v1i(β, K1)− E v1i(β, K1))

∣∣∣∣∣ >
1

2
Kε

)
<

4U

K2
ε

.

Thus, it holds uniformly in β ∈ U(β0, ε) with probability greater or equal to 1− 4U/K2
ε

− 1

2

√
n ·Kε +

n∑
i=1

E v1i(β,K1) ≤
n∑

i=1

v1i(β, K1). (22)

Further, we can find n0 such that n−
1
2 K1 < δg for all n > n0 (δg comes from Assumption

D3), and thus, E v1i(β, K1) > λ+n−
1
2 K1 ·mg = λ+n−

1
2 Kε for all β ∈ U(β0, ε) and n > n0.

This result together with equation (22) imply that

nλ +
1

2

√
nKε = −1

2

√
nKε + nλ +

√
nKε < −1

2

√
nKε +

n∑
i=1

E v1i(β) ≤
n∑

i=1

v1i(β).

But this means for all β ∈ U(β0, ε) that at least nλ ≥ hn of residuals r2
i (β) are smaller than

G−1
β (λ) + n−

1
2 Kε. In other words, r2

[hn](β) ≤ G−1
β (λ) + n−

1
2 Kε on U(β0, ε) with probability

at least 1 − 4U/K2
ε . The corresponding lower inequality can be found by repeating these

steps for

v2i(β,K1) = I
(
r2
i (β) ≥ G−1

β (λ)− n−
1
2 K1

)
.

These inequalities can be rewritten as Zn = supβ∈U(β0,ε) n−
1
2

∣∣∣r2
[hn](β)−G−1

β (λ)
∣∣∣ ≤ Kε,

which holds with probability 1 − 4U/K2
ε . Thus, for any ε > 0 we find Kε = 1 +

√
4U/ε

such that P (Zn(β) ≤ Kε) > 1 − ε, so Zn = Op(1). Furthermore, denoting the cumulative
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distribution function of Zn by Fz,n, the expectation

E Zn =

∫ ∞

0

[1− Fz,n(x)]dx ≤ 1 +

∫ ∞

1

4U

x2
dx = 1 + 4U

is finite. ¤

Lemma A.4 Let Assumptions D, H, and I1 be satisfied. Moreover, let λ ∈ (
1
2
, 1

〉
, τ ∈(

1
2
, 1

)
, and put hn = [λn] for n ∈ N. Then

∣∣∣r2
[hn]

(
β0 − n−

1
2 t

)
− r2

[hn] (β
0)

∣∣∣ = Op(n
−τ )

uniformly in t ∈ TM = {t ∈ Rk| ‖t‖ ≤ M} as n → +∞.

Proof: As the first and main step, we show that for any ε ∈ (0, 1) there exist Kε and nε

such that uniformly in t ∈ TM for all n > nε

P
(∣∣∣r[hn]

(
β0 − n−

1
2 t

)
− r[hn]

(
β0

)∣∣∣ < n−τ ·Kε

)
> 1− ε (23)

(please, remember the convention introduced in the introduction of Appendix that r[h](β) =

sgn r[h](β) ·
√

r2
[h](β), whereas the order statistics of residuals ri(β) is referred by r(h)(β)).

Additionally, note that assuming n
− 1

2
ε Kε < δ (δ comes from Assumptions H), the Taylor

expansion leads to

ri(β
0 − n−

1
2 t) = ri(β

0) + h
′
β(xi, ξ)

T · n− 1
2 t, (24)

where ξ ∈
[
β0, β0 − n−

1
2 t

]
κ
.

Now, all assertions in the following part of the proof are meant conditionally on values

of xi. Let us suppose that h
′
β(xi, ξ)

T t ≥ 0 for a given i (the other case can be analyzed

analogously). Then ri(β
0) + h

′
β(xi, ξ)

T n−
1
2 t ≥ ri(β

0) which means that all such residuals

ri(β
0−n−

1
2 t) are larger then residuals ri(β

0) ≡ εi. In other words, some residuals evaluated

at point β0 − n−
1
2 t compared to β0 are shifted out of interval

〈−r[hn] (β
0) , r[hn] (β

0)
〉

on

its right hand side and some are shifted into it on its left hand side. The assertion (23)

can be proved in the following way: considering a bit larger interval
〈−r[hn] (β

0)− n−τK1,

r[hn] (β
0) + n−τK1

〉
, it is to be shown that such an interval contains at least hn residuals

ri(β
0−n−

1
2 t) for some sufficiently large constant K1. To do so, we shall try to find a number

m1 of indices i = 1, . . ., n for which (with a probability close to 1)

r2
i (β

0) ≤ r2
[hn](β

0) and ri(β
0 − n−

1
2 t) ≥ r[hn]

(
β0

)
+ n−τK1. (25)

Such indices represent the observations that decrease the number of residuals inside the

interval
〈−r[hn] (β

0)− n−τK1, r[hn] (β
0) + n−τK1

〉
. Similarly, we try to find a number m2

of indices i = 1, . . ., n for which (with a probability close to 1)

ri(β
0) ≤ −r[hn](β

0) and ri(β
0 − n−

1
2 t) ≥ −r[hn]

(
β0

)− n−τK1. (26)
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These indices correspond to the observations that were not in the interval
〈−r[hn] (β

0) ,

r[hn] (β
0)

〉
before but they move inside the interval

〈−r[hn] (β
0)− n−τK1, r[hn] (β

0) + n−τK1

〉
,

and thus, increase the number of residuals contained in it. Since there are just hn in-

dices among all i = 1, . . ., n satisfying r2
i (β

0) ≤ r2
[hn](β

0), the number of indices such that

r2
i (β

0− n−
1
2 t) ≤ r2

[hn] (β
0) + n−τK1 equals hn−m1 + m2. Therefore, all we have to do is to

verify that the difference m2 −m1 is positive with probability close to 1.

Using (24), case (25) is equivalent to

r[hn](β
0) + n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t ≤ ei ≤ r[hn](β

0).

Similarly, (26) is valid if and only if

−r[hn](β
0)− n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t ≤ ei ≤ −r[hn](β

0).

Thus, it seems to be helpful to study the probability of the events z± n−τK1− h
′
β(xi, ξ)

T ·
n−

1
2 t ≤ ei ≤ z for some z ∈ R. This probability can be expressed by means of the

distribution function F (x) (remember, everything till now is conditional on xi):

F (z)− F
(
z ± n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t

)
=

∫ z

z±n−τ K1−h
′
β (xi,ξ)

T ·n− 1
2 t

f(t)dt.

Expanding the density in the integral, f(t) = f(z) + f ′(ζt)t, we get

∫ z

z±n−τ K1−h
′
β(xi,ξ)

T ·n− 1
2 t

f(t)dt ≥ f(z)
[
±n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t

]
+

+Lf

[
±n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t

]2

∫ z

z±n−τ K1−h
′
β(xi,ξ)

T ·n− 1
2 t

f(t)dt ≤ f(z)
[
±n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t

]
+

+Uf

[
±n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t

]2

,

which results in

F (z)−F
(
z ± n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t

)
= f(z)

[
±n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t

]
+O(

n−1
)
.

(27)

Having these results in hand, the same idea as in the previous Lemmas A.2 and A.3

can be used. Let us consider for a fixed z ∈ R

w1i(z) = I
(
z + n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t ≤ ei ≤ z

)
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and

w2i(z) = I
(
−z − n−τK1 − h

′
β(xi, ξ)

T · n− 1
2 t ≤ ei ≤ −z

)
.

Apparently, m2 − m1 =
∑n

i=1 (w2i(z)− w1i(z)) for z = r[hn](β
0). Let us denote si(z) =

w2i(z) − w1i(z). Employing (27), we obtain E si(z) = n−τK1 · (f(z) + f(−z)) + O(n−1)

and hence also var si(z) = 2n−τK1 · (f(z) + f(−z)) +O(n−1). Note that both moments do

not depend on xi apart from term O(n−1). The Feller-Lindeberg conditions for the central

limit theorem can be easily verified, and thus, two constants Kε and nε such that for all

n ≥ nε

P

(∣∣∣∣
∑n

i=1(si(z)− E si(z))

Cn

∣∣∣∣ < Kε

)
> 1− ε

can be found, where C2
n = n1−τK1 · (f(z) + f(−z)) + O(1). Further, it follows that with

probability greater than 1− ε

n∑
i=1

si(z) ≥ −n
1
2
(1−τ)

√
K1 · (f(z) + f(−z))Kε + n1−τK1 · (f(z) + f(−z)) +O(1). (28)

As τ ∈ (
1
2
, 1

)
, the last expression increases in n above all limits for a given K1 because

f(z) is bounded from above and away from zero as well in a neighborhood of G−1(λ).

Thus, we can find nε such that for all n > nε the right hand side of (28) is positive,

and consequently, the number of the residuals r2
i

(
β0 − n−

1
2 t

)
that fall to the interval〈−r[hn] (β

0)− n−τK1, r[hn] (β
0) + n−τK1

〉
is at least hn with probability greater than 1− ε.

We can conclude that for some ∞ > K2 > 0

r[hn](β
0 − n−

1
2 t) ≤ r[hn](β

0) + n−τ ·K2.

This result was derived conditionally on xi, but the upper bound r[hn](β
0) + n−τ · K2 is

independent of xi realizations, which means that it holds not only conditionally on xi

but without conditioning as well. Analogously, the corresponding lower inequality can be

derived.

Finally, Lemma A.3 implies that both r[hn](β
0 − n−

1
2 t) and r[hn](β

0) are bounded in

probability. Thus, utilizing equality a2 − b2 = (a + b)(a − b), we obtain immediately the

assertion of this lemma. ¤

The following lemma and corollaries translate the results on the convergence of the

order statistics of residuals to the convergence of the indicators I
(
r2
i (β) ≤ r2

[hn](β)
)

to

I
(
r2
i (β) ≤ G−1

β (λ)
)

and their expectations.
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Lemma A.5 Under Assumptions D, H1, and I1, it holds for any i ≤ n

PG = P

(
sup
β∈B

∣∣I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)∣∣ 6= 0

)
= o(1).

Additionally, under Assumptions D, H, and I1, there exists ε > 0 such that

PL = P

(
sup

β∈U(β0,ε)

∣∣I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)∣∣ 6= 0

)
= O

(
n−

1
2

)

as n → +∞.

Proof: To facilitate easier understanding, let us define the difference between indicators

νin(β) = I
(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)
.

Without loss of generality, we discuss only the case vin(β) = −1, which corresponds to

r2
[hn](β) < r2

i (β) ≤ G−1
β (λ). The other case vin(β) = 1 can be derived analogously. Also

notice that P
(
supβ∈B |νin(β)|) = P (∃β ∈ B : |νin(β)| 6= 0) because |νin(β)| ∈ {0, 1}.

So, let us consider an event ω = (ω1, . . ., ωn) ∈ Ωn and assume without loss of generality

that i = n. Given ω′ = (ω1, . . ., ωn−1) ∈ Ωn−1 and
(
r2
1(β, ω1), . . ., r

2
n−1(β, ωn−1)

)

r2
[hn](β, ω) =





r2
[hn−1](β, ω′) if r2

n(β, ωn) < r2
[hn−1](β, ω′)

r2
n(β, ωn) if r2

[hn−1](β, ω′) ≤ r2
n(β, ωn) ≤ r2

[hn](β, ω′)

r2
[hn](β, ω′) if r2

[hn](β, ω′) < r2
n(β, ωn)

(29)

Denoting Ω1, Ω2, and Ω3 subsets of Ωn corresponding to the three (disjoint) cases in (29),

we can write

P ({ω ∈ Ωn|∃β ∈ B : νnn(β) = −1}) = P ({ω ∈ Ω1|∃β ∈ B : νnn(β) = −1})
+ P ({ω ∈ Ω2|∃β ∈ B : νnn(β) = −1})
+ P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1})

and analyze this sum one by one.

1. P1 = P ({ω ∈ Ω1|∃β ∈ B : νnn(β) = −1}) ≤
P

(
∃β ∈ B : r2

[hn](β, ω) < r2
1(β, ω1) < r2

[hn](β, ω)
)

= 0.

2. P2 = P ({ω ∈ Ω2|∃β ∈ B : νnn(β) = −1}) =

P
(
∃β ∈ B : r2

[hn−1](β, ω′) ≤ r2
n(β, ωn) = r2

[hn](β, ω) ≤ G−1
β (λ)

)
can be analyzed in ex-

actly the same way as P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1}), see point 3.
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3. P3 = P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1}) =

P
(
∃β ∈ B : r2

[hn](β, ω′) = r2
[hn](β, ω) < r2

n(β, ωn) ≤ G−1
β (λ)

)
. We can structure this

last term in the following way (Assumption D3):

P
(∃β ∈ B : r2

[hn](β, ω′) < r2
n(β, ωn) ≤ G−1

β (λ)
)

= (30)

=

∫

ω′∈Ωn−1

∫

ωn∈Ω

sup
β∈B

I
(
r2
[hn](β, ω′) < r2

n(β, ωn) ≤ G−1
β (λ)

)
dP (ω1)dP (ω′) (31)

=

∫

ω′∈Ωn−1

Mgg · sup
β∈B

∣∣r2
[hn](β, ω′)−G−1

β (λ)
∣∣ dP (ω′) (32)

= Mgg · E
{

sup
β∈B

∣∣r2
[hn](β, ω′)−G−1

β (λ)
∣∣
}

. (33)

The first claim of the lemma, PG = o(1), is then a direct consequence of Lemma A.2.

The second result, PL = O
(
n−

1
2

)
, can be derived analogously, if we consider only a

neighborhood U(β0, ε) instead of B, write last expectation as

n−
1
2 Mgg · E

{√
n sup

β∈B

∣∣r2
[hn](β, ω′)−G−1

β (λ)
∣∣
}

,

and employ Lemma A.3. ¤

Corollary A.6 Let Assumptions D, H1, and I1 hold and assume that t(x, ε; β) is a real-

valued function continuous in β uniformly in x and ε over any compact subset of the support

of (x, ε). Moreover, assume that E supβ∈B |t(x, ε; β)| < ∞. Then it holds that

E

{
sup
β∈B

∣∣t(xi, εi, β) · [I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]∣∣

}
= o(1).

Additionally, under Assumptions D, H, and I1, there exists ε > 0 such that

E

{
sup

β∈U(β0,ε)

∣∣t(xi, εi, β) · [I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]∣∣

}
= O

(
n−

1
2

)

as n → +∞.

Proof: This can verified along the same lines are Lemma A.5. Defining functions νin(β) and

sets Ω1, Ω2, and Ω3 exactly the same way as in Lemma A.5, we can express the expectation

of any random variable E X as
{∫

Ω1
+

∫
Ω2

+
∫
Ω3

}
xdF (x). By the same argument as in

Lemma A.5, we will treat only part concerning
∫
Ω3

and assume without loss of generality

that i = n. Analogously to (30)–(33), we can write

E

{
sup
β∈B

|t(xn, εn, β) · νin(β)|
}



28

≤
∫

Ω3

{
sup
β∈B

|t(xn, εn, β)| · sup
β∈B

|νin(β)|
}

dP (ω)

=

∫

ω′∈Ωn−1

∫

ωn∈Ω

sup
β∈B

|t(xn, εn, β)| · sup
β∈B

I
(
r2
[hn](β, ω′) < r2

n(β, ωn) ≤ G−1
β (λ)

)
dP (ωn)dP (ω′)

≤
∫

ωn∈Ω

sup
β∈B

|t(xn, εn, β)| ·
∫

ω′∈Ωn−1

sup
β∈B

I
(
r2
[hn](β, ω′) < r2

n(β, ωn) ≤ G−1
β (λ)

)
dP (ω′)dP (ωn)

≤ Mgg ·
∫

ωn∈Ω

sup
β∈B

|t(xn, εn, β)| ·
∫

ω′∈Ωn−1

sup
β∈B

∣∣r2
[hn](β, ω′)−G−1

β (λ)
∣∣ dP (ω′)dP (ωn).

Thus, we obtain from Lemma A.2

E

{
sup
β∈B

|t(xn, εn, β) · νin(β)|
}
≤ MggEGn ·

∫

ωn∈Ω

sup
β∈B

|t(xn, εn, β)| dP (ωn) = o(1).

Similarly, repeating the same steps only over some neighborhood U(β0, ε) and using Lemma

A.3 leads to

E

{
sup
β∈B

|t(xn, εn, β) · νin(β)|
}

≤ n−
1
2 Mgg ·

∫

ωn∈Ω

sup
β∈B

|t(xn, εn, β)| ·
∫

ω′∈Ωn−1

sup
β∈B

√
n

∣∣r2
[hn](β, ω′)−G−1

β (λ)
∣∣ dP (ω′)dP (ωn)

≤ n−
1
2 MggELn ·

∫

ωn∈Ω

sup
β∈B

|t(xn, εn, β)| dP (ωn) = O
(
n−

1
2

)
,

which closes the proof. ¤

Corollary A.7 Let Assumptions D, H1, and I1 hold and assume that t(x, ε; β) is a real-

valued function continuous in β uniformly in x and ε over any compact subset of the support

of (x, ε). Moreover, assume that E supβ∈B |t(x, ε; β)| < ∞. Then

sup
β∈B

∣∣∣∣∣
1

n

n∑
i=1

{
t(xi, εi; β) · [I(

r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]}

∣∣∣∣∣ = op(1)

as n → +∞. Additionally, under Assumptions D, H, and I1, there exists ε > 0 such that

sup
β∈U(β0,ε)

∣∣∣∣∣
1√
n

n∑
i=1

{
t(xi, εi; β) · [I(

r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]}

∣∣∣∣∣ = Op(1)

as n → +∞.

Proof: The corollary follows directly from the Chebyshev inequality for non-negative ran-
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dom variables, P (X ≥ K) ≤ E X/K, since by Corollary A.6

E

{
sup
β∈B

∣∣∣∣∣
1

n

n∑
i=1

t(xi, εi; β) · [I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]

∣∣∣∣∣

}

≤ E

{
sup
β∈B

∣∣t(xi, εi; β) · [I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]∣∣

}

= o(1)

and

E

{
sup

β∈U(β0,ε)

∣∣∣∣∣
1√
n

n∑
i=1

t(xi, εi; β) · [I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]

∣∣∣∣∣

}

≤ n1/2 E

{
sup

β∈U(β0,ε)

∣∣t(xi, εi; β) · [I(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]∣∣

}

= O(1)

as n → +∞ and the expectation is thus uniformly bounded in n ∈ N. ¤

Finally, the last two lemmas of this section study in more details differences of prob-

abilities that I
(
r2
i (β

0) ≤ r2
[hn](β

0)
)

and I
(
r2
i (βn) ≤ r2

[hn](βn)
)

for sequences βn converging

to β0 at
√

n rate.

Lemma A.8 Let Assumptions D and H hold and β ∈ U(β0, n−
1
2 M) for some M > 0.

Then it holds as n → +∞

1. For the conditional probability

P
(
I
(
r2
i

(
β0

) ≤ r2
[hn](β

0)
) 6= I

(
r2
i (β) ≤ r2

[hn](β)
)∣∣ xi

)

=
∣∣∣h′β

(
xi, β

0
)T

(β − β0)
∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+Op

(
n−

1
2

)

= Op

(
n−

1
4

)

and

E
{

sgn ri(β
0) · (I(

r2
i

(
β0

) ≤ r2
[hn](β

0)
)− I

(
r2
i (β) ≤ r2

[hn](β)
))∣∣xi

}
=

= h
′
β

(
xi, β

0
)T

(β − β0) ·
{

f
(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+Op

(
n−

1
2

)
.

2. For the corresponding unconditional probability

P
(
I
(
r2
i

(
β0

) ≤ r2
[hn](β

0)
) 6= I

(
r2
i (β) ≤ r2

[hn](β)
))

= Ex

∣∣∣h′β
(
xi, β

0
)T

(β − β0)
∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+O

(
n−

1
2

)
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= O
(
n−

1
2

)
.

3. For the conditional probability taken over all β ∈ U(β0, n−
1
2 M)

P
(
∃β ∈ U

(
β0, n−

1
2 M

)
: I

(
r2
i

(
β0

) ≤ r2
[hn](β

0)
) 6= I

(
r2
i (β) ≤ r2

[hn](β)
)∣∣∣ xi

)

= n−
1
2 M ·

p∑
j=1

∣∣∣h′βj

(
xi, β

0
)∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+Op

(
n−

1
2

)

= Op

(
n−

1
4

)
.

4. For the corresponding unconditional probability taken over all β ∈ U(β0, n−
1
2 M)

P
(
∃β ∈ U

(
β0, n−

1
2 M

)
: I

(
r2
i

(
β0

) ≤ r2
[hn](β

0)
) 6= I

(
r2
i (β) ≤ r2

[hn](β)
))

= n−
1
2 M ·

p∑
j=1

Ex

∣∣∣h′βj

(
xi, β

0
)∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+O

(
n−

1
2

)

= O
(
n−

1
2

)

as n → +∞.

Proof: To facilitate easier understanding, let us first define the constant qλ =
√

G−1(λ),

difference between residuals ∆h(xi, β) = ri(β
0)− ri(β) at β0 and β, and difference between

indicators

νin(β) = I
(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i

(
β0

) ≤ r2
[hn](β

0)
)

at β and β0. Then we have to compute

P
(∣∣I(

r2
i

(
β0

) ≤ r2
[hn](β

0)
)− I

(
r2
i (β) ≤ r2

[hn](β)
)∣∣ = 1

∣∣xi

)
= P ( |νin(β)| = 1|xi)

and to prove that the corresponding unconditional probability is (asymptotically) linear in

β − β0. In addition to that, we shall estimate

P


 sup

β∈U(β0,n−
1
2 M)

|νin(β)| = 1

∣∣∣∣∣∣
xi


 = P

(
∃β ∈ U(β0, n−

1
2 M) : |νin(β)| = 1

∣∣∣ xi

)

(these two probabilities are equivalent because the supremum is always attained—|νin(β)|
can be only zero or one). Note that randomness, that is the dependence on events ω ∈ Ω,

is represented just by the index i here: ri(β) = h(xi, β)− h(xi, β
0) + εi is a function of the

ith realization (xi, εi) and the same applies to νin(β) as a function of r2
i (β), i = 1, . . ., n.

Finally, let us assume without the loss of generality that n > [M2/ min{δ, ε}2], where δ and
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ε come from Assumption H1 and Lemma A.3, respectively.

1. First, let us compute P (νin(β) = −1|xi). In the following derivations, it is necessary

to keep in mind that we consider all β ∈ U(β0, n−
1
2 M) so that most of the results can

be reused later when P
(
∃β ∈ U(β0, n−

1
2 M) : νin(β) = −1

∣∣∣xi

)
is estimated. Apparently,

νin(β) = −1 if and only if

r2
i (β) > r2

[hn](β) and r2
i (β

0) ≤ r2
[hn](β

0).

It holds that

r2
i

(
β0

) ≤ r2
[hn](β

0) ⇒ ri(β
0) ∈ (−r[hn](β

0), r[hn](β
0)

)
(34)

and

r2
i (β) > r2

[hn](β) ⇒ ri(β) ∈ (−∞,−r[hn](β)
) ∪ (

r[hn](β), +∞)
. (35)

By means of the Taylor expansion we can write (for a given ω ∈ Ω)

ri(β) = {yi − h(xi, β)}
=

{
yi − h

(
xi, β

0
)}− h

′
β(xi, ξ)

T (β − β0)

= ri(β
0)− h

′
β(xi, ξ)

T (β − β0)

= ri(β
0)−∆h(xi, β)

where ξ ∈ [β0, β]κ and difference ∆h(xi, β) = h
′
β(xi, ξ)

T (β − β0) ([·, ·]κ denotes a convex

span, see the introduction to Appendix). Taking this result into account, assertions (34)

and (35) imply that

ri(β
0) ∈ (−r[hn](β

0),−r[hn](β) + ∆h(xi, β)
) ∪ (

r[hn](β) + ∆h(xi, β), r[hn](β
0)

)
, (36)

where the convention (a, b) = ∅ if b < a is used. For νi(β) = 1, it is possible to derive

analogously

ri(β
0) ∈ (−r[hn](β) + ∆h(xi, β),−r[hn](β

0)
) ∪ (

r[hn](β
0), r[hn](β) + ∆h(xi, β)

)
. (37)

Given results (36) and (37), we can write P ( |νi(β)| = 1|xi) as

P
(
ri(β

0) ∈ [−r[hn](β
0),−r[hn](β) + ∆h(xi, β)

]
κ ∪

[
r[hn](β

0), r[hn](β) + ∆h(xi, β)
]
κ
∣∣ xi

)
.

(38)

Lemma A.4 allows us to simplify this expression even further:

P
(
ri(β

0) ∈ [−r[hn](β
0),−r[hn](β

0) + ∆h(xi, β)
]
κ ∪

[
r[hn](β

0), r[hn](β
0) + ∆h(xi, β)

]
κ
∣∣ xi

)

+op

(
n−

1
2

)
(39)
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as n → +∞. Please, notice that, conditionally on xi, νin(β) 6= 0 implies sgn ri(β
0) ·

νin(β) = sgn ∆h(xi, β) with probability approaching 1 as 1 − O
(
n−

1
2

)
with n → ∞.

First, ∆h(xi, β) is given by xi and β, and for a fixed xi, it is bounded by ∆h(xi, β) =

h
′
β(xi, ξ)

T (β − β0) ≤ O(1)(β − β0) and converges to zero for β → β0. So we can choose

n0 ∈ N such that |∆h(xi, β)| <
√

1
2
G−1(λ) for all n > n0 (remember, β ∈ U(β0, n−

1
2 M)).

Second, Lemma A.3 implies that P
(
r2
[hn](β

0) < 1
2
G−1(λ)

)
= O

(
n−

1
2

)
, and consequently,

P
(∣∣r[hn](β

0)
∣∣ <

√
1
2
G−1(λ)

)
= O

(
n−

1
2

)
as n → ∞. Therefore, we can write with proba-

bility higher than 1−O
(
n−

1
2

)
that for ∆h(xi, β) > 0 and n > n0 (see (36) and (37))

• νi(β) = 1 corresponds to ri(β
0) ∈ (

r[hn](β
0), r[hn](β

0) + ∆h(xi, β)
) ⊂ (0, +∞), thus

νi(β) > 0 if ri(β
0) > 0.

• νi(β) = −1 corresponds to ri(β
0) ∈ (−r[hn](β

0),−r[hn](β
0) + ∆h(xi, β)

) ⊂ (−∞, 0),

thus νi(β) < 0 if ri(β
0) < 0.

Similarly for the case of ∆h(xi, β) < 0.

Let us now analyze probability (39). Keeping in mind that residual ri(β
0) ≡ εi, its

probability density function f(x) is bounded from above by a positive constant Mf and is

differentiable in a neighborhood of
√

G−1(λ) due to Assumption D2, we can write using

Lemma A.3 (remember that qλ denotes
√

G−1(λ)):

P
(
ri(β

0) ∈ [−r[hn](β
0),−r[hn](β

0) + ∆h(xi, β)
]
κ ∪

[
r[hn](β

0), r[hn](β
0) + ∆h(xi, β)

]
κ
∣∣ xi

)

= P
(
ri(β

0) ∈ [−qλ − ξ1,−qλ − ξ1 + ∆h(xi, β)]κ ∪ [qλ + ξ1, qλ + ξ1 + ∆h(xi, β)]κ
∣∣xi

)
,

where ξ1 and ξ2 are random variables behaving like Op

(
n−

1
2

)
. Taylor’s expansion for the

distribution function of εi further implies

P
(
ri(β

0) ∈ [−r[hn](β
0),−r[hn](β

0) + ∆h(xi, β)
]
κ ∪

[
r[hn](β

0), r[hn](β
0) + ∆h(xi, β)

]
κ
∣∣ xi

)

= |∆h(xi, β)| · {f (−qλ) + f (qλ) + f ′(ξ3) · (∆h(xi, β) + ξ1) + f ′(ξ4) · (∆h(xi, β) + ξ2)}
=

∣∣∣h′β(xi, ξ)
T (

β − β0
)∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+Op

(
n−

1
2

)
, (40)

(remember, β ∈ U(β0, n−
1
2 M), so ∆h(xi, β) = h

′
β(xi, ξ)

T (β − β0) = Op

(
n−

1
4

)
), where the

last step uses Taylor’s expansion of the first derivative of h(x, β) at point β0:

h
′
β(xi, ξ) = h

′
β

(
xi, β

0
)

+ h
′′
ββ(xi, ζ)(ξ − β0) = h

′
β

(
xi, β

0
)

+Op(1)

(see Assumption H4). Hence, the first assertion of part 1 is proved—the inequality

P
(
I
(
r2
i

(
β0

) ≤ r2
[hn](β

0)
) 6= I

(
r2
i (β) ≤ r2

[hn](β)
)∣∣ xi

) ≤ Op

(
n−

1
4

)
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follows from Assumptions D2, H3, and the fact that β ∈ U(β0, n−
1
2 M). The second as-

sertion follows immediately from the note explaining that sgn ri(β
0) · νi(β) = sgn ∆h(xi, β)

with probability higher than 1−O
(
n−

1
2

)
.

2. Next, we shall evaluate the corresponding unconditional probability, that is the

expectation of P ( |νi(β)| = 1| xi) over xi, and check its asymptotic linearity in β − β0. As

P
(
I
(
r2
i

(
β0

) ≤ r2
[hn](β

0)
) 6= I

(
r2
i (β) ≤ r2

[hn](β)
))

= Ex P ( |νi(β)| = 1|xi)

= Ex

∣∣∣h′β
(
xi, β

0
)T

(β − β0)
∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+O

(
n−

1
2

)
,

the result is apparent once we take into account β ∈ U(β0, n−
1
2 M) and the fact that the

random variable denoted Op

(
n−

1
2

)
in (40) can be expressed as a product of a random

variable and difference β − β0.

3. We have derived in part 1 of this proof that

P ( |νi(β)| = 1|xi) = P
(
ri(β

0) ∈ [−r[hn](β
0),−r[hn](β

0) + ∆h(xi, β)
]
κ ∪

∪ [
r[hn](β

0), r[hn](β
0) + ∆h(xi, β)

]
κ
∣∣ xi

)
+ op

(
n−

1
2

)
(41)

as n → ∞, where op

(
n−

1
2

)
holds uniformly over all β ∈ U(β0, n−

1
2 M) due to Lemma

A.4. The length of the intervals in (41) is a function of β − β0. Further, notice that the

lower bound of the interval and ri(β
0) itself does not depend on β, only the length of

the interval is β-dependent, and this length converges to zero as β → β0 with increasing

n. Now, the crucial point here is that the set of events ω ∈ Ω such that a continuously

distributed random variable ri(β
0) ≡ εi belongs to intervals specified in (41) depends purely

on the lower and upper bounds of the intervals, and consequently, only on their lengths

∆h(xi, β) = h
′
β(xi, ξ)

T (β − β0) in our case. Therefore, the set of events ω ∈ Ω such that

there exists β ∈ U(β0, n−
1
2 M) for which the continuously distributed random variable εi

belongs to the intervals specified in (41) and the probability of this set reduce to finding

the supremum of the length of the interval over all β ∈ U(β0, n−
1
2 M).

Hence, using the argument employed to derive (40), we can write

P
(
∃β ∈ U

(
β0, n−

1
2 M

)
: ri(β

0) ∈ [−r[hn](β
0),−r[hn](β

0) + ∆h(xi, β)
]
κ ∪

∪ [
r[hn](β

0), r[hn](β
0) + ∆h(xi, β)

]
κ
∣∣ xi

)

= sup
β∈U

(
β0,n−

1
2 M

)

∣∣∣h′β
(
xi, β

0
)T (

β − β0
)∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+Op

(
n−

1
2

)

≤ n−
1
2 M ·

p∑
j=1

∣∣∣h′βj

(
xi, β

0
)∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+Op

(
n−

1
2

)
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as n → +∞. Thus, the third assertion is verified using the same argument as in part 1 of

the proof.

4. Finally, we should find the corresponding unconditional probability, that is the

expectation of P
(
∃β ∈ U(β0, n−

1
2 M) : |νi(β)| = 1

)
. The assertion is a direct consequence

of the fact that

Ex P
(
∃β ∈ U

(
β0, n−

1
2 M

)
: |νi(β)| = 1

∣∣∣xi

)

= n−
1
2 M ·

p∑
j=1

Ex

∣∣∣h′βj

(
xi, β

0
)∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+O

(
n−

1
2

)

(note again that ExOp

(
n−

1
2

)
= O

(
n−

1
2

)
because we integrate a random variable multiplied

by the non-random difference β − β0 ∈ U(0, n−
1
2 M)). ¤

Corollary A.9 Under the assumptions of Lemma A.8, suppose that there exists some

β ∈ U(β0, n−
1
2 M) such that

I
(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

)) 6= I
(
r2
i (β) ≤ r2

[hn](β)
)
.

Then

∣∣∣
∣∣ri(β

0)
∣∣−

√
G−1(λ)

∣∣∣ =
∣∣∣ri(β

0)− sgn ri(β
0) ·

√
G−1(λ)

∣∣∣
≤

∣∣∣h′β(xi, ξ)
T (β − β0)

∣∣∣ +Op

(
n−

1
2

)

= Op

(
n−

1
4

)

and

E
{∣∣∣

∣∣ri(β
0)

∣∣−
√

G−1(λ)
∣∣∣
∣∣∣xi

}
≤

∣∣∣h′β(xi, ξ)
T (β − β0)

∣∣∣ +Op

(
n−

1
2

)
.

Proof: In the proof of Lemma A.8, see (36)–(39), we have shown that

νin(β) = I
(
r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i

(
β0

) ≤ r2
[hn](β

0)
)

can be non-zero for a given xi if and only if

ri(β
0) ∈ [−r[hn](β

0),−r[hn](β) + ∆h(xi, β)
]
κ ∪

[
r[hn](β

0), r[hn](β) + ∆h(xi, β)
]
κ ⇐⇒

⇐⇒ ri(β
0) ∈

[
−

√
G−1(λ)− ξ1,−qλ − ξ1 + ∆h(xi, β)

]
κ
∪

∪
[√

G−1(λ) + ξ1, qλ + ξ1 + ∆h(xi, β)
]
κ

,

where ξ1 and ξ2 are random variables behaving likeOp

(
n−

1
2

)
and ∆h(xi, β) = h

′
β(xi, ξ)

T (β−
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β0). Hence, ∣∣∣
∣∣ri(β

0)
∣∣−

√
G−1(λ)

∣∣∣ ≤
∣∣∣h′β(xi, ξ)

T (β − β0)
∣∣∣ +Op

(
n−

1
2

)
,

and by the first claim of Lemma A.8, we also obtain

E
{∣∣∣

∣∣ri(β
0)

∣∣−
√

G−1(λ)
∣∣∣
∣∣∣xi

}
≤

∣∣∣h′β(xi, ξ)
T (β − β0)

∣∣∣ +Op

(
n−

1
2

)
.

Finally, ∆h(xi, β) = h
′
β(xi, ξ)

T (β − β0) = Op

(
n−

1
4

)
due to Assumption H4, and conse-

quently, ∣∣∣
∣∣ri(β

0)
∣∣−

√
G−1(λ)

∣∣∣ = Op

(
n−

1
4

)

as n → +∞. ¤

B Proof of asymptotic linearity

Proof of Theorem 3.1: We are to analyze the term D1
n(t) = S

′
n(β0 − n−

1
2 t) − S

′
n(β0), that

is,

D1
n(t) =

n∑
i=1

[{
yi − h

(
xi, β

0 − n−
1
2 t

)}
· h′β

(
xi, β

0 − n−
1
2 t

)
×

×I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))

−{
yi − h

(
xi, β

0
)} · h′β

(
xi, β

0
) · I(

r2
i (β

0) ≤ r2
[hn](β

0)
)]

for t ∈ TM = {t ∈ Rp| ‖t‖ ≤ M}. There is apparently an n0 ∈ N such that β0 − n−
1
2 t ∈

U(β0, δ) for all n ≥ n0 and t ∈ TM (M > 0 is a given constant). Therefore, using Taylor’s

expansion for all n ≥ n0 and t ∈ TM , we get

h
(
x, β0 − n−

1
2 t

)
= h

(
x, β0

)− h
′
β(x, ξ)T n−

1
2 t

and

h
′
β

(
x, β0 − n−

1
2 t

)
= h

′
β

(
x, β0

)− h
′′
ββ(x, ξ′)n−

1
2 t,

where ξ, ξ′ ∈
[
β0, β0 − n−

1
2 t

]
κ
. Consequently, we may write D1

n(t) in the following form:

D1
n(t) =

n∑
i=1

[{(
yi − h

(
xi, β

0
)) · h′β

(
xi, β

0
) · I

(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))

− (
yi − h

(
xi, β

0
)) · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))}

− (
yi − h

(
xi, β

0
)) · h′′ββ(xi, ξ

′)n−
1
2 t · I

(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
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−h
′
β(xi, ξ)

T n−
1
2 t · h′β

(
xi, β

0
) · I

(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))

+ h
′
β(xi, ξ)

T n−
1
2 t · h′′ββ(xi, ξ

′)n−
1
2 t · I

(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))]

=
n∑

i=1

[{(
yi − h

(
xi, β

0
)) · h′β

(
xi, β

0
)×

×
[
I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

))]}
(42)

− (
yi − h

(
xi, β

0
)) · h′′ββ(xi, ξ

′)n−
1
2 t · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
(43)

− (
yi − h

(
xi, β

0
)) · h′′ββ(xi, ξ

′)n−
1
2 t× (44)

×
[
I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[h]

(
β0 − n−

1
2 t

))
− I

(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

))]

−h
′
β(xi, ξ)

T n−
1
2 t · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
(45)

−h
′
β(xi, ξ)

T n−
1
2 t · h′β

(
xi, β

0
)×

×
[
I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

))]
(46)

+ h
′
β(xi, ξ)

T n−
1
2 t · h′′ββ(xi, ξ

′)n−
1
2 t · I

(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))]
(47)

Let us now analyze the parts of the previous expression one by one. We will show

that sums (43), (44), (46), and (47) behave like Op

(
n

1
4

)
or op

(
n

1
2

)
, and therefore, are

asymptotically negligible with respect to parts (42) and (45), which behave like Op

(
n

1
2

)
.

Moreover, we find asymptotic representations of (42) and (45).

First of all, the last part (47) can be bounded from above in the following way (see

Assumption H4):

sup
t∈TM

n∑
i=1

∥∥∥h
′
β(xi, ξ)

T n−
1
2 t · h′′ββ(xi, ξ

′)n−
1
2 t · I

(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))∥∥∥

≤ Op

(
n−

3
4

)
sup
t∈TM

n∑
i=1

∥∥∥h
′′
ββk

(xi, ξ
′)
∥∥∥

≤ Op

(
n−

3
4

) (
n∑

i=1

∥∥∥h
′′
ββk

(
xi, β

0
)∥∥∥ +Op

(
n

1
2

))
,

where the last result follows from Assumption H2 (the Lipschitz property for h
′′
ββ(xi, β))

and the fact that ξ′ ∈
[
β0, β0 − n−

1
2 t

]
κ
. Once we realize that Assumptions D1 and H5 and

the law of large numbers (e.g., Andrews, 1988) guarantee
∑n

i=1

∥∥h
′′
ββ(xi, β

0)
∥∥ = Op(n) as

n → +∞, we get immediately

sup
t∈TM

n∑
i=1

∥∥∥h
′
β(xi, ξ)

T n−
1
2 t · h′′ββ(xi, ξ)n

− 1
2 t · I

(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))∥∥∥
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= Op

(
n

1
4

)

as n → +∞.

Next, we are going to analyze part (46), that is,

sup
t∈TM

n∑
i=1

∥∥∥h
′
β(xi, ξ)

T n−
1
2 t · h′β

(
xi, β

0
) · νi(n, t)

∥∥∥ ,

where νi(n, t) denotes the difference of indicators

νi(n, t) = I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i (β

0) ≤ r2
[hn](β

0)
)
.

As

sup
t∈TM

n∑
i=1

∥∥∥h
′
β(xi, ξ)

T n−
1
2 t · h′β

(
xi, β

0
) · νi(n, t)

∥∥∥

= sup
t∈TM

n∑
i=1

∥∥∥
(
h
′
β

(
xi, β

0
)T

n−
1
2 t · h′β

(
xi, β

0
)

+ n−
1
2 tT · h′′ββ(xi, ξ) · n− 1

2 t · h′β
(
xi, β

0
)) · νi(n, t)

∥∥∥

≤ sup
t∈TM

n∑
i=1

∥∥∥h
′
β

(
xi, β

0
)T

n−
1
2 t · h′β

(
xi, β

0
)∥∥∥ · |νi(n, t)| (48)

+ Op(1) · sup
t∈TM

n∑
i=1

∥∥∥n−
1
2 t · h′β

(
xi, β

0
)∥∥∥ · |νi(n, t)| (49)

(see Assumption H4), we need to analyze these two summands. This can be done in the

same way for both of them, so we will do it here just for (48). To do this, we employ

the Chebyshev inequality for non-negative random variables: for any non-negative random

variable X it holds that P (X > K) < E X/K. Therefore,

P

(
sup
t∈TM

n∑
i=1

∥∥∥h
′
β

(
xi, β

0
)T

n−
1
2 t · h′βk

(
xi, β

0
) · νi(n, t)

∥∥∥ > Kn
1
4

)

≤ 1

Kn
1
4

E

(
sup
t∈TM

n∑
i=1

∥∥∥h
′
β

(
xi, β

0
)T

n−
1
2 t · h′β

(
xi, β

0
) · νi(n, t)

∥∥∥
)

≤ n−
3
4

K

n∑
i=1

E

{
sup
t∈TM

∥∥∥h
′
β

(
xi, β

0
)T

t · h′β
(
xi, β

0
)∥∥∥ · sup

t∈TM

|νi(n, t)|
}

and by the Schwartz inequality and Lemma A.8

n−
3
4

K

n∑
i=1

E

{
sup
t∈TM

∥∥∥h
′
β

(
xi, β

0
)T

t · h′β
(
xi, β

0
)∥∥∥ · sup

t∈TM

|νi(n, t)|
}
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≤ n−
3
4

K

n∑
i=1

√
E

(
sup
t∈TM

∥∥∥h
′
β(xi, β0)T t

∥∥∥ ·
∥∥h

′
β(xi, β0)

∥∥
)2

· E sup
t∈TM

|νi(n, t)|

≤ n
1
4

K

√√√√E

(
M ·

p∑
j=1

∣∣∣h′βj
(xi, β0)

∣∣∣ ·
∥∥h

′
β(xi, β0)

∥∥
)2

O
(
n−

1
2

)

≤ O(1)

K
=

const

K
. (50)

Apparently, for any ε > 0 there is a K > 0 such that the constant term (50), which is

proportional to 1
K

, is smaller than ε. Thus, we have shown that

sup
t∈TM

n∑
i=1

∥∥∥h
′
β(xi, ξ)

T n−
1
2 t · h′β

(
xi, β

0
)×

×
(
I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i (β

0) ≤ r2
[hn](β

0)
))∥∥∥ = Op

(
n

1
4

)

as n → +∞. Please, note that (44) can be estimated in the same way, so we have also

shown how to prove

sup
t∈TM

n∑
i=1

∥∥∥
{
yi − h

(
xi, β

0
)} · h′′ββ(xi, ξ

′)n−
1
2 t×

×
(
I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i (β

0) ≤ r2
[hn](β

0)
))∥∥∥ = Op

(
n

1
4

)

as n → +∞.

The next summand to be analyzed is (43):

sup
t∈TM

n∑
i=1

{
yi − h

(
xi, β

0
)} · h′′ββ(xi, ξ

′)n−
1
2 t · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
.

This can be rewritten as (Assumption H2)

sup
t∈TM

n∑
i=1

{
yi − h

(
xi, β

0
)} · h′′ββ

(
xi, β

0
)
n−

1
2 t · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
(51)

+Op

(
n−1

) ·
n∑

i=1

{
yi − h

(
xi, β

0
)} · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
. (52)

Assumption D2 implies that the expectation of (51) conditional on xi is equal to zero, thus

the unconditional expectation is zero as well. Moreover, the variance of a component of

(51) given by indices j, k, l ∈ {1, . . ., p} equals (Assumptions D2 and H5 are used)

var
[(

yi − h
(
xi, β

0
)) · h′′βjβk

(
xi, β

0
)
tl · I

(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

))]
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= varx
{

h
′′
βjβk

(
xi, β

0
)
tl · E

[(
yi − h

(
xi, β

0
)) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))∣∣ xi

]}

+ Ex

{(
h
′′
βjβk

(
xi, β

0
)
tl

)2

· var [(
yi − h

(
xi, β

0
)) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))∣∣xi

]}

= varx
{

h
′′
βjβk

(
xi, β

0
)
tl · 0

}
+ Ex

{(
h
′′
βjβk

(
xi, β

0
)
tl

)2

· σ2

}

= σ2t2l · E
{

h
′′
βjβk

(
xi, β

0
)}2

≤ σ2M2 · E
{

h
′′
βjβk

(
xi, β

0
)}2

,

so it exists and is finite and uniformly bounded over all t ∈ TM . Because of Assumption

D2, the summands in (51) form a triangular array of martingale differences and we can

employ the law of large numbers for martingales (see Davidson, 1994, Theorem 19.7, for

instance) to conclude for components of (51) that for every j, k, l = 1, . . ., p,

n−
3
4

n∑
i=1

{
yi − h

(
xi, β

0
)} · h′′βjβk

(
xi, β

0
)
tl · I

(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

)) → 0

in probability (uniformly in t ∈ TM since ‖t‖ ≤ M is non-random). Because (52) is

apparently bounded in probability, it holds that

sup
t∈TM

n∑
i=1

{
yi − h

(
xi, β

0
)} · h′′ββ(xi, ξ

′)n−
1
2 t · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
= op

(
n

1
4

)

as n →∞.

The last but one term to be estimated is (45), that is,

n∑
i=1

h
′
β(xi, ξ)

T n−
1
2 t · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))

=
n∑

i=1

h
′
β

(
xi, β

0
)T

n−
1
2 t · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
(53)

+
n∑

i=1

n−
1
2 tT · h′′ββ(xi, ξ

′′) · n− 1
2 t · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
. (54)

The supremum of the second part (54) over t ∈ TM behaves like Op(1), as we shall argue

now. Since

∣∣∣∣∣
n∑

i=1

n−
1
2 tT · h′′ββ(xi, ξ

′′) · n− 1
2 t · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))
∣∣∣∣∣

≤
n∑

i=1

∣∣∣n− 1
2 tT · h′′ββ(xi, ξ

′′) · n− 1
2 t · h′β

(
xi, β

0
)∣∣∣ ,

we can simply use the law of large numbers for mixingales (Andrews, 1988) and the uniform
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law of large number (Andrews, 1992) for the right hand side of the inequality over all

β′′ ∈ U(β, δ):

1

n

n∑
i=1

∣∣∣tT · h′′ββ(xi, β
′′) · t · h′β

(
xi, β

0
)∣∣∣ → E

∣∣∣tT · h′′ββ(x1, β
′′) · t · h′β

(
x1, β

0
)∣∣∣

in probability as n → ∞ (the conditions BD, TSE-1D, DM, and P-WLLN of Andrews,

1992, are satisfied by means of Assumptions I1, H2, H5, and D1, respectively). Since the

expectation is bounded uniformly over t ∈ TM (‖t‖ ≤ M and Assumption H5), (54) is

bounded in probability.

Let us look now at (53):

n∑
i=1

h
′
β

(
xi, β

0
)T

n−
1
2 t · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))

=
n∑

i=1

h
′
β

(
xi, β

0
)T

n−
1
2 t · h′β

(
xi, β

0
)× (55)

× [
I
(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

))− I
(
r2
i

(
β0

) ≤ G−1(λ)
)]

+ n−
1
2

n∑
i=1

{
h
′
β

(
xi, β

0
) · h′β

(
xi, β

0
)T · I(

r2
i

(
β0

) ≤ G−1(λ)
)

(56)

−E
[
h
′
β

(
xi, β

0
) · h′β

(
xi, β

0
)T · I(

r2
i

(
β0

) ≤ G−1(λ)
)]}

t

+ n−
1
2

n∑
i=1

E
[
h
′
β

(
xi, β

0
) · h′β

(
xi, β

0
)T · I(

r2
i

(
β0

) ≤ G−1(λ)
)]

t. (57)

The supremum of the first part, that is, sum (55), over t ∈ TM behaves again like Op

(
n

1
4

)

for n →∞. This can be proved in the same manner as we did for (48), this time utilizing

Lemma A.5. Next, using the central limit theorem, each element of matrix (56) converges

in distribution to a normally distributed random variable with zero mean and a finite

variance uniformly bounded for t ∈ TM (the result of Arcones and Yu, 1994, applies due to

Assumptions D1, D2, and H3; alternatively, one can apply standard central limit theorem

such as Davidson, 1994, Theorem 24.5). Hence, it is bounded in probability as well. Finally,

the last element (57) can be rewritten as n
1
2 · λ ·Qht since

E
[
h
′
β

(
xi, β

0
) · h′β

(
xi, β

0
)T · I(

r2
i

(
β0

) ≤ G−1(λ)
)]

= Ex

[
h
′
β

(
xi, β

0
) · h′β

(
xi, β

0
)T · E {

I
(
r2
i

(
β0

) ≤ G−1(λ)
)∣∣ xi

}]

= λ · Ex

[
h
′
β

(
xi, β

0
) · h′β

(
xi, β

0
)T

]
= λ ·Qh.
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Therefore, we can conclude that

sup
t∈TM

∥∥∥∥∥
n∑

i=1

h
′
β

(
xi, β

0
)
n−

1
2 t · h′β

(
xi, β

0
) · I(

r2
i

(
β0

) ≤ r2
[hn]

(
β0

))− n
1
2 · λ ·Qht

∥∥∥∥∥ = Op(1)

as n → +∞.

Finally, let us move our attention to the term (42). Using once again notation

νi(n, t) = I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i (β

0) ≤ r2
[hn](β

0)
)
,

we can rewrite (42) as

n∑
i=1

{
yi − h

(
xi, β

0
)} · h′β

(
xi, β

0
) · νi(n, t)

=
n∑

i=1

ri(β
0) · h′β

(
xi, β

0
) · νi(n, t)

=
n∑

i=1

{
ri(β

0)− sgn ri(β
0) ·

√
G−1(λ)

}
· h′β

(
xi, β

0
) · νi(n, t) (58)

+
n∑

i=1

sgn ri(β
0) ·

√
G−1(λ) · h′β

(
xi, β

0
) · νi(n, t). (59)

For the simplicity of notation, let us use qλ =
√

G−1(λ). The first part (58) multiplied by

n−
1
4 is bounded in probability. This can be shown as follows: the Chebyshev inequality

implies

P

(
n−

1
4 sup

t∈TM

∥∥∥∥∥
n∑

i=1

{
ri(β

0)− sgn ri(β
0) · qλ

} · h′β
(
xi, β

0
) · νi(n, t)

∥∥∥∥∥ > K

)
(60)

≤ 1

K
E

(
n−

1
4 sup

t∈TM

∥∥∥∥∥
n∑

i=1

{
ri(β

0)− sgn ri(β
0) · qλ

} · h′β
(
xi, β

0
) · νi(n, t)

∥∥∥∥∥

)

≤ n
3
4

K
E

(∣∣ri(β
0)− sgn ri(β

0) · qλ

∣∣ ·
∥∥∥h

′
β

(
xi, β

0
)∥∥∥ · sup

t∈TM

|νi(n, t)|
)

and by Lemma A.8 together with Corollary A.9 (ri(β
0) ≡ εi and xi are independent random

variables)

n
3
4

K
Ex

(∥∥∥h
′
β

(
xi, β

0
)∥∥∥ · E

[∣∣ri(β
0)− sgn ri(β

0) · qλ

∣∣ · sup
t∈TM

|νi(n, t)|
∣∣∣∣ xi

])

≤ n
3
4

K
E

(
O(

n−1
) ·

∥∥∥h
′
β

(
xi, β

0
)∥∥∥ ·

[∥∥∥h
′
β(xi, ξ)

∥∥∥ +Op(1)
]
·
[∥∥∥h

′′
ββ

(
xi, β

0
)∥∥∥ +Op(1)

])
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≤ O(1)

K
=

const.

K
.

Therefore, the probability (60) can be made smaller than ε by an appropriate choice of K,

and hence, (58) multiplied by n−
1
4 is bounded in probability. In other words, it holds that

sup
t∈TM

∥∥∥∥∥
n∑

i=1

{
ri(β

0)− sgn ri(β
0) · qλ

} · h′β
(
xi, β

0
)×

×
[
I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

))]∥∥∥ = Op

(
n

1
4

)

as n →∞. All we have to do now is to treat

n∑
i=1

sgn ri(β
0) · qλ · h′β

(
xi, β

0
) · νi(n, t). (61)

This is done again in two steps: first, we show that the sum less its expectation is op

(
n

1
2

)
,

and second, the expectation of the sum is evaluated. For the first part, we have shown in

Lemma A.8 that the probability of

νi(n, t) = I
(
r2
i

(
β0 − n−

1
2 t

)
≤ r2

[hn]

(
β0 − n−

1
2 t

))
− I

(
r2
i

(
β0

) ≤ r2
[hn]

(
β0

))

being non-zero conditional on xi (and thus the conditional expectation of this term in

absolute value) is equal to

E (νi(n, t)| xi) =
∣∣∣h′β

(
xi, β

0
)T

(β − β0)
∣∣∣ ·

{
f

(
−

√
G−1(λ)

)
+ f

(√
G−1(λ)

)}
+Op

(
n−

1
2

)

as n → +∞, and that the expectation of this conditional probability behaves like O
(
n−

1
2

)
.

Therefore, the random variable νi(n, t) multiplied by n
1
2 will have its expectation conditional

on xi behaving like
∥∥h

′
β(xi, β

0)
∥∥·O(1)+Op(1) in absolute value. Consequently, Assumption

H5 implies for any j = 1, . . . , k,

E
∣∣∣n 1

2p · sgn ri(β
0) · h′βj

(
xi, β

0
) · νi(n, t)

∣∣∣
2

= E

[∣∣∣h′βj

(
xi, β

0
)∣∣∣

2

E
{

n
1
p |νi(n, t)| |xi

}]

≤ E

{∣∣∣h′βj

(
xi, β

0
)∣∣∣

2

· n 1
p
− 1

2

[∥∥∥h
′
β

(
xi, β

0
)∥∥∥ · O(1) +Op(1)

]}
= O(1).

Hence, the law of large numbers for L2-mixingales (Davidson and de Jong, 1997, Corollary
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2.1) can be applied to the following sum of random variables:

1

n
1
2
+ 1

2p

n∑
i=1

n
1
2p

{
sgn ri(β

0) · qλh
′
βj

(
xi, β

0
) · νi(n, t)− E

[
sgn ri(β

0) · qλh
′
β

(
xi, β

0
) · νi(n, t)

]}
.

As a direct consequence, it follows that

n∑
i=1

sgn ri(β
0) · qλ · h′β

(
xi, β

0
) · νi(n, t)−

−
n∑

i=1

E
{

sgn ri(β
0) · qλ · h′β

(
xi, β

0
) · νi(n, t)

}
= op

(
n1/2

)

as n → +∞.

Finally, the expectation of (61)

E

{
n∑

i=1

sgn ri(β
0) ·

√
G−1(λ) · h′β

(
xi, β

0
) · νi(n, t)

}
(62)

= Ex

{
n∑

i=1

qλ · h′β
(
xi, β

0
) · E (

sgn ri(β
0) · νi(n, t)

∣∣xi

)
}

(63)

can be proved to be a linear function of t by means of Lemma A.8. Since

E
{

sgn ri(β
0) · νi(n, t)

∣∣xi

}
= h

′
β

(
xi, β

0
)T

n−
1
2 t · {f(−qλ) + f(qλ)}+Op

(
n−

1
2

)
,

(63) can be rewritten as

Ex

{
n∑

i=1

qλ · h′β
(
xi, β

0
) ·

[
h
′
β

(
xi, β

0
)T

n−
1
2 t · {f(−qλ) + f(qλ)}+Op

(
n−

1
2

)]}
=

= qλ · {f(−qλ) + f(qλ)} ·
{

n∑
i=1

Ex

[
h
′
β

(
xi, β

0
) · h′β

(
xi, β

0
)T

]
+O

(
n−

1
2

)}
· n− 1

2 t

= qλ · {f(−qλ) + f(qλ)} ·Qh · n 1
2 t +O(1).

Therefore, we can conclude that

sup
t∈TM

∥∥∥∥∥
n∑

i=1

{
yi − h

(
xi, β

0
)} · h′β

(
xi, β

0
) · νi(n, t)−

−n
1
2 ·

√
G−1(λ) ·

{
f(−

√
G−1(λ)) + f(

√
G−1(λ))

}
·Qht

∥∥∥ = op(1)

as n → +∞. This closes the proof once we recall that g(z) = 1
2
√

z
{f(

√
z) + f(−√z)}. ¤
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C Proof of consistency and asymptotic normality

Proof of Theorem 4.1: This is a standard proof of consistency based on the uniform law

of large numbers and the convergence of the order statistics r2
[hn](β) to the corresponding

quantile G−1
β (λ). Let us denote the LTS objective function and its expectation by

Snn(β) =
1

n

n∑
i=1

r2
i (β) · I(

r2
i (β) ≤ r2

[hn](β)
)
,

S(β) = E
{
r2
1(β) · I(

r2
1(β) ≤ G−1

β (λ)
)}

.

By definition, P
(
Snn

(
β̂

(LTS,hn)
n

)
< Snn (β0)

)
= 1. For any δ > 0 and an open neighborhood

U(β0, δ) of β0

1 = P
(
Snn

(
β̂(LTS,hn)

n

)
< Snn

(
β0

))

= P
(
Snn

(
β̂(LTS,hn)

n

)
< Snn

(
β0

)
and β̂(LTS,hn)

n ∈ U(β0, δ)
)

+ P
(
Snn

(
β̂(LTS,hn)

n

)
< Snn

(
β0

)
and β̂(LTS,hn)

n ∈ B\U(β0, δ)
)

≤ P
(
β̂(LTS,hn)

n ∈ U(β0, δ)
)

+ P

(
inf

β∈B\U(β0,δ)
Snn (β) < Snn

(
β0

))
.

Therefore, P
(
infβ∈B\U(β0,δ) Snn (β) < Snn (β0)

) → 0 as n → +∞ implies

P
(
β̂(LTS,hn)

n ∈ U(β0, δ)
)
→ 1

as n → +∞, that is, the consistency of β̂
(LTS,hn)
n (δ was an arbitrary positive number). To

verify P
(
infβ∈B\U(β0,δ) Snn (β) < Snn (β0)

) → 0 note that

P

(
inf

β∈B\U(β0,δ)
Snn (β) < Snn

(
β0

))

= P

(
inf

β∈B\U(β0,δ)
[Snn (β)− S(β) + S(β)] < Snn

(
β0

))

= P

(
inf

β∈B\U(β0,δ)
[Snn (β)− S(β)] < Snn(β0)− inf

β∈B\U(β0,δ)
S(β)

)

≤ P

(
sup
β∈B

|Snn (β)− S(β)| > inf
β∈B\U(β0,δ)

S(β)− Snn(β0)

)

≤ P

(
2 sup

β∈B
|Snn (β)− S(β)| > inf

β∈B\U(β0,δ)
S(β)− S(β0)

)
.
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Since the identification Assumption I2 implies

(∀δ > 0) (∃α > 0)

(
inf

β∈B−U(β0,δ)
S(β)− S(β0) > α

)
,

it is enough to show that for all α > 0

P

(
sup
β∈B

|Sn (β)− S(β)| > α

)
→ 0 as n → +∞.

This is a direct consequence of Lemma A.1 and Corollary A.7 for function t(xi, εi; β) =

r2
i (β), see Assumptions D, H1, and H5, because

Snn (β)− S(β) =
1

n

n∑
i=1

{
r2
i (β) · [I(

r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]}

+
1

n

n∑
i=1

{
r2
i (β) · I(

r2
i (β) ≤ G−1

β (λ)
)− E

[
r2
1(β) · I(

r2
1(β) ≤ G−1

β (λ)
)]}

.

¤

Proof of Theorem 4.2: We already know that β̂
(LTS,hn)
n is consistent. Hence

P
(∥∥∥β̂

(LTS,hn)
n − β0

∥∥∥ > ρ
)
→ 0 as n →∞ for any ρ > 0 (Theorem 4.1).

Further, we employ the almost sure second-order differentiability of

Snn(β) =
1

n

n∑
i=1

r2
i (β) · I(

r2
i (β) ≤ r2

[hn](β)
)

and

S(β) = E
{
r2
1(β) · I(

r2
1(β) ≤ G−1

β (λ)
)}

at β0 (see Lemma 2.2 and Assumption H1). Since

Snn(β) =
1

n

n∑
i=1

r2
i (β) · [I(

r2
i (β) ≤ r2

[hn](β)
)− I

(
r2
i (β) ≤ G−1

β (λ)
)]

(64)

+
1

n

n∑
i=1

r2
i (β) · I(

r2
i (β) ≤ G−1

β (λ)
)
, (65)

Assumptions H, Lemma A.1 and Corollary A.7 imply Snn(β) → S(β) as n → ∞ in prob-

ability. Using the same argument for the first two derivatives of Snn(β), see Lemma 2.2,

S
′
nn(β) → S

′
(β) and S

′′
nn(β) → S

′′
(β) as n →∞ uniformly in β ∈ U(β0, δ), whereby

S
′′
(β0) = 2 E

{[
h
′
β

(
xi, β

0
)
h
′
β

(
xi, β

0
)T

+ r1(β
0)h

′′
ββ

(
xi, β

0
)] · I(

r2
1(β) ≤ G−1

β (λ)
)}
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= 2 E
{[

h
′
β

(
xi, β

0
)
h
′
β

(
xi, β

0
)T

]
· I(

r2
1(β) ≤ G−1

β (λ)
)}

= 2λQh > 0

by Assumptions D2 and H5. Since Qh is a positive definite matrix by Assumption H5,

there is a constant ρ, δ > ρ > 0, such that
∥∥S

′
(β)

∥∥ ≥ C ‖β − β0‖ for all β ∈ U(β0, ρ)

and some C > 0. Due to the consistency of β̂
(LTS,hn)
n , this implies that for any ε > 0

there is some n0 ∈ N such that β̂
(LTS,hn)
n ∈ U(β0, ρ) and subsequently

∥∥∥S(β̂
(LTS,hn)
n )

∥∥∥ ≥
C

∥∥∥β̂
(LTS,hn)
n − β0

∥∥∥ for all n > n0 with probability at least 1− ε. Therefore, it is sufficient

to show that
√

n
∥∥∥S

′
(β̂

(LTS,hn)
n )

∥∥∥ = Op(1) to prove the theorem.

To analyze
√

nS(β̂
(LTS,hn)
n ), let us express it for n > n0 with probability greater than

1− ε as

√
n E

{
r1(β̂

(LTS)
n )h

′
β

(
xi, β̂

(LTS)
n

)
· I

(
r2
1(β̂

(LTS)
n ) ≤ G−1

β (λ)
)}

≤ sup
β∈U(β0,ρ)

1√
n

n∑
i=1

{
−r1(β)h

′
β(xi, β) · I(

r2
1(β) ≤ G−1

β (λ)
)

(66)

+ E
[
r1(β)h

′
β(xi, β) · I(

r2
1(β) ≤ G−1

β (λ)
)]}

+ sup
β∈U(β0,ρ)

1√
n

n∑
i=1

{
r1(β)h

′
β(xi, β) · [I(

r2
1(β) ≤ G−1

β (λ)
)− I

(
r2
1(β) ≤ r2

[hn](β)
)]}

(67)

(recall that S
′
nn(β̂

(LTS)
n ) = 0 by Lemma 2.2). We only have to show that both terms are

bounded in probability. This result for (67) is a consequence of Lemma A.7 together with

Assumptions H1 and H5. The other part (66) can be bounded in probability by the following

argument. Assumption H3 together with van der Vaart and Wellner (1996, Lemma 2.6.18)

imply that

Fn,δ =
{

r1(β)h
′
β(xi, β) · I(

r2
1(β) ≤ G−1

β (λ)
)

: β ∈ U(β0, δ)
}

form a VC class of functions. Therefore, Assumptions D1 and H3 permit the use of uniform

central limit theorem of Arcones and Yu (1994), which implies that Fn,δ converges in

distribution to a Gaussian process with uniformly bounded paths, which confirms that (66)

is bounded in probability. ¤

Proof of Theorem 4.3: Due to Theorem 4.2, tn =
√

n
(
β̂

(NLTS,hn)
n − β0

)
= Op(1) as

n → +∞. Therefore, using the asymptotic linearity of LTS (Theorem 3.1), we can write

with probability arbitrarily close to one

n−
1
2

(
D1

n(tn) + n
1
2 Qhtn · Cλ

)

= n−
1
2

{
D1

n

[√
n

(
β̂(LTS,hn)

n − β0
)]

+ n
1
2 QhCλ ·

√
n

(
β̂(LTS,hn)

n − β0
)}

= op(1),



47

where Cλ = λ− 2G−1(λ)g (G−1(λ)). Substituting for D1
n(t) yields

n−
1
2

n∑
i=1

[{
yi − h

(
xi, β̂

(LTS,hn)
n

)}
h
′
β

(
xi, β̂

(LTS,hn)
n

)
· I

(
r2
i

(
β̂(LTS,hn)

n

)
≤ r2

[hn]

(
β̂(LTS,hn)

n

))

−{
yi − h

(
xi, β

0
)}

h
′
β

(
xi, β

0
) · I(

r2
i (β

0) ≤ r2
[hn](β

0)
)]

+

+ n
1
2 QhCλ ·

√
n

(
β̂(LTS,hn)

n − β0
)

= op(1),

and since the first summand in the previous equation is by the definition of β̂
(LTS,hn)
n equal

to zero, it follows that

√
n

(
β̂(LTS,hn)

n − β0
)

= n−
1
2 Q−1

h C−1
λ ·

n∑
i=1

{
yi − h

(
xi, β

0
)}

h
′
β

(
xi, β

0
) · I(

r2
i (β

0) ≤ r2
[hn](β

0)
)

+op(1)

= n−
1
2 Q−1

h C−1
λ ·

n∑
i=1

ri(β
0)h

′
β

(
xi, β

0
) · I(

r2
i (β

0) ≤ G−1(λ)
)

+ op(1)

+ n−
1
2 Q−1

h C−1
λ ·

n∑
i=1

ri(β
0)h

′
β

(
xi, β

0
)× (68)

× [
I
(
r2
i (β

0) ≤ r2
[hn](β

0)
)− I

(
r2
i (β

0) ≤ G−1(λ)
)]

.

First, we show that term (68) is negligible in probability. Recalling that ri(β
0) ≡ εi, we

can rewrite (68) as

n−
1
2 Q−1

h C−1
λ ·

n∑
i=1

εi · h′β
(
xi, β

0
) · [I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)]

.

Assumption D2 and Corollary A.6 implies for k = 1 and 2 that

E
∣∣εi ·

[
I
(
ε2

i ≤ ε2
[hn]

)− I
(
ε2

i ≤ G−1(λ)
)]∣∣k = O

(
n−

1
2

)

as n → ∞. Therefore, the summands in (68) multiplied by n
1
4 have a finite expectation

and variance (εi and xi are independent random variables):

E
∣∣∣n 1

4 · εi · h′β
(
xi, β

0
) · [I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)]∣∣∣ = o(1)

and by Assumption H5

var
{

n
1
4 · εi · h′β

(
xi, β

0
) · [I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)]}

≤ n
1
2 Ex

{
h
′
β

(
xi, β

0
) · var (

εi ·
∣∣I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)∣∣∣∣ xi

) · h′β
(
xi, β

0
)T

}
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+ n
1
2 varx

{
h
′
β

(
xi, β

0
) · E (

εi ·
∣∣I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)∣∣∣∣ xi

)}

≤ O(1)
{

E
[
h
′
β

(
xi, β

0
)]

+ var
[
h
′
β

(
xi, β

0
)]}

= O(1).

Now, because all indicators depend only on the squares of residuals ε2
i and error terms εi

are symmetrically distributed (Assumption D2), we get for any i = 1, . . ., n and any n ∈ N

E
{

n
1
4 · εi · h′β

(
xi, β

0
) · [I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)]}

= 0,

and even conditionally,

E
{

n
1
4 · εi · h′β

(
xi, β

0
) · [I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)]∣∣∣ ε1, . . . , εi−1, x1, . . . , xi−1

}
= 0.

Therefore, n
1
4 · εi · h′β(xi, β

0) ·
[
I
(
ε2

i ≤ ε2
[hn]

)
− I(ε2

i ≤ G−1(λ))
]

forms a sequence of mar-

tingale differences with finite variances and we can apply the law of large number for the

sum of martingale differences (68) (see Davidson, 1994, Theorem 20.11, for instance):

n−
3
4 Q−1

h C−1
λ ·

n∑
i=1

n
1
4 · εi · h′β

(
xi, β

0
) · [I(

ε2
i ≤ ε2

[hn]

)− I
(
ε2

i ≤ G−1(λ)
)] → 0

in probability as n →∞. Thus, (68) is negligible in probability op(1). Given this result,

√
n

(
β̂(LTS,hn)

n − β0
)

= n−
1
2 Q−1

h C−1
λ

n∑
i=1

{
yi − h

(
xi, β

0
)} · h′β

(
xi, β

0
) · I(

r2
i (β

0) ≤ G−1(λ)
)

+op(1)

= n−
1
2 Q−1

h C−1
λ

n∑
i=1

εi · h′β
(
xi, β

0
) · I(

ε2
i ≤ G−1(λ)

)
+ op(1), (69)

which is the first assertion of the theorem.

Second, by the same argument as used in the above discussion of (68), the summands

in (69) form a sequence of identically distributed martingale differences with finite second

moments (Assumptions D2 and H5). Since by the law of large numbers for L1-mixingales

(Andrews, 1988)

1

n

n∑
i=1

ε2
i · h

′
β

(
xi, β

0
)
h
′
β

(
xi, β

0
)T · I(

ε2
i ≤ G−1(λ)

) → var
[
εi · h′β

(
xi, β

0
) · I(

ε2
i ≤ G−1(λ)

)]

in probability as n → ∞, we can employ the central limit theorem for martingale differ-

ences (for example, Davidson, 1994, Theorem 24.3) for (69). This results directly in the
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asymptotic normality of β̂
(LTS,hn)
n . The asymptotic variance can be then expressed as

V = C−2
λ ·Q−1

h · var
[
h
′
β

(
xi, β

0
)
εi · I

(
ε2

i ≤ G−1(λ)
)] ·Q−1

h

= C−2
λ ·Q−1

h · E
[
h
′
β

(
xi, β

0
)
εi · I

(
ε2

i ≤ G−1(λ)
)] [

h
′
β

(
xi, β

0
)
εi · I

(
ε2

i ≤ G−1(λ)
)]T

·Q−1
h

= C−2
λ ·Q−1

h · E
[
h
′
β

(
xi, β

0
)
h
′
β

(
xi, β

0
)T

]
· E [

ε2
i · I

(
ε2

i ≤ G−1(λ)
)] ·Q−1

h

= C−2
λ ·Q−1

h ·Qhσ
2
λ ·Q−1

h = C−2
λ σ2

λ ·Q−1
h .

¤
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