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Abstract

The new value AL for balanced games is discussed, which is based on averaging

of lexicographic maxima of the core. Exactifications of games play a special role to

find interesting relations of AL with other solution concepts for various classes of

games as convex games, big boss games, simplex games etc. Also exactifications

are helpful to associate fully defined games to partially defined games and to

develop solution concepts there.
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1 Introduction

Two solution concepts are dominant in game theory: the Nash equilibrium set (NE-

set) and the core. The importance of the first concept was recognized immediately, the

history of the core is more complex. It turns out that there are remarkable similarities

if one looks at the role of the NE-set in non-cooperative game theory and the role of the

core in cooperative game theory. Non-cooperative games without Nash equilibria as well

as cooperative games with an empty core are not very attractive for a game theorist and

also not in practice. In such cases one can still hope for the existence of approximate

Nash equilibria or approximate core elements. In case of a determined non-cooperative

game an agreement of the players on some NE gives a certain stability because in a

play none of the players can profit in unilaterally deviating from the agreed equilibrium.

Similarly, if in a game a core element is proposed no subgroup of players can perform

better in splitting off. In case the NE-set is large or the core is large there is room for a

selection theory or a refinement theory. To finish with the similarities, for both solution

concepts, there are axiomatizations using consistency and converse consistency.

In this paper we concentrate on balanced cooperative games, which are games with a

non-empty core [4], and introduce for such games a new core selection, the AL-value.

Just as in the definition of the well-known Shapley value [8] an averaging of n! vectors

takes place which correspond to the n! possible orders of the players in an n-person

game. For the Shapley value the vectors are the marginal vectors of the game, for the

AL-value the vectors are the lexicographical optimal points in the core.

The outline of the paper is as follows. In section 2 I introduce the AL-value, discuss

some interesting properties and treat some examples. It turns out that on the cone of

convex games [9] the AL-value and the Shapley value coincide. Section 3 deals with

exact games and the exactification operator on games. The AL-value is an additive

function on the cone of exact games. Characteristic for the AL-value is the INVEX-

property (the invariance w.r.t. exactification). Further, for simplex games [1, 11] and

also for dual simplex games or 1-convex games [1, 3] it is shown that the AL-value

of such a game coincides with the Shapley value of the exactification of the game. In

section 4 the AL-value is studied for the cone of big boss games [5] and it coincides there

with the τ -value [10] and the nucleolus [6]. In section 5 the exactification operator is

adapted to treat a family of partially defined games, which gives a possibility to define

for such games also the AL-value and other values. Section 6 indicates topics for further

research.
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2 The average lexiographic value AL

Given a balanced n-person < N, v > and given an ordering σ = (σ(1), σ(2), . . . , σ(n))

of the players in N, the lexicographic maximum of the core C(v) with respect to σ

is denoted by Sσ(v). It is the unique point of the core C(v) with the properties:

(Sσ(v))σ(1) = max{xσ(1)|x ∈ C(v)}, (Sσ(v))σ(2) = max{xσ(2)|x ∈ C(v) with xσ(1) =

(Sσ(v))σ(1)}, . . . , (S
σ(v))σ(n) = max{xσ(n)|x ∈ C(v) with (xσ(1), xσ(2), . . . , xσ(n−1)) =

((Sσ(v))σ(1), (S
σ(v))σ(2), . . . , (S

σ(v)σ(n−1)))}.

Note that Sσ(v) is an extreme point of the core for each σ.

The average lexicographic value of < N, v > is the average over all Sσ(v) i.e. AL(v) =
1
n!

∑

σ∈Π(N)

Sσ(v), where Π(N) denotes the set of n! orderings of N.

Example 2.1. Let < N, v > be a 2-person balanced game with N = {1, 2}. Then

v(1, 2) ≥ v(1) + v(2) and C(v) =conv({f 1, f2}) with f1 = (v(N) − v(2), v(2)), f 2 =

(v(1), v(N) − v(1)). Further Π(N) = {(1, 2), (2, 1)}, S(1,2)(v) = f 1, S(2,1)(v) = f 2, So,

AL(v) = 1
2
(f1 + f2) = (v(1) + 1

2
(v(1, 2)− v(1) − v(2)), v(2) + 1

2
(v(1, 2) − v(1) − v(2)),

the standard solution for the 2-person game < N, v > .

Example 2.2. Let < N, v > be the 3-person convex game with N = {1, 2, 3}, v(i) = 0

for each i ∈ N, v(S) = 10 if |S| = 2 and v(N) = 30. Then S(1,2,3)(v) = (20, 10, 0) =

m(3,2,1)(v), S(1,3,2)(v) = (20, 0, 10) = m(2,3,1)(v), . . . , S(3,2,1)(v) = (0, 10, 20) = m(1,2,3)(v).

Here mσ(v) is the marginal vector w.r.t. σ with

mσ
σ(k)(v) = v(σ(1), . . . , σ(k))− v(σ(1), σ(2), . . . , σ(k − 1)) for each k ∈ N.

So, AL(v) = (10, 10, 10) = 1
3!

∑

σ∈Π(N)

Sσ(v) = 1
3!

∑

σ∈Π(N)

mσ̄(v) = φ(v) where

σ̄ = (σ(3), σ(2), σ(1)), the reverse order of σ, and φ(v) is the Shapley value of < N, v > .

Theorem 2.3. For each convex game < N, v >: AL(v) = φ(v).

Proof. Note that for each σ ∈ Π(N) : Sσ(v) = mσ̄(v), where σ̄ = (σ(n), σ(n −

1), . . . σ(2), σ(1)). �

Theorem 2.4. Let < N, v > be a balanced simplex game [1,11] i.e. a game where C(v)

is equal to the non-empty imputation set I(v) = {x ∈ R
n|

n∑

i=1

xi = v(N), xi ≥ v({i}) for

each i ∈ N}. Then AL(v) = CIS(v), the center of the imputation set.

Proof. Note that I(v) = conv{f 1(v), f2(v), . . . , fn(v)} and CIS(v) = 1
n

n∑

k=1

fk(v) where

(fk(v))i = v(i) for i ∈ N\{k} and (fk(v))k = v(N) −
∑

i∈N\{k}

v(i). Because Sσ(v) =
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fσ(1)(v) for each σ ∈ Π(N) we obtain AL(v) = 1
n!

∑

σ∈Π(N)

fσ(1)(v) = 1
n

n∑

k=1

fk(v) = CIS(v).

�

For dual simplex games (also called 1-convex games) (see [3],[11]) we give without proof

the following results.

Theorem 2.5. Let < N, v > be a balanced n-person game with C(v) = I∗(v) =

conv({g1(v), g2(v), . . . , gn(v)}), where

(gk(v))i = v∗(k) = v(N)− v(N\{k}) for i �= k and

(gk(v))k = v(N)−
∑

i∈N\{k}

v∗(i).

Then AL(v) = ENSR(v), where ENSR is the rule which splits equally the non-

separable rewards. AL(v) is also equal to the nucleolus [6] and the τ -value [10] of

(N, v).

It will be clear that AL satisfies the following properties: IR (Individual rationality),

EFF (efficiency), S-equivalence, CS (core selection) and SYM (symmetry). Also DUM

(the dummy property) holds for AL because for each balanced game < N, v > the

AL-value AL(v) is an element of the core and for each x ∈ C(v) :

v(i) ≤ xi =
n∑

k=1

xk −
∑

k∈N\{i}

xk ≤ v(N)− v(N\{i})

So, if i is a dummy player, then xi = v(i) for each core element and, especially ALi(v) =

v(i) for a dummy player. In the next section we consider two other properties of AL :

INVEX, ADDE.

3 Exact games

Exact games are introduced by Schmeidler [7] and they play an interesting role in this

section. Recall that a game is an exact game if for each coalition S ∈ 2N\{φ} there is

an element xS ∈ C(v) such that
∑

i∈S

xSi = v(S). Let us denote by EXN the set of exact

games with player set N. In fact EXN is a cone of games and one easily sees that AL :

EXN → R
n is additive. We call this interesting property ADDE : AL(v+w) = AL(v)+

AL(w) for each v, w ∈ EXN .
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Note that for each balanced game < N, v > there is a unique exact game < N, vE >

with the same core as the original game. This exactification < N, vE > of < N, v > is

defined by vE(φ) = 0 and

vE(S) = min{
∑

i∈S

xi|x ∈ C(v)} for each S ∈ 2N\{φ}

So, C(vE) = C(v) for each balanced game < N, v > and vE = v iff < N, v > is

exact. Note that an interesting property for AL is: if for < N, v >,< N,w > we have

C(v) = C(w) �= φ, then AL(v) = AL(w). This property is equivalent with the property

INVEX : AL(v) = AL(vE) for each balanced game < N, v >, where INVEX stands for

’invariant w.r.t. exactification’.

In view of theorem 2.3 this INVEX-property of AL gives the possibility to prove that for

some games < N, v > the AL-value of < N, v > coincides with the Shapley value φ(vE)

of the exactification < N, vE > of < N, v > . This is the case for those game < N, v >

for which the exactification is convex. This holds e.g. for simplex games, dual simplex

games and also for 2- and 3-person balanced game. So we obtain

Theorem 3.1.

(i) If < N, v > is a balanced 2-person game or a 3-person game, then AL(v) = φ(vE).

(ii) For each simplex game < N, v > we have AL(v) = φ(vE).

(iii) For each dual simplex game < N, v > we have AL(v) = φ(vE).

Proof of (ii) only. Let < N, v > be a simplex game. Then C(v) =

I(v) = conv{f 1(v), f 2(v), . . . , fn(v)}. So vE(N) = v(N) and for each S ∈ 2N\{φ,N} :

vE(S) = min{
∑

i∈S

xi|x ∈ C(v)} = min{
∑

i∈S

fki |k ∈ {1, 2, . . . , n}} = min{
∑

i∈S

v(i), v(N) −
∑

i∈N\S

v(i)} =
∑

i∈S

v(i). This implies that vE is a sum of convex games namely vE =

n∑

i=1

v(i)u{i}+(v(N)−
n∑

k=1

v(k))uN (where uS denotes the unanimity game with uS(T ) = 1

if S ⊂ T and uS(T ) = 0 otherwise). So, < N, vE > is a convex game and AL(v) =

AL(vE) = φ(vE). �

Now we give a 4-person exact game < N, v >, where φ(v) = φ(vE) �= AL(v). This game

is a slight variant of an example in [2] on p. 91.
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Example 3.2. Let ε ∈ (0, 1] and let < N, v > be the game with N = {1, 2, 3, 4},

v(S) = 7, 12, 22 if |S| = 2, 3, 4 respectively and

v(1) = ε, v(2) = v(3) = v(4) = 0.

Note that < N, v > is not convex because

v(1, 2, 3)− v(1, 2) = 5 < v(1, 3)− v(1) = 7− ε.

Note further that Ext(C(v)) has the maximum number of 24 extreme points:

(i) 12 extreme points which are permutations of (10,5,5,2),

(ii) 9 extreme points which are permutations of (7,7,8,0) but with first coordinate

unequal to 0,

(iii) (ε, 7− ε, 7− ε, 8 + ε), (ε, 7− ε, 8− ε, 7− ε) and (ε, 8− ε, 7− ε, 7− ε).

From this follows that < N, v > is an exact game, and that each lexicographic maximum

Sσ(v) is equal to a permutation of the vector (10,5,5,2), where each such permutation

corresponds to two orders.

So, AL(v) = (51
2
, 51

2
, 51

2
, 51

2
) and is unequal to

φ(vE) = φ(v) = (51
2
+ 1

4
ε, 51

2
− 1

12
ε, 51

2
− 1

12
ε, 51

2
− 1

12
ε).

4 Big boss games and the average lexicographic value

Big boss games are introduced in [5] and further discussed in [1] and [11]. Recall that

an n-person game < N, v > is a big boss game with n as big boss if the following three

conditions hold:

1. Big boss property: v(S) = 0 for all S with n /∈ S.

2. Monotonicity property: v(S) ≤ v(T ) for all S, T ∈ 2N with S ⊂ T.

3. Union property: v(N)− v(S) ≥
∑

i∈N\S

Mi(v) for each S ∈ 2N with n ∈ S.
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It is well-known that the core of a big boss game with n as big boss is given by

C(v) = {x ∈ R
n|0 ≤ xi ≤ Mi(v) for each i ∈ N\{n},

n∑

i=1

xi = v(N)}

and the τ -value by τ (v) = (1
2
M1(v),

1
2
M2(v), . . . ,

1
2
Mn−1(v), v(N)− 1

2

n−1∑

i=1

Mi(v)).

The extreme points of a big boss game < N, v > with n as big boss are of the form

P T where T ⊂ N\{n} and P T
i = Mi(v) if i ∈ T, P T

i = 0 if i ∈ N\T ∪ {n} and

P T
n = v(N)−

∑

i∈T

Mi(v). For each σ ∈ Π(N) the lexiocographic maximum Sσ(v) equals

P T (σ), where T (σ) = {i ∈ N\{n}|σ(i) < σ(n)}.

Theorem 4.1. Let< N, v > be a big boss game with n as big boss. Then AL(v) = τ (v).

Proof. For each i ∈ N\{n} : ALi(v) = 1
n!

∑

σ∈Π(N)

(Sσ(v))i = 1
n!

∑

σ∈Π(N)

(P T (σ))i =

1
n!
Mi(v)|{σ ∈ Π(N)|σ(i) < σ(n)}| = 1

2
Mi(v) = τ i(v)

By EFF of τ and AL then also ALn(v) = τn(v). �

Let us look at the exactification < N, vE > of the big boss game < N, v > with n as a

big boss.

(i) For S ⊂ N\{n} we have

vE(S) = min
T⊂N\{n}

∑

i∈S

P T
i =

∑

i∈S

P φ
i = 0

(ii) For S with n ∈ S we have

vE(S) = min
T⊂N\{n}

∑

i∈S

P T
i = min

T⊂N\{n}
(v(N)−

∑

i∈T\S

Mi(v))

=
∑

i∈S

P
N\{n}
i = (v(N)−

n−1∑

i=1

Mi(v)) +
∑

i∈S

Mi(v).

This implies that vE is a non-negative combination of convex unanimity games:

vE = (v(N)−
n−1∑

i=1

Mi(v))u{n} +
∑

i∈N\{n}

Mi(v)u{i,n}

So, vE is a convex game (and also a big boss game) and the extreme points of C(v) and

of C(vE) coincide. So we obtain τ (v) = AL(v) = AL(vE) = φ(vE).

Theorem 4.2. The AL-value of a big boss game equals the Shapley value of the

exactification of the big boss game.
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5 An approach to handle partially defined games

Cases where a player set N is confronted with the problem of dividing v(N), where not

for each subcoalition of N the worth is given, are discussed extensively in the literature.

I will consider special balanced partially defined games. These are games < N, v,F >,

where N is the player set, F is a subset of 2N , containing N and φ and v : F → R has

the properties v(φ) = 0 and

CF(v) := {x ∈ R
n|

n∑

i=1

xi = v(N),
∑

i∈S

xi ≥ v(S) for all F ∈ 2N}

is a non-empty and bounded set.

For such a balanced F -game v one can study the exact ’extension’ v̄ : 2N → R where

v̄(S) = min{
∑

i∈S

xi|x ∈ CF(v)}

where we have a real extension if < N, v,F > has the exactness property: v(S) = v̄(S)

for S ∈ F . Given a solution Ψ for games < N, v > one can define a solution Ψ̄ for

balanced partially defined game by

Ψ̄(N, v,F) = Ψ(N, v̄)

It is interesting to study AL in such situations.

6 Concluding remarks

Further research on the average lexicographic value will include

(i) monotonicity properties of AL,

(ii) continuity properties of AL,

(iii) consistency properties of AL,

(iv) axiomatizations,

(v) numerical aspects,

(vi) cones with a perfect kernel system and AL,

(vii) relations with other core selections,

(viii) extensions of the AL-value for non-balanced games,

(ix) more relations with other solution concepts.
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