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Abstract: 
The subject of this paper is a new approach to Symbolic Regression. Other publications on Symbolic 
Regression use Genetic Programming. This paper describes an alternative method based on Pareto 
Simulated Annealing. Our method is based on linear regression for the estimation of constants. Interval 
arithmetic is applied to ensure the consistency of a model. In order to prevent over-fitting, we merit a 
model not only on predictions in the data points, but also on the complexity of a model. For the 
complexity we introduce a new measure. We compare our new method with the Kriging meta-model 
and against a Symbolic Regression meta-model based on Genetic Programming. We conclude that 
Pareto Simulated Annealing based Symbolic Regression is very competitive compared to the other 
meta-model approaches. 
 
Keywords: approximation, meta-modeling, Pareto simulated annealing, symbolic regression. 
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1 Introduction 
In many scientific areas it is important to relate output of a system to its input. Getting insight into the 
sensitivities of outputs with respect to inputs or finding the best input values with respect to the outputs 
may require a large number of system evaluations. In many occasions, the amount of evaluations that 
can be used to do this is limited though. Therefore, meta-models (also called approximating models, 
compact models or response-surface models) are used to approximate the behaviour of the system. 
  
A typical example of such a process can be found in virtual prototyping tools, like Finite Element 
Analysis (FEA) software. These tools are used to predict physical properties of a product. Such 
simulations are often very time-consuming. A simulation run that takes hours is no exception, so the 
amount of experiments may be very limited. Parameters that are input to the simulation software are 
referred to as design parameters. Parameters that quantify the simulated physical behaviour are called 
response parameters. In simulation based optimization, values for the design parameters are searched, 
such that the response parameters are in some sense optimal.  
  
In literature, many types of meta-models are used. The most obvious choice is the first or second 
degree polynomial model (see Montgomery [1984]). More complicated model structures include 
rational functions (see Cuyt and Verdonk [1992]), Kriging models (see Sacks et al. [1989]), Support 
Vector Regression Machines (see Vapnik et al. [1997]), Neural Network structures like RBFs (see 
Powell [1987]), and Symbolic Regression (see Koza [1998]).  
 
An important advantage of Symbolic Regression is its flexibility. A meta-model that is found by 
Symbolic Regression is not restricted to a certain class of functions. Further, Symbolic Regression 
models are usually more interpretable. To the best of our knowledge, Symbolic Regression models are 
always used in combination with Genetic Programming (e.g., see Koza [1998], and for an example in 
engineering, see e.g. Gambling et al. [2001]). This paper introduces a Symbolic Regression approach 
that is not based on Genetic Programming, but on Simulated Annealing (see Aarts and Korst [1989]). 
The algorithm is extended with a number of new concepts. Complexity control is used to ensure 
interpretability of the resulting model. Pareto simulated annealing is used in order to find not only one 
best model, but a range of models on a best fit/complexity trade-off curve (see also Smits and 
Kotanchek [2004]). Further, linear regression (see Montgomery [1984]) is used to fit coefficients in the 
formulae. A binary tree data structure is used for fast neighborhood exploration. The resulting 
approximating model is compared to Kriging models and to Genetic Programming based Symbolic 
Regression on a number of typical cases from simulation based optimization.  
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The remainder of this paper is organized as follows: In Section 2, we describe the basic approach. 
Section 3 describes a number of extensions to the basic algorithm. In Section 4, we test our approach 
on several cases and compare the results to other meta-model types. In Section 5, we draw conclusions. 

2 Symbolic regression approach 
Symbolic regression is a technique for finding the best model in a very large class of candidates. The 
candidates are explicit symbolic formulae. In this section, we first describe the set of all possible 
approximating models. After that, we describe how to find the best approximating model.  

2.1 Model structure 
The set of functions in which we search for the best meta-model, consists of all functions that can be 
described as a linear combination of transformation functions. Each transformation function defines a 
transformation of the original parameters into a transformed parameter, using operators like addition, 
subtraction, multiplication, division, exponents, sine’s and cosine’s. Thus, an approximating model can 
be written as: 
 

( ) ( )∑=
i

n nxxigixxf ,...,1,...,1 α , ( 1 ) 

where xi is the ith input parameter and iα  is the multiplier of transformation function gi(x). Suppose for 
example, we have a problem with three inputs, x1, x2 and x3, with the following approximating model: 
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Once we know the transformation functions, the coefficients iα  can be calculated using linear 
regression. The problem of finding suitable transformation functions gi, that lead to a model that fits the 
data well, and is not too complex, remains. 
 
Each transformation function can be represented by a binary tree, consisting of nodes that represent 
(binary or unary) operators, input parameters or constants. The operators that we can select for a 
transformation tree are listed in Table 1. A root node can only be a constant or an input parameter; 
other nodes can only be operators.  

 
Operator Formula  Operator Formula 

SUM LR +   ROOTB R  
DIFFA RL −   LOGA ( )Llog  
DIFFB LR −   LOGB ( )Rlog  
MULT RL ⋅   EXPA Le  
DIVA RL   EXPB Re  
DIVB LR   SINA ( )Lsin  

POWERA RL   SINB ( )Rsin  
POWERB LR   LEFT L  
ROOTA L   RIGHT R  

Table 1. The operators that are used in the transformation functions. ‘L’ refers to the value of 
the left sub-tree, ‘R’ refers to the value of the right sub-tree. 

 
The second transformation function of example ( 2 )  is depicted in Figure 1. 
 

 



 

Figure 1. Example of the transformation function 
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To make reference to a node in the parse tree easier, we assign an index to each node. The assignment 
is done from left to right as depicted in Figure 2. This numbering has the great advantage that we can 
distinguish between function and terminal nodes just by looking at the index. All function nodes have 
an odd numbered index and all terminal nodes an even numbered index. Since terminal nodes have a 
distinct application in our algorithm (they can only contain variables or constants), this speeds op the 
algorithm. 

 

 
Figure 2. The data structure of the model tree. 

                         

2.2 Finding the best transformation functions 
In this section, we describe how to find good transformation functions that compile the meta-model. 
First, we describe the basic algorithm. Then we zoom into details on data representation, the quality 
aspects of the model that we want to optimize and how they are calculated. The Simulated Annealing 
based algorithm is formulated in Algorithm 1. For a general description of Simulated Annealing, see 
also Aarts and Korst [1989]. 
____________________________________________________________________ 
 
0: Initialize: select a good initial set of transformation functions 
   Repeat  
1:   Adapt annealing temperature 
2:   Select a transformation function 
3:   Change the selected transformation function 
4:   Check the integrity of the model 
     If the integrity-check is OK then 
5:     Calculate the coefficients of the model 
6:     Evaluate the quality of the approximating model 
7:    Accept the change if the model is better, or accept with probability based on                   

annealing temperature when the model is worse 
       If the model is changed 
8:       Simplify the selected transformation function 
       Endif 
     Endif 
9: Until stopping criterion is reached  
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____________________________________________________________________ 
Algorithm 1. The Symbolic Regression algorithm based on Simulated Annealing 
 
In the following, we describe each of these steps: 
 
Step 0: Initialization 
The transformation function i is initialized as depicted in Figure 3. The abbreviations “r.o.” and “r.v.” 
mean random operator and random variable respectively.  

 

 
Figure 3. The initialized transformation function. 

 
The number of transformation trees and their depth are user defined and fixed during the algorithm.  
 
Step 1: Adapting the annealing temperature 
We describe the changing of the annealing temperature in Step 7. 
 
Step 2: Selecting a transformation function 
A random transformation function is selected for change. 
 
Step 3: Changing a transformation function 
A transformation function is changed by randomly selecting a position in the function tree, and setting 
its contents at a randomly chosen operator, input parameter of constant. In case a constant is set, the 
value of this constant is chosen randomly. An example of such a change is the following. Suppose that 
at some point during the algorithm a transformation function has the form depicted in Figure 1. This 
tree evaluates to 
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After changing the node containing the operator DIVA to ROOTA, the transformation function will 
become 
 

( ) ( )21321 sin,, xxxxxf += . ( 4 ) 
 
Step 4: Integrity checking 
Since the transformation functions are changed randomly, it is possible that a proposed transformation 
cannot be evaluated in one or more points of the domain for which the model is used. Examples are 
singularities caused by division by zero and square roots of a negative number. Usually this is not 
desired behaviour. It is therefore necessary that we restrict the algorithm to those transformation 
functions that can be evaluated on the entire domain. The validity on a domain can be calculated using 
interval arithmetic, see Keijzer [2003].  
 
The basic idea is the following: given the domain of the input parameters, we can easily calculate a 
(sometimes conservative) domain for each node in the function tree. Using these node domains, we can 
easily compute whether or not a function is valid on the domain; for example, a partly negative domain 
in combination with a square root leads to an invalid function. 

left 

left r.o. 

xi 

r.o. 

r.v. r.v. 

left 

r.v. 



 
The interval arithmetic rules are denoted in Table 1. The columns lower bound and upper bound 
describe the formulae needed to calculate the domain of the function represented by a (sub) tree based 
on the domain of the left and the right sub-tree. The invalid if column describes when a (sub) tree is 
considered to be possibly invalid. 

 
Operator Lower bound Upper bound Invalid if 

SUM 21 lblb +  21 ubub +   
DIFFA 21 ublb −  21 lbub −   
DIFFB 12 ublb −  12 lbub −   
MULT { }21212121 ,,,min ubublbubublblblb  { }21212121 ,,,max ubublbubublblblb   
DIVA { }21212121 /,/,/,/min ubublbubublblblb

 
{ }21212121 /,/,/,/max ubublbubublblblb  [ ]22 ,0 ublb∈

 
DIVB { }12121212 /,/,/,/min ubublbubublblblb

 
{ }12121212 /,/,/,/max ubublbubublblblb  [ ]11,0 ublb∈

 
POWERA { }0,,,,min 2222

1111
ublbublb ubublblb   

if [ ]11,0 ublb∈  

{ }2222
1111 ,,,min ublbublb ubublblb  

otherwise 

{ }0,,,,max 2222
1111
ublbublb ubublblb  

if [ ]11,0 ublb∈  

{ }2222
1111 ,,,max ublbublb ubublblb  

otherwise 

01 <lb  

POWERB { }0,,,,min 1111
2222

ublbublb ubublblb  
if [ ]22 ,0 ublb∈  

{ }1111
2222 ,,,min ublbublb ubublblb  

otherwise 

{ }0,,,,max 1111
2222

ublbublb ubublblb  
if [ ]22 ,0 ublb∈  

{ }1111
2222 ,,,min ublbublb ubublblb  

otherwise 

02 <lb  

ROOTA 
1lb  1ub  01 <lb  

ROOTB 
2lb  2ub  02 <lb  

LOGA ( )1log lb  ( )1log ub  01 <lb  
LOGB ( )2log lb  ( )2log ub  02 <lb  
EXPA ( )1exp lb  ( )1exp ub   
EXPB ( )2exp lb  ( )2exp ub   
SINA 1−  1   
SINB 1−  1   
LEFT 1lb  1ub   

RIGHT 2lb  2ub   
Table 2. Rules for interval arithmetic. 

 
As mentioned, this approach may be quite conservative: valid functions exist that are rejected on basis 
of the above rules. For example, consider Figure 4. Suppose that variable x1 has a range of [-1,1]. 
Using the rules, the domain of the sub-tree starting at ‘mult’ will be estimated at [-1,1]. So, this will be 
considered an invalid tree, because the square root could be taken of a negative number. In reality of 
course, the range of the sub-tree starting at ‘mult’ should be [0,1], leading to a valid tree. This is not a 
significant problem though, since we simplify the function and check again if the function is considered 
invalid. 



 
Figure 4. Example of a model tree for which the interval arithmetic rules are too strict. 

 
Step 5: Calculating the coefficients 
After the transformation functions are determined, the problem of calculating the coefficients is a 
Linear Regression problem.  
 
Step 6: Evaluating the quality of a meta-model 
The quality of the changed meta-model is evaluated on basis of two criteria. First, the meta-model 
should fit well to the data in the training set. For this, we calculate the Root Mean Squared Error 
(RMSE):  
 

( )( )
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in which iy  represents the output of simulation i, ix  represents the input of the model of simulation i, 
m the number of simulations and ( )xf  the approximating model. Since trying to find a perfect RMSE 
does not prevent us from over-fitting, we use the leave-one-out cross-validation measure, which is 
defined as 
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CV-RMSE , ( 6 ) 

 
where if−  denotes the meta-model obtained by fitting all simulation data except simulation i. So, m 
times a fit is made based on m-1 simulations, where the remaining simulation is only used for model 
validation. Note that the CV-RMSE can be quickly evaluated using the Projection Matrix (this method 
uses only one calculation of a solution to a system of linear equations, whereas m solutions to a linear 
system of equations are needed in the straightforward method for calculating formula ( 6 )). Note that 
for the calculation of the CV-RMSE, we only re-fit the linear coefficients and not the model structure. 
Further, the meta-model should be interpretable, i.e. not too complex. A measure that estimates this 
quality is described in Section 3.2. 
 
Step 7: Acceptance of a change 
If the change in the transformation function results in an improvement of the objective function, the 
change is always accepted. To avoid getting stuck in a local minimum, we sometimes have to accept a 
deterioration of the objective. The greater the deterioration, the smaller is the probability of acceptance. 
The probability of acceptance is given by: 
 

cobjectiveeP ∆−= , ( 7 ) 
 
where objective∆ is the change in the quality of the meta-model compared to the previous iteration, and  
parameter c is the annealing temperature. In Simulated Annealing this parameter gradually decreases 
for every iteration, lowering the probability of accepting big deteriorations of the objective. The general 
idea is that at the start of the search, we would like to have a broad look at all parts of the solution 
space. Thus, we have to accept relatively large deteriorations. The closer we get to the end of the 

sqrta 

x1 

... 

... ... 

mult 

x1 



search, the smaller the chance that a large deterioration will eventually lead to an improvement of the 
objective, hence the smaller the probability should be that large deteriorations are accepted. 
 
A difficulty using simulated annealing is determining a start value for annealing temperature c, because 
this implies that we have to quantify a “large deterioration”.  This is particularly difficult in symbolic 
regression, because this means that we need to be able to tell beforehand how well the quality of a 
function can probably become. Therefore we introduce the new concept of re-annealing. 
 
The annealing is started with a temperature that is a percentage of the first objective value. After a 
number of iterations, it is checked how often a change is accepted and rejected. If too many changes are 
accepted, the starting temperature was too high and hence we start the annealing again with half the 
temperature. If on the other hand too few changes were accepted, the temperature was too low and we 
start with double the temperature. We continue this until a suitable temperature is found.  
 
 
Step 8: Simplification 
Obviously, random changes in the transformation functions may lead to functions that can be 
simplified. Symbolic simplification is very time-consuming though. Therefore, only some simple rules 
are checked after each iteration:  

1. If a function node evaluates to a constant, the sub-tree starting at that node is replaced by a 
constant term. The value of the constant term is equal to the constant output of the function 
node. 

2. If the left and right arguments of a function node are equal, we can make replacements for 
certain functions. For example, 

• f(x) + f(x) is replaced by 2  f(x). 
• f(x) - f(x) is replaced by 0. 
• f(x) / f(x) is replaced by 1. 
• f(x) f(x) is replaced by f 2(x). 

 
The simplification is only carried out when the changed solution is accepted by the simulated annealing 
algorithm. The simplification rules are applied as long as changes are made during the previous 
application of the simplification rules. Whether this simplification step has a positive effect on the 
search depends very much on the case. The effect may be negative since simplifications make the 
transformation functions smaller, causing a change to be relatively large on average. Future research 
will show if this step is beneficial for the search. 
 
Step 9: Stopping criterion 
If the maximum number of iterations is reached, or if the approximation is evaluated as good enough, 
the algorithm stops. The maximum number of iterations is typically 200,000. 

3 Extensions to the basic algorithm 

3.1 Reasons for extension 
As mentioned in the introduction, meta-models are often used in situations where getting data with the 
real model is too time-consuming. Fitting functions on these data-sets implies the risk that we find a 
function that only fits well on this particular data-set but does not describe the general behaviour of the 
system. This problem is called over-fitting. Using the CV-RMSE instead of only the RMSE to measure 
the quality of the meta-model already reduces the risk of over-fitting, but it does not remove it.  
 
Furthermore, to improve interpretability of the meta-model, the depth of the function trees is limited in 
the basic algorithm. However, this has two drawbacks. Firstly, the function tree depth does not always 
represent the complexity of a function. For instance, a sinus-operator is often considered more difficult 
to interpret than a plus-operator although they both require one function node. Secondly, the upper 
bound on the tree depth has to be set by the user. It is difficult to set this value beforehand. 
 
The extensions we describe in the next subsections are meant to reduce over-fitting and improve 
interpretability. First we introduce a complexity measure, which aims to measure interpretability and 
penalize possible over-fitting. Second, instead of putting an upper bound on the complexity value we 



add minimisation of complexity as a second objective. To deal with the two objectives, we use an 
algorithm based on Pareto simulated annealing. 

3.2 Complexity measure 
The basic idea of the complexity measure is that the complexity of a model is measured by the minimal 
degree of the polynomial necessary to approximate the model with a precision ε in a set of points S. 
The idea behind this is that over-fitted meta-models often have high oscillation. This makes them 
difficult to approximate, and results in a polynomial of a high degree to obtain the required precision.  
 
To determine the necessary complexity of the approximating polynomial, we use the function tree 
representation. We calculate the complexity in every node from the terminal nodes to the root node. We 
use calculation rules for the binary and nested operators. For the unary operators we calculate the 
complexity by successively approximating the function by a polynomial of increasing degree. This 
method is based on Garishina and Vladislavleva [2004]. However, we use different calculation rules 
and a different method for approximation of unary operators. The main difference is in the method for 
approximation of unary operators. In the measure of Garishina and Vladislavleva, a polynomial with 
increasing degree is fitted in a fixed number of points until the approximation of the polynomial to the 
unary operator in these points is accurate enough. In our approach, we apply polynomial interpolation 
through an increasing number of training points until the accuracy in a certain test set is high enough. 
Other differences are that we use some different calculation rules and take the number of nodes in a 
function explicitly into account to make the measure more discriminative. 
 
To determine the complexity of the terminal and binary function nodes, we use a set of calculation 
rules. The complexity of a constant node is zero and the complexity of a variable node is one. The rules 
for binary and nested operators are derived from relations between polynomial interpolations and are 
listed in Table 3.  
 

Operator Complexity rule 
)()( ygxf +

 
{ }))(()),((max ygcomplxfcompl  

)()( ygxf −
 

{ }))(()),((max ygcomplxfcompl  

)(*)( ygxf
 

))(())(( ygcomplxfcompl +  

)(/)( ygxf
 

))(/1())(( ygcomplxfcompl +   (special case of )(*)( ygxf ) 

))(( ygf  ))((*))(( ygcomplxfcompl  
constxf )(  constxfcompl *))((  if Ν∈∧≥ constconst 0  (special case of )(*)( ygxf ) 

)(*))(( constycomplxfcompl  otherwise, where y is a variable with the same 
range as )(xf  

)(xfconst  )(*))(( yconstcomplxfcompl  with y a variable with the same range as )(xf  
)()( ygxf  Use the relation )))(ln(*)(exp()( )( xfygxf yg =  in combination with the 

previous rules. 
Table 3: Complexity rules for binary and nested operators. 

 
The complexity rules serve as an approximation to the complexity as defined by the minimal degree of 
the polynomial necessary to approximate the model. To explain the above calculation rules, let us first 
define ))(( xfPS  as a polynomial that interpolates )(xf  in a set of points S . The function 

))(())(( ygPxfP TS +  then forms a polynomial interpolation of )()( ygxf +  in the set of points TS × , 
because the sum of two polynomials is again a polynomial. The degree of this polynomial is at most the 
maximum of the degrees of ))(( xfPS  and ))(( ygPT . This explains the calculation rule for addition. 
The calculation rule for nested functions follows from replacing every x  in ))(( xfPS  by ))(( ygPT . This 
gives a polynomial with a degree equal to the product of the degrees of ))(( xfPS  and ))(( ygPT . 
The other rules are obtained in a similar way and will therefore not be discussed. 
 



The complexity of a unary function node is determined in the following way. First, we determine the 
minimal size of the training set such that the unique polynomial interpolation through the data in the 
training set approximates the unary operator good enough. The polynomial interpolation is only 
considered on the range of the input argument of the unary operator. This range is determined by the 
interval arithmetic (see Section 2.2, step 3). The approximation is considered good enough if the 
maximum approximation error on a test set is below a user-defined threshold ε. The test set consists of 
a number of data points located between the interpolation points.  
 
The algorithm to determine the complexity of a unary function node is described in Algorithm 2. 
____________________________________________________________________ 
 
Initialize: Approximate the range of the input values with interval arithmetic 
            Set k = 1 
Repeat 
  Increase k by 1  
  Create a training set consisting of k Chebyshev points 
  Find the interpolating polynomial of degree at most k-1 
  Create a test set 
Until the maximum error on the test set is below ε  
 
Complexity of the unary operator is k-1 
____________________________________________________________________ 
Algorithm 2. Method for determination of complexity for unary operators. 
 
The reason for sampling Chebyshev points instead of equidistant points for the training set is avoiding 
Runge’s phenomena.  Runge’s phenomena states that for some functions the approximation by a 
polynomial interpolation through an increasing number of equidistant points on a fixed interval gets 
worse when the number of points increases.  However, in Algorithm 2 we assume that the 
approximation does get better when we use more points. Fortunately, this does hold for Chebyshev 
points because they do not suffer from Runge’s phenomena (Mathews et al. [2004]).  

3.3 Pareto simulated annealing 
Now that we have determined a complexity measure, we still need a method for finding a function with 
a desired quality and complexity. The main problem is that functions with better fit generally have a 
higher complexity (over-fitting). The trade-off decision between fit and complexity is difficult to make 
before we have any results. We regard maximizing meta-model quality and minimizing complexity as 
two separate objectives and use a multi-objective combinatorial optimisation (MOCO) method to find 
multiple good solutions. 
 
The use of simulated annealing in the basic algorithm makes it a natural choice to use the multi-
objective extension called Pareto simulated annealing; see Czyżak and Jaszkiewicz [1998]. Pareto 
simulated annealing does not try to find a solution that is optimal according to one objective, but 
instead to find an approximation of the Pareto set. The Pareto set is the set of Pareto optimal solutions. 
In our situation, Pareto optimal solutions are defined by the fact that their meta-model quality cannot 
improve without deteriorating the complexity and vice versa.  
 
The two main differences between “normal” simulated annealing and Pareto simulated annealing are 
the method for comparing two solutions and the method for determining the amount of difference in 
performance of two solutions.  
 
In Pareto simulated annealing, comparing two solutions f1(x) and f2(x) leads to four possible scenarios: 

• f1(x) and f2(x) are equally good: f1(x) and f2(x) are equally good on all objectives. 
• f1(x) dominates f2(x): f1(x) is at least equally good as f2(x) on all objectives and better on at 

least one. 
• f1(x) is dominated by f2(x): f1(x) is at most equally good as f2(x) on all objectives and worse on 

at least one. 
• f1(x) and f2(x) are mutually non-dominating: f1(x) is worse than f2(x) on at least one objective 

and better on at least one other objective. 
We choose to always accept f2(x) if it dominates f1(x) or if it is equally good as f1(x). We only accept 
f2(x) with a certain probability if it is dominated by f1(x) or if f1(x) and f2(x) are mutually non-
dominating.  
 



The acceptance probability depends among others on the amount of difference in performance of the 
two solutions. To determine this difference we need to convert the performances on multiple objectives 
into one single measure. For this, we choose to use the dominance based performance measure. This 
measure is introduced in Smith et al [2004] for general Pareto simulated annealing, and solves some 
drawbacks of more traditional measures like the weighted sum. The dominance based performance 
measure is defined by:  

( ) ( )(x)f(x)f FPAFPA
F|P|A

(x)f(x)fE
21

~~
~
1,Δ 21 −= , ( 8 ) 

with: 
- APF  :  Set of solutions that approximate the Pareto front. 
- FPA~  :  ( ) ( ){ }xfxfAPF 21 ,∪  

- f(x)FPA~ :  Set of solutions in FPA~  that dominate ( )xf . 
 
An example of an APF is depicted in Figure 5 by the circles. 
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Figure 5. Example of the APF and the attainment surface. 

 
So, the performance of a solution is measured by the percentage of solutions in FPA~  that it dominates. 
An advantage of this measure is that solutions that are not dominated by a solution in the current 
APF are always accepted, which is not always the case with other measures. Furthermore, solutions in 

sparsely populated areas of the APF generally have a better performance than solutions in densely 
populated areas. This stimulates the search of a set of solutions that is evenly spread over the APF .  
 
The main drawback of the measure is that performance differences can be relatively high when 
the APF contains few points. This can result in a coarse acceptance probability distribution meaning 
that a slightly worse fit or complexity can result in a large reduction of acceptance probability. Smith et 
al [2004] present a number of methods to alleviate this problem. The solution we choose to prevent 
this, is to create extra points evenly spread on the attainment surface of the APF as described in Smith 
et al [2004]. The attainment surface of the APF is the boundary of the area containing all points 
dominated by the points in the APF. The points in the APF are thus on the attainment surface. In Figure 
5, the attainment surface is depicted by the black line. The extra points are created on the part of the 
attainment surface that lies between the solution with the highest complexity and the solution with the 
lowest complexity. This part of the attainment surface is depicted in Figure 5 by the thick part. Half of 
the extra points are now evenly spread over the horizontal parts and the other half over the vertical 
parts. An important advantage of this solution is that it maintains both above described advantages of 
the dominance based performance measure. 
 
The Pareto simulated annealing version of Algorithm 1 is described in Algorithm 3. Note that step 6 
and step 7 are adapted and that step 9 is added. To efficiently store and update the APF  we use two 
vectors containing respectively the complexities and fits of the functions in the APF . In these vectors, 
the functions are ordered according to increasing complexity. For functions in the APF , this is 
equivalent to sorting them according to decreasing fit. With these two vectors we can easily determine 
if the current solution dominates or is dominated by solutions in the APF . We only change the APF  
in two ways. Firstly, if some solutions in the APF  are dominated by the current solution, we remove 



these solutions. Secondly, if no solution in the APF  dominates our current solution, the current 
solution is added to the APF . 
 
____________________________________________________________________ 
 
0: Initialize: find a good initial set of transformation functions 
   Repeat  
1:   Adapt annealing temperature 
2:   Select a transformation function 
3:   Change the selected transformation function 
4:   Check the integrity of the model 
     If the integrity-check is OK then 
5:     Calculate the coefficients of the model 
6:     Evaluate the quality and complexity of the approximating model 
7:     Always accept the change if the model dominates its predecessor or if it is 
         equally good. 
       Otherwise, accept the change with a probability based on the performance  
         difference and the annealing temperature. 
       If the model is accepted 
8:       Simplify the selected transformation function       
9:       Compare the model with the current APF and update the APF if necessary 
       Endif 
     Endif 
10: Until stopping criterion is reached  
____________________________________________________________________ 
Algorithm 3. The Pareto simulated annealing version of the symbolic regression algorithm. The 
differences to Algorithm 2 are noted in italics. 

4 Numerical comparison to other meta-model types 
In this Section we present a comparison between our suggested approach and two other meta-models 
approaches. First of all, we compared the results of our algorithm to the Kriging model. Next, we 
compared the results to Symbolic Regression based on Genetic Programming. We used the 
implementation of Smits and Kotanchek [2004] to compare our results. 
 

4.1 The six-hump-camel-back function 
The first case is called the six-hump-camel-back function. This is an explicit formula, which has the 
advantage that we can accurately asses how the approximations compare to the real function. For the 
training set, we created a two dimensional space-filling Latin Hypercube Design (LHD) containing 30 
experiments on the range [-2, 2] x [-1, 1]. The explicit formula is given by: 
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Figure 6. The six-hump camel back function (left) and the meta-model (right). 

 
The best symbolic regression function that was found on this data set is selected by choosing the 
function with the lowest RMSE with an acceptable complexity from the Pareto Front. The chosen 
meta-model is given by: 
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where ci is a constant. Note that all constants can be fit using linear regression except c7, which was 
randomly entered by our algorithm. Further note that the formula ( 10 ) has very little resemblance to 
formula ( 9 ). The APF after 200,000 iterations was calculated in a few minutes. The APF is depicted in 
Figure 7. 
 
In order to compare the actual quality of the metamodel, we created another test set of 30 experiments. 
The results are printed in Table 4. 
 
 
 Training set Test set 
Kriging model 0 0.1119 
Symbolic regression model / SA 0.0367 0.0386 
Symbolic regression model / GP 0.114 0.141 

Table 4. Results for the meta-models on the six-hump-camel-back case 
 
These results were found with a maximal tree depth of 4. Increasing the tree depth to 6 led to 
considerably more complex meta-models, but also even better results on the test and training set. 
 

 
Figure 7. A linear interpolation of the points in the APF for the six-hump camel back case after 
200,000 iterations, in which the crosses represent the Pareto optimal solutions. Note that this is 

not the attainment surface of the APF.  
 
The second test case is also based on an exact formula. This example originates from Smits and 
Kotanchek [2004] of Dow Core R&D. The data consists of five input variables ( ) 5

51 ]4,0[,..., ∈xx , of 
which only the first two (x1 and x2) are significant. The output variable (y) consists of two parts. The 
first part is an explicitly known formula, the second part is noise. The explicitly known formula is 
given by  
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to which we will refer as the Kotanchek formula. In Figure 8, a plot of the Kotanchek formula is 
depicted. 
 



 
Figure 8. The second example is based on an explicit function in x1 and x2, with added noise. 

 
We assume the noise to be uniformly distributed in the interval [-0.05, 0.05]. On 100 data points, four 
Pareto fronts were created in 200,000 iterations using different settings of the algorithm: two or six 
terms and a tree depth of four or seven. For each of the settings, a good function was chosen from the 
Pareto front by selecting a function with a low RMSE and an acceptable complexity, and for which the 
RMSE cannot be improved much by selecting a function with higher complexity. Then, a test set of 50 
data points is generated. Table 5 contains the results for this experiment. The results are compared with 
the Kriging model. On the test set, the result of the Kriging model is comparable to the best symbolic 
regression model. It is far less interpretable though, since it consists of 100 terms in which all 5 
dimensions are present. 
 

Meta-model #terms Tree depth Training set RMSE Test set RMSE 
1 2 4 0.111 0.090 
2 2 7 0.104 0.088 
3 6 4 0.056 0.052 
4 6 7 0.041 0.037 

Kriging   0 0.039 
Symbolic regression model/GP   0.033 0.048 

Table 5. The training set and test set results for the four symbolic regression models and the 
kriging model. 

 
The four meta-models are depicted in Figure 9. 
 

 
2 terms, depth 4    2 terms, depth 7 



 
  6 terms, depth 4    6 terms, depth 7 
 

Figure 9. The four meta-models for the Kotanchek set. The variable x3 is fixed to 0. 
 
We conclude that for this experiment, even the complexity used by the model with six terms and a tree 
depth of seven, over-fitting has not occurred. Meta-models one, two and four consist of only variables 
x1 and x2. Meta-model three consists of variables x1 , x2 and x3. 

5 Conclusion 
In this paper we have described a Simulated Annealing based approach to Symbolic Regression. We 
have elaborated on the algorithm and data structures, and have presented the results based on two cases. 
We conclude that although it requires some effort to find the best Symbolic Regression model, the 
quality of the meta-models that can be found are very promising. A large advantage of Symbolic 
Regression compared to Kriging is interpretability. The complexity measure as described in this paper 
is a quantification of the interpretability. Even though the expressions used by the symbolic regression 
meta-models are less complex, the fit results are comparable or better than Kriging models. Compared 
to Genetic Programming approaches, our method offers a better way of dealing with constants in the 
model via linear regression. In Genetic Programming, estimating constants is a big issue. Further, the 
amount of models that need to be evaluated will on average be less compared to the tens of thousands 
of models that need to be evaluated in each generation of Genetic Programming. 

There are some open issues though. One significant improvement of the algorithm might be found by 
first applying a number of transformations of the response data. Next, the search procedure can check 
the meta-model on all transformation without much computational effort and select not only the best 
transformation functions for the input parameters, but also the best transformation for the output 
parameter. Another interesting extension to the algorithm could be the fitting rational functions of 
transformation functions. This would increase the number of parameters in the meta-model that can be 
efficiently calculated, and thus probably increase the quality of the model. Finally, it would be 
beneficial to be able to dynamically alter the number of terms and the depth of the trees during the 
search. That way, the user would not need to make these decisions. 
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