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Abstract

In a common agency game, several principals try to in°uence the behavior of an agent.
Common agency games typically have multiple equilibria. One class of equilibria, called
truthful, has been identi¯ed by Bernheim and Whinston and has found widespread use in
the political economy literature.
In this paper we identify another class of equilibria, which we call natural. In a natural

equilibrium, each principal o®ers a strictly positive contribution on at most one alternative.
We show that a natural equilibrium always exists and that its computational complexity is
much smaller than that of a truthful equilibrium. To compare the predictive power of the
two concepts, we run an experiment on a common agency game for which the two equilibria
predict a di®erent equilibrium alternative. The results strongly reject the truthful equilib-
rium. The alternative predicted by the natural equilibrium is chosen in 65% of the matches,
while the one predicted by the truthful equilibrium is chosen in less than 5% of the matches.

Keywords: lobbying, experimental economics, common agency, truthful equilibrium, nat-
ural equilibrium, computational complexity.



1 Introduction

Common agency games model a situation where several principals simultaneously try to

in°uence the behavior of one agent. The agent must choose one alternative among a set

of alternatives. Each of the principals cares about which alternative the agent chooses

and can promise monetary contributions to the agent conditional on the agent's choice.

Namely, each principal can promise a vector of monetary contributions, one for each pos-

sible alternative. Only the contribution on the alternative that is chosen will actually be

paid. The agent observes all the monetary contributions o®ered by the principals and

makes his choice.

Common agency provides a very general way of modeling the process of lobbying

through campaign contributions. The agent is a politician who faces a set of policy alter-

natives. The politician cares both about monetary contributions, which he can spend on

his electoral campaign, and directly about the policy alternative he chooses (either because

he is genuinely concerned or because he wants to please voters). Each principal is a lobby

who represents a special interest. Each lobby can o®er { maybe implicitly { campaign

contributions to the politician conditional on his policy stance.12

For instance, Grossman and Helpman [11] have applied common agency to trade policy.

In an economy with many industries, a politician chooses the level of trade protection (tar-

i® or subsidy) for each industry. Some of the industries are organized as lobbies and some

are not. Through common agency, the authors arrive at a characterization of equilibrium

trade protection in each industry as a function of import penetration, import elasticity, the

preferences of the politician, and whether the industry is organized or not. Applying Gross-

man and Helpman's result, Goldberg and Maggi [9] have used data on trade protection in

the US to estimate the preferences of US politicians.

All the political economy works cited above rely on theoretical foundations developed

by Bernheim and Whinston [3], who were the ¯rst to study common agency. After noting

that the typical common agency game has several equilibria, Bernheim and Whinston

discuss a particular class of equilibria, which they name truthful. A truthful equilibria is

1A partial list of political economy papers that use common agency includes: Grossman and Help-

man [11, 10], Dixit, Grossman, and Helpman [6], Rama and Tabellini [23], and Helpman and Persson [12].
2Note that other models besides common agency are used: e.g. all-pay auctions (See Potters, De Vries,

and Van Winden [21] for experimental work on rent seeking modeled as an all-pay auction). The question

of which model best captures the reality of lobbying is, to our knowledge, untackled and is outside the

scope of the present paper.
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called \truthful" because in it the contribution schedule of each principal follows the shape

of the payo® function of that principal (the exact de¯nition will be given later). Bernheim

and Whinston show several striking properties: (1) A truthful equilibrium always exists

(that is, the set of equilibria of a given common agency game always contains a truthful

equilibrium); (2) An equilibrium is coalition-proof if and only if it is payo®-equivalent to

a truthful equilibrium; and (3) In a truthful equilibrium the agent chooses an alternative

which maximizes the sum of the payo®s of the agent and of the principals.3

In sum, truthful equilibria have several nice properties, which could make them focal.

However, in this paper, we will argue that truthful equilibria also appear to be quite

complex. We will formalize this idea through the theory of computational complexity and

we will prove that the computation time needed to compute the truthful equilibrium of a

generic common agency game increases exponentially with the number of principals. As a

truthful equilibrium is not in dominant strategies, for each single principal the time needed

to compute the optimal strategy is the same as the time needed to compute the whole

equilibrium strategy. This implies that also the computation time for each principal grows

exponentially. Problems with exponentially increasing computation time are considered

hopeless in practice except for very small instances.

If common agency is to be applied to lobbying, computational complexity becomes an

important issue. At the US federal level, thousands of lobbies make campaign contributions

on interrelated issues (see Lehman, Schlozman and Tierney [26]). The fact that the time

needed to compute truthful equilibria is exponential makes them non-computable for all

practical purposes. For instance, it can take up to 35000 years to compute the truthful

equilibrium of a game with 50 principals.4 There are certainly more than 50 lobbies involved

in the trade policy determination studied by Grossman and Helpman [11]).

Given the complexity of the situation, it seems plausible that principals behave in a

3Bergemann and VÄalimÄaki [2] extend Bernheim and Whinston's analysis to a multi-period common

agency game. They de¯ne truthful equilibrium and coalition-proof equilibrium in a dynamic setting and

show that (2) and (3) hold in this setting as well. Although here attention is restricted to one-period

common agency, we conjecture that the gist of our results extends to a multi-period setting.
4The computing time of 35,000 year is obtained under the assumptions that a linear program with one

constraint is solvable in a millisecond and that we use an algorithm for linear programming that is linear

in the number of constraints. Two remarks are in order. First, the existing linear programming algorithms

are worse than linear. Hence, the number 35,000 is by defect. Second, of course, the computation time

does not only depend on the number of principals but also on the number of alternatives. However, as

we shall see, the latter dependence is only linear and therefore has a less important e®ect on computation

time.
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more simple way than predicted by the concept of a truthful equilibrium. Such a simpler

and a-priori plausible behavior is that a principal does not choose a whole contribution

schedule, but rather makes a contribution only to one alternative that she hopes to get.

Such strategies will be called natural, and an equilibrium in such strategies will be called a

natural equilibrium. We show that a natural equilibrium exists (that is, the set of equilibria

of a given common agency game always contains a natural equilibrium).5

Moreover, we show that a natural equilibrium can be computed in polynomial time.

Problems for which computation time grows polynomially are considered to have good

hopes of being solved in practice. Indeed, this is a particularly simple polynomial problem

and, with 50 principals, it takes at most seconds to ¯nd the natural equilibrium.

However, a natural equilibrium does not enjoy the other nice properties of a truthful

equilibrium. It need not be coalition-proof and it need not induce the alternative that

maximizes the sum of the gross payo®s of the agent and the principals. This latter feature

is of great importance for lobbying. If the chosen alternative is e±cient (from the point

of view of the participants to the common agency game), then ine±ciencies arise if some

lobbies are excluded from the lobbying process, or if there are transactions costs, or if some

policy alternatives are exogenously excluded. Hence, with truthful equilibria, the policy

goal would be to make lobbying as accessible and comprehensive as possible. Instead,

with natural equilibria there may be ine±ciencies in the lobbying process in se, even if

everybody is represented and there are no transaction costs.

To establish which class of equilibria is a better predictor of actual play, we turned

to an experiment. For this experiment we designed a simple common agency game with

two principals and three alternatives, denoted by I, II, and III. The payo® functions are

such that the e±cient alternative II gives both principals a positive gross-payo®, whereas

the ine±cient alternatives I and III are desireable only for one of the principals. Fur-

thermore, the natural equilibrium selects alternative I, whereas the truthful equilibrium

selects alternative II.

The main result of the experiment is that alternative I is chosen in 65% of the matches,

while the alternative II is chosen in 3:6% of the matches. This result is a clear-cut rejection

of the hypothesis that subjects play according to the truthful equilibrium.

As we saw above, the alternative selected in the truthful equilibrium is always the

e±cient alternative. This property is used by the political economy literature which apply

5Besley and Coate [4] discuss the relation between truthfulness and e±ciency in the context of lobbying.

They also present the example of a nontruthful equilibrium which induces an ine±cient action. According

to our de¯nition, the nontruthful equilibrium considered by Besley and Coate is a natural equilibrium.
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common agency. Our experimental results suggest that the e±cient alternative need not

arise. This means that the lobbying process may be intrinsically ine±cient and that welfare

results obtained under truthful equilibrium are biased upwards.

We also look at the contribution schedules used by subjects. Compared to the con-

tributions predicted by the truthful equilibrium, our subjects contribute too little on the

`compromise' alternative II and too much on the extreme alternatives I and III. For

each type of principal, the di®erence between the contribution on the extreme alternative

and the contribution on the compromise alternative is so high that it prevents the other

principal from pro¯tably inducing the compromise alternative.

After rejecting the truthful equilibrium, we ask whether instead the natural equilib-

rium is a good predictor of behavior. The answer is less straightforward since players

did not coordinate at any equilibrium at all. We also hardly ever observe the choice of

any contribution schedule that belongs to an equilibrium. However, the observed out of

equilibrium play is consistent with the spirit of the natural contribution schedule. Each

principal focusses on her preferred alternative and bids aggressively on it. The contribution

on alternative II is positive most of the time, but it is only perfunctory in that it cannot

induce alternative II under any reasonable assumption on the other principal's strategy.

In conclusion, our experimental evidence is clearly inconsistent with the truthful equi-

librium and may be consistent with the natural equilibrium. We expect this result to hold

a fortiori in games with more than two principals because the computational complexity of

truthful equilibria increases faster than the computational complexity of natural equilibria.

A methodological contribution of the present work lies in the way we combine game

theory and computational complexity. To our knowledge, this work represents the ¯rst test

of a computational complexity measure as a predictor of behavior in strategic situations.6

We consider two equilibria. One { the truthful { is supported by traditional game-theoretic

re¯nements but has a high computational complexity, while the other is neither coalition-

proof nor e±cient but it is simpler to compute. In the game we consider, experimental

6Note that the sizeable literature on repeated games played by ¯nite automata (such as Abreu and

Rubinstein [1]) is related to strategy implementation complexity rather than computational complexity

and is entirely di®erent from the present work. This point will be made more explicit in Section 2.

Computational complexity has seldom been applied to noncooperative game theory. The only examples we

know of are Gilboa and Zemel [8] and Papadimitriou [18]. Gilboa and Zemel show that correlated equilibria

are simpler to compute than Nash equilibria. Papadimitriou studies the computational complexity of

repeated games. Outside noncooperative game theory, computational complexity has found application

in cooperative games (see for instance Megiddo [17] or Faigle et al [7]) and in general equilibrium (see

Rust [25]). Also, see Rubinstein [24] for a critical survey of bounded rationality models.
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evidence suggests that computational complexity is better than traditional re¯nements at

predicting actual play.

The plan of the paper is as follows. Section 2 contains the theory part. After reporting

the main results by Bernheim and Whinston on truthful equilibria, we de¯ne natural

equilibria and prove its properties. We also study the computational complexity of both

truthful equilibria and natural equilibria. Section 3 describes the design of the experiment.

Section 4 reports the results of the experiment with regard to the alternative chosen and

to the contribution schedules used. Section 5 concludes. The Appendix contains the

instructions of the experiment.

2 Theory

2.1 The model

In a common agency game, the players are one agent andm principals. The set of principals

is denoted with M = f1; : : : ;mg. The agent chooses an alternative out of a ¯nite set of
alternatives S. Each principal tries to induce the agent to take a particular alternative

rather than another by o®ering him a monetary payment which we denote as `contribution'.

Let tjs denote the contribution that principal j promises to make to the agent if the agent

chooses alternative s 2 S. The strategy of principal j is a contribution schedule tj, namely
a vector of contributions, one for each alternative in S. Contributions are restricted to be

nonnegative. If the agent selects alternative s he receives a total monetary contribution
P
j2M t

j
s. Contributions promised on alternatives other than the chosen alternative are not

paid (this is the di®erence between common agency and an all-pay auction).

The agent cares about how much money he receives and which alternative he chooses.

His payo® is assumed to be separable in money and alternative. Let G0s represent the

utility that the agent derives from alternative s. The sum of contributions he receives by

choosing s is
P
j2M t

j
s. Hence, the agent chooses s to maximize his net payo® G

0
s+

P
j2M t

j
s.

Each principal cares about how much money she pays to the agent and which alter-

native the agent chooses. The separability assumption is made for principals too. Let Gjs
denote the utility (gross payo®) principal j derives from s. The net payo® of principal j if

alternative s is chosen is Gjs ¡ tjs.7
7Dixit, Grossman, and Helpman [6] have shown that the main results of Bernheim and Whinston are

still valid if the principals or the agent have nonseparable preferences.
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The game is played in two stages. First, all principals simultaneously and noncoop-

eratively choose their contribution schedules. Second, the agent observes the principals'

contribution schedules and selects an alternative.8

2.2 Truthful Equilibria

Bernheim and Whinston [3] note that a typical common agency game has many equilibria9.

They propose to focus on one type of equilibrium, which they call truthful, and they prove

a number of important properties of truthful equilibria. This subsection reviews Bernheim

and Whinston's results.

De¯nition 1 The contribution schedule tj of principal j 2 M is said to be truthful if it

can be written as tjs = max(0; G
j
s ¡ uj) for all s 2 S, where uj is a constant. A truthful

equilibrium is an equilibrium of the common agency game in which all principals o®er

truthful contribution schedules.

A truthful contribution schedule follows the shape of the payo® function of the principal

plus or minus a constant, except that, when the contribution would be negative, the non-

negativity constraint requires a zero contribution instead. The main feature of a truthful

contribution schedule is that (but for the nonnegativity constraint) a principal who plays

truthful is indi®erent with regards of the alternative that the agent ends up choosing.

The properties of truthful equilibria that are relevant to our analysis can be summarized

as follows:10

Theorem 1 (Bernheim and Whinston) For any common agency game,

(i) For any j 2 M , given ftigi6=j, the set of best responses of principal j contains a
truthful contribution schedule;

(ii) There exists a truthful equilibrium;

8Prat and Rustichini [22] have extended the analysis to common agency games where principals choose

their contribution schedules sequentially. This paper will, however, focus exclusively on the simultaneous

case.
9We will focus on subgame perfect Nash-equilibria, which for simplicity will be referred to as equilibria.

10Theorem 1 is not stated directly in that form in [3]. Part (i) corresponds to Bernheim and Whinston's

Theorem 1. Part (ii) is an immediate consequence of Bernheim and Whinston's Theorem 2. Part (iii) is

Bernheim and Whinston's Theorem 3. Part (iv) is Bernheim and Whinston's Theorem 2.
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(iii) Every truthful equilibria is coalition-proof and every coalition-proof equilibrium is

payo®-equivalent to a truthful equilibrium.

(iv) In a truthful equilibrium, the agent chooses s¤ 2 argmaxs2S
P
j2M G

j
s+G

0
s. The vector

(nj)j2M is the vector of net payo®s for principals if and only if there exists positive

numbers (aj)j2M such that (nj)j2M satis¯es

max
fnjgj2M

X

j2M
ajn

j (1)

subject to

8J µ M;
X

j2J
nj ·

X

j2M
Gjs¤ +G

0
s¤ ¡max

s2S
(

X

j2M=J
Gjs +G

0
s) (2)

Part (i) of Theorem 1 says that, given the contribution schedules of the other principals,

a principal can restrict her attention without loss to truthful contribution schedules.

Note that (i) does not imply that a truthful equilibrium actually exists. Bernheim and

Whinston do, however, show the existence of a truthful equilibrium (Part (ii)), that is, they

prove that the set of equilibria of a given common agency game contains an equilibrium

which is truthful.

Part (iii) links truthful equilibria to coalition-proofness. The de¯nition of coalition-

proofness for common agency can be found in Bernheim and Whinston's article. For the

goal of the present paper, an informal de¯nition will su±ce. An equilibrium of a common

agency game is coalition-proof if there exists no coalition of principals that can bene¯t

by agreeing on a \self-enforcing" joint deviation from the equilibrium. The de¯nition of

self-enforcing deviation is recursive. A joint deviation for a given coalition is self-enforcing

if there exists no coalition within the given coalition that can bene¯t from a (self-enforcing)

deviation from the proposed joint deviation. Thus, Part (iii) of Theorem 1 says that there

is an essential equivalence between the set of truthful equilibria and the set of coalition-

proof equilibria. All truthful equilibria satisfy coalition-proofness and an equilibrium which

is not truthful, or payo®-equivalent to a truthful equilibrium, does not satisfy coalition-

proofness.11

11The fact that a truthful equilibrium is coalition-proof among the m principals does not imply that

it is Pareto-e±cient among the m principals if there are more than two principals. Indeed, Konishi, Le

Breton and Weber [14] provide a simple three-principal example of common agency game in which there

exists a non-coalition-proof equilibrium which gives each principal a strictly higher net payo® than every

coalition-proof equilibrium of the same game.
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Part (iv) supplies a complete and very useful characterization of truthful equilibria

(developed by Bernheim and Whinston and investigated in detail by Laussel and Le Bre-

ton [16, 15]). The alternative chosen by the agent maximizes the sum of gross payo®s of

all principals and of the agent. Note that (1) and (2) constitute a maximization problem

in which the unknowns are the equilibrium net payo®s of the m principals.

2.3 Natural Equilibria

This subsection contains the original theoretical contribution of this paper. We introduce

the concept of natural equilibrium and compare it to Bernheim and Whinston's truthful

equilibrium.

As already explained in the Introduction, complexity reasons make it plausible that

players use simpler strategies than those demanded by a truthful equilibrium. This is the

case when a player just picks one alternative and goes only for this alternative, i.e. makes a

serious contribution only to that alternative. We call such a strategy a natural contribution

schedule, and an equilbrium is natural if it is in natural contribution schedules. A way to

formalize this idea is

De¯nition 2 The contribution schedule tj of principal j 2 M is said to be natural if tjs = 0

for all s 2 S except, at most, one. A natural equilibrium is an equilibrium of the common

agency game in which all principals o®er natural contribution schedules.

Notice that a natural equilibrium is an equilibrium of the game. Hence, in a natural

equilibrium each principal has no incentive to use a more complicated strategy than the

equilibrium natural contribution schedule. The next two results are the equivalents for

natural equilibria of Parts (i) and (ii) of Theorem 1 discussed in the subsection on truthful

equilibria.

Proposition 1 For any j 2 M , given ftigi6=j, the set of best responses of principal j
contains a natural contribution schedule.

Proof: Given ftigi6=j , let ~tj denote a best response contribution schedule for j. Let ŝ be
the alternative chosen by the agent. Consider the contribution schedule t̂j such that t̂js = ~t

j
s

if s = ŝ and t̂js = 0 otherwise. As t̂
j leaves j's net payo® unchanged, it belongs to the set

of best responses of j given ftigi6=j .
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Proposition 1 shows that by o®ering a natural contribution schedule a principal is not

worse o® for any combination of contribution schedules of the other principals. Hence,

whatever strategies the other principals choose (natural, or truthful, or all others), each

principal has no incentive to deviate from a natural contribution schedule.

Of course Proposition 1 does not imply that a natural equilibrium actually exists.

However, we will see that one can construct a natural equilibrium as follows. Assume that

S contains at least two alternatives (If S contains only one alternative, all contribution

schedules are natural by de¯nitions). Let Ŝ = fs0 2 S : 9j 2 M; s0 2 argmaxs2SGjs +G0sg
and let

s¤ 2 argmaxs2Ŝ
X

j2M
Gjs +G

0
s (3)

and

¹s 2 argmaxs2Ŝ=fs¤g
X

j2M
max(0; Gjs ¡Gjs¤) +G0s ¡G0s¤: (4)

The set Ŝ comprises all the alternatives that are preferred by at least one principal, who

must compensate the agent for changes in G0s. The alternative s
¤ maximizes the sum of

payo®s of principals and agent within the set Ŝ. Alternative ¹s is the alternative to s¤,

within Ŝ, for which a coalition of principals is willing to pay the highest amount, after

compensating the agent for changes in G0s. As we will see, alternative s
¤ is the alternative

that the agent will select in the natural equilibrium.

Principals o®er contribution schedules ft̂jgj2M de¯ned as follows:

(i) If s 6= s¤ and s 6= ¹s, then t̂js = 0 for all j 2 M ;

(ii) For all j 2 M ,
t̂j¹s = max(0; G

j
¹s ¡Gjs¤); (5)

(iii) The vector ft̂js¤g´2M is such that, for all j 2 M ,

t̂js¤ 2 [0;max(0; Gjs¤ ¡Gj¹s)] (6)

and
X

j2M
t̂js¤ +G

0
s¤ =

X

j2M
t̂j¹s +G

0
¹s: (7)

Parts (i) and (ii) are clearly feasible, and, by the de¯nitions of s¤ and ¹s, it is possible to

¯nd ftjs¤gj2M which satis¯es Part (iii). Thus, contribution schedules ft̂jgj2M are feasible.

For future reference, denote ¹M = fj 2 M : Gj¹s ¸ Gjs¤g, i.e. ¹M is the set of all principals

who prefer ¹s to s¤. Let M¤ be the complement of ¹M on M .
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The contribution schedules de¯ned in (5), (6), and (7) are natural. All alternatives

receive zero contributions except two: s¤ and ¹s. Principals in ¹M prefer ¹s to s¤ and make

positive o®ers on ¹s. Principals in M¤ want s¤ and o®er just enough to make the agent

indi®erent between the two alternatives.

The following theorem shows that (s¤; ft̂jgj2M) is indeed an equilibrium of the common
ageny game and, therefore, guarantees the existence of a natural equilibrium (that it, the

set of equilibria of a given common agency game contains an equilibrium which is natural):

Theorem 2 Every common agency game has a natural equilibrium.

Proof: We want to show that alternative s¤ and contribution schedules ft̂jgj2M constitute
a natural equilibrium of the common agency game. This will ensure existence of a natural

equilibrium for every common agency game.

We have already argued that ft̂jgj2M are feasible. It is left to prove that neither the

agent nor any of the principals have a pro¯table deviation. As s¤ 2 argmaxs2SG0s+
P
j2M t̂

j
s,

the agent has no incentive to deviate from s¤. Suppose that principal j deviates from t̂j

and plays ~tj instead. Given ~tj, there are four possible cases:

(a) The agent still chooses s¤;

(b) The agent chooses ¹s;

(c) The agent chooses s0, where s0 6= s¤, s0 6= ¹s, and s0 2 Ŝ;

(d) The agent chooses s0, where s0 does not belong to Ŝ.

There are eight exhaustive cases of possible deviations corresponding to the combina-

tions of (a), (b), (c), and (d) with j 2 ¹M and j 2 M¤. For each of the eight cases, we

prove that a deviation is not pro¯table for principal j.

The case in which j 2 ¹M and (a) is obvious. If j 2 ¹M and (b), (5) and (7) imply that

~tj¹s > G
j
¹s ¡Gjs¤ and, therefore, a deviation is strictly not pro¯table. If j 2 ¹M and (c),

~tjs0 +G
0
s0 >

X

i2M
t̂is¤ +G

0
s¤ =

X

i2M
t̂i¹s +G

0
¹s =

X

i2M
max(0; Gi¹s ¡Gis¤) +G0¹s

¸
X

i2M
max(0; Gis0 ¡Gis¤) +G0s0 ¸ Gjs0 ¡Gjs¤ +G0s0;

where the strict inequality makes the agent choose s0 over s¤, the ¯rst equality is due to (7),

the second equality comes from (5), the ¯rst weak inequality is implied by the de¯nition of

10



¹s, and the second weak inequality is immediate. Then, ~tjs0 > G
j
s0 ¡ Gjs¤ and the deviation

is not pro¯table for j. If j 2 ¹M and (d), by the de¯nition of Ŝ, there exists an alternative

s00 2 Ŝ such that Gjs00 + G
0
s00 > Gjs0 + G

0
s0. Then, principal j increases her net payo® by

substituting ~tj with ~~tj in which ~~tjs0 = 0 and ~~tjs00 = ~tjs0 + G
0
s0 ¡ G0s00 . But, alternative s

00

belongs to either (a), (b), or (c), and therefore this deviation is not pro¯table.

The cases in which j 2 M¤ and (a) or (b) are obvious. If j 2 M¤ and (c), it must be

that

~tjs0 +G
0
s0 >

X

i2M
t̂i¹s +G

0
¹s =

X

i2M
max(0; Gi¹s ¡Gis¤) +G0¹s (8)

¸
X

i2M
max(0; Gis0 ¡Gis¤) +G0s0 ¸ Gjs0 ¡Gjs¤ +G0s0;

where the strict inequality makes the agent choose s0 over ¹s, the equality comes from (5),

and the ¯rst weak inequality is implied by the de¯nition of ¹s. (8) implies

~tjs0 ¸ Gjs0 ¡Gj¹s: (9)

The deviation is pro¯table if

~tjs0 < t̂
j
s¤ +G

j
s0 ¡Gjs¤ :

But, by (6), t̂js¤ · Gjs¤ ¡Gj¹s. Then, the deviation is pro¯table only if ~tjs0 < Gjs0 ¡Gj¹s, which
contradicts (9). Finally, the case j 2 M¤ and (d) is analogous to the case in which j 2 ¹M

and (d) and is omitted.

2.4 Computational Complexity

Next, we compare truthful equilibria and natural equilibria from the viewpoint of com-

putational complexity. Natural equilibria have an extremely simple structure because a

principal o®ers zero contributions for all alternatives but at most one. As we will see this

makes natural equilibria for the players much easier to arrive at than truthful equilibria.

To establish this result, we need some basic concepts of computational complexity which

are standard in computer science but may not be familiar to all economists.12 Consider

a class of well-de¯ned mathematical problems. An algorithm for that class of problems is

12See Papadimitriou [19] for an introductory text on computational complexity. Note that the notion

of computational complexity used here is radically di®erent from that used by Abreu and Rubinstein [1]

and other works in the literature on repeated games played by ¯nite automata (See Rubinstein [24] for a

survey and a discussion). In those works, players are bounded in their ability to implement strategies. In
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a sequence of simple instructions that solve any instance of problem in that class. The

size of a problem within a certain class is the dimension of the data input that de¯nes

the problem (the way to measure the dimension varies from class to class). In general the

number of simple instructions executed by the algorithm is increasing with the size of the

problem. For instance, a class of problems is matrix inversion. The size of the problem is

given by the dimension of the matrix. It takes a higher number of simple instructions to

invert a 3 by 3 matrix than a 2 by 2 matrix.13

The number of simple instructions determines the computation time necessary to ex-

ecute the algorithm. The crucial question asked in computational complexity is: at what

rate does computation time increase as the size of the problem increase? In particular a dis-

tinction is drawn between classes of problems for which computation time is a polynomial

function of size (solvable in polynomial time) and classes problems for which computation

time is a function that increases faster than any polynomial function (this is the case,

for instance, when time grows exponentially). The distinction is of practical importance.

Problems not solvable in polynomial time of large size have little hope of being solved,

even with the fastest computers available.

Let TRUTHFUL denote the problem of ¯nding a truthful equilibrium for a generic

common agency game through maximization problem (1) and (2). Analogously, NATU-

RAL is the problem of ¯nding a natural equilibrium for a generic common agency game

through (3), (4), (5), (6), and (7). Given a common agency game, both TRUTHFUL and

NATURAL have the same input: a matrix of gross payo®s for the m principals and for the

agent. Thus, we will take m to be the size of both TRUTHFUL and NATURAL.14

Theorem 3 (i) NATURAL is solvable in polynomial time; (ii) TRUTHFUL is solvable

in exponential time.

Proof: In linear programming, the size of the input of a problem is proportional to the

a one-stage game such as ours, such a notion would be of little interest. Instead, our players are bounded

in their ability to ¯nd optimal strategies (See also Papadimitriou [18] for discussion on the non-obvious

relation between limits to implementation and limits to computation).
13The computation time refers to a generic instance of the problem. It can therefore be seen as the

upper bound to the computation time. For instance, in the case of matrix inversion, the identity matrix

is very easy to invert, independently of its size, but clearly it is not a generic matrix.
14Clearly, the size of the input of a common agency game also depends on the number of possible

alternatives. However, it is easy to see that this not an important variable from the point of view of

computational complexity because in the algorithm the only operation that is executed across alternatives

is maximization, and maximization is linear in the number of alternatives.
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product of the number of variables with the number of constraints. It can be shown that

linear programming is solvable in polynomial time (see Papadimitriou [20, Theorem 8.5]).

Proof of (i): NATURAL includes two successive steps. First, Ŝ, s¤ and ¹s are found through

(3) and (4). Second, contribution schedules are computed through (5), (6), and (7). The

¯rst step involves an m+2 maximization problem. Its computation time is therefore linear

(and hence polynomial) in m. Regarding the second step, we make the following:

Claim: The problem of ¯nding a contribution matrix satisfying (5), (6), and (7) can be

rewritten as a linear program with at most m variables and at most m constraints.

Proof of the Claim: The equalities in (5) can be substituted into (7), which, in turn,

can be used as the objective function of the problem. The problem of ¯nding a natural

equilibrium can be rewritten as

min
t

X

j2M¤
t̂js¤

subject to

X

j2M¤
t̂js¤ +G

0
s¤ ¸

X

j2 ¹M
(Gj¹s ¡Gjs¤) +G0¹s

t̂js¤ · Gjs¤ ¡Gj¹s for j 2 M¤:

This is a linear program with ]M¤ variables and ]M¤ + 1 constraints. As ]M¤ · m, the

claim is proven.

By the Claim, the second step of NATURAL is a linear program of size at mostm(m+1).

As linear programming is solvable in polynomial time with respect to the size of its input,

also the second step of NATURAL is solvable in polynomial time and Part (i) is proven.

Proof of (ii): The number of possible coalitions among m principals is 2m. Hence, the

maximization problem in (1) and (2) is a linear program with m variables and 2m con-

straints. Therefore, its size is m2m. As linear programming is solvable in polynomial time

with respect to the size of its input, the maximization problem in (1) and (2) is solvable in

exponential time with respect tom. Hence, TRUTHFUL is solvable in exponential time.

The proof of Theorem 3 relies on the fact that both NATURAL and TRUTHFUL are

linear programs. They have the same number of variables: m. However, the ¯rst has

m + 1 constraints while the second has 2m constraints. The computation time of linear
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programming is known to be polynomial in the number of constraints. Hence, NATURAL

is polynomial, while TRUTHFUL is exponential, and therefore not polynomial.

What we have found in Theorem 3 is the time necessary for a game-theorist to compute

natural and truthful equilibria. Instead, what we are interested in is the time necessary

for a principal to compute her optimal strategy and not the whole equilibrium. However,

as neither truthful nor natural equilibria are in dominant strategies, the problem for one

principal of ¯nding her optimal strategy is equivalent to the problem of ¯nding the whole

equilibrium. A principal cannot know if the strategy she plays is optimal unless she knows

what all other principals are doing. The computation time obtained in Theorem 3 is the

computation time that the individual principals faces.

Theorem 3 does not exclude that there exists an algorithm that ¯nds truthful equilibria

in polynomial time. It only excludes that such an algorithm is based on the characteri-

zation provided in Theorem 1 Part (iv). Therefore, in principle one might ¯nd a simpler

alternative characterization of truthful equilibria which results in a polynomial time algo-

rithm. However, to the best of our knowledge, alternative characterizations are not known

(and the present one seems already quite simple, given the di±culty of the problem).

In this section we compared the properties of truthful equilibria and natural equilibria.

The two classes of equilibria share two properties: existence of best response within the

class, and existence of equilibria. However, there are two important di®erences. One {

coalition-proofness { is in favor of truthful equilibria: a natural equilibrium need not be

coalition-proof. The other property { computational complexity { is in favor of natural

equilibrium: ¯nding truthful equilibria is harder than ¯nding natural equilibria.15

3 Experimental Design

To evaluate the concepts of truthful and natural equilibria we implemented an experimental

design with one agent and two principals, denoted by A and B. The agent had to choose

between three alternatives, denoted by I, II, and III. The agent derived no utility from

any of these alternatives. On the other hand, the principals cared about which alternative

was chosen. Their gross payo®s derived from the alternatives were given by Table 1.

15Natural equilibria and truthful equilibria cannot be distinguished with respect to uniqueness. In

common agency games with more than two principals, there can be multiple truthful equilibria as well as

multiple natural equilibria.
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Table 1

I II III

A 17 11 0

B 0 7 12

As described in Section 2, both principals had to choose simultaneously a contribution

schedule in the ¯rst stage of the game. All contributions had to be nonnegative. To exclude

the possibility of losses, the contribution to an alternative had to be not above the gross

payo®s the principal received for that alternative.16

After the choice of the contribution schedules, the agent had to choose an alternative

in the second stage of the game. Principals' net-payo®s were given by their gross payo®

resulting from the chosen alternative minus their contributions to the chosen alternative.

Since the agent had no intrinsic interest in the alternatives, he should choose the al-

ternative with the highest sum of contributions, the winning alternative. This prediction

holds for any combination of contribution schedules of the principals. Truthful equilib-

ria and natural equilibria di®er in the contribution schedules of the principals, not in the

behavior of the agent. Principals' strategy choices are the focus of interest of our experi-

ments, not agent's behavior. Therefore, we substituted the agent by a rule stating that the

winning alternative (i.e. the alternative with the highest sum of contributions) is choosen

automatically.

In case of an equal sum of contributions for two or more alternatives, the tie was broken

by rolling a die with equal probabilities for all winning alternatives (see the instructions

in the appendix for a detailed description of the tie-breaking rule).17 For a continuous

strategy set of the principals this rule would lead to problems with the existence of an

equilibrium. But strictly speaking a continuous strategy set is not available in experiments

anyhow, since payments to the subjects have to be multiples of the smallest coin available,

which was in our experiments 5 (Dutch) cents. Hence, we demanded all contributions to

be multiples of 0.05.18

16Since losses are di±cult to enforce it is common in experimental economics to restrict the strategy set

such that losses are excluded. This only remove some dominated strategies that are not part of neither

the truthful nor the natural equilibrium.
17If the contribution schedules chosen by the principals are part of an equilibrium, theory assumes that

the agent breaks a tie such that the equilibrium is supported. To incorporate such a tie-breaking behavior

into the rule substituting the agent would be very di±cult to explain to the participants. Furthermore,

theory is silent about how ties are broken out of equilibrium.
18Simon and Zame [28] consider a class of in¯nite games which comprise common agency games and
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These changes in the game (substitution of the agent by a rule, probabilistic tie-breaking

rule, ¯nite strategy sets) led to inessential changes in the equilibrium predictions. Speci¯-

cally, the truthful and the natural equilibrium contribution schedules were given by

I II III

A 12 0 0

B 0 0 11:95

Table 2a: The Natural Equilibrium Contribution Schedules

I II III

A 10:95 5 0

B 0 6 10:95

Table 2b: The Truthful Equilibrium Contribution Schedules

with I (in case of the natural equilibrium) and II (in case of the truthful equilibrium)

being the chosen alternatives.19

The equilibrium net payo®s are 5 for A and 0 for B (for the natural equilibrium),

and 6 for A and 1 for B (for the truthful equilibrium). Notice that the main features of

the truthful equilibrium did not change: it is coalition-proof, and it depicts the e±cient

equilibrium.20 The sum of net payo®s for both principals is 40% higher in the truthful

equilibrium than in the natural equilibrium. Furthermore, both equilibria do not rest on

the assumption that in case of a tie the agent makes the right (i.e. equilibrium supporting)

decision - in both equilibria the rule just picks the alternative which would be agent's

unique best choice.

The experiments were conducted in a classroom. In each session 16 subjects partici-

pated. Each subject played the game six times, three times in the role of principal A and

show that in this class the limit of the equilibrium of a discretized game as the discretization becomes

¯ner is an equilibrium of the continuous game. Hence, our discretized game can be taken as a legitimate

approximation of the original game.
19In the experiments we substituted the agent by a rule. Therefore, an alternative was in fact not

chosen by the agent, but rather induced by the contribution schedules of both principals and the rule.

Nonetheless, we refer to that alternative as the 'chosen' or 'winning' alternative.
20In this game the truthful equilibrium is the Pareto-e±cient equilibrium for principals. Thus, we do

not exploit the example of an common agency game in which coalition-proofness does not imply Pareto-

e±ciency (See Footnote 11).
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three times in the role of B.21 Each subject knew beforehand whether she was principal A

or B in a certain round. Since it was common knowledge that each pair consisted of one

principal A and one principal B, everyone also knew whether her partner was principal A

or B. However, nobody knew the identity of her partner.

At the beginning of each session the instructions were read aloud (see Instructions in the

Appendix). Then the subjects had time to privately ask questions, and after that the ¯rst

round started. At the beginning of each round the principals had to choose simultaneously

their contribution schedules by inserting them into their decision form in the line \your

contributions" (see the decision form in the appendix). Then all contribution schedules

were transferred to the experimenters' documentation. After that, we rolled a die. This

was done irrespectively of whether a tie actually occurred or not22. Then we calculated

for each pair of principals which alternative was chosen, and indicated it in the subjects'

decision forms in the line \chosen alternative". We also inserted the contribution schedules

of their partners in the decision form in the line \contributions of your partner". Hence

each subject knew the alternative chosen as well as the strategy of the other principal.

After inserting the chosen alternatives and the partner's contribution schedules into the

subjects' decision forms, the next round started. After the last round, the net payo®s a

subject made in all rounds were summed up and paid to her in cash.

The subjects were matched so that nobody played twice with the same partner. This

was common knowledge. Furthermore, we used a matching protocol that maximized the

number of independent observations in the later rounds under the constraint that nobody

was matched twice with the same partner. Speci¯cally, we applied the following procedure:

In the ¯rst round the 16 subjects formed eight pairs in each session. At the beginning of

the second round, two ¯rst round pairs were merged to form a group consisting of four

subjects. Since this grouping remained the same in rounds 2 and 3 we refer to these

groups as \r2=3-groups". In rounds 2 and 3 each subject was matched with those members

of her r2=3-group with whom he had not been matched in the ¯rst round. This matching

protocol guarantees that every member of a r2=3-group did not experience any (previous or

contemporary) decision of a non-member - any in°uence from a decision of a non-member

on the behavior of a member can be excluded. Therefore, the decisions made within a

21This guaranteed that looking at the whole experiment all subjects were in a similar position. By

that, the impact of distributional concerns (fairness, envy, altruism), which very often shape experimental

results, was minimized.
22This excluded that subjects received any information about whether other pairs experienced ties.
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r2=3-group formed an independent observation
23.

At the beginning of the fourth round, two r2=3-groups were merged into one group of

eight participants. Since this grouping remained the same in rounds 4, 5, and 6 we refer

to these groups as \r4¡6-groups". In rounds 4 to 6 each subject was matched with three

of those members of her r4¡6-group with whom she had not been matched in a previous

round. This matching procedures guarantees that the decisions of every member of a r4¡6-

group were not in°uenced by any (previous or contemporary) decision of a non-member -

the decisions made within a r4¡6-group formed an independent observation.

On the whole we conducted 2 sessions. Therefore, we observed 16 ¯rst round pairs,

eight r2=3-groups, and four r4¡6-groups. The experiments took place at the Center for

Economic Research, Tilburg University, The Netherlands. The participants were students

of di®erent ¯elds, mainly of business administration and law. None of them was a student

of ours and none had knowledge in game theory or common agency theory.

A session lasted about 25 minutes net of going through the instructions. The aver-

age earnings of a participant was 15.12 H°, which was about 8.13 US$ at the time the

experiments were conducted (October 1998). Principal A earned on average 4.26 H° per

round, whereas B earned on average 0.78 H° per round. This brings us to the results of

the experiments which will be discussed in detail in the next section.

4 Results

Truthful and natural equilibrium di®er in two aspects: the alternative chosen and the

strategies which leads to a particular alternative. Hence, we ¯rst examine which alterna-

tives were chosen (Result 1). Then we analyze which contribution schedules were applied

by the principals (Results 2 and 3).

4.1 Chosen alternative

On the whole, we observed 96 choices of alternatives. In 4 times, a tie between 2 alternatives

occured, which was broken by using a die. In what follows we count these cases half for both

23Cooper, De Jong and Ross [5] introduced, and Kamecke [13] analyzed, a di®erent matching proto-

col that preserves the best-reply structure of a one-shot game while maximizing the number of rounds.

However, as also Kamecke [13, p. 411] explains, this does not imply that other, nonstrategic in°uences

between the players (such as learning) are excluded. Hence, such a protocol does not maximise the number

of independent observations, and it is, therefore, not helpful to increase the signi¯cance of statistical tests.
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winning alternatives. In total, we observed 62.5 cases where I was the winning alternative

(65% of all cases), 3.5 cases with II winning (3.6% of all cases), and 30 cases with III

winning (31.4% of all cases). This already indicates:

Result 1

(a) Alternative II was hardly ever chosen.

(b) Alternative I was chosen in most of the cases.

To establish this result, one can use a binomial test on the hypothesis that the winning

probability of II is larger than or equal to 10 %. This hypothesis has to be rejected at a

5% level.24 On the other hand the hypothesis that the winning probability of I is 50% or

less has to be rejected even at a 1% level.

Result 1 can also be inferred from Figure 1 which depicts the evolution of the relative

frequences of the chosen alternatives during the course of the experiments.

Insert Figure 1

In all rounds the frequency of alternative II chosen was less than 10 %, and in 3 rounds

we did not observe any case of II winning. In all rounds, alternative I as well as alternative

III occured more often than II. In the last 2 rounds, however, the gap between II and

III narrowed. On the other hand, alternative I won in more than half of the cases in all

rounds except round 1, and there was no tendency of the frequency of I to decline.

Due to spillovers between partners and due to change of partner from round to round,

the individual observations were of course not independent. Hence, tests based on individ-

ual observations like the binomial tests used above might be not appropriate. To construct

independent observations, recall that we matched subjects such that they formed r2=3-

groups consisting of four persons each whose decisions in round 2 and 3 were independent

of all decisions of all subjects not belonging to the same group. On the whole, we had

8 independent r2=3-groups. For each group we calculated the frequency of the di®erent

alternatives winning.25

24See [27, pp38] for a description of the binomial test.
25Each group made four choices. These four choices together can be summarized by the frequency

distribution over the chosen alternatives. Unlike the individual choices, frequencies of di®erent groups

were independent from each other. Hence, one can test whether the frequency of one altenative di®ers

from that of another alternative.
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r2=3-groups frequency of I frequency of II frequency of III

1 0:5 0 0:5

2 1 0 0

3 1 0 0

4 0:75 0 0:25

5 0:625 0 0:375

6 0:5 0 0:5

7 0:375 0 0:625

8 0:75 0 0:25

Table 3: The Relative Frequencies of the Chosen Alternatives in Rounds 2 and 3

As one can see from Table 3, in ¯ve groups I was chosen more often than III, in two

groups I and III were equally often chosen, and in one group III was chosen more often

than I. In two groups II as well as III never won, and in all other groups I as well as

III were chosen more often than II. Applying a Wilcoxon signed ranks tests26 for the

hypothesis that the frequencies of I and III were equal, we have to reject this hypothesis

at a 5% level (see Table 4).

I versus II I versus III II versus III

p-values 0:047 0:004 0:016

Table 4: Wilcoxon signed rank tests: the p-values for rejecting the hypothesis that the

frequencies of two alternatives in round 2 and 3 are equal.

Using the same test for the hypotheses that the frequencies of I and II, and II and

III, respectively, were equal, we have to reject both hypotheses even at a 2% level. Hence,

in round 2 and 3 we observe I signi¯cantly more often than the other alternatives, and II

signi¯cantly less often than I and III.

In the last 3 rounds we formed two independent r4¡6-groups in each session. In three

of these groups I won in 2/3 or more of all cases, and also in the forth group I was the

most often observed alternative.

26See [27, pp87] for a description of this test.
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r4=6-groups frequency of I frequency of II frequency of III

1 0:79 0 0:21

2 0:83 0 0:17

3 0:67 0:08 0:25

4 0:46 0:13 0:41

Table 5: The Relative Frequencies of the Chosen Alternatives in Rounds 4 to 6.

Using again a Wilcoxon signed ranks test the hypothesis that the frequency of I is equal

to that of II (or III) has to be rejected at a 10% level. The p-value is 6.25%, which is

the lowest possible level one can get with four observations. The same result holds for a

comparison between II and III. Hence, also in the last 3 rounds the 'natural' alternative

I was 'dominating', and the 'truthful' alternative II hardly ever won.

4.2 Contribution Schedules

We now turn to the contribution schedules chosen by the principals. The average con-

tribution of A for I (II) was 9.96 (2.92), whereas B's contribution to II (III) was 3.53

(9.08)27(see Table 6).

I II III

principal A 9:96 2:92 0

principal B 0 3:53 9:08

sum of contributions 9:96 6:45 9:08

Table 6: Average Contribution Schedules

This implies that actual contributions for all alternatives were lower than the contri-

butions of the truthful equilibrium. Compared with the natural equilibrium strategy, A's

(B's) contributions to I (III) were too low, whereas their contributions to II were too high

(compare Table 6 with Tables 2a and 2b). If we look at the development of the average

contributions of the rounds, we ¯nd that A's contribution to I increases, whereas there is

no clear trend for A's contributions to II. B tends to increase her contributions to II as

well as to III (see Figure 2).

Insert Figure 2

27Recall that A's contribution to III as well as B's contribution to I had to be zero.
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This already indicates that we hardly observe equilibrium play in the experiment.

We de¯ne that a contribution schedule is a near equilibrium schedule if the contribution

to any alternative di®ers no more than 5 cents from the actual strategy belonging to

the equilibrium. Given this de¯nition, we found 10 cases (out of 96) where principal A

chose a near equilibrium schedule of the natural equilibrium. We never observed that

A's strategy was a near equilibrium schedule of any other equilibrium. Furthermore, B's

schedule was never a near equilibrium schedule of any equilibrium (natural, truthful, or

any other). Consequently, we never observed that the chosen strategy combinations form

an equlibrium of the game - all observed behavior was out of equilibrium. In most cases the

out of equilibrium play was neither natural nor truthful. We say that a principal chooses

a nearly natural contribution schedule if her contribution schedule di®ers from a natural

contribution schedule by at most 5 cents on each alternative. An analogous de¯nition is

given for nearly truthful contribution schedules. Table 7 shows how often nearly natural

and nearly truthful schedules were chosen.

A - all rounds A - last 3 rounds B - all rounds B - last 3 rounds

natural 24(25%) 17(35%) 14(15%) 6(13%)

truthful 16(17%) 6(13%) 17(18%) 9(19%)

Table 7: Number of Cases of Nearly Natural and Nearly Truthful Contribution Schedules

Chosen by Principal A and B in All and Last 3 Rounds (percentages in parentheses).

This table shows that principal A chooses a nearly natural strategy more often than

a nearly truthful, and this tendency was much stronger in the last 3 periods than in the

beginning of the experiment. B chooses both types of strategies quite rarely, and there

seems to be no change over time.

However, even principal A in the last three periods chooses in most of the cases a strat-

egy that is neither natural nor truthful. Hence, we have to look whether actual schedules

exhibit at least the main characteristics of either truthful or natural strategies. Recall at a

truthful schedule is characterized by the feature that (but for the nonnegativity constraint)

a principal who plays truthful is indi®erent with regard to the chosen alternative. This

implies for the game at hand that A's schedule should make him indi®erent between I and

II 28, whereas B's schedule should make him indi®erent between III and II.29 Hence,

the di®erence between A's contribution to I and II should be 6, wheras B's contribution

28For alternative III the nonnegativity constraint is binding, anyhow.
29For alternative I the nonnegativity constraint is binding, anyhow.

22



to III and II should di®er by 5. The actual average di®erences were 7.04 and 5.55. To

see whether these numbers di®er signi¯cantly from 6 and 5, respectively, we use the indi-

vidual schedules to run a t-test for the hypothesis that tAI ¡ tAII = 6 (tBIII ¡ tBII = 5). This
hypothesis has to be rejected at the 1% (5%) level in favor of the counter-hypothesis that

the di®erence is larger than 6 (5). Since the individual observations are not statistically

independent, we also looked at the average schedules of the eight r2=3-groups and the four

r4¡6-groups. We found in 6 of the r2=3-groups and in all r4¡6-groups that t
A
I ¡ tAII > 6 and

tBIII ¡ tBII > 5. This leads to

Result 2 Player A's contribution schedules were not designed to make her indi®erent

between alternative I and alternative II.

Result 3 Player B's contribution schedules were not designed to make her indi®erent

between alternative III and alternative II.

Hence, we can conclude that the actual strategies did not exhibit the main feature of

truthful strategies. Do they exhibit the main feature of natural strategies, namely that

the principals focus on one alternative and bid agressively on it? To answer this question,

we ¯rst investigate the strategies employed by players A. Notice ¯rst that as long as the

di®erence between A's contribution to I and to II was larger than or equal to 7, II could

not win irrespectively of B's contributions. Hence, in these cases A's contribution to II

did not matter.30. For example, whether A chose a schedule like (12,0,0), which was the

natural strategy, or a strategy like (12,4,0) was completely irrelevant for A, since II could

not defeat I in both cases. Hence, if the di®erence between tAI and t
A
II was larger than

or equal to 7, we know for sure that A wanted I to be chosen, and the schedule clearly

quali¯es as an agressive bid on I. As already mentioned, the average di®erence between

A's contribution to I and II was indeed slightly above 7. If we look at the individual

strategies, we observe 38 (out of 96) cases were the di®erence was larger than or equal to

7 (see Table 8). In the last 3 rounds the di®erence was not below 7 in 26 (out of 48) cases.

tAI ¡ tAII > 7 tBIII ¡ tBII > 11
all rounds 38(40%) 19(20%)

last 3 rounds 26(54%) 15(31%)

30Recall that B cannot contribute more than 7 to II, since this is her payo® from II (see Table 1).

Furthermore, we assume B does not contribute 7 to II, since otherwise B's net-payo® would be zero even

if II wins. In fact we never observed that any B (A) chose a schedule such that she would have a zero

net-payo® if II or III (II or I) would have won.
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Table 8: Number of Cases in Which A's Schedule Excludes II (tAI ¡ tAII > 7), and
Number of Cases when B's Schedule Excludes II (tBIII ¡ tBII > 11) (in parentheses are the

percentages of all cases).

When we looked at the four r4¡6-groups, we found that in 3 out of 4 cases the group

average di®erence between A's contribution to I and II was larger than 7. Hence, in the

last rounds in at least half of the cases A's strategies excluded II from winning for sure31.

Up to now the discussion concentrated on whether A's strategy excluded the choice of

II irrespectively of what B contributes. To calculate this, we have to look at B's most

extreme possible contribution to II, namely 7. B's actual contributions, however, were

never that extreme (no case of tBII = 7 was observed), and we can plausibly assume that A's

expectations of what B will do were in°uenced by this experience. Hence, we assume that

A expect B's contribution to II to be at the highest level A previously experienced. Then

we calculate whether for these expectations A's contribution schedule excludes II from

winning32. Notice that this approach is rather unfavorable for I, because it speci¯es the

expectations such that II is most likely to defeat I. Nonetheless, A's actual contribution

schedules jointly with these expectations about B's contributions implied that on average

the sum of contributions for I exceeded the sum of contributions for II by 4.135. This

is a quite substantial di®erence, much larger than A's as well as B's average contribution

for II. Furthermore, for these expectations we ¯nd that in 60 individual cases (out of 64

cases33) A's schedule was such that alternative I would have defeated II. In 2 cases the

sum of contributions would have been equal and only in 2 cases II would have defeated

I. Taking the group average contributions of the eight independent r2=3-groups and the

average of the 4 independent r4¡6-groups, we found that in all cases A's contributions were

such that I would have defeated II.

All this evidence indicates that A's strategy choices can be summarized by

Result 4 Player A's contribution schedules were designed to get alternative I and to ex-

clude alternative II.

Players B had to decide whether they wanted to go for II or III. Their strategy

choices were characterized by

31schedule to II was never observed - A0s strategy never excluded I from being chosen.
32B's contribution to I had to be zero anyhow. Therefore, we do not have to make any assumptions

about A's expectations about B's contribution to I.
33In the ¯rst two rounds, no subject had played the role of A previously. Hence, no subject has previous

experience about B's contributions before the third round.
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Result 5 Player B's contribution schedules were designed to get alternative III and to

exclude alternative II.

Like player B excludes the choice of I whenever the di®erence between the contributions

to III and II was not less than 1134. This happened 19 times, 15 times in the last 3 rounds

(see Table 8). Hence, if we observed quite some cases that B contribited so agressively to

III that I was excluded. This tendency, however, was less pronounced for B than for A.

If we take the highest contribution of A to II as B's expectation about A's behavior, the

average expected sum of contributions for III exceeded that for II by 2.16. Furthermore,

B's schedule was in 53 (out of 64) cases designed such that III would defeat II, and only

in 7 cases II would defeat III; in 4 cases a tie would occur. Taking the group average of

the eight independent r2=3-groups and the group average of the four r4¡6-groups, we found

that in all cases B's contributions were such that III would have defeated II.

The strategies employed by the players resemble neither truthful nor natural strategies.

However, Results 2 and 3 show that players did not choose schedules which made them -

as required by the concept of truthful contributions - indi®erent between the alternatives.

Results 4 and 5 indicate that players A as well as players B rather wanted to enforce

their most preferred alternative which is in line with the spirit of of the concept of natural

contributions. Since players A were in the better position, they succeeded to do so most of

the time. Therefore, the natural alternative was chosen in most cases. If not, player B's

most prefered alternative was chosen, whereas the truthful (and e±cient) alternative was

hardly ever observed.

5 Conclusions

We have introduced a new class of equilibria for common agency games { natural equilibria

{ and we have compared it with the class that is commonly used in the literature { truthful

equilibria. By applying concepts from computational complexity, we show that playing a

truthful equilibrium is computationally much more demanding than playing a natural

equilibrium. Therefore, one is led to conjecture that natural equilibria may be more focal

than truthful equilibria.

This conjecture is partly con¯rmed by an experiment we conducted on a two-principal

common agency game in which the natural equilibrium and the truthful equilibrium pre-

dict di®erent alternatives. We hardly ever observed equilibrium play, neither truthful nor

34B would have excluded III. But this case happened only 2 times.
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natural nor any other equilibrium play. Out of equilibrium contribution schedules, how-

ever, were designed not in the spirit of truthful, but of natural strategies - players made a

serious contribution only on their most prefered alternative. This resulted in the choice of

the natural equilibrium in most of the matches, while the truthful alternative was almost

never selected.

One criticism that can be moved to our experimental evidence is that real-world players,

such as lobbies, have better computing resources than our experimental subjects. However,

in real-world situations, it is also often true that the number of principals is much higher

than two. For instance, in US federal politics the number of lobbies who make campaign

contributions is in the order of thousands. As we have shown, the di±culty of reaching

a truthful equilibrium is increasing at an exponential rate with the number of principals,

and, with few tens of principals, it may already be out of the reach of existing computer

technology. Hence, we strongly suspect that { not only in our experiment, but in many

real-world situations as well { natural equilibrium may be a better predictor of behavior

than truthful equilibrium.
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