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Abstract

Among the most popular models for decision under risk and uncertainty

are the rank-dependent models, introduced by Quiggin and Schmeidler. Cen-

tral concepts in these models are rank-dependence and comonotonicity. It has

been suggested in the literature that these concepts are technical tools that

have no intuitive or empirical content. This paper describes such contents. As
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a result, rank-dependence and comonotonicity become natural concepts upon

which preference conditions, empirical tests, and improvements for utility mea-

surement can be based. Further, a new derivation of the rank-dependent models

is obtained. It is not based on observable preference axioms or on empirical

data, but naturally follows from the intuitive perspective assumed. We think

that the popularity of the rank-dependent theories is mainly due to the natural

concepts adopted in these theories.

Keywords: rank-dependence, comonotonicity, Choquet integral, pessimism,

uncertainty aversion, prospect theory.

JEL-classi…cation: D81, C60
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In the last two decades, many models for decision under risk and uncertainty

have been proposed that deviate from classical expected utility. Among the most

popular are the rank-dependent models. They were introduced by Quiggin (1981) for

decision under risk (known probabilities) and by Schmeidler (1989) for decision under

uncertainty (unknown probabilities), and have been incorporated in prospect theory

(Tversky & Kahneman 1992). The present paper proposes an intuitive justi…cation

of rank-dependence, building on Lopes (1984), Yaari (1987), and Weber (1994). A

new derivation of rank-dependent utility is presented that naturally follows from the

intuitive conditions.

In order to generate fruitful applications, a decision model should satisfy three

requirements. First, it should be mathematically sound. For instance, it should not

exhibit behavioral anomalies such as implausible violations of stochastic dominance

(Fishburn 1978). This …rst requirement can be guaranteed by preference axiomatiza-

tions. For the rank-dependent models, such axiomatizations were given by Quiggin

(1982), Schmeidler (1989), and many others (see Karni & Schmeidler 1991, Schmidt

1998, and Starmer 1999 for surveys).

The second requirement for a decision model concerns its empirical performance.

It has been found that rank-dependent utility can accommodate several empirical

violations of expected utility. The study of its empirical potential is still going on

today (Harless & Camerer 1994, Tversky & Fox 1995, Birnbaum & McIntosh 1996,

Bleichrodt & Pinto 2000, Abdellaoui & Munier 1999, Gonzalez & Wu 1999).
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The third requirement is that the model should be intuitively plausible. Its con-

cepts should provide new insights and be economically meaningful. Future connec-

tions with concepts from other …elds should be conceivable (“nomological validity”).

Only few authors have provided intuitive arguments for rank-dependence. The ar-

guments are scattered around over various papers from di¤erent …elds. It has been

pointed out recently that a complete intuitive foundation of rank-dependence is still

lacking (Luce 1996a p. 85, Luce 1996b p. 304, Safra & Segal 1998 p. 28). Providing

such a foundation is the purpose of this paper. We will argue, using the terminology

of Backhouse (1998, p. 1857), that rank-dependence relates to “real-world” (psycho-

logical) concepts. As suggested by Backhouse, such arguments are, “in the last resort,

informal.”

The paper is structured as follows. Section 1 presents the …rst attempt to model

nonadditive probabilities, commonly used before the 1980s. Section 2 describes the

intuition of rank-dependence for decision under risk. The rank-dependent utility for-

mula follows from this intuition in a natural and elementary manner (Section 3).

The intuition also leads to natural ways for modeling pessimism and optimism, two

important attitudes with respect to probabilistic risk (Section 4). Section 5 extends

the foundation to uncertainty. It shows that Quiggin’s (1981) contribution for risk

and Schmeidler’s (1989) contribution for uncertainty are based on the same intuition.

Using the intuitive foundation of the preceding sections, Section 6 argues that pref-

erence conditions and measurement procedures based on “comonotonicity” are not

4



only valid under the rank-dependent theory but also have merits in the “real world.”

Conclusions and comments are given in Section 7. Appendix A discusses intuitive

arguments for rank-dependence presented before in the literature and Appendix B

gives proofs.

1 The First Attempt

Consider a lottery (p1; x1; ¢ ¢ ¢ ; pn; xn), yielding outcome xj with probability pj, j =

1; : : : ; n. The probabilities p1; : : : ; pn are nonnegative and sum to one. In this paper,

outcomes are real numbers designating money. It will be assumed throughout that

the lottery is evaluated by the following formula, called the general weighting model :

nX
j=1

¼jU(xj) : (1)

U is the utility function and the ¼js are called decision weights. The decision weights

are nonnegative and sum to one, and will be discussed later. The general weighting

model is not intended to immediately provide operational predictions but serves as

a general point of departure. Intuitive arguments will be formulated in terms of the

model, and operational implications then follow.

Stochastic dominance is assumed throughout the paper. It means that moving

positive probability mass from an outcome to a strictly higher outcome leads to a

strictly higher evaluation. This assumption implies that the utility function is strictly

increasing (as follows from considering riskless lotteries). We do not yet make any
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further assumption about the decision weights, and they may depend on the entire

lottery for now.1 In a descriptive context, ¼j can be interpreted as the attention given

to outcome xj, possibly due to misperception of probability. In a normative context,

¼j can be interpreted as an importance weight for outcome xj that may deliberately

have been chosen di¤erent than the probability pj.

It may be possible to relate decision weights to psychological notions such as the

time span during which the decision maker looks at outcomes (Johnson & Schkade

1989). An empirical operationalization of decision weights is, however, not our pur-

pose at this stage. When further assumptions have been added, the decision weights

will become operational.

Utility is assumed independent of the lottery under consideration. Like decision

weights, utility is not operational at this stage but will become so later when further

assumptions have been added. Utility can be operationalized if it is interpreted in

the riskless sense of Allais (1953). Expected utility is the special case of the general

weighting model where ¼j agrees with pj for all j.

As a preparation for what follows, and for historical reasons, we start with the

following assumption. It will turn out to be too restrictive for our purposes and will

be relaxed later on.

ASSUMPTION 1 [independence of beliefs from tastes]. The decision weight ¼j of

receiving outcome xj depends only on the probability pj. ¤
1This dependence is not expressed in the notation.
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The assumption requires that the decision weight ¼j is independent of the out-

comes and the other probabilities of the lottery. We can now write w(p) for the

decision weight generated by a probability p, thus de…ning a function w. The general

weighting model thus becomes

nX
j=1

w(pj)U(xj): (2)

As we will see next, the requirement that the w(pj)s sum to one implies expected

utility. The proof is given in Appendix B.

THEOREM 2 Under Assumption 1, the general weighting model (1) reduces to ex-

pected utility, i.e. w(p) = p. ¤

To obtain Eq. (2) with a nonlinear w function, the requirement that decision

weights sum to one will have to be relaxed. This was indeed the approach originally

taken in the literature (Preston & Baratta 1948, Edwards 1955). Then, however, the

model leads to violations of stochastic dominance (Fishburn 1978). We conclude that

a transformation of probabilities, independently of outcomes, is not well possible. To

obtain a decision theory with transformed probabilities, an additional relaxation of

the expected utility principles is required. Such a relaxation, rank-dependence, was

introduced by Quiggin (1981). Its intuition is explained in the next section and the

rest of the paper elaborates on this intuition.
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2 The Intuition andDe…nition of Rank-Dependence

for Decision under Risk

The intuition of rank-dependence entails that the attention given to an outcome

depends not only on the probability of the outcome, it also depends on how good

the outcome is in comparison to the other possible outcomes. To illustrate this

intuition, assume that the decision maker is a pessimist and evaluates the lottery

¡
1
3
; 30; 1

3
; 20; 1

3
; 10
¢
. Then he will pay more than 1

3
of his attention to outcome 10,

the reason being that 10 is the worst outcome. Say that ¼3, the decision weight for

outcome 10, is 1
2
. The decision maker, accordingly, pays relatively less attention to

each of the other outcomes (¼1+¼2 = 1
2
if ¼3 = 1

2
). Being a pessimist, he will pay more

than half of the remaining attention to outcome 20, hence ¼2 > 1
4
; say ¼2 = 1

3
. The

remainder of the attention, devoted to outcome 30, is small (¼1 = 1
6
). Next consider

the lottery with outcome 20 changed into 0, i.e.
¡
1
3
; 30; 1

3
; 0; 1

3
; 10
¢
. The outcome 10

is no longer the worst outcome and a pessimist will therefore pay less attention to it

than in the …rst lottery. In human behavior, such attitudes are commonly observed

in every-day life. Rank-dependence is a psychologically realistic phenomenon. Savage

(1954, end of Chapter 4) already pointed out that there is no room for expressing

pessimism or optimism in traditional expected utility.

Descriptively, a pessimistic attitude can be due to an irrational belief that un-

favorable events tend to happen more often, leading to an unrealistic overweighting
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of unfavorable likelihoods (Murphy’s law). If rank-dependence is taken normatively,

then a pessimistic attitude can result from a conscious and deliberate decision. The

decision maker may decide that unfavorable outcomes are especially important in

decision making and therefore should receive more attention than equally likely fa-

vorable outcomes (Fellner 1961 p. 681, Weber 1994 p. 236, Lopes & Oden 1999 p.

310).

Empirically, another kind of rank-dependence is often found, where subjects not

only pay much attention to the worst outcomes but also to the best outcomes. Less

attention is paid to the intermediate outcomes. This phenomenon may be due to

extreme outcomes being more noticeable and provides another illustration of the

realistic nature of rank-dependence. A discussion of the phenomenon is given in

Section 4.

Further generalizations of expected utility could obviously be considered. To some

degree, the decision weight of an outcome will depend not only on whether it is better

than some other outcome but also on how much better it is. Such generalizations

may be considered in future developments. It should, however, be kept in mind that

a theory should not be too general. The theory should be su¢ciently restrictive to

allow for speci…c predictions. In that sense rank-dependence can be considered a

pragmatic compromise between generality and parsimony. Rank-dependence incor-

porates some major deviations from expected utility but at the same time provides

analytical tractability and speci…c empirical predictions.
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Figure 1: Ranking position of outcome xj

For the following analysis, we consider rank-ordered lotteries (p1; x1; ¢ ¢ ¢ ; pn; xn)

with x1 > ¢ ¢ ¢ > xn. Every lottery can obviously be written in this manner by

coalescing identical outcomes and then reordering the outcomes.

The distribution function of the lottery (see Figure 1) will be used for the formal

de…nition of ranking positions. The distribution function assigns to each outcome

the probability of receiving that outcome or anything worse. It therefore orders the

outcomes from best to worst, with value zero assigned to anything below the worst

outcome, value one to the best outcome, and value p to the outcome for which a p

part of the other outcomes is worst and a 1¡ p part is better. Therefore the ranking

position of any outcome xj is de…ned as its distribution function, i.e. it is pj+ ¢ ¢ ¢+pn.
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ASSUMPTION 3 [rank-dependence]. The decision weight ¼j of receiving outcome xj

depends only on its probability pj and its ranking position. ¤

The assumption has relaxed Assumption 1 by also permitting rank-dependence.

To illustrate the assumption, consider the lottery
¡
1
3
; 30; 1

3
; 20; 1

3
; 10
¢
. The ranking

position of outcome 10 is 1
3
. For the lottery

¡
2
3
; 25; 1

3
; 12
¢
, the ranking position of

outcome 12 is also 1
3
. The two outcomes also have the same probability, hence, by

Assumption 3, they must have the same decision weight.

3 Operational Implications: Rank-Dependent Util-

ity for Risk

With Assumption 3 added, the decision weights become operational and empirical

predictions can be derived from the decision weights. For example, with » denoting

equivalence, assume that

(p1; 10; p2;2; p3; 1) » (q1; 12; q2;2; q3; 0):

Then the decision weight of outcome 2 in the left lottery exceeds the corresponding

decision weight in the right lottery if and only if, with < denoting preference,

(p1; 10; p2;3; p3; 1) < (q1; 12; q2;3; q3; 0):

The claim follows because, under Assumption 3, the middle outcomes of the left

lotteries (2 in the upper lottery and 3 in the lower) have the same decision weight
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¼2, and the middle outcomes of the right lotteries (2 in the upper lottery and 3 in

the lower) have the same decision weight ¼02. The increase in evaluation of the left

lottery, ¼2(U(3) ¡ U(2)) apparently exceeds the increase in evaluation of the right

lottery, ¼02(U(3) ¡ U(2)). This implies that ¼2 ¸ ¼02. That is, the decision weights

show “where to put your money” (see Sarin & Wakker 1998, using an idea of Gilboa

1987).

We will now demonstrate that rank-dependent utility follows from the general

weighting model and Assumption 3. Assumption 3 implies in particular that the

decision weight of a maximal outcome of a lottery depends only on its probability

p, its ranking position always being one. The function w(p) can be de…ned as this

decision weight. w(p) is therefore the decision weight generated by the probability

p when associated with the best outcome. Obviously, w(0) = 0, w(1) = 1, and w is

strictly increasing because of stochastic dominance.

It is next demonstrated that the general rank-dependent formula for the lottery

(p1; x1; ¢ ¢ ¢ ; pn; xn) with x1 > ¢ ¢ ¢ > xn can be expressed in terms of the functionw: The

decision weight ¼1 is by de…nition equal to w(p1). Next we turn to the decision weight

of outcome xi for some general i. The following observation serves as a preparation.

Observation. The total decision weight assigned to outcomes x1; : : : ; xi, i.e. ¼1 +

¢ ¢ ¢+ ¼i, is w(p1 + ¢ ¢ ¢+ pi).

Explanation. Consider the lotteries (p1; x1; ¢ ¢ ¢ ; pi; xi; pi+1; xi+1; ¢ ¢ ¢ ; pn; xn) and

((p1 + ¢ ¢ ¢+ pi); z; pi+1; xi+1; ¢ ¢ ¢ ; pn; xn) for any outcome z exceeding xi+1, e.g., z = x1.
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Because decision weights must sum to one, ¼1 + ¢ ¢ ¢ + ¼i = 1 ¡ ¼i+1 ¡ ¢ ¢ ¢ ¡ ¼n =

w(p1 + ¢ ¢ ¢ + pi), where the second equality is inferred from inspecting the second

lottery. This reasoning is based on the fact that, by Assumption 3, the outcomes

xi+1; : : : ; xn all have the same ranking position in the two lotteries and therefore the

same decision weights denoted ¼i+1; : : : ; ¼n. ¤

The decision weight ¼i of outcome xi is ¼1 + ¢ ¢ ¢ + ¼i ¡ (¼1 + ¢ ¢ ¢+ ¼i¡1). By

the preceding observation, this is equal to w(p1 + ¢ ¢ ¢ + pi) ¡ w(p1 + ¢ ¢ ¢ + pi¡1).

Hence every decision weight can be expressed in terms of w. In agreement with

the rank-dependence Assumption 3, the decision weight of xi depends only on its

probability pi and its ranking position q = pi + ¢ ¢ ¢+ pn, because it can be written as

w(pi + 1¡ q)¡ w(1¡ q).

Let us summarize. The model that has been derived is called rank-dependent

utility (RDU ). If x1 > ¢ ¢ ¢ > xn then

RDU(p1; x1; ¢ ¢ ¢ ; pn; xn) =
nX
j=1

¼jU(xj) (3)

where, for each j,

¼j = w(p1 + ¢ ¢ ¢+ pj)¡ w(p1 + ¢ ¢ ¢+ pj¡1):

In particular, ¼1 = w(p1).

CONCLUSION 4 Under the general weighting model (1), stochastic dominance and

Assumption 3 imply rank-dependent utility. ¤
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The preceding analysis has used the function w(p), the decision weight generated

by probability p when associated with the best outcome. An equivalent analysis

could have been presented in terms of a dual function w¤(p), describing the decision

weight generated by probability p when associated with the worst outcome. The two

functions are dual in the sense that w¤(p) = 1¡w(1¡p) for all p; this follows from the

requirement that decision weights should sum to one for any lottery (p;M ; 1¡ p;m)

with outcomes M > m. Both w or w¤ can be used as the basis of the analysis, as

long as it is kept in mind whether the function describes decision weights of best

outcomes or of worst outcomes. In (3), ¼j can as well be expressed in terms of w¤,

¼j = w
¤(pj + ¢ ¢ ¢+ pn)¡w¤(pj+1+ ¢ ¢ ¢+ pn) for each j. w can be called the goodnews

weighting function and w¤ the badnews weighting function.

The decision weights are now uniquely determined and can be derived from ob-

servable choice. Most empirical studies of decision weights have used simultaneous

parametric …ttings for U and w. Non-parametric …ttings still involving utility esti-

mation were provided by three independent simultaneous studies: Abdellaoui (2000),

Bleichrodt & Pinto (2000), and Gonzalez &Wu (1999). Abdellaoui (1999) introduced

a parameter-free method for measuring decision weights without the need to estimate

utilities.

Other nonexpected utility models than the rank-dependent ones can be derived

from the general weighting model. For example, if the decision weights do not depend

on the rank-ordering of outcomes but instead on the equivalence class that a lottery
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is contained in, then “betweenness” models result (Chew 1989). These models are

outside the scope of this paper.

We hope that the preceding explanation has demonstrated that RDU is not solely

a mathematical device for deriving decisions from nonlinear probabilities. The theory

is based on two intuitive assumptions regarding decision making. First, people may

process probabilities in a nonlinear manner. Second, the attention people pay to

outcomes may depend on how good or bad these outcomes are. The RDU formula

naturally follows from these two intuitive assumptions.

4 Pessimism and Optimism

This section shows how rank-dependence can describe phenomena outside the do-

main of expected utility. Let us …rst consider pessimism. Assume that a lottery

yields outcome x with probability p. Let q denote the ranking position of x, i.e. the

probability of receiving a lower or equal outcome. The decision weight of x then is

w(p+(1¡q))¡w(1¡q). Under pessimism, improving the ranking position (increasing

the probability q of receiving something nonpreferred) decreases the decision weight

of x. It is well-known that w(p+ (1¡ q))¡ w(1¡ q) is decreasing in q if and only if

w is convex. Hence, pessimism is characterized by a convex weighting function.

Similarly, optimism corresponds to a decision weight w(p+(1¡q))¡w(1¡q) that

is increasing in q, and thus to a concave weighting function. This rank-dependent

way of modeling pessimism and optimism was already suggested by Quiggin (1982, p.
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335). It was described in full by Yaari (1987, p. 108) and, subsequently, by many other

authors. It is in full agreement with the intuition advanced in this paper. Similar

e¤ects have been observed in other contexts. For instance, when aggregating di¤erent

sources of information on risk, people assign disproportionately high weights to the

worst risk assessments (Viscusi 1997, p. 1667). Viscusi uses the term “informationally

risk-averse” to indicate independence from the shape of utility for wealth.

In empirical investigations, many observed weighting functions are not completely

convex or concave but exhibit a mixed pattern. They are concave for small probabili-

ties and convex for moderate and high probabilities. This pattern is called inverse-S.

The pattern implies that subjects pay much attention to best and worst outcomes,

and little attention to intermediate outcomes (Quiggin 1982, Weber 1994). Empirical

support has been found (Yaari 1965, Allais 1988, Karni & Safra 1990, Birnbaum et al.

1992, Tversky & Kahneman 1992, Kachelmeier & Shetata 1992, Camerer & Ho 1994,

Tversky & Fox 1995, Wu &Gonzalez 1996, Abdellaoui 2000, Bleichrodt & Pinto 2000,

Gonzalez & Wu 1999). Counterevidence has been provided by Birnbaum & McIntosh

(1996) and Birnbaum & Navarrete (1998). A psychological theory for the attention

to low outcomes (“security”) and high outcomes (“potential”) has been developed by

Lopes (Lopes & Oden 1999). The pattern suggests that people are overly sensitive to

changes from impossible to possible and from possible to certain but are insu¢ciently

sensitive to probabilistic information otherwise (Karmarkar 1978, Tversky & Wakker

1995).
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The inverse-S shape predicts that people are optimistic and hence risk seeking for

gambles that yield gains with small probabilities such as in public lotteries. People are

pessimistic and hence risk averse for gambles that yield losses with small probabilities,

a phenomenon relevant for insurance. Hence, the simultaneous existence of lotteries

and insurance, a classical paradox in economics, can be explained by the inverse-S

pattern (Quiggin 1982).

5 The Intuition for Decision under Uncertainty

The analysis of uncertainty, presented in this section, is parallel to the analysis of risk.

Uncertainty is, however, more interesting because subjective degrees of belief can play

a role. Risk is the special case of uncertainty where probabilities are unambiguously

known. We brie‡y describe the uncertainty framework. A set of states (of nature) S is

given. This set is considered to be an exhaustive list of mutually exclusive states: one

and only one state will be the true state, but the decision maker is uncertain about

which that will be. Subsets of S are called events. As in Section 1, the outcome set is

assumed to be IR. Acts are …nite-valued functions from S to IR. The generic notation

for an act is (E1; x1; ¢ ¢ ¢ ;En; xn). This act yields outcome xj if the true state belongs

to event Ej. It is implicitly understood in this notation that the events (E1; : : : ; Em)

partition the state space.

We assume that the act (E1; x1; ¢ ¢ ¢ ;En; xn) is evaluated by the following formula,
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the general weighting model :

nX
j=1

¼jU(xj): (4)

U denotes the utility function and the ¼js are decision weights. Decision weights

are nonnegative and sum to 1. We assume monotonicity, i.e. if for some states of

nature the outcomes of an act are replaced by better outcomes then the resulting

act is weakly preferred to the original act. This implies that the utility function

is nondecreasing. The utility function is assumed to be non-constant so as to avoid

triviality. No assumption is yet made about the ¼js and they are permitted to depend

on the act in any possible manner. Subjective expected utility (SEU ) is the special

case where the ¼js are subjective probabilities, i.e. the following two assumptions hold.

ASSUMPTION 5 [independence of beliefs from tastes]. The decision weight ¼j of an

event Ej depends only on the event itself. ¤

With Assumption 5 satis…ed, the following assumption can be formulated:

ASSUMPTION 6 [additivity]. The decision weight ¼A[B of a disjoint union A[B is

the sum ¼A + ¼B of the decision weights of the separate events A and B. ¤

There is much interest in relaxations of Assumption 6. First, it is psychologically

plausible that people perceive likelihood in a nonlinear manner, a phenomenon which

is usually more pronounced under uncertainty than under risk (Keynes 1921, Fellner

1961 p. 684, Weber 1994, Currim & Sarin 1989, Tversky & Wakker 1998). Nonlinear
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sensitivity towards probabilities seems as plausible as towards outcomes, and therefore

probability transformation seems to be as useful for descriptive purposes as utility.

Second, nonadditive measures of belief, such as Dempster-Shafer belief functions, are

extensively used in arti…cial intelligence (Dempster 1967, Shafer 1976). Unfortunately,

a relaxation of only Assumption 6 while maintaining full independence of beliefs from

tastes turns out to be impossible.

THEOREM 7 Eq. (4) and Assumption 5 imply subjective expected utility (thus As-

sumption 6). ¤

Theorem 7 can be interpreted as a negative result. Nonadditive measures can-

not be implemented in decisions if Assumption 5 is to be maintained. We therefore

turn to a weakening of Assumption 5. The weakening could be interpreted as giv-

ing up independence of beliefs from tastes. However, once Assumption 5 is given

up, the interpretation of decision weights as indexes of belief, already questionable

under expected utility, becomes highly problematic. Obviously, the interpretation of

nonadditive measures, which are simply the decision weights of good- or badnews

events, as indexes of belief is similarly problematic. Another, more plausible, inter-

pretation of decision weights is therefore that they are not pure indexes of belief.

They may also comprise a component of decision attitude, in addition to the belief

component. Under such an interpretation, a decomposition of decision weights into

the belief and decision component can be conjectured (Epstein 1999, Wu & Gonzalez

1999, Tversky & Wakker 1998). For consistency with traditional terminology, the
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name of Assumption 5 is maintained.

A relaxation of Assumption 5 that permits nonadditive measures is provided by

Choquet expected utility (CEU ), introduced by Schmeidler (1989). His model can

be based on the intuition of rank-dependence. That is, the attention paid to an event

depends not only on the event but also on how good the outcome yielded by the

event is in comparison to the outcomes yielded by the other events. This is the way

in which subjective expected utility is generalized.

For the following analysis, consider rank-ordered acts (E1; x1; ¢ ¢ ¢ ;En; xn), with

x1 > ¢ ¢ ¢ > xn. For event Ej the ranking position is identi…ed with the event of

receiving a worse or equivalent outcome, i.e. it is Ej [ ¢ ¢ ¢ [ En. Sarin & Wakker

(1998) used the term dominating event for the complement of the ranking position.

The following analysis is similar to the analysis under risk. It is presented concisely

but in full because it demonstrates the similarity of RDU under risk and CEU under

uncertainty, thus the similarity of Quiggin’s (1981) and Schmeidler’s (1989) ideas.

ASSUMPTION 8 [rank-dependence]. The decision weight ¼j of an event Ej depends

only on the event and its ranking position. ¤

Next Choquet expected utility is derived from Assumption 8. The assumption

implies in particular that the decision weight of a maximal outcome of a lottery de-

pends only on the belonging event E, the ranking position always being the universal

event. W (E) can now be de…ned as this decision weight. W (E) is therefore the deci-
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sion weight generated by the event E when associated with the best outcome. W is a

capacity, i.e. (1) W (;) = 0, (2) W (S) = 1, and (3) W is nondecreasing with respect

to set inclusion. (Condition (3) follows from consideration of acts (A;x;B [ C; y) and

(A [B; x;C; y) with U(x) > U(y). Monotonicity implies preference for the …rst act,

which implies that W (A [B) ¸W (A).)

We express the general weighting model in terms of the capacity W . Consider

the act (E1; x1; ¢ ¢ ¢ ;En; xn). We assume that the events have been rank-ordered such

that x1 > ¢ ¢ ¢ > xn. The decision weight ¼1 is by de…nition equal to W (E1). Next

consider a general i.

Observation. The total decision weight assigned to outcomes x1; : : : ; xi, i.e. ¼1 +

¢ ¢ ¢+ ¼i, is W (E1 [ ¢ ¢ ¢ [ Ei).

Explanation. Consider the acts (E1; x1; ¢ ¢ ¢ ;Ei; xi;Ei+1; xi+1; ¢ ¢ ¢ ;En; xn) and

((E1 [ ¢ ¢ ¢ [Ei); z;Ei+1; xi+1; ¢ ¢ ¢ ;En; xn) for any outcome z exceeding xi+1, e.g., z =

x1. Because decision weights must sum to one, ¼1 + ¢ ¢ ¢+ ¼i = 1¡ ¼i+1 ¡ ¢ ¢ ¢ ¡ ¼n =

W (E1[¢ ¢ ¢[Ei). Note that, by Assumption 8, the outcomes xi+1; : : : ; xn all have the

same ranking position in the two acts and therefore the same decision weights. ¤

The observation implies that the decision weight ¼i of event Ei is the di¤erence

W (E1 [ ¢ ¢ ¢ [ Ei) ¡ W (E1 [ ¢ ¢ ¢ [ Ei¡1). It is common convention that for i = 1

such a di¤erence is ¼1 = W (E1). The rank-ordering of the events was crucial in

this derivation. Let us summarize and give the formal de…nition of Choquet expected
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utility (CEU ). For x1 > ¢ ¢ ¢ > xn,

CEU(E1; x1; ¢ ¢ ¢ ;En; xn) =
nX
j=1

¼jU(xj) (5)

where

¼j =W (E1 [ ¢ ¢ ¢ [Ej)¡W (E1 [ ¢ ¢ ¢ [Ej¡1):

CONCLUSION 9 Eq. (4), monotonicity, and Assumption 8 imply CEU. ¤

Empirical measurements of decision weights have been described by Fox &Tversky

(1995), Fox, Rogers, & Tversky (1996), Wu & Gonzalez (1999), and Kilka & Weber

(1999). We hope that the preceding explanation clari…es that the intuitive basis of

CEU is the same as of RDU. Thus, a psychological background has also resulted for

Schmeidler’s (1989) Choquet expected utility. It will be argued in the next section

that, given this intuition, the “comonotonicity” condition is not just a mathematical

tool but is a natural concept. Let us now turn to a discussion of pessimism.

Pessimism means again that the attention paid to an event gets higher as the event

gets rank-ordered worse. That is, assume that event E yields outcome x and D is the

ranking position of E. Then the decision weight of E is W (Dc [E)¡W (Dc). Under

pessimism, worsening the ranking position (i.e. decreasing the event D of receiving

something worse) increases the decision weight of E. That is, if C ½ D, then

W (Cc [E)¡W (Cc) ¸W (Dc [ E)¡W (Dc): (6)

22



Similar to risk, a capacity W satisfying (6) is called convex. (6) can be rewritten as

W (A [ B) +W (A \ B) ¸ W (A) +W (B) after appropriate substitution of symbols

(left to the reader.) Optimism is similarly characterized by concavity of the capacity,

i.e. (6) with · instead of ¸.

6 Coalescing and Comonotonicity

Both in risk and in uncertainty, the rank-dependent formulas have been given for

distinct outcomes x1 > ¢ ¢ ¢ > xn. Eqs. (3) and (5) can also be used if the inequalities

are weak, i.e. x1 ¸ ¢ ¢ ¢ ¸ xn. These claims follow from substitution and are left to the

reader. For an act (E1; x1; ¢ ¢ ¢ ;En; xn) with xi = xi+1, the decision weight and the

ranking position of event Ei depend on the chosen rank-ordering between xi and xi+1.

This choice can be made arbitrarily and is immaterial for all empirical purposes.

We next discuss “comonotonicity,” introduced by Schmeidler (1989, …rst ver-

sion 1982). The condition has sometimes been criticized, hence an explanation of

its intuition seems to be useful. For simplicity, assume a …nite state space S =

fs1; : : : ; sng. For a permutation (½1; : : : ; ½n) of (1; : : : ; n), consider the set C
½ =

©
f 2 IRn : f½1 ¸ ¢ ¢ ¢ ¸ f½n

ª
. It can be seen that C½ is a convex cone. For all acts in

the cone C½, we can use the same decision weights ¼½j determined by

¼½j :=W (s½1 ; : : : ; s½j )¡W (s½1 ; : : : ; s½j¡1)

in the computation of CEU. If acts are in the same cone, then fi > fj and gj > gi for
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no states si and sj. Acts that belong to the same cone are called comonotonic.

Within comonotonic sets, CEU coincides with an SEU functional. This SEU

functional is de…ned by taking the CEU utility function and taking as probabilities

the decision weights ¼½j belonging to the comonotonic set. Therefore, CEU exhibits

many characteristics of SEU within comonotonic sets. In particular, it satis…es the

same preference axioms.

The “comonotonic” agreement of CEU with SEU is implied by the theory but is

also empirically interesting. Consider acts belonging to di¤erent comonotonic sets.

The states of nature are rank-ordered di¤erently for such acts. This di¤erence will

enhance variations in the psychological attention paid to the states. Subjects will

exhibit more pronounced violations of SEU, due to pessimism, optimism, etc. When

only acts are considered from one comonotonic set, fewer violations of SEU can be

expected. According to CEU theory, the e¤ects of pessimism and optimism will then

be kept constant. In reality, they can be expected to be smaller than when the

rank-ordering of the acts varies.

Comonotonicity is extensively used in preference axiomatizations of CEU. Most

axiomatizations consist of restricting the SEU axioms to comonotonic acts. For a

continuum of outcomes, CEU holds as soon as SEU holds within every comonotonic

set (this is easily derived fromWakker & Tversky 1993, Proposition 8.2). An empirical

application of comonotonicity can be found in utility measurement. Wakker &Dene¤e

(1996) demonstrated that utility can be measured under CEU by restricting SEU
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techniques to comonotonic sets of acts. Such a restriction has the empirical advantage

of avoiding the biases generated by rank-dependence, and therefore seems desirable.

Some authors have pointed out that rank-dependence and comonotonicity are of-

ten used as technical tools and that there is still need for an intuitive foundation

(Luce 1996a p. 85, Luce 1996b p. 304, Safra & Segal 1998 p. 28). Our paper has

provided such a foundation, building on ideas provided before in the literature. We

have argued that rank-dependence and comonotonicity do have intuitive and em-

pirical merit. Yaari (1987, p. 104) already emphasized the intuitive importance of

comonotonicity when discussing his central axiom (dual independence): “The forego-

ing proposition makes it clear that the economic interpretation of dual independence

lies in the intuitive meaning of comonotonicity.”

Obviously, alternative derivations of CEU and RDU that do not use rank-dependence

or comonotonicity in their axioms are also interesting. Such derivations were provided

by Luce (1998) and Safra & Segal (1998). In these derivations, rank-dependence fol-

lows from other conditions.

7 Conclusion

This paper has argued that RDU is not just a mathematical device but that it is

based on intuition and has “real-world” merits. The intuition of rank-dependence

was described in terms of decision weights. The RDU formula naturally followed as

well as empirically meaningful preference conditions. Optimism and pessimism were
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explained in terms of the intuitive foundation. An analogous reasoning was applied to

the uncertainty case and a psychological background for Schmeidler’s (1989) Choquet

expected utility resulted. Once the intuition understood, comonotonicity conditions

and rank-dependence are no longer mere theoretical tools. They become natural

concepts upon which preference conditions, empirical tests, and improvements for

utility measurement can be based.

Our preference for RDU, and we believe also its general popularity, depends not

only on its mathematical or empirical performance but also on an intuitive aspect of

the model: Nonlinear sensitivity towards chance, and nonadditive measures of belief,

have the potential of becoming useful concepts, not only in economics but also in

other areas such as psychology and arti…cial intelligence.

Appendix A. Related Literature on The

Intuition of Rank-Dependence

This appendix presents some intuitive arguments for rank-dependence that have

been presented in the literature. A …rst example from the psychological literature is

Birnbaum’s (1974) study of the formation of personality impressions. For example,

Birnbaum studies the likableness of a person on the basis of intellectuality, shyness,

loyalty, etc. He …nds empirical violations of additive aggregation and proposes a
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“con…gural weighting model” that better describes how intellectuality etc. are aggre-

gated into likableness of a person. Under con…gural weighting, “... the weight of a

stimulus depends upon its rank within the set to be judged” (page 559). Although

this model is formally di¤erent from RDU, it does already contain an intuition of

rank-dependence. Con…gural weighting theory was later extended to risky choices

(Birnbaum & Navarrete 1998 and the references therein).

A remarkable study is Lopes (1984) who argues for the intuitive value of rank-

dependence in risk theory as an extension of the “Gini index” of inequality. The

rank-dependent aspect of such measures of inequality is formulated by her as “ : : :

embody distributional objectives in terms of the relative weight given to inequality at

di¤erent points on the income scale : : : The central psychological premise in this arti-

cle is that people’s intuitions about risks are functionally similar to intuitions about

distributional inequality. : : : representation that captures psychologically salient fea-

tures of risky distributions” (p. 468). She then explains that people, well aware of

the objective probabilities, still “may wish to weight outcomes di¤erently at di¤erent

points in the distribution” and discusses human ways of reasoning re‡ecting this pro-

cedure (p. 469). Experiments are presented to test for the role of rank-dependence.

Lopes concludes that rank-dependence (called the distributional model) “: : : seems to

o¤er the potential of capturing in a psychologically meaningful way many interesting

and important features of people’s processing of and preference for risks” (p. 484).

Let us emphasize that Lopes (1984) derived her ideas solely from intuition and
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psychological principles. No preference axioms were considered. Her work was de-

veloped independently of Quiggin (1981, 1982) or other presentations of RDU. Lopes

(1987) presents experiments where subjects were asked to speak aloud on their mo-

tives for choices between multiple outcomes gambles. It turned out that subjects pay

much attention to “good-news events” (receiving at least as much as ...) and, simi-

larly, bad-news events. This attention is formalized through the probability weighting

function and its dual in rank-dependent theories. Rank-dependent decision weights

then result from di¤erence-taking. The great attention to good- and bad-news events

also supports the inverse-S shapes of the weighting functions.

A third example from the psychological literature is Weber (1994). She uses a

somewhat di¤erent approach than this paper, invoking an analogy with estimation

theory and asymmetric loss functions, and concludes “these processes need not nec-

essarily be perceptual in origin. Instead, in this article, I argued that con…gural or

rank-dependent weighting could be interpreted as strategic or motivational (i.e. a rea-

sonable response that takes into consideration existing constraints that are ignored

by the expected utility model)” (p. 236). On p. 237 she discusses perceptual origins

(“attentional salience”): “... and more extreme outcomes may get greater weight than

outcomes in the middle of the distribution, simply because they are more noticeable.”

Models that pay special attention to highest or lowest outcomes can be consid-

ered to be special cases of rank-dependence. An example is Rawls’ (1971) proposal

for welfare evaluation, where all importance weight is allocated to the poorest person
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in society. Rank-dependent models for welfare were developed by Weymark (1981)

and Ebert (1988). Similar models, with the importance weight divided over the high-

est and lowest outcomes, were proposed by Hurwicz (1951) and Arrow and Hurwicz

(1972). Models that deviate from expected utility only by overweighting highest

and/or lowest outcomes were proposed by Bell (1985), Ja¤ray (1988), Gilboa (1988),

and Cohen (1992). In time preference, rank-dependence arises when people are es-

pecially sensitive to decreases in salary. This is a special case of rank-dependence,

related to the immediately preceding period (Gilboa 1989, Shalev 1997).

Yaari (1987) relates the intuitive meaning of comonotonicity to the phenomenon

of “hedging.” This phenomenon considers combinations of outcomes and therefore

requires a linear structure on the outcome set. For example, consider two gambles for

money on the same toss of a coin. The …rst gamble is (H; 30;T; 10), yielding $30 if

heads comes up and $10 if tails comes up. The second gamble is (H; 10;T; 30). These

two gambles are equivalent but their “…fty-…fty-outcomes-mixture” (H; 20;T; 20) is

usually preferred. In the mixture, a reduction of risk has resulted. Hedging occurs

because the good outcome of one lottery neutralizes the bad outcome of the other

lottery and vice versa. The lotteries serve as complementary goods. The described

neutralization can only occur because the gambles are not comonotonic. Hence, Yaari

argues that an independence condition (his Axiom A5) is only natural in the absence

of hedging, i.e. for comonotonic gambles. A same argument is presented by Röell

(1987). Hedging is central in the portfolio selection of assets.
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Schmeidler (1989) uses a similar framework that generalizes Yaari’s model in two

respects. First, Yaari considers real-valued outcomes (interpreted as money), whereas

Schmeidler deals with general convex outcome sets (interpreted as probability dis-

tributions over prizes). Second, Schmeidler assumes states of nature for which no

probabilities need to be given. Yaari’s model can be considered the special case of

Schmeidler’s model where probabilities of the states of nature are given and outcomes

are one-dimensional.

Next, we discuss Quiggin (1982). He …rst discusses the “primitive approach” (our

Eq. 2), transforming only probabilities of …xed outcomes, and points out: “the funda-

mental problem in these theories is that any two outcomes with the same probability

must have the same decision weight. This fails to take account of the fact that while

individuals may distort the probability of an extreme outcome in some way, they

need not treat intermediate outcomes with the same probability in the same fash-

ion.” In order to formalize this observation, Quiggin proposes to order the possible

outcomes xi and the corresponding probabilities pi in each prospect and denotes the

rank-ordered probability vector p1; : : : ; pn by p. Quoting again from his paper: “The

anticipated utility function is de…ned to be V = h(p)U(x) =
P

i hi(p)U(xi) where

U is a utility function with properties similar to that of von Neumann-Morgenstern,

while h(p) is a vector of decision weights satisfying
P

i hi(p) = 1. In general, hi(p)

depends on all the pjs and not just on pi. Thus, for example, the fact that pj = pk

would not imply that hj(p) = hk(p).”
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Quiggin’s formula is a special case of the general weighting model where the de-

cision weights are independent of the outcomes given the rank-ordered probability

vector p. Quiggin gives preference conditions to characterize his formula. He then

shows that RDU follows from a continuity condition. The purpose of our analysis was

di¤erent. We did not invoke technical conditions such as continuity in the derivation

but derived rank-dependence from intuitive arguments.

Appendix B. Proofs

Proof of Theorem 2. Decision weights always sum to one, hence w(p1 + p2) =

1 ¡ w(1 ¡ p1 ¡ p2) = w(p1) + w(p2). Therefore, w satis…es Cauchy’s equation. By

Aczél (1966), w must be linear. Note here that w is bounded by 0 and 1 so that no

nonlinear solutions of the Cauchy equation are possible. w is the identity function

because w(0) = 0 and w(1) = 1. ¤

Proof of Theorem 7. For each event E, de…neW (E) as the decision weight of that

event. W (E) is nonnegative,W (;) = 0, andW (S) = 1. Decision weights of partitions

always sum to one, hence W (E1 [ E2) = 1¡W ((E1 [ E2)c) = W (E1) +W (E2). W

is a probability measure and SEU follows. ¤
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