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Tilburg University, Texas Tech University, Indiana University

Abstract

In this paper aligned rank statistics are considered for testing hy-
potheses regarding the location in repeated measurement designs, where
the design matrix for each set of measurements is orthonormal. Such
a design may, for instance, be used when testing for linearity in a par-
tially linear model. It turns out that the centered design matrix is not
of full rank, and therefore doesn’t quite satisfy the usual conditions
in the literature. The number of degrees of freedom of the limiting
chi-squared distribution of the test statistic under the null hypothesis,
howerer, is not affected, unless rather special hypotheses are tested. An
independent derivation of this limiting distribution is given, using the
Chernoff-Savage approach. In passing it is observed that independence
of the choice of aligner, which in the location problem is well-known to
be due to cancellation, may in scale problems occur as a result of the
type of score function suitable for scale tests. A possible extension to
multivariate data is briefly indicated.

————————
AMS 2000 subject classifications: primary 62G10, 62G20; secondary 62J05.
Key words and phrases: aligned rank statistics, orthonormal design matrix,
repeated measurements, Chernoff-Savage approach.

1 Introduction

In 1958 Chernoff and Savage published their landmark paper on asymp-
totic normality for a large class of rank statistics for two-sample problems.
They established asymptotic normality under fixed alternatives (including
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the null hypothesis) and proved this convergence to be uniform over a large
class of alternatives so that asymptotic normality under local alternatives
could be derived as a corollary. A few years later Hájek (1961, 1962) proved
asymptotic normality of rank statistics of more general type under the null
hypothesis as well as local alternatives employing LeCam’s (1960) results on
contiguity and local asymptotic normality, a very different technique. On
the one hand, the latter method is very elegant; on the other it does not
yield asymptotic normality under fixed alternatives - as the first method
does - and this may be of interest in its own right.

Rank tests are only distribution free in a limited number of linear mod-
els. It is well-known, however, that for general linear models alignment can
be applied to get rid of the nuisance parameter and to obtain asymptotically
distribution-free procedures. This kind of result has been obtained by, for
instance, Jurec̆ková (1971), Kraft and van Eeden (1972) and Adichie (1978).
These authors employed essentially Hájek’s approach. It turns out that the
limiting distribution of the test statistic does not depend on the choice of
the aligners.

In this paper we want to apply the Chernoff-Savage method to deal with
the asymptotics in the special case where the linear model has an orthonor-
mal design and repeated measurements are given. It will be seen below that
this set-up allows for testing linearity in a partially linear model (Eubank
and Whitney (1989)), even when repetitions are not present but enough
data are collected to do some grouping. In principle this approach could
also provide the asymptotics under fixed alternatives, but in this paper we
will restrict ourselves to the null hypothesis, although the basic asymptotics
(Section 4 and Appendix) will be of a general nature. Because the error
distribution is allowed to be heavy-tailed the aligners might be linear com-
binations of order statistics.

Following Adichie (1978) the statistic in this repeated measurement
model turns out to be the difference of two quadratic forms of a vector with
- not surprisingly - two-sample type components. It will be seen in Section 5
that the asymptotic distributions of these components depend on the choice
of the aligner. This should not surprise either: it is more surprising that
the limiting distribution of the aforementioned difference of quadratic forms
does not depend on this choice. This is due to cancellation in the present
model where the focus is on differences in location. It will also be seen,
however, that when differences in scale were to be tested, independence of
the choice of the aligner would already occur at the level of the components,
due to the properties of the score functions suitable for scale problems (see
Raghavachari (1965) for a related result).
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Before proceeding with the general discussion let us give a precise for-
mulation of the model. Our data will consist of n independent copies of a
random vector Y of dimension ν ∈ N (ν > 2) satisfying

Y = Xθ + ε, (1.1)

where X is a known ν×µ dimensional design matrix, with 2 6 µ 6 ν, θ ∈ Rµ

an unknown parameter, and ε a random vector with ν independent and
identically distributed components. These error random variables are of
the continuous type but are not assumed to be normally distributed. If
xj = (xj1, . . . , xjν)∗, j = 1, 2, . . . , µ, are the columns of X it will be assumed
that

x1 = (
1√
ν

, . . . ,
1√
ν

)∗, so that ||x1|| = 1, (1.2)

and that for all j and k

x∗jxk = δjk, (1.3)

so that the matrix X = [x1 · · ·xµ] is orthonormal. Let 1r denote the vector
of r ∈ N components 1, and Ir the r × r identity matrix. Statistically
condition (1.2) entails the usual assumption that the ν locations contain a
common component, and mathematically it follows that

1ν
∗x1 =

√
ν; 1ν

∗xj = 0, j = 2, ..., µ. (1.4)

To describe the hypothesis to be tested let us write

H = [x1 · · ·xp], A = [xp+1 · · ·xµ], (1.5)

for some integer 1 6 p < µ, q = µ− p,

η = (θ1, ..., θp)∗, and α = (θp+1, ..., θµ)∗, (1.6)

so that

Y = [H A]
[

η
α

]
+ ε = Hη + Aα + ε. (1.7)

The null hypothesis to be tested is

H0 : α = 0. (1.8)
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Remark 1. It is of some importance to note that the matrix A does not
contain the special vector x1 in (1.2). Although it seems rather unrealistic
not to include the common mean in the null hypothesis, it is a formal possi-
bility. If A would contain x1, however, the limiting chi-squared distribution
of the test statistic would have q − 1 rather than q degrees of freedom (cf.
(4.25)). To see this we also refer to Remark 3. This differs slighty from
Adichie (1978). We will also see that the centered design matrices are not
of full rank as required in Kraft and van Eeden (1972) and Adichie (1978).
Our derivation of the limiting distribution of the test statistic will be inde-
pendent, employing the Chernoff-Savage method.

Remark 2. Application of the transformation X∗ to the model in (1.7)
would reduce it to a canonical form:

Ỹ = X∗Y =
[

η
α

]
+ X∗ε =

[
η
α

]
+ ε̃. (1.9)

Given n independent copies of Ỹ, testing (1.8) could be done using a com-
pletely distribution free Kruskal-Wallis test, based on the last q coordinates,
if it were not for the transformed error vector. Because we do not assume
the coordinates of ε to be normally distributed, the linear transformation
X∗ may induce considerable dependence among the coordinates of ε̃, as the
following example will show.

Example 1. Let us take ν = 2 and assume that ε has independent
standard Cauchy components ε1, ε2. Rotating ε over π/4 yields the vector
ε̃. For this vector we have P{ε̃1 ≤ −5, ε̃2 ≤ −5} = π−2

∫ −5
−∞

∫ −5
−∞{1 + 1

2(x +
y)2}−1{1+ 1

2(x− y)2}−1dxdy = 0.036. This probability is almost 5 times as
big as when computed under independence of the ε̃j , in which case it equals
{π−1

∫ −5
−∞

√
2(2 + x2)−1dx}2 = 0.0077. Here it is used that the ε̃j have the

same (non-standard) Cauchy density.

Repeated measurement designs are quite common, particularly in
ANOVA models. Aligned rank statistics for such models have been studied,
for instance, by Hodges and Lehmann(1962) and Thompson(1991). This
section will be concluded with an example where repeated measurements
are not required in the strict sense, as that situation can be approximated
by grouping.

Example 2: a partly linear model. Consider a linear function
la,b(x) = a + bx and a function ϕ ∈ C([0, 1]) ∩ L2([0, 1]) such that ϕ ⊥ la,b



5

in L2([0, 1]),∀ a, b ∈ R. We observe

Ỹji = la,b(
j − 1

ν
+

i

νn
) + ϕ(

j − 1
ν

+
i

νn
) + εji, (1.10)

i = 1, . . . , n, j = 1, . . . , ν,

where the εji are i.i.d. and have density with respect to Lebesgue measure
with median at 0. For sufficiently large ν we have that the Ỹj1, . . . , Ỹjn are
a random sample from a density with median a + b j

ν + ϕ( j
ν ), and where for

j = 1, . . . , ν these samples are independent. Also, if L is the linear subspace
spanned by (1, . . . , 1)∗ and ( 1

ν , . . . , ν
ν )∗, the vector (ϕ( 1

ν ), . . . , ϕ(ν
ν ))∗ will be

approximately orthogonal to L. By orthonormalising the vectors spanning
L we obtain the vectors

x1 = (
1√
ν

, . . . ,
1√
ν

)∗, (1.11)

x2 =
{ ν∑

j=1

(
2j − 1− ν

2ν

)2 }−1/2
(

1− ν

2ν
, . . . ,

ν − 1
2ν

)∗
. (1.12)

In this context it is natural to test whether the regression function consists
of the linear part only. A lack-of-fit test then will lead to the null hypothesis
H0 in (1.8) with p = 2 and H = [x1 x2], where x1 and x2 are given above.
The full model will be as in (1.1) with X a ν× ν matrix (µ = ν in this case)
with columns x1, . . . ,xν , where x3, . . . ,xν is an orthonormal basis of L⊥.

2 Construction of the aligned test statistic

The repeated measurements will be collected in the νn-vector of observations
Yn = (Y11, . . . , Y1n, . . . , Yν1, . . . , Yνn)∗ given by

Yji =
µ∑

k=1

xkjθk + εji

= mj + εji, i = 1, . . . , n, j = 1, . . . ν, (2.1)
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where m = (m1, . . . , mν)∗ is the vector of medians. In matrix notation this
boils down to

Yn = Xnθ + εn =

=




1n 0 · · · 0
0 1n · · · 0
. . · · · .
0 0 · · · 1n


Xθ + εn =

=




1n 0 · · · 0
0 1n · · · 0
. . · · · .
0 0 · · · 1n


 [H A]

[
η
α

]
+ εn =

= [Hn An]
[

η
α

]
+ εn. (2.2)

The centered design matrix is defined as

X̃n = (Iνn − 1
νn

1νn1∗νn)Xn. (2.3)

The first matrix on the right is a projection. It follows that

X̃∗
nX̃n =

= X∗




1∗n 0 · · · 0
0 1∗n · · · 0
. . · · · .
0 0 · · · 1∗n


 (Iνn − 1

νn
1νn1∗νn)




1n 0 · · · 0
0 1n · · · 0
. . · · · .
0 0 · · · 1n


X =

= nX∗(Iν − 1
ν
1ν1∗ν)X = n




0 0 · · · 0
0
... Iµ−1

0


 , (2.4)

due to (1.2) and (1.3). Note that the matrix on the right in (2.4) is a
projection of rank µ−1. Generalized inverses of this matrix are, for instance,
this matrix itself (Moore-Penrose) or the identity Iµ. We choose (see Remark
3) the latter for easy calculations and thus obtain

(X̃∗
nX̃n)− =

1
n

Iµ. (2.5)

Similarly the centered null hypothesis matrix is given by

H̃n = (Iνn − 1
νn

1νn1∗νn)Hn, (2.6)
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and this yields

H̃∗
nH̃n = nH∗(Iν − 1

ν
1ν1∗ν)H =

= n




x∗1
...
x∗p


 (Iν − 1

ν
1ν1∗ν)[x1 . . .xp] =

= n


Ip − 1

ν




√
ν

0
...
0


 [
√

ν 0 . . . 0]


 =

= n




0 0 · · · 0
0
... Ip−1

0


 , (2.7)

where again this last matrix is a projection, but now of rank p−1. Choosing
Ip for its generalized inverse we arrive at

(H̃∗
nH̃n)− =

1
n

Ip. (2.8)

In order to get rid of the nuisance parameter η the data will be aligned
and Yji in (2.1) will be replaced with the statistic Ŷji. How this alignment
is performed will be specified in Section 3 and is of no importance at this
moment. Assuming there are no equals among the components of the vector
Ŷn = (Ŷ11, . . . , Ŷ1n, . . . , Ŷν1, . . . , Ŷνn)∗, the vector of ranks will be denoted by
R̂n = (R̂11, . . . , R̂1n, . . . , R̂ν1, . . . , R̂νn)∗. (See, however, Ruymgaart (1980)
for a simple way to deal with ties when the Chernoff-Savage method is used.)
Let J : [0, 1] → R denote a score function with finite

µJ =
∫ 1

0
J(t)dt, and σJ

2 =
∫ 1

0
(J(t)− µJ)2dt. (2.9)

Let us write

ŵn = (J(
R̂11

νn
), . . . , J(

R̂1n

νn
), . . . , J(

R̂ν1

νn
), . . . , J(

R̂νn

νn
))∗, (2.10)

and introduce the basic two-sample statistics

Wj =
1√
n

n∑

i=1

(ŵji−w), w =
1
νn

νn∑

i=1

J

(
i

νn

)
,W = (W1, . . . ,Wµ)∗. (2.11)
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The test statistic is the difference of two quadratic forms, the first of
which equals

Q1 = ŵ∗
nX̃n(X̃∗

nX̃n)−X̃∗
nŵn =

= ŵ∗
n(Iνn − 1

νn
1νn1∗νn)




1n 0 · · · 0
0 1n · · · 0
. . · · · .
0 0 · · · 1n


X

× 1
n
IµX∗




1∗n 0 · · · 0
0 1∗n · · · 0
. . · · · .
0 0 · · · 1∗n


 (Iνn − 1

νn
1νn1∗νn)ŵn =

= W∗XX∗W = ‖X∗W‖2 =

= ‖T‖2 =
µ∑

j=1

T 2
j , (2.12)

where

T = (T1, . . . , Tµ)∗ = X∗W. (2.13)

The second quadratic form equals

Q2 = ŵ∗
nH̃n(H̃∗

nH̃n)−H̃∗
nŵn =

= ŵ∗
n(Iνn − 1

νn
1νn1∗νn)




1n 0 · · · 0
0 1n · · · 0
. . · · · .
0 0 · · · 1n


H

× 1
n
IpH∗




1∗n 0 · · · 0
0 1∗n · · · 0
. . · · · .
0 0 · · · 1∗n


 (Iνn − 1

νn
1νn1∗νn)ŵn =

= (W∗X)(X∗HH∗X)(X∗W) =

= (W∗X)
[

Ip O
O O

]
(X∗W) =

=
p∑

j=1

T 2
j . (2.14)

Finally, the test statistic is given by

Q =
1
σ2

J

(Q1 −Q2) =
1
σ2

J

µ∑

j=p+1

T 2
j . (2.15)
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Remark 3. The centering with w in (2.11) entails that T1 = 0 and that
the statistic Q is independent of the choice of the generalized inverses.

3 Further notation and assumptions

Our aim is to employ reasonable assumptions. We realize that some assump-
tions could be weakened at the price of more technicalities. Throughout the
remainder of this paper C ∈ (0,∞) will denote a generic constant that does
not depend on the sample size n or any other parameter.

The common c.d.f. F0 of the errors εji has a density f0 with

F0(0) =
1
2
, f0(0) > 0, f ′0 bounded and continuous on R. (3.1)

Recall that m = (m1, . . . ,mν)∗ = Hη + Aα is the vector of medians in the
general model (2.1). Let us write

mH = Pm, mA = (Iν −P)m, where P =
p∑

j=1

xjx∗j , (3.2)

is the projection onto the linear span of x1, . . . ,xp. Clearly the unobservable
random variables

Y̌ji = Yji −mH,j = mA,j + εji, (3.3)

have c.d.f.’s, respectively ‘pseudo-empirical’ c.d.f.’s

Fj(x) = F0(x−mA,j), F̌j(x) =
1
n

n∑

i=1

1(−∞,x](Y̌ji), (3.4)

x ∈ R. Under the null hypothesis(1.8) we have Aα = mA = 0 and hence
these reduce to

Fj(x) = F0(x), F̌j(x) =
1
n

n∑

i=1

1(−∞,x](εji), . (3.5)

Each median mj can be estimated, for instance, by the median of the
j-th sample or by a suitable linear combination of order statistics when f0 is
symmetric. As usual the choice of estimator does not matter provided only
that the estimators m̂j , say, satisfy

Mj =
√

n(m̂j −mj) = Op(1), as n →∞, for j = 1, . . . , ν. (3.6)
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A natural estimator of the nuisance parameter mH is:

m̂H = Pm̂, m̂ = (m̂1, . . . , m̂ν)∗. (3.7)

We are now ready to specify the aligned observations

Ŷji = Yji − m̂H,j =
= Y̌ji + mH,j − m̂H,j , i = 1, . . . , n, j = 1, . . . , ν. (3.8)

The corresponding empirical c.d.f.’s will be written F̂j . We see from (3.4)
that

F̂j(x) = F̌j(x + m̂H,j −mH,j), x ∈ R. (3.9)

We will also need respectively the pooled true, empirical, and pseudo-
empirical c.d.f.’s

H =
1
ν

ν∑

j=1

Fj , Ĥ =
1
ν

ν∑

j=1

F̂j , Ȟ =
1
ν

ν∑

j=1

F̌j . (3.10)

It will next be assumed that the scores generating function J = J (0) :
[0, 1] → R has two continuous derivatives, so that

max k=0,1,2 max 0≤t≤1|J (k)(t)| ≤ C. (3.11)

4 Basic Asymptotics

In order to deal with the asymptotics in such a way that in principle fixed
alternatives could be included we should center the Wj in (2.11) with∫

J(H)dFj rather than with w. Employing the well-known Chernoff-Savage
representation we will then consider

Wj =
√

n

{∫
J(Ĥ)dF̂j −

∫
J(H)dFj

}
. (4.1)

It should be noted that under H0 this is asymptotically equivalent with the
original centering because

√
n

{∫
J(Ĥ)dF̂j −

∫
J(H)dFj

}
= (4.2)

=
√

n

{∫
J(Ĥ)dF̂j − µJ

}
=

=
1√
n

n∑

i=1

(ŵji − w) + O

(
1√
n

)
.
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Applying integration by parts we arrive at the decomposition

Wj = Sj + Bj + rj , (4.3)

where Sj =
∑2

k=1 Sjk, Bj =
∑2

k=1 Bjk, rj =
∑4

k=0 rjk, and

Sj1 = −√n

∫
(F̌j − Fj)J ′(H)dH, (4.4)

Sj2 =
√

n

∫
(Ȟ −H)J ′(H)dFj , (4.5)

Bj1 = −(PM)j

∫
fjJ

′(H)dH, (4.6)

Bj2 =
1
ν

ν∑

k=1

(PM)k

∫
fkJ

′(H)dFj , (4.7)

rj0 =
√

n [
∫
{J(Ĥ)− J(H)}dF̂j −

∫
(Ĥ −H)J ′(H)dFj ], (4.8)

rj1 = −√n

∫
(F̌j − Fj)J ′(H(• − 1√

n
(PM)j))dH(• − 1√

n
(PM)j)

− Sj1, (4.9)

rj2 =
1
ν

ν∑

k=1

√
n

∫
(F̌k − Fk)J ′(H(• − 1√

n
(PM)j))dFj(• − 1√

n
(PM)j)

− Sj2, (4.10)

rj3 = −√n

∫
{Fj(•+

1√
n

(PM)j)− Fj}J ′(H)dH −Bj1, (4.11)

rj4 =
1
ν

ν∑

k=1

√
n

∫
{Fk(•+

1√
n

(PM)k)− Fk}J ′(H)dFj −Bj2, (4.12)

Both under the null hypothesis and local alternatives the Sj are sums
of independent random variables and mutually independent, so that their
asymptotics can easily be dealt with. As we will see, the Bj will not appear
in the test statistics so that they need not be considered. The remainder
terms rj converge to zero in probability, as will be sketched in the Appendix.
Let us henceforth focus on the test statistics under the null hypothesis.
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Under (1.8) we have (cf. (3.3), (4.1))

Sj1 =d − 1√
n

n∑

i=1

∫ 1

0
{1[0,t](Uji)− t}dJ(t) = (4.13)

=
1√
n

n∑

i=1

{J(Uji)− µJ},

where the Uji = F0(εji) are i.i.d. Uniform(0, 1) random variables. Further-
more we have that the vector S1 + S2 can be written as

S1 + S2 = S1 − 1
ν
S∗11ν1ν · (4.14)

Next observe that under (1.8)
∫

fkJ
′(H)dFj =

∫
f0dJ(F0) = aJ,0· (4.15)

The vector B1 + B2 can be written as

B1 + B2 = aJ,0{PM− 1
ν

(PM)∗1ν1ν}. (4.16)

It follows that (cf. (2.13))

T = X∗W =

= X∗(S1 − aJ,0PM)− 1
ν

(S1 − aJ,0PM)∗1νX∗1ν + op(1). (4.17)

Let us introduce the q × µ-matrix

U =
[

O Iq

]
, (4.18)

and note that

UX∗1ν =
√

νUX∗x1 = U(
√

ν, 0, . . . , 0)∗ = (0, . . . , 0)∗. (4.19)

This entails that

(Tp+1, . . . , Tµ)∗ = UX∗W =
= UX∗(S1 − aJ,0PM)

+
1
ν

(S1 − aJ,0PM)∗1νUX∗1ν + op(1) =

= UX∗(S1 − aJ,0PM) + op(1). (4.20)
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Finally, let us return to the quadratic form in (2.15), and for a suitable
representation note that MM∗

‖M‖2 is the projection PM, say, onto the line
generated by the random vector M. (PM should not be confused with PM.)
In the usual ordering of semi-definite positive matrices we have PM 6 Iν ,
and hence APMA∗ 6 AA∗, and, consequently, tr(APMA∗) 6 tr(AA∗) for
any ν × ν-matrix A (see, for instance, Rao and Toutenburg (1995)). This
leads to (recall(3.2))

0 6 ‖UX∗PM‖2 = tr(M∗PXU∗UX∗PM) =
= tr(UX∗PMM∗PXU∗) 6
6 ‖M‖2tr(UX∗PXU∗) 6

= ‖M‖2
p∑

j=1

tr(UX∗xjx∗jXU∗) = 0, (4.21)

and consequently

(Tp+1, . . . , Tµ)∗ = UX∗S1 + op(1). (4.22)

It follows from (4.11) that

S1 →d N(0, σ2
JIν), (4.23)

and, because EUX∗S1S∗1XU∗ = σ2
JIq,

(Tp+1, . . . , Tµ)∗ →d N(0, σ2
JIq). (4.24)

Theorem: asymptotic distribution of the test statistic under
the null hypothesis. It follows from the results obtained above that under
H0

Q =
1
σ2

J

µ∑

j=p+1

T 2
j →d χ2

q , as n →∞, (4.25)

for each error distribution F0 satisfying the assumptions.

5 Some remarks and possible extensions

5.1 Location versus scale alternatives

The formal mathematical equivalent for scales of the location model in (2.1)
is

Yji = (Πν
k=1θ

xkj

k )εji =
= (Πν

k=1η
xkj

k )(Πν
k=p+1α

xkj

k )εji =
= SH,j · SA,j · εji, i = 1, . . . , n, j = 1, . . . , ν, (5.1)
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where as before θ = (η, α)∗ but now θk > 0, k = 1, . . . , ν, and

H0 : α = 1q, or SA = 1ν . (5.2)

The pseudo-observables are now of the form

Y̌ji =
1

SH,j
Yji = SA,j εji. (5.3)

Estimation of SH,j yields the observables

Ŷji =
1

ŜH,j

Yji. (5.4)

Although we will not engage in an attempt to construct an asymptoti-
cally distribution free test for H0 in (5.2), we may assume it will be based
on the components in (4.1), where the scores generating function J is now
suitable for testing differences in scale. Typically, such functions are non-
negative and symmetric about the line t = 1

2 . Since the expansion in (4.3)-
(4.12) will remain valid with (PM)j replaced by

√
n (

1
ŜH,j

− 1
SH,j

) = −√n
ŜH,j − SH,j

ŜH,jSH,j

, (5.5)

the B-terms are similar in structure as before. However, if in addition to
choosing J as above we assume f0 to be symmetric about 0 it follows that

∫
fkJ

′(H)dFj =
∫

f0(F−1
0 (t))J ′(t)dt = 0, (5.6)

under the current null hypothesis. This means that the B-terms simply are
zero, so that the choice of aligner does not even play a role in the asymptotics
of the components Wj . It should be noted that (5.6) does not hold true
for scores generating functions J suitable for location, because such J are
typically symmetric with respect to the point (1

2 , 0). In the location case,
as we have seen, the B-terms cancel out in the final statistic, although they
are not zero themselves. See Raghavachari (1965) for some scale tests when
locations are unknown.

5.2 Multivariate data

A possible multivariate extension of the model in (1.7) is

Y =




Y
(1)
1 · · · Y

(m)
1

... · · · ...
Y

(1)
ν · · · Y

(m)
ν


 =
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=
[
[HA]

[
η(1)

α(1)

]
· · · [HA]

[
η(m)

α(m)

]]
+




ε
(1)
1 · · · ε

(m)
1

... · · · ...
ε
(1)
ν · · · ε

(m)
ν


 , (5.7)

where X = [H A] is an orthonormal ν×µ matrix as before, η(1), . . . , η(m) ∈
Rp and α(1), . . . , α(m) ∈ Rq are unknown vector-parameters, and the
(ε(1)

j , . . . , ε
(m)
j )∗, j = 1, . . . , ν, are i.i.d. random vectors with a certain de-

pendence structure.
The hypothesis to be tested is

H0 : α(1) = . . . = α(m) = 0, (5.8)

and the actual data will consist of n independent copies Y1, . . . ,Yn of Y.
Following Roy’s(1953) union-intersection principle choose e ∈ Rm with

‖e‖ = 1, and consider

Ye = Ye =
m∑

k=1

ek[H A]
[

η(k)

α(k)

]
=

= [H A]
[ ∑m

k=1 ekη
(k)

∑m
k=1 ekα

(k)

]
=

= [H A]
[

ηe

αe

]
. (5.9)

Note that H0 in (5.8) is equivalent with
⋂
‖e‖=1He, where He is the hypoth-

esis that αe = 0. This hypothesis can be tested using the quadratic form
Qe, say, computed from the independent copies Ye,1, . . . ,Ye,n of Ye in the
manner described in the preceding sections. The question how these tests
can be combined to obtain a test for the overall hypothesis (5.8) is beyond
the scope of this paper. For a simple instance of this method see Buhrman
and Ruymgaart (1981).

Appendix

Let F denote the class of all univariate c.d.f.’s F of the form F (•) =
F0(•−µ), µ ∈ R, where F0 satisfies assumption (3.1). Suppose that ε1, . . . , εn

are i.i.d. with common c.d.f. F ∈ F . Denote the empirical process of the εi

by

En,F (x) =
1√
n

n∑

i=1

{1(−∞,x](εi)− F (x)}, x ∈ R. (A.1)
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Lemma. Let Sn = Sn,F denote a real-valued random variable such that
Sn = Op(n−

1
2 ), as n →∞, uniformly for F ∈ F . Then we have

sup
x∈R

|En,F (x + Sn)− En,F (x)| = Op

(
(log n)1/2

n1/4

)
, (A.2)

as n →∞, uniformly for F ∈ F .

Proof. Using F (x + Sn) = F (x) + Snf(Yn), with Yn between Sn and x,
we obtain, with αn the empirical process of the F (εi),

sup
x∈R

|En,F (x + Sn)− En,F (x)| = (A.3)

= sup
x∈R

|αn(F (x + Sn))− αn(F (x))| =

= sup
x∈R

|αn(F (x) + Snf(Yn))− αn(F (x))| =

= Op

(
(log n)1/2

n1/4

)
,

where for the last transition the results for the oscillation modulus of the
uniform empirical process in Stute (1982) are used.

Asymptotic neglibility of rj0. After applying a Taylor expansion to
the first term on the right in (4.6) it can be shown that

rj0 =
√

n

∫
(Ĥ −H)J ′(H)d(F̂j − Fj) + op(1), (A.4)

uniformly for all Fj ∈ F . The integral expression in (A.4) can be dealt
with in a similar manner as in Ruymgaart et al. (1972, Corollary 5.5) by
partitioning the real line in a finite number of subintervals.

Asymptotic negligibility of rj1 and rj2. We will restrict ourselves
to rj1 because rj2 can be dealt with similarly. Note that in the notation of
(A.1) and (A.2)

|rj1| 6
∫
|En,Fj (x +

1√
n

(PM)j)− En,Fj (x)| |J ′(H(x))|h(x)dx. (A.5)

The random variable n−
1
2 (PM)j satisfies the condition of Sn in the lemma.

Furthermore, assumption (3.11) entails that supx∈R ‖J ′(H(x))‖ 6 C, uni-
formly for all Fj ∈ F . Application of the lemma yields

rj1 = Op (n−1/4(log n)1/2) as n →∞, (A.6)
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uniformly for all Fj ∈ F .

Asymptotic negligibility of rj3 and rj4. Again let us restrict our-
selves to one of the two, rj3, since the other can be dealt with in a simi-
lar manner. The desired result follows at once from the expansion Fj(x +
(1/
√

n)(PM)j) = Fj(x) + (1/
√

n)(PM)jfj(x) + (1/n)(PM)2jf
′
j(x̃), where x̃

is a point between x and (1/
√

n)(PM)j , and the boundedness of f ′.
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[3] Chernoff, H. and Savage, I.R. (1958). Asymptotic normality and effi-
ciency of certain nonparametric test statistics. Ann. Math.Statist. 29,
972-994.

[4] Eubank, R.L. and Whitney, P. (1989). Convergence rates for estimation
in certain partially linear models. J. Statist. Pl. Inf. 23, 33-43.
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