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Abstract

We construct convex, semidefinite programming (SDP) relaxations of
the convex hull of association schemes with given parameters. As an ap-
plication, we obtain new and known SDP relaxations of several combina-
torial optimizations problems, including the traveling salesman and cycle
covering problems (by considering the Lee association scheme) and the
maximum p-section problem (by considering the scheme of the complete
p-partite graph).

Thus, the approach in this paper may be seen as a unified framework to
generate SDP relaxations of various combinatorial optimization problems.

Keywords: traveling salesman problem, maximum bisection, semidefinite pro-
gramming, association schemes

AMS classification: 90C22, 20Cxx, 70-08

JEL code: C61

1 Introduction

Semidefinite programming (SDP) relaxations of combinatorial problems date
back to the work of Lovász in 1979 [14], and received renewed interest following
the seminal paper of Goemans and Williamson [9] on approved approximation
algorithms using SDP.

Surveys on the application of SDP in combinatorial optimization are given
in [13, 8].

The standard approach to obtaining SDP relaxations has been via binary
variable formulations of the relevant combinatorial problems.
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Thus, for example, the convex hull of the set {vvT | v ∈ {−1, 1}n} is usually
approximated by the convex elliptope:

E := {X = XT ∈ Rn×n : Xii = 1 (i = 1, . . . , n), X � 0}

where X � 0 means X is symmetric positive semidefinite. One can derive useful
error bounds via this approximation, since

2
π

arcsin E ⊂ conv{vvT | v ∈ {−1, 1}n} ⊂ E ,

where the arcsin function is applied entry-wise (see e.g. [9, 18]).
Stronger SDP relaxations may then be obtained via so-called lift-and-project

techniques, see e.g. [12].
In a recent paper [5] on SDP relaxations of the traveling salesman prob-

lem (TSP), a totally different approach to constructing SDP relaxations was
introduced. This approach was based on the theory of association schemes in
algebraic combinatorics.

In this paper we generalize the approach in [5] to obtain SDP relaxations
of various combinatorial problems in a unified way. Thus we obtain known
relaxations for the TSP and maximum bisection problems, and new ones for the
cycle covering and maximum p-section problems.

Finally, we show that the approach may be generalized further to include
all coherent configurations (and not only association schemes). Thus we may
derive relaxations of problems like the maximum cut problem with specified cut
sizes.

Notation

We use In to denote the identity matrix of order n. Similarly, Jn and en denote
the n × n all-ones matrix and all ones n-vector respectively, and 0n×n is the
zero matrix of order n. We will omit the subscript if the order is clear from the
context.

The vec operator stacks the columns of a matrix, while the diag operator
maps an n × n matrix to the n-vector given by its diagonal. The Kronecker
product A⊗B of matrices A ∈ Rp×q and B ∈ Rr×s is defined as the pr×qs matrix
composed of pq blocks of size r × s, with block ij given by AijB (i = 1, . . . , p),
(j = 1, . . . , q).

2 Preliminaries on Association Schemes

We will give a brief overview of this topic; for an introduction to association
schemes, see Chapter 12 in [7], or §3.3 in the book by Cameron [2].

Definition 2.1 (Association scheme). Assume that a given set of zero-one n×n
matrices A = {A0, . . . , Ad} has the following properties:

(1) A0 = I and
∑d

i=0 Ai = J (all-ones matrix).
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(2) AT
i ∈ A for each i;

(3) AiAj = AjAi for all i, j;

(4) AiAj ∈ span{A0, . . . , Ad} for all i, j.

Then A is called an association scheme with d classes. If the Ai’s are also
symmetric, then we speak of a symmetric association scheme.

The complex span of the matrices {A0, . . . , Ad} is a matrix ∗-algebra (i.e.
a subspace of Cn×n that is also closed under matrix multiplication and taking
complex conjugate transposes), called the Bose-Mesner algebra of the associa-
tion scheme.

Informally, one sometimes refers to a ‘matrix from the association scheme’
in stead of ‘a matrix from the Bose-Mesner algebra of the association scheme.
(The same abuse of terminology is common when speaking about a basis or
generators of the Bose-Mesner algebra, etc.)

Note that, if {A0, . . . , Ad} is an association scheme, and P a permutation
matrix, then {PA0P

T , . . . , PAdP
T } is also an association scheme, and the two

Bose-Mesner algebras are isomorphic as algebras.

Example 2.1. The set of circulant matrices:

c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · ·

cn−1 c0 c1
. . .

...
...

. . . . . . . . . . . .
c1

c1 · · · cn−1 c0


are from an association scheme with n classes. The natural 0-1 basis of the

circulant matrices forms this association scheme.
Likewise, the n× n symmetric circulant matrices are from a symmetric as-

sociation scheme with d = bn/2c classes.

A graph with diameter d with adjacency matrix from A is called distance
regular. Conversely, any distance regular graph with diameter d generates an
association scheme with d classes as follows.

Theorem 2.1. Given a distance regular graph G = (V,E) with diameter d,
define |V | × |V | matrices A(k) (k = 1, . . . , d) as follows:

A
(k)
ij =

{
1 if dist(i, j) = k
0 else, (i, j ∈ V ),

where dist(i, j) is the length of the shortest path from i to j.
Then {I,A(1), . . . , A(d)} forms a symmetric association scheme on d classes.
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A proof of this result is given in [2] (Theorem 3/6(b) there.)
The matrices A(k) in the theorem are called the distance matrices of the

graph G, with A(1) being its adjacency matrix.

Example 2.2. The standard Hamiltonian cycle with adjacency matrix

0 1 0 · · · 0 1
1 0 1 0 · · · 0

0 1 0 1
. . .

...
...

. . . . . . . . . . . .
0 0 1
1 0 · · · 0 1 0


generates the association scheme of the symmetric circulant matrices.

The example is a particular case of what is known as a Lee association
scheme. In particular, any association scheme obtained from the one in the
example via permutations of rows and columns is called a Lee scheme.

2.1 Eigenvalues of association schemes

By definition, the Bose-Mesner algebra of an association scheme has a basis of
zero-one matrices. By a fundamental result in commutative algebra, it also has
a basis of idempotent matrices, as the following result shows.

Theorem 2.2. An association scheme with d classes has an orthogonal basis
E0, . . . , Ed of self-adjoint idempotents that sum to I, i.e.

Ei = E2
i , Ei = E∗

i (i = 0, . . . , d),

with E0 = 1
nJ and

∑d
i=0 Ei = I.

Note that the matrices Ei are Hermitian positive semidefinite, since they are
self-adjoint and have zero-one eigenvalues.

We may write the basis {A0, . . . , Ad} in terms of the basis {E0, . . . , Ed}, and
vice versa.

In particular, there exist constants pk(i), called eigenvalues of the scheme,
such that

d∑
i=0

pj(i)Ei = Aj (j = 0, . . . , d).

Note that the value pj(i) is the ith eigenvalue of Aj . Also note that pj(0) is the
valency of the graph with adjacency matrix Aj , since

Aje =
d∑

i=0

pj(i)Eie = pj(0), (j = 1, . . . , d),

4



since Eie = 0 (i = 1, . . . , d).
Similarly, there exist constants qk(i), called dual eigenvalues, such that

1
n

d∑
i=0

qj(i)Ai = Ej � 0 (j = 0, . . . , d). (1)

One has q0(i) = 1 for all i.
It is customary to define primal and dual matrices of eigenvalues via

Pij := pj(i), Qij := qj(i) (i, j = 0, . . . , d).

It is easy to show that PQ = nI.

Example 2.3. The dual eigenvalues of the association scheme of the symmetric
circulant matrices are (for odd n):

qi(j) = 2 cos(2πij/n) (i, j = 1, . . . , d ≡ bn/2c).

Moreover, qi(0) = 2 for all i. (Recall that q0(j) = 1 for all j.)

2.2 Strongly regular graphs

A graph from an association scheme with d = 2 classes is called a strongly
regular graph.

An equivalent, and more insightful definition is as follows.

Definition 2.2. A simple graph that is neither a clique nor a co-clique is called
strongly regular if there exist parameters k, λ, µ such that

• each vertex is adjacent to k vertices;

• for each pair of adjacent vertices there are λ vertices adjacent to both;

• for each pair of non-adjacent vertices there are µ vertices adjacent to both.

Example 2.4. A simple example of a strongly regular graph that will be used
later on is the complete bipartite graph Km,m on 2m vertices. Here k = µ = m
and λ = 0.

The eigenvalue matrices P and Q have closed form expressions for strongly
regular graphs. The adjacency matrix of a strongly regular graph has an eigen-
value k corresponding to the eigenvector e (since it is k-regular). Eigenvalues
that have eigenvectors orthogonal to e are called restricted eigenvalues. Note
that k may also be a restricted eigenvalue. It follows that there are exactly two
distinct restricted eigenvalues, that we will denote by r and s (r > s).

Theorem 2.3. Let G = (V,E) be a strongly regular graph with parameters
k, λ, µ and restricted eigenvalues r and s. Assume the multiplicity of the eigen-
value r (resp. s) is f (resp. g). One has

P =

 1 k |V | − k − 1
1 r −r − 1
1 s −s− 1

 , Q =

 1 f g
1 fr/k gs/k

1 − f(r+1)
|V |−k−1 − g(s+1)

|V |−k−1

 .
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Example 2.5. The association scheme of the complete bipartite graph Km,m is
given (using a suitable labeling of the vertices) by

A =
{

A0 = I2m, A1 =
[

0 1
1 0

]
⊗ Jm, A2 = I2 ⊗ (Jm − Im)

}
.

Thus the restricted eigenvalues of Km,m are the eigenvalues r = 0 and s = −m
of A1, so that

P =

 1 m m− 1
1 0 −1
1 −m m− 1

 , Q =

 1 2(m− 1) 1
1 0 −1
1 −2 1

 .

One can verify that PQ = |V |I = 2mI, as it should be.

3 SDP relaxations of association schemes

For the purposes of deriving convex relaxations of association schemes, we sum-
marize the results of the last section in the following way.

Lemma 3.1. Let {A0, . . . , Ad} be an association scheme. One has

d∑
i=0

qj(i)Ai = nEj � 0 (j = 0, . . . , d),

where the qj(i) (i, j = 0, . . . , d) are the dual eigenvalues of the scheme, and
{E0, . . . , Ed} is the idempotent basis of the scheme.

As a consequence we may define a convex set that contains a given associa-
tion scheme {A0, . . . , Ad} as the solution set of the following the linear matrix
inequalities:

d∑
i=0

qj(i)Xi = nYj (j = 0, . . . , d), (2)

Xi ≥ 0 (i = 1, . . . , d), X0 = I, (3)

Yi � 0 (i = 1, . . . , d), Y0 =
1
n

J. (4)

Note that the system (2—4) has a solution given by Xi = Ai and Yi = Ei

(i = 0, . . . , d). Also, every other association scheme with the same eigenvalues
corresponds to a solution.

The following theorem shows that several important equalities are already
implied by (2—4).

Theorem 3.1. Assume Xi and Yi (i = 0, . . . , d) satisfy the system (2—4).
Then the following holds:
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1.
∑d

j=0 Yj = I,

2. Yje = 0 (j = 1, . . . , d),

3.
∑d

i=0 pj(i)Yi = Xj (j = 1, . . . , d),

4. Xje = pj(0)e (j = 1, . . . , d).

Proof. Using
∑d

i=0 qj(i)Ai = nEj (j = 0, . . . , d) and
∑d

j=0 Ej = I, one has

d∑
i=0

 d∑
j=0

qj(i)

 Ai = nI.

Since A0 = I and the Ai’s are linearly independent this implies:

d∑
j=0

qj(0) = n and
d∑

j=0

qj(i) = 0 (i = 1, . . . , d). (5)

Now note that (2) implies

d∑
i=0

 d∑
j=0

qj(i)

 Xi =
d∑

j=0

Yj ,

and we thus obtain
∑d

j=0 Yj = I by using (5) and X0 = I.
Now using

J +
d∑

j=1

Yj = nI,

we obtain
∑d

j=1 Yje = 0, which in turn implies Yje = 0 (j = 1, . . . , d), since
Yj � 0 (j = 1, . . . , d).

To prove item 3 of the theorem, we note that the coefficient matrix in the
linear system (2) is QT . Since PQ = nI we have Q−T = 1

nPT , which implies
the required result.

Finally, we have

d∑
i=0

pj(i)Yie = Xje (j = 1, . . . , d),

and using Yje = 0 (j = 1, . . . , d) yields item 4 of the theorem.

In addition to the linear equalities that are implied by the relaxation (2—4),
all linear matrix inequalities of a certain type are implied, as the next result
shows.
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Theorem 3.2. Assume that the linear matrix inequality

d∑
i=0

αiXi � 0, (6)

where α1, . . . , αd are given scalars, is satisfied by Xi = Ai (i = 1, . . . , d),
where {A0, . . . , Ad} is an association scheme with dual eigenvalues qj(i) (i, j =
0, . . . , d).

Then (6) may be written as a conic linear combination of the linear matrix
inequalities

d∑
i=0

qj(i)Xi � 0 (j = 1, . . . , d) and
d∑

i=0

Xi = J.

Proof. We have that
d∑

i=0

αiAi =: Y � 0,

say. Since Y � 0 is in the Bose-Mesner algebra of the scheme, there exist
nonnegative scalars β0, . . . , βd such that

Y =
d∑

i=0

βiEi

where the Ei’s form the idempotent basis of the algebra, as before. (The values
βi are precisely the nonnegative eigenvalues of Y ). Substituting

d∑
i=0

qj(i)Ai = nEj (j = 0, . . . , d)

yields
d∑

i=0

αiAi =
d∑

j=0

βj

n

[
d∑

i=0

qj(i)Ai

]
as required.

4 SDP relaxations of combinatorial optimiza-
tion problems

In this section we apply the SDP relaxation (2—4) to different combinatorial
optimization problems, by considering different association schemes.
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The basic idea is as follows: if the combinatorial optimization problem in
question may be restated as finding a certain distance regular subgraph of min-
imum (or maximum) weight in a given weighted graph, then the the SDP re-
laxation (2—4) applies.

For example, the traveling salesman problem (TSP) may be stated as looking
for a minimum weight Hamiltonian cycle in a given weighted graph. Similarly,
the maximum bisection problem may be viewed in finding a maximum weight
complete bipartite graph Km,m in a given weighted graph on 2m vertices.

4.1 The traveling salesman and related problems

Given is a matrix D with positive off-diagonal entries, which we view as edge
weights in a complete graph. The TSP is to find a Hamiltonian cycle of minimum
weight in this graph.

The association scheme of a Hamiltonian cycle is the Lee Scheme (see Ex-
ample 2.3).

Applying the SDP relaxation (2—4) with the suitable objective function
yields the SDP problem (after eliminating the Yi variables):

min
1
2
trace(DX1) (7)

subject to

I +
d∑

k=1

Xk = J

I +
d∑

k=1

cos
(

2πik

n

)
Xk � 0 (i = 1, . . . , d),

Xi ≥ 0 (i = 1, . . . , d),

where the values qj(i) = 2 cos
(

2πij
n

)
are the dual eigenvalues for the Lee scheme

(see Example 2.3).
This is precisely the SDP relaxation of TSP introduced in the paper [5].

Remark

One may use Theorem 3.2 to show that this relaxation of the TSP is tighter
than the SDP relaxation of Cvetkov́ıch et al. [3]. This was already shown in [5]
(Theorem 4.1 there), but the proof may be simplified greatly using the more
general Theorem 3.2.

4.1.1 The k-cycle covering problem

Consider the problem of partitioning the vertices of a complete weighted graph
into k vertex disjoint cycles of equal length, such that the sum of the edge
lengths appearing in the cycles is minimal.
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This problem was studied by Goemans and Williamson [10] (see also [15]),
who showed that a 4-approximation algorithm exists when the weights satisfy
the triangle inequality.

Now let nk := n/k be integer. The matrix variable Xnk
now corresponds to

the adjacency matrix of k disjoint cycles of length nk.
In other words, we obtain a new SDP relaxation for the k-cycle covering

problem by replacing the objective function (7) by min 1
2 trace(DXnk

).

4.2 The maximum bisection problem

Here we are given a matrix W with nonnegative entries that we view as edge
weights of a graph G = (V,E) with |V | = 2m.

The goal is to find a complete bipartite subgraph Km,m of G of maximum
weight.

The association scheme generated by Km,m is described in Example 2.4 and
its eigenvalues in Example 2.5.

Applying the SDP relaxation (2—4) yields the SDP problem:

max
1
2
trace(WX1) (8)

subject to

I2m + X1 + X2 = J2m

(m− 1)I2m −X2 � 0
I2m −X1 + X2 � 0

X1, X2 ≥ 0.

An earlier SDP relaxation of the maximum bisection problem due to Frieze
and Jerrum [6] (see also Ye [18]) is the following.

max
{

1
4
trace((W − J2m)X) | diag(X) = e2m, Xe2m = 0, X � 0

}
. (9)

To see that this is a relaxation of the maximum bisection problem, set X = vvT ,
where v ∈ {−1, 1}2m gives the optimal equipartition of the vertex set.

We will show next that these two SDP relaxations actually provide the same
upper bound.

Theorem 4.1. The optimal values of the SDP problems (8) and (9) coincide.

Proof. Given an optimal solution X1, X2 of (8), set

X := I2m −X1 + X2 � 0.

Using part 4 of Theorem 3.1 we have

Xe2m = e2m −X1e2m + X2e2m

= e2m −me2m + (m− 1)e2m = 0,
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where we have used that A1e2m = me2m and A2e2m = (m − 1)e2m for the
association scheme of Km,m (see Example 2.5). Moreover, it is easy to verify
that diag(X) = e2m and 1

4 trace((W − J)X) = 1
2 trace(WX1).

Conversely, assume that X is feasible for (9). It is straightforward to verify
that setting

X1 :=
1
2
(J2m −X), X2 :=

1
2
(J2m + X)− I2m

yields a feasible solution of (8) with the same objective value.

4.3 Max-p-section

The max-p-section problem is the generalization of max bisection, where the
aim is to find a complete p-partite subgraph of maximum total edge weight in
a given weighted graph.

The association scheme generated by the complete p-partite graph on pm
vertices has the eigenvalue matrices:

P =

1 m(p− 1) m− 1
1 0 −1
1 −m m− 1

 , Q =

1 p(m− 1) p− 1
1 0 −1
1 −p p− 1

 .

Applying the SDP relaxation (2—4) yields the SDP problem:

max
1
2
trace(WX1) (10)

subject to

Ipm + X1 + X2 = Jpm

(m− 1)Ipm −X2 � 0
(p− 1)Ipm −X1 + (p− 1)X2 � 0

X1, X2 ≥ 0.

Note that this coincides with the relaxation (8) in the bisection (p = 2) case.
A different SDP relaxation for the max-p-section problem was introduced in

[1].

5 Exact conic programming reformulations

In this section we give an exact description of the conic hull of all association
schemes with the same parameters.

To be precise, we fix an association scheme {A0, . . . , Ad} and consider

conv
{
{PT A0P, . . . , PT AdP} : P ∈ Πn

}
⊂ Rn×n,

where Πn denotes the set of n× n permutation matrices.
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In order to describe this convex hull we use a result by Povh and Rendl [16].
To this end, recall that a matrix Y is called completely positive if Y =

∑
i yiy

T
i

for some nonnegative vectors yi.
It will be convenient to use the following notation for block matrices: If an

n2 × n2 matrix Y is partitioned into n× n blocks Y (ij) (i, j = 1, . . . , n) we will
write Y = [Y (ij)]i,j=1,...,n.

Lemma 5.1 ([16]). Consider the set

Y :=
{

Y = [Y (ij)]i,j=1,...,n ∈ Cn2

∣∣∣
n∑

i=1

Y (ii) = I, trace(Y (ij)) = δij (i, j = 1, . . . , n), trace(JY ) = n2

}
,

where Cn is the cone of n×n completely positive matrices, and δij the Kronecker
delta. One has

Y = conv
{
vec(P )vec(P )T : P ∈ Πn

}
.

Using the lemma, it is straightforward to show the following.

Lemma 5.2. Let A ∈ Sn×n be given. The following two sets coincide:

• conv
{
PT AP : P ∈ Πn

}
•

{
M ∈ Sn×n : Mij = trace(AY (ij)) (i, j = 1, . . . , n), Y ∈ Y

}
where Y ∈ Sn2×n2

is the block matrix with blocks Y (ij) (i, j = 1, . . . , n), as
before.

Proof. Let P ∈ Πn and A ∈ Sn×n be given and fix i, j ∈ {1, . . . , n}. Define
E(ij) ∈ Sn×n as the matrix with ones in positions (i, j) and (j, i) and zeros
elsewhere. One has:

(PT AP )ij =
1
2
trace(E(ij)PT AP )

=
1
2
trace

[
(E(ij) ⊗A)(vec(P )vec(P )T )

]
= trace(AY (ij))

for some Y ∈ Y.
Using the lemma, we may describe the convex hull of association schemes

with given eigenvalues.

Theorem 5.1. Given is an association scheme A = {A0, . . . , Ad} with idem-
potent basis {E0, . . . , Ed} and dual eigenvalues qj(i) (i, j = 0, . . . , d). Consider
the following system:

d∑
i=0

qj(i)Xi = Yj (j = 0, . . . , d), (11)

Xi ≥ 0 (i = 0, . . . , d),
(12)
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where

(Yj)rs = trace
(
EjY

(rs)
)

(j = 0, . . . , d), (r, s = 1, . . . , n), (13)

where Y ∈ Y is the block matrix Y = [Y (rs)]r,s=1,...,n (r, s = 1, . . . , n).
Matrices {X0, . . . , Xd} form a solution of this system if and only if they are a

convex combination of association schemes of the form {PA0P
T , . . . , PAdP

T },
where P ∈ Πn.

Proof. The matrices {X0, . . . , Xd} in a solution of the system is uniquely deter-
mined by the matrices {Y0, . . . , Yd} via (11). Indeed, the linear operator defined
by (11) is invertible, since its matrix representation is the (nonsingular) matrix
QT of dual eigenvalues.

Thus we only need to show that, if {Y0, . . . , Yd} is a solution of the sys-
tem, then it may be written as a convex combination of sets of the form
{PE0P

T , . . . , PEdP
T }, where P ∈ Πn. This follows immediately from Lemma

5.2.
It is not immediately obvious that the SDP relaxation (2 — 4) is implied

by the exact formulation in the theorem, i.e. that the conditions Yj � 0 (j =
0, . . . , d) are implied. To show this, we may assume without loss of generality
that the matrices Y (rs) (r, s = 1, . . . , n) in Theorem 5.1 belong to the Bose-
Mesner algebra of the association scheme A.

Thus, the expression (13) in the theorem reduces to:

trace
(
EjY

(rs)
)

= pj(0)λj(Y (rs)) (r, s = 1, . . . , n), (j = 0, . . . , d),

where λj(Y (rs)) is the eigenvalue of Y (rs) that corresponds to the eigenspace
spanned by the columns of Ej , and pj(0) is its multiplicity, as before.

We now perform a unitary transformation on Y = [Y (ij)]i,j=1,...,n in order
to obtain a block matrix with diagonal blocks. If U denotes the unitary matrix
that block diagonalizes the Bose-Mesner algebra of A, then In⊗UY (In⊗U)∗ :=
[Ȳ (ij)]i,j=1,...,n where

Ȳ (ij) = Diag(λ1(Y (ij)), . . . , λd(Y (ij))),

i.e. each block Y (ij) is replaced by a diagonal block containing its eigenvalues
(with multiplicities).

Now notice that, for any fixed j ∈ {1, . . . , d}, the matrix

[λj(Y (rs))]r,s=1,...,n (14)

is a principal submatrix of Ȳ := [Ȳ (ij)]i,j=1,...,n. Since Ȳ = (In⊗U)Y (In⊗U)∗ �
0, it follows that the matrix in (14) is positive semidefinite too, as required. As
already mentioned, this means that Yj � 0.
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6 Generalization to coherent configurations

An association scheme is a special case of a so-called coherent configuration.
In particular, a set of matrices that meets all the conditions in Definition 2.1
except possibly condition 3 (commutativity) and A0 = I forms a coherent con-
figuration.

Definition 6.1 (Coherent configuration). Assume that a given set of zero-one
n× n matrices {A1, . . . , Ad} has the following properties:

(1)
∑

i∈I Ai = I for some index set I ⊂ {1, . . . , d} and
∑d

i=1 Ai = J .

(2) AT
i ∈ A for each i;

(3) AiAj = AjAi for all i, j;

(4) AiAj ∈ span{A1, . . . , Ad} for all i, j.

Then {A1, . . . , Ad} is called a coherent configuration.

Thus, a coherent configuration is a basis of zero-one matrices of a (possibly
non-commutative) matrix ∗-algebra.

A coherent configuration does not necessarily have a self-adjoint idempotent
basis, but it does have a basis of positive semidefinite Hermitian matrices. This
is a consequence of the structural theorem for matrix ∗-algebras. In stating the
theorem, we require the following notation for the direct sum of two matrix
algebras A1 and A2:

A1 ⊕A2 :=
{(

A1 0
0 A2

)
, A1 ∈ A1, A2 ∈ A2

}
.

Theorem 6.1 (Wedderburn [17]; see also §2.2 in [4]). If A ∈ Cn×n is a matrix
∗-algebra, then there exist a unitary matrix U and positive integers p and ni, ti
(i = 1, . . . , p) such that

U∗AU = ⊕p
i=1ti � Cni×ni

where
ti � Cni×ni :=

{
Iti

⊗M | M ∈ Cni×ni
}

(i = 1, . . . , p).

Corollary 6.1. Any matrix ∗-algebra has a basis of Hermitian positive semidef-
inite matrices.

Proof. Follows from Theorem 6.1 and that fact that Cn×n has a basis of Her-
mitian positive semidefinite matrices.

Now let Z1, . . . , Zd denote a Hermitian positive semidefinite basis of the
algebra spanned by {A1, . . . , Ad}. As in the association scheme case (where the
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Zi’s are also idempotent), we again have parameters qj(i) (i, j = 1, . . . , d) so
that

d∑
i=1

qj(i)Ai = Zj � 0 (j = 1, . . . , d).

Note that we have used the same notation qj(i) as for the dual eigenvalues of
association schemes, to emphasize the generalization.

Given the parameters qj(i) (i, j = 1, . . . , d), we may again construct (approx-
imations of) the convex hull of coherent configurations with these parameters,
by replacing the Ai’s by nonnegative matrix variables Xi as before, with the
additional constraint that

∑d
i=1 Xi = J .

Finally, the constraints trace(Xi) = trace(Ai) and trace(JXi) = trace(JAi)
(i = 1, . . . , d) may be added. By Theorem 3.1, these constraints are already
implied for association schemes, but we show below that this is not necessarily
true for more general coherent configurations.

Thus far we have derived the following SDP relaxation:
d∑

i=1

qj(i)Xi � 0 (j = 1, . . . , d), (15)

d∑
i=1

Xi = J, (16)∑
i∈I

Xi = I, (17)

trace(Xi) = trace(Ai) (i = 1, . . . , d), (18)
trace(JXi) = trace(JAi) (i = 1, . . . , d), (19)

Xi ≥ 0 (i = 1, . . . , d). (20)

Unfortunately, Theorem 3.2 does not hold for general coherent configurations.
Thus there may be (infinitely many) additional valid linear matrix inequalities
of the type

d∑
i=1

αiXi � 0

where α1, . . . , αd are scalars.
The difference with the association scheme case may be explained as follows.

All Hermitian positive semidefinite matrices from an association scheme lie in
the polyhedral cone generated by the idempotent basis {E0, . . . , Ed}. In the
general case, the corresponding cone is not polyhedral.

We note, however, that it is still possible to optimize over this infinite set of
valid linear matrix inequalities in polynomial time using the ellipsoid method.
Indeed, for given {X1, . . . , Xd} one may decide using SDP whether there exist
values α1, . . . , αd such that

d∑
i=1

αiAi � 0 and
d∑

i=1

αiXi 6� 0.
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This provides the necessary separation oracle for the ellipsoid method.
In the next section we illustrate these ideas by considering the coherent

configurations associated with cuts of specified size in graphs. We will not
consider all possible linear matrix inequalities, but will limit the discussion to
the SDP relaxation (15)— (20).

6.1 The maximum cut problem with specified cut size

Consider the generalization of the maximum bisection problem where the vertex
set must now be partitioned into two subsets of cardinality k and ` := n− k for
a given k. (Note that k = n/2 reduces to the maximum bisection problem).

Thus we consider the coherent configuration associated with the complete
bipartite graph Kk,`.

The coherent configuration has dimension 6 and consists of the following
matrices:

A1 =
(

Ik 0k×`

0`×k 0`×`

)
, A2 =

(
Jk − Ik 0k×`

0`×k 0`×`

)
, A3 =

(
0k×k Jk×`

0`×k 0`×`

)
,

A4 =
(

0k×k 0k×`

J`×k 0`×`

)
, A5 =

(
0k×k 0k×`

0`×k I`×`

)
, A6 =

(
0k×k 0k×`

0`×k J` − I`.

)
,

and its complex span is isomorphic (as a ∗-algebra) to C ⊕ C ⊕ C2×2. The
relevant ∗-isomorphism, say φ, satisfies:

φ(A1) =
(

1
0

1 0
0 0

)
, φ(A2) =

(
−1

0
k − 1 0

0 0

)
, φ(A3) =

√
k`

(
0

0
0 1
0 0

)
,

φ(A4) =
√

k`

(
0

0
0 0
1 0

)
, φ(A5) =

(
0

1
0 0
0 1

)
, φ(A6) =

(
0

−1
0 0
0 ` − 1

)
.

Note that φ(Ai) (i = 1, . . . , 6) forms a basis of C ⊕ C ⊕ C2×2, as it should. A
rank-one, Hermitian positive semidefinite basis is given by:

φ(A1 + A2), φ(A5 + A6), φ(A1 + A2 − ı (A3 −A4) + A5 + A6),

φ(A1 + A2 − (A3 + A4) + A5 + A6), φ((`− 1)A5 −A6), φ((k − 1)A1 −A2)),

where ı :=
√
−1.

Thus the matrix with entries Qij = qj(i) is given by

Q =


1 0 1 1 0 k − 1
1 0 1 1 0 −1
0 0 −1 −ı 0 0
0 0 −1 ı 0 0
0 1 1 1 `− 1 0
0 1 1 1 −1 0

 ,

and the SDP relaxation of the maximum k − ` cut problem becomes

max
1
2
trace(W (X3 + X4))
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subject to

6∑
i=1

Xi = J

6∑
i=1

qj(i)Xi � 0 (j = 1, . . . , 6)

Xi ≥ 0 (i = 1, . . . , 6),
X3 = XT

4 ,

X1 + X5 = I,

trace(X1) = k,

trace(JX3) = k`

trace(JX2) = k(k − 1)
trace(JX6) = `(`− 1).

Note that the Xi matrix variables are real, but the p.s.d. condition should be
read as ‘Hermitian positive semidefinite’, since some of the parameters qj(i) are
complex.

Substituting X1 + X5 = I, the linear matrix inequalities in the relaxation
become:

X1 + X2 � 0
X5 + X6 � 0

I + X2 − (X3 + XT
3 ) + X6 � 0

I + X2 − ı(X3 −XT
3 ) + X6 � 0

(`− 1)X5 −X6 � 0
(k − 1)X1 −X2 � 0.

In any solution of these linear matrix inequalities, we may replace X3 by its
symmetric part to obtain another solution. Indeed, if

I + X2 − (X3 + XT
3 ) + X6 � 0

then, for X̄3 := 1
2 (X3 + XT

3 )

I + X2 − (X̄3 + X̄T
3 ) + X6 � 0

and
I + X2 − ı(X̄3 − X̄T

3 ) + X6 = I + X2 + X6 � 0.

Moreover, replacing X3 by 1
2 (X3 + XT

3 ) does not change the objective value,
since

trace(W (X̄3 + X̄T
3 )) ≡ trace(W (X3 + XT

3 )).
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Thus the complex linear matrix inequality is redundant, and we may rewrite
the SDP relaxation as

max
1
2
trace(WX)

subject to

X1 + X5 = I

I + X2 + X + X6 = J

X1 + X2 � 0
X5 + X6 � 0

I + X2 −X + X6 � 0
(`− 1)X5 −X6 � 0
(k − 1)X1 −X2 � 0

trace(X1) = k

trace(JX) = 2k`

trace(JX2) = k(k − 1)
trace(JX6) = `(`− 1)

X, X1, X2, X5, X6 ≥ 0.

The new variable X is the relaxation of the adjacency matrix of Kk,`.

Remarks

1. Note that the ‘trace’ constraints are not redundant. Indeed, if these con-
straints are omitted, a feasible point is given by X1 = I, X2 = J − I,
X = X5 = X6 = 0. This confirms that Theorem 3.1 cannot be extended
to more general coherent configurations than association schemes.

2. It is straightforward to show that we regain the SDP relaxation (8) of the
maximum bisection problem if k = `.
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