
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2005–84 

 
 

STABLE NETWORKS AND CONVEX PAYOFFS 
 

By Robert P. Gilles, Sudipta Sarangi 
 

July 2005 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6651844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stable Networks and Convex Payoffs∗

Robert P. Gilles† Sudipta Sarangi‡

July 2005

Abstract

Recently a variety of link-based stability concepts have emerged in the literature
on game theoretic models of social network formation. We investigate two ba-
sic formation properties that establish equivalence between some well known
types of stable networks and their natural extensions. These properties can be
identified as convexity conditions on the network payoff structures.
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1 Of stability and efficiency in network formation

Link-based stability is founded on the actions undertaken by individual decision

makers—usually called “players”—with regard to the creation and breaking of links.

Under the requirement of consent in link formation (Jackson and Wolinsky 1996,

Gilles, Chakrabarti, and Sarangi 2005), a link can only be created if both players

involved agree. On the other hand, links can be deleted by decisions to do so by

individual players, i.e., deletion of links is accomplished without consent. Link-based

stability requires that no player wants to delete one or more of her links to other play-

ers, and there is no pair of players that would like to establish a new link between

them. Variations in the precise formalization of link addition and link deletion has

resulted in a variety of link-based stability concepts in the literature.
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Jackson and Wolinsky (1996) introduced this link-based stability approach. They

developed the seminal notions of link addition and link deletion. They consider the

creation (under consent) and deletion of a single link at a time. This resulted in their

notion of pairwise stability. Since this foundational contribution there have been

developed numerous alternative stability concepts. We refer to, e.g., Belleflamme

and Bloch (2004), Bloch and Jackson (2004), Goyal and Joshi (2003), Gilles and

Sarangi (2005) and Gilles, Chakrabarti, and Sarangi (2005) for extensions of this

initial concept of pairwise stability. However, there is almost no work that examines

the relationship between these different link-based stability concepts themselves. Our

investigation makes a first step in this direction.

We limit our analysis to two notions of link addition and two notions of dele-

tion. As mentioned, a network is link deletion proof if there is no player who wants

to delete exactly one of her links. We also consider strong link deletion proof net-

works in which there is no individual who wants to deletion one or more of her links.

Strong link deletion proofness is equivalent to imposing Nash equilibrium conditions

in a non-cooperative game theoretic model of network formation as shown by Gilles,

Chakrabarti, and Sarangi (2005). We show here that link deletion proofness results

in exactly the same networks as the requirement of strong link deletion proofness

if and only if the network payoffs satisfy a convexity property. This result has al-

ready been hinted at in Calvó-Armengol and Ilkiliç (2004), but has not been properly

developed until now.

Further, we consider the link addition proofness condition introduced seminally by

Jackson and Wolinsky (1996), which states that there is no link which will make both

participating constituents better off. In Gilles and Sarangi (2005) we show that the

implementation of belief systems in every player’s behavior results in networks with

stronger properties. We introduce there the notion of strict link addition proofness,

which requires that both constituent players of a new link become strictly worse off

if this link would be formed. Here we show that these two link addition proofness

conditions result into the same class of networks if and only if the payoff function

satisfies a sign-uniformity condition on the marginal payoffs.

Through these results we are able to clearly delineate the various link-based sta-

bility concepts clearly. These insights might be useful for future investigations of dif-

ferent equilibrium and stability concepts in these game theoretic models of network

formation.
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2 Preliminaries

Next we formally introduce the main tools of our analysis. Throughout we let N be

some finite set of players or individuals.

2.1 Social networks

In our subsequent discussion we use established mathematical notation from Jackson

and Wolinsky (1996), Dutta and Jackson (2003), and Jackson (2005). The reader

may refer to these sources for a more elaborate discussion.

We limit our discussion to non-directed networks on N. Formally, if two players

i, j ∈ N with i 6= j are related we say that there exists a link between players i and j.

Now, if players i and j make up a single link, both players are equally essential; links

have a bi-directional nature. Formally such a link can be expressed as a binary set

{i, j}. We use the shorthand notation ij to describe the link {i, j}. We define

gN = {ij | i, j ∈ N, i 6= j} (1)

as the set of all potential links.

A network g on N is any set of links g ⊂ gN. Particularly, gN denotes the complete
network and g0 = ∅ is known as the empty network. The collection of all networks is

defined as GN = {g | g ⊂ gN}.

The set of (direct) neighbors of a player i ∈ N in the network g ∈ GN is given by

Ni(g) = {j ∈ N | ij ∈ g} ⊂ N. (2)

Similarly we introduce

Li(g) = {ij ∈ gN | j ∈ Ni(g)} ⊂ g (3)

as the link set of player i in the network g. These are exactly the links with i’s direct

neighbors in g.

For every pair of players i, j ∈ N with i 6= j we denote by g + ij = g ∪ {ij} the

network that results from adding the link ij to the network g. Similarly, g−ij = g\{ij}

denotes the network resulting from removing the link ij from network g.

2.2 Link-based stability concepts

We complete the preliminaries on network theory with the definition and discussion

of the link-based stability conditions already mentioned in the introduction to this

paper.
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Within a network g ∈ GN, benefits for the players are generated depending on

how they are connected to each other. Formally, for each player i ∈ N the function

ϕi : GN → R denotes her network payoff function which assigns to every network

g ⊂ gN a value ϕi(g) that is obtained by player i when she participates in g. The

composite network payoff function is now given by ϕ = (ϕ1, . . . , ϕn) : GN → RN.

We emphasize that these payoffs can be zero, positive, or negative and that the empty

network g0 = ∅ generates (reservation) values ϕ(g0) ∈ RN that might also be non-

zero.1

For a given network g ∈ GN we now define the following concepts:

(a) For every ij ∈ gN, the marginal benefit of the link ij to player i in the network

g for payoff function ϕ is given by

Di(g, ij) = ϕi(g) − ϕi(g − ij) ∈ R. (4)

(b) For every player i ∈ N and link set h ⊂ Li(g) the marginal benefit of link set h

to player i in the network g for payoff function ϕ is given by

Di(g, h) = ϕi(g) − ϕi(g − h) ∈ R. (5)

Using these additional tools we can give a precise description of the various link-

based stability concepts:

(a) A network g ⊂ gN is link deletion proof for ϕ if for every player i ∈ N and

every neighbor j ∈ Ni(g) it holds that Di(g, ij) > 0.

Denote by D(ϕ) ⊂ GN the set of link deletion proof networks for ϕ.

(b) A network g ⊂ gN is strong link deletion proof for ϕ if for every player i ∈ N

and every h ⊂ Li(g) it holds that Di(g, h) > 0.

Denote by Ds(ϕ) ⊂ GN the set of strong link deletion proof networks for ϕ.

(c) A network g ⊂ gN is link addition proof if for all players i, j ∈ N: ϕi(g+ij) >

ϕi(g) implies ϕj(g + ij) < ϕj(g).

Denote by A(ϕ) ⊂ GN the set of link addition proof networks for ϕ.

(d) A network g ∈ GN is strictly link addition proof for φ : GN → R if for all

i, j ∈ N it holds that ij 6∈ g implies that ϕi(g + ij) < ϕi(g).

Denote by As(ϕ) ⊂ GN the set of strict link addition proof networks for ϕ.

1We remark that ϕ can be viewed as gross benefits ϕ minus the link maintenance costs cm. Hence,
we can reformulate ϕi(g) = ϕi(g) −

∑
j∈N: ij∈g cm

ij . However, explicit modeling of these maintenance
costs is only essential in a dynamic model of network formation processes.
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The two link deletion proofness notions are based on the severance of links in a

network by individual players. The notion of link deletion proofness considers the

stability of a network with regard to the deletion of a single link while strong link

deletion proofness considers the possibility that a player deletes any subset of her

existing links. Clearly, strong link deletion proofness implies link deletion proofness.

Adding a link on the other hand is considered for a pair at a time and also requires

consent. A network is link addition proof if every pair of non-linked players as a

whole does not have the incentive to add this link. Strict link addition proofness

requires that every individual player in the pair being considered has a loss from

adding a link. This formulation makes the consent requirement somewhat moot since

neither player has an incentive to add the link. This is a significant strengthening of

the link addition proofness requirement.

We conclude our discussion with an example which delineates the different link-

wise stability concepts.

Example 1 Consider the network payoffs given in the following table:

Network ϕ1(g) ϕ2(g) ϕ3(g) Stability
g0 = ∅ 0 0 0 Ds

g1 = {12} −1 −1 −1

g2 = {13} −1 −1 −1

g3 = {23} 5 3 3 Ds, A

g4 = {12, 13} 1 1 1 Ds

g5 = {12, 23} 0 4 0
g6 = {13, 23} 0 0 4
g7 = gN 1 5 5 D, As

In the table D stands for link deletion proofness and Ds for strong link deletion proof-

ness. Similarly, A stands for link addition proofness and As for strict link addition

proofness.

The main features here are that the complete network g7 is link deletion proof, but

not strong link deletion proof and that network g3 is link addition proof, but not strict

link addition proof. To make the differences between the various possibilities more

clear we provide an overview of the marginal benefits:
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Network D(g, 12) D(g, 13) D(g, 23)

g0 = ∅ — — —
g1 = {12} −1,−1,−1 — —
g2 = {13} — −1,−1,−1 —
g3 = {23} — — 5, 3, 3

g4 = {12, 13} 2, 2, 2 2, 2, 2 —
g5 = {12, 23} −5, 1,−3 — 1, 5, 1

g6 = {13, 23} — −5,−3, 1 1, 1, 5

g7 = gN 1, 5, 1 1, 1, 5 0, 4, 4

In g7 player 1 is stuck with bad company if she could delete only a single link at the

time; she would like to break links with both players 2 and 3 and improve her payoff

from 1 unit to 5 units. However, deleting either of these two links separately would

make her only worse off. In this regard network convexity requires that no player is

in such a bad company situation. �

Using the basic components of link formation we now define two more link-based

stability concepts.

(a) A network g ∈ GN is pairwise stable for ϕ if g is link deletion proof as well

as link addition proof.

Denote by P(ϕ) = D(ϕ) ∩ A(ϕ) ⊂ GN the family of pairwise stable networks

for ϕ.

(b) A network g ∈ GN is strictly pairwise stable for ϕ if g is strong link deletion

proof as well as strict link addition proof.

Denote by P?(ϕ) = Ds(ϕ) ∩ As(ϕ) ⊂ GN the family of strict pairwise stable

networks for ϕ.

Jackson and Wolinsky (1996) seminally introduced the notion of pairwise stabil-

ity. This requirement combines link deletion proofness and link addition proofness.

Given that these two proofness conditions can be strengthened in various ways it is

possible to define a variety of modifications depending on the context. In Gilles and

Sarangi (2005) we introduce two modifications: (1) one where an agent can delete

any subset of their links and (2) a variation of link addition proof where no agent in

the pair wishes to add the link. The notion of strict pairwise stability combines these

two features making it a natural link-based stability concept.
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3 Equivalence and convexity

In this section we state the conditions that establish equivalence between the dif-

ferent stability concepts. We identify two related conditions under which the main

proofness conditions result in the same networks.2

Equivalence Theorem

(a) It holds that Ds(ϕ) = D(ϕ) if and only if ϕ is network convex in the sense that
for every network g, every player i ∈ N and every link set h ⊂ Li(g) :∑

ij∈h

Di(g, ij) > 0 implies Di(g, h) > 0. (6)

(b) It holds that As(ϕ) = A(ϕ) if and only if ϕ is link uniform on A(ϕ) in the
sense that for every network g ∈ A(ϕ) and all players i, j ∈ N with ij /∈ g :

Di(g + ij, ij) > 0 implies Dj(g + ij, ij) > 0. (7)

(c) It holds that P?(ϕ) = P(ϕ) if and only if ϕ is network convex as well as link
uniform on A(ϕ).

A proof of this equivalence theorem is relegated to Section 4 of this paper.

To illustrate the two payoff conditions, network convexity and link uniformity, we

return to the example discussed previously.

Example 2 Consider N = {1, 2, 3} and the payoff structure ϕ described in Example

1. We show that this payoff structure is neither network convex nor link uniform.

Indeed, first note that D(g7, 12) + D(g7, 13) = (2, 6, 6) and that D(g7, {12, 13}) =

(−4, 2, 2). Hence, the case of the removal of the links 12 and 13 from network g7

shows that ϕ is not network convex.

With regard to link uniformity of ϕ we remark that for network g6 = {13, 23} we have

that D1(g6, 13) = −5 < 0, while D3(g6, 13) = 1 > 0. This violates link uniformity of

the marginal payoffs with regard to adding the link 13 to the network g3 = {23}. That

is also the reason why g3 is link addition proof, but not strict link addition proof. �

Further, from the Equivalence Theorem it follows immediately that

2Calvó-Armengol and Ilkiliç (2004) introduced the concept of α-convexity on a network payoff struc-
ture. This concept requires that the marginal benefits of link formation are related in a supermodular
fashion. Note that the notion of “network convexity” defined here is weaker than their α-convexity
condition.
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Corollary: If ϕ is (link) monotone in the sense that D(g, h) > 0 for all networks
g ⊂ gN and link sets h ⊂ g, then P?(ϕ) = P(ϕ).

This equivalence result in fact follows from the observation that monotonicity of the

value function ϕ implies that ϕ is both network convex as well as link uniform.

4 Proof of the equivalence theorem

PROOF OF ASSERTION (A):

Obviously from the definitions it follows that in general Ds(ϕ) ⊂ D(ϕ).

Only if: Suppose that g ∈ D(ϕ) and that ϕi is not network convex on g for some

i ∈ N and some link set h ⊂ Li(g). We show that g 6∈ Ds(ϕ).

Indeed, from the hypothesis that g is link deletion proof, we know that Di(g, ij) >

0 for every ij ∈ Li(g). Then for h it has to be true that since
∑

h Di(g, ij) > 0,

Di(g, h) < 0. But then this implies that player i would prefer to sever all links in h.

Hence, g cannot be strong link deletion proof, i.e., g 6∈ Ds(ϕ).

If: Let g ∈ D(ϕ) and assume that ϕ is network convex on g. Then for every player

i ∈ N and link ij ∈ Li(g) it has to hold that Di(g, ij) > 0 due to link deletion

proofness of g. In particular, for any link set h ⊂ Li(g):
∑

h Di(g, ·) > 0. Now by

network convexity this implies that Di(g, h) > 0 for every link set h ⊂ Li(g). In other

words, g is strong link deletion proof, i.e., g ∈ Ds(ϕ).

This completes the proof of the assertion.

PROOF OF ASSERTION (B):

First suppose that ϕ is link uniform on A(ϕ). Since As(ϕ) ⊂ A(ϕ) we only have to

show that A(ϕ) ⊂ As(ϕ).

Let g ∈ A(ϕ). Then it follows by definition of link uniformity that for all i, j ∈ N with

ij /∈ g:

ϕi(g) 5 ϕi(g + ij) implies ϕj(g) 5 ϕj(g + ij)

since Di(g + ij, ij) = ϕi(g + ij) − ϕi(g). Hence, equivalently,

ϕi(g) > ϕi(g + ij) implies ϕj(g) > ϕj(g + ij).

Now since g is link addition proof it holds that

ϕi(g + ij) > ϕi(g) implies ϕj(g) > ϕj(g + ij),
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which in turn implies that ϕi(g) > ϕi(g + ij).

This is a contradiction. Therefore, we conclude that ϕi(g + ij) 5 ϕi(g) as well as

ϕj(g + ij) 5 ϕj(g). Hence, g ∈ As(ϕ).

Next suppose that A(ϕ) = As(ϕ). Let g ∈ A(ϕ) be such that there are i, j ∈ N

with ij /∈ g. Then by strict link addition proofness of g—resulting from the assumed

equivalence—it follows that

ϕi(g + ij) 5 ϕi(g) as well as ϕj(g + ij) 5 ϕj(g).

This in turn implies that ϕ is link uniform for g.

PROOF OF ASSERTION (C):

This is a direct consequence of assertions (a) and (b) of the Equivalence Theorem

proven above.

This completes the proof of the Equivalence Theorem stated in Section 3.

5 Conclusion

We have identified conditions under which strictly pairwise stable networks coincide

with pairwise stable networks. This has useful applications since we can now apply

the more natural notion of strict pairwise stability to the connections model of Jack-

son and Wolinsky (1996). However this equivalence does not hold for the co-author

model also developed in Jackson and Wolinsky (1996).3

More importantly, we also conjecture that the network convexity condition can

be extended to coalitions by identifying one such condition for each player. This will

enable us to build establish the equivalence of pairwise stability and Jackson and

van den Nouweland (2005)’s notion of strong stability.
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France.

3For more on this we refer to Gilles, Chakrabarti, and Sarangi (2005).

9
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