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1. Introduction

Most models involving economic time series are fundamentally dependent on the unit of

time and the observation interval. If agents’ decision intervals do not coincide with the sam-

pling interval, then inferences made about the behaviour of economic agents from observed

time series can be distorted (see, e.g., Christiano and Eichenbaum, 1987; Marcellino, 1999).

This distortion is known as ‘temporal aggregation bias,’ which can occur when observations

are not collected frequently enough fully to capture the movements of economic variables. If

our ultimate goal is to provide an economic interpretation of parameter estimates that re-

lates to the behaviour of economic agents and not just to the behaviour of the observations,

then taking account of the effects of temporal aggregation is important. This is because

the time intervals between macroeconomic observations are typically much longer than the

time intervals between the microeconomic decisions of economic agents that the observations

reflect.

Even in a pure time series context, the lack of time invariance of discrete time models

matters in general. For example, if monthly observations of certain variables satisfy (as

common a model as) a vector autoregressive (VAR) model, then quarterly observations of

the same variables can satisfy a vector autoregressive moving average (VARMA) model.1 A

coarsely sampled process, omitting information useful for predicting an economic time series,

will exhibit bi-directional Granger causality with another sampled process in the coarser time

interval provided they are correlated, even if there is only unidirectional causality in the finer

time interval. This means that the observation of bi-directional Granger causality cannot

constitute prima facie evidence that there is bi-directional causality in the data generating

process relating to the behaviour of economic agents.

The purpose of this paper is to discuss the developments in formulating econometric

models in continuous time as a means of dealing with the distortional effect of temporal ag-

gregation bias in generating spurious Granger causality relationships among observed time

series. Formulating an econometric model in continuous time offers a basis for importing

causality restrictions to observed discrete data independently of the sampling interval, as

a means of obtaining efficient estimates of the structural parameters of the model. Our

main emphasis will be on how to deliver accurate restrictions to the data and on evaluating

the importance of these restrictions for causality testing, although we shall also briefly con-

sider the problem of defining what we mean by ‘causality’ in the context of continuous time

models. To a large extent, we shall concentrate on continuous time VAR models because

1This can be true for stock variables, observed at points in time, such as the money stock and the rate of
interest, and is certainly true for flow variables, measured as integrals over the observation interval, such as
income and consumption.
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discrete data generated by these models satisfy an exact discrete analogue.2 In this context,

restrictions on the underlying time series are imported exactly to the distribution of ob-

served discrete data and, if the data are equispaced, independently of the rate of sampling.

Here, we demonstrate in an application to testing for money-income causality that imposing

restrictions that incorporate the effects of temporal aggregation is important for causality

testing. We do this by conducting causality tests in discrete time models that incorporate

the temporal aggregation restrictions exactly as well as approximately, and compare the

results with discrete time models that do not impose any temporal aggregation restrictions.

Throughout, in our discussions of continuous time models, we assume that the parameters

of interest are identified from the discrete time data. We acknowledge, however, the results

of McCrorie (2003) who showed that a sometimes stringent condition is required to identify

the structural parameters on the basis of discrete data. A trade-off can potentially emerge

between obtaining estimates that are robust to spurious Granger causality relationships

against the imposition of identification restrictions on the structural continuous time model

that would not ordinarily be provided by economic theory.

The paper is organized as follows. Section 2 contains a discussion to show the extent

to which näıvely specified discrete time models can provide a distorted picture of Granger

causality relationships and serial correlation properties in the data, and in a way that mate-

rially affects statistical inference and impacts upon applied work. In Section 3, with a view

towards adopting a continuous time approach as a remedy to these problems, we briefly dis-

cuss and define what we mean by the concept of ‘causality’ or ‘non-causality’ in continuous

time models. Our central focus, however, will not be on continuous time models per se, but

on how these models form the basis of importing restrictions independently of the unit of

time to discrete time analogues that have similar forms to the models discussed in Section

2. This approach is developed also in Section 3. In Section 4, we present an illustration of

the issues in the context of testing for money-income causality. Section 5 concludes.

2. The distortional effects of näıvely using discrete time models

It is worth emphasizing that näıvely formulating discrete time models in the time unit

that coincides with the collection of the data involves an approximation that carries a cost

unless economic variables jump discretely at points-in-time coinciding with the endpoints

of the observation interval. The practice is so common in applied work as to be taken

for granted and so we begin by discussing the nature of the error involved in this type of

approximation and the sense in which Granger causality relationships can get distorted.

2Examples of authors considering continuous time models and adopting the principle of using an exact
discrete analogue include: Bergstrom (1997); Chambers (1999); Chambers and McCrorie (2003); Hansen
and Sargent (1991b); Harvey and Stock (1989, 1993); McCrorie (2000); Phillips (1991); Renault, Sekkat and
Szafarz (1998); Robinson (1993); and Yu and Phillips (2001).
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Many results are available in the literature through examining the problem as one of fixed-

interval time aggregation, where the analysis is predicated on the data being generated in

some definite, finer time interval than the sampling interval. This approach is well known

and continues to be an active avenue of research – see especially Marcellino (1999), and

Breitung and Swanson (2002) and the references therein. The complementary approach

of formulating models in continuous time has perhaps had less impact on applied work,

although it can be advantageous in certain circumstances. Firstly, with a view towards

testing for causality, it allows a priori information to be imported to the data independently

of the rate of sampling, and in a way that does not affect Granger causality relationships.

In the fixed-interval time aggregation approach, this is possible only if we know what the

finer time interval is (and if we really know what the finer time interval is we could then

correct for the effects of temporal aggregation along the lines followed by Marcellino, 1999,

for VARIMA models.) Secondly, the continuous time approach makes arbitrary the time

unit in the agents’ decision rule, and in principle allows for decision intervals to vary across

different economic agents.3 Because results on the efficacy of discrete approximation to

continuous time can be interpreted as limiting statements on replacing small-unit by large-

unit discrete time, the framework enables a discussion of the effects of temporal aggregation

without explicit reference to a time unit in which the data are generated. We discuss its

effects using several models, as results can be model specific.

2.1. Distributed lag models

Sims (1971a,b) considered the effects of temporal aggregation by considering discrete

approximation to continuous time using the univariate distributed lag model

y(t) =
∫ ∞

−∞
b(s)x(t− s)ds + u(t), (t ∈ R), (1)

where the endogenous variable y(t), the exogenous variable x(t), and the disturbance u(t)

are wide-sense stationary random processes. As b(·) may be a generalized function, (1) may

involve discrete non-integer lags and derivatives of arbitrary order. The model is identified by

the assumption that u(t) and x(t−s) are uncorrelated for all s. Estimating b(·) then requires

two types of approximation: substituting discrete time for continuous time and substituting

a finite-parameter model for (1). Sims isolates the effects of the former by considering the

model that equispaced data generated by (1) exactly satisfy:

Y (t) =
∞∑

s=−∞
B(s)X(t− s) + U(t), (t ∈ Z), (2)

3See Christiano and Eichenbaum (1987) for a discussion of temporal aggregation in a context where an
economic time series is interpreted as the outcome of a well-specified dynamic equilibrium in which rational
economic agents solve stochastic optimization problems.
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where, for all t ∈ Z, Y (t) = y(t), X(t) = x(t), and U(t) is uncorrelated with X(s) for all s.

Sims showed that

B(t) =
∫ ∞

−∞
b(s)rx(t− s)ds, (3)

where

rx(t) =
∞∑

s=−∞
R−∗

X (s)Rx(t− s), (4)

and Rx and RX are the autocovariance functions of x and X, and R−∗
X is the inverse of

RX under convolution. Notice that the exact discrete analogue (2) does not depend on a

particular choice of t, and so we can examine the effects of temporal aggregation including

the generation of spurious causality relationships by considering the extent to which its lag

structure resembles the lag structure of (1). The discrete lag distribution is a sampling, at

unit time intervals, of the continuous lag distribution smoothed using the filter rx. Sims

deduces that there are two rough conditions that guarantee that B(t) is close to a weighted

average of b(s) for s near t: that rx must be small for |t| > 1, and must have integral near

one. This can be the case if the independent variable x is locally smooth in the sense of

not fluctuating too wildly but the situation is not always encouraging; for even if rx has

continuous derivative or the spectral mass of x is zero outside the Nyquist frequency, Sims

showed that the ‘side lobes’ of rx can be non-negligible, indicating that B(·) poorly represents

b(·).

Geweke (1978) extended (3) and (4) to the multivariate setting and established a limiting

result that helps explain the sense in which discrete time models specified with respect to the

sampling interval can offer a good approximation. He essentially shows, subject to regularity

conditions including that b(·) is an ordinary function, that

∞∑
s=−∞

‖B(s)− τb(sτ)‖ → 0 as τ → 0, (5)

where ‖ · ‖ is the root-sum-of-squared-elements norm4 and the continuous time process x

and lag distribution b(·) are fixed as the time unit τ in the discrete model drops to zero.

Intuitively, if the time unit is small enough compared with the rate of variation in the ex-

ogenous variables, the discrete time model should be adequate. Of course, there is no reason

to believe that the relation between time series is truly specified by the model (1). Sims

(1987) offers an example to show that if (1) were replaced by a model involving derivatives

and x follows a second-order Markov process then, constraining the estimation equation to

4Norm convergence is required because the focus is on how well B(s) approximates τb(sτ) as a function
in the limit.
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involve only positive lags of X, the limiting discrete time model has a form far different

from an approximation based on the first difference operator. Other limitations of using the

discrete time model arise because individual values of B(t/τ) are not precluded by (5) from

not converging to corresponding b(t) values. These include a monotone continuous time lag

distribution not necessarily having a monotone discrete time analogue and, importantly for

our purpose, a lack of a Granger causal relationship from y to x in (1) will not generally

imply the same from Y to X in (2).5 This is because B(t) depends on b(s) for all s, even

if b(s) is one-sided on the past and (3) implies B(t) 6= 0 for t < 0. Geweke demonstrates

other distortional effects in the multivariate context, including what he calls ‘contamination,’

where each row of B(t) confounds not just the corresponding row of b(t) but potentially all

its rows.

2.2. Vector autoregressive models

Hansen and Sargent (1991a) considered instead the circumstances under which the

impulse-response function from the vector autoregression associated with a discretely sam-

pled version of a continuous time process resembles the shape of the impulse-response func-

tion in continuous time. Marcet (1991) relaxed the assumption they made that the process of

interest has a rational spectral density, and derived a useful characterization of the relation

between the continuous time and discrete time Wold representations. Interest centres on a

single vector y whose continuous time dynamics are summarized in the Wold representation

y(t) =
∫ ∞

0
a(u)ξ(t− du), (t ∈ R), (6)

where the matrix function a is restricted to satisfy a(u) = 0 when u < 0 and ξ is a vector of

orthonormal random measures.6 The Wold representation of the sampled process is

Y (t) =
∞∑

k=0

Akε(t− k), (t ∈ Z), (7)

where Ak = 0 for k < 0 and ε is a white noise vector. The substantive issues relate to how

close the shape of A is to a and how ε is related to ξ. Marcet shows that the coefficients Ak

in (7) – normalized so that ε(t) is the vector of one-step-ahead innovations in Y – are given

by

Ak =
∫ ∞

0
a(u + k)c′(u)du

(∫ ∞

0
c(u)c′(u)du

)−1

, (k = 0, 1, . . .), (8)

5We shall formally discuss various concepts of causality in Section 3 but, for the moment, we can say in
the context of two arbitrary time series Yt and Xt that “Yt causes Xt if we are able better to predict Xt using
all available information than if the information apart from Yt has been used” (Granger, 1969, p. 428).

6Random measures can be used to provide a formal definition of white noise in continuous time models that
is analogous to the definition of uncorrelated errors in discrete time. See Bergstrom (1984) for a discussion.
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where ε is related to ξ by

ε(t) =
∫ ∞

0
c(u)ξ(t− du), (9)

with c(u) = a(u) on 0 ≤ u < 1. This means that when the function c is small on [1,∞), Ak

is essentially an average of a on [k, k + 1] and in this sense Ak is a good approximation to a.

Expression (9) is analogous to (3) in that the discrete parameters are obtained by applying

a weighting function to the continuous-time parameters. And because the coefficients in the

i-th row of Ak are affected by all the rows in a, there is also contamination in this model.

The coefficients Ak will be contaminated even when the projections in continuous-time and

discrete-time coincide, as can be seen by putting c(u) = a(u) for all u in (8). Generally, only

when aij = 0 for all i, j will the contamination disappear, which is the same as assuming that

E[yi(t)yj(t′)] = 0 for all i 6= j and all t, t′ ∈ R. Marcet constructs various examples where

the discrete Wold representation can be a poor approximation to the continuous one and

demonstrates that in this context also the absence of Granger causality from one variable to

another does not carry over to the sampled processes in general. Exceptions are processes

in continuous time that are uncorrelated at all dates and the case where the first variable

can be predicted with equal accuracy regardless of whether continuous or discrete data are

used. The intuition of these results is that a sampled process omits information useful for

predicting a continuous time process, namely past values between the integers. The other

sampled process will be correlated with this information provided there is some correlation

between the continuous time processes. Acting as a proxy for these past values, the latter

sampled process will appear to cause the former in discrete time.

The effects of temporal aggregation on Granger causality testing have also been explored

in empirical work. Christiano and Eichenbaum (1987) establish that time-averaging and

sampling a continuous time process can increase the moving-average order of a time-series

representation. The former result, which they attribute to Working (1960), has recently

been characterized precisely in the multivariate setting by Breitung and Swanson (2002).

Interestingly, Christiano and Eichenbaum suggest that temporal aggregation effects induced

by shrinking the model timing interval can play a similar role in improving model fit as can

adding costs of adjustment and serially correlated shocks because the qualitative effect on

the reduced-form dynamics of the model for sampled data is the same. They find evidence

for money Granger causing output with quarterly U.S. data that seems to be overturned

when moving to a finer sampling interval. Harvey and Stock (1989) find evidence of money

not Granger causing income in a continuous time model but a strong reversal of this find-

ing when temporal aggregation is ignored in discrete time VARs. More recently, Renault,

Sekkat and Szafarz (1998), using a continuous time model to distinguish between ‘true’ and

‘spurious’ causality, obtained evidence to suggest there is a ‘discrete time illusion’ of causal-
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ity between the German mark and the Swiss franc. All of these results suggest that the

common practice of näıvely formulating models in discrete time is not innocuous and that

formulating econometric models in continuous time can help avoid misinterpreting the data

in general, and Granger causality relationships in particular.

3. Defining causality in continuous time models

Our fundamental objective in this paper is to demonstrate that testing for causality

between time series is not immune to the distortional effects of temporal aggregation and

that continuous time models can offer the basis to correct for these distortions. Towards

this end, we now discuss how to define causality in continuous time models, and how we can

accurately import restrictions to economic data in a context where the data are generated

in finer time intervals than the sampling interval.

3.1. Granger causality

Attempting to explain precisely what we mean by ‘causality’ is a forlorn task and is

ultimately a philosophical problem. As Granger (1980, p. 330) notes, “Attitudes towards

causality differ widely, from the defeatist one that it is impossible to define causality, let

alone test for it, to the populist viewpoint that everyone has their own personal definition

and so it is unlikely that a generally acceptable definition exists.” The concept of ‘Granger

causality’ is designed as an operational definition such that real statements can be made

about causality on the basis of statistical data. The general principle can be set in a context

where ΩT represents all the information in the universe at time T . Let F (A|B) be the

conditional distribution of A given B and consider two series Yt and Xt. Then if

F (Xt+k|Ωt) = F (Xt+k|Ωt − Yt) (∀k > 0), (10)

where Ωt−Yt is all the information in the universe apart from the values Yt taken up to time

t, then Yt does not cause Xt. If condition (10) does not hold, then Yt could be said to cause

Xt on the grounds that there is special information contained in Yt about Xt that is not

available elsewhere. Granger and Thomson (1987) demonstrate that when using the causal

variable Yt to form forecasts of a function of Xt, then one is never worse off and usually

better off using any cost function.

The above definition of causality is, of course, too general to be testable. In practice,

we have to replace Ωt with a restricted information set containing present and past values

of certain time series and we choose a criterion to decide on how one forecast is superior

to another, often restricting attention to linear forecasts under the usual least-squares loss
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function.7 If Jt is an information set available at time t that includes Xt−j and a vector

Zt−j of other series but excluding Yt−j (j ≥ 0), and J ′t is the information set Jt expanded

to include Yt−j (j ≥ 0), then if there exists k > 0 such that

F (Xt+k|J ′t) 6= F (Xt+k|Jt), (11)

we could say that Yt is a prima facie cause of Xt+k with respect to the information set J ′t, on

the grounds that Yt is a possible cause of the future X’s. We need to use the phrase ‘prima

facie’ because we might obtain a different result with respect to a different information set.

The notion of Granger causality pertains to conditional expectations and as a condition is

implied by (11). If there exists k > 0 such that

E(Xt+k|J ′t) 6= E(Xt+k|Jt), (12)

we could say that Yt causes Xt in mean with respect to the information set J ′t, or we say

simply that Yt ‘Granger causes’ Xt. Usually the definition is considered just for the case

k = 1 and we focus on whether Yt helps provide an improved least-squares forecast for Xt+1

than if Yt were not used. It is this basic definition that Florens and Fougère (1996) and

Comte and Renault (1996) initially applied in the continuous time framework.

3.2. Non-causality in continuous time models

Formulating econometric models in continuous time offers several advantages in the

context of causality testing: they can take account of the interaction among variables during

the unit observation period; they can be represented as a causal chain where each of the

variables responds directly to the stimulus of only a proper subset of the other variables

while there is interaction between all the variables during the observation period; they allow

a clear distinction to be made between stock and flow variables; and their form does not

depend on the unit observation period.

Florens and Fougère (1996) and Comte and Renault (1996), denoted FF and CR, re-

spectively, in what follows, offered a global definition of non-causality in continuous time.

Following CR, suppose X(t) = [X1(t)′, X2(t)′, X3(t)]′ is an n-dimensional continuous time

stochastic process, where the Xi are ni-dimensional processes and n1 + n2 + n3 = n. We

consider the non-causality of X2 on X1 with X3 as the ‘environment’ variable. FF and CR

both say that X2 does not Granger cause X1 if

∀t, h ≥ 0, E[X1(t + h)|I(t)] = E[X1(t + h)|I(t)−X2(t)], (13)

7See Ashley, Granger and Schmalensee (1980) for a celebrated, early application to advertising and aggre-
gate consumption.
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where the information sets in (13) are the σ-algebras I(t) = σ{X(τ), τ ≤ t, τ ∈ R} and

I(t)−X2(t) = σ{X1(τ), X3(τ), τ ≤ t, τ ∈ R}.

What we are really interested in, of course, is a local notion of causality, when h ↓ 0,

but if X1(t) is a mean-square continuous process, we have

L2- lim
h↓0

E[X1(t + h)|I(t)] = L2- lim
h↓0

E[X1(t + h)|I(t)−X2(t)], (14)

and so, as FF and CR pointed out, we cannot meaningfully define local non-causality in

terms of the levels of processes. Instead, they define local Granger non-causality in terms of

increments. FF do this implicitly by using the general notion of causality discussed above

with the canonical decomposition of a semimartingale X(t) = X(0) + M(t) + H(t), where

M(t) is a local martingale with respect to I(t), M(0) = H(0) = 0, and H(t) is a process of

finite variation.8 Here, it will be sufficient for our purpose to state CR’s definition of local

causality that is explicitly based in terms of the increments of a process, which is equivalent to

FF’s except that it applies to a narrower class of processes. Let X1(t) = X1(0)+M1(t)+H1(t)

be a càdlàg9 semimartingale such that M1 is a martingale with respect to I(t) and H1 is

mean-square continuously differentiable. Then X2 does not locally Granger cause X1 if and

only if

L2- lim
h↓0

E

[
X1(t + h)−X1(t)

h

∣∣∣∣ I(t)
]

= L2- lim
h↓0

E

[
X1(t + h)−X1(t)

h

∣∣∣∣ I(t)−X2(t)
]
. (15)

The definition is analogous to (12) except that it is applied to the increments and not the

levels, and under a different metric. It is implied by the global definition (13) above.

There exists a potential problem in applying the definitions to processes like continuous

time VARs because the conditions could be written equivalently in terms of a process or

its (mean square) derivatives. Suppose a process X has components X1 and X2 having the

same order of differentiability, and let D denote the mean square differentiation operator.

CR showed that X2 does not locally Granger cause X1 if DkX2 does not locally Granger

cause DkX1 and, provided the non-causality is defined in terms of the derivative of maximal

order k that effectively exists for the process, the problem is circumvented. We remark that

in the case that there is no environment and the continuous time process admits a continuous

time invertible moving average representation, then the local Granger non-causality from X2

onto X1 and of X1 onto X2 is not sufficient to ensure the independence between X1 and X2.

CR offer a necessary and sufficient condition they call local instantaneous causality, whose

global counterpart is “the natural generalization of discrete time instantaneous causality”

(p. 221). What precisely ‘instantaneous causality’ is and whether it truly exists other than

8See Protter (1990, p. 107).
9continue à droite, limite à gauche.
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as a facet of temporal aggregation or missing causal variables is a controversial issue (see

Granger, 1988, pp. 204-208). Certainly, Granger felt that it would have as a concept to go

beyond correlation, which measures the association of two variables, to indicate the direction

of their relationship. In the absence of a priori information, this would rule out a definition

that is symmetric in the variables, contrary to an earlier definition by Pierce and Haugh

(1977), and indeed CR’s definition. In the fixed-interval time aggregation literature, Breitung

and Swanson (2002) have recently profitably revived a notion of (apparent) instantaneous

causality in a multivariate context, giving sufficient conditions to rule it out as an artefact

of temporal aggregation. However, for our purpose of using a structural continuous time

model to help test for causal structure using observed discrete data, we shall not need such

a concept, as we explain below.

3.3. Continuous time VAR models and their exact discrete analogues

One of the advantages of formulating econometric models in continuous time is that they

can represent a causal chain model that can take account of a priori information concerning

the ordering of the variables. As Bergstrom (1996) notes, we can impose the restrictions

implied by our knowledge of the information available to agents on a particular day as

a means of obtaining more efficient parameter estimates. This is not possible in a näıve

discrete time framework because each variable will be a function of all the variables in the

model during the observation period. What is more, in certain circumstances we can import

exactly the restrictions on the continuous time model to a discrete time analogue that we

can then use as the basis of estimating the structural parameters or for causality testing.

For example, for the first order continuous time VAR model in stock variables, we have

dx(t) = A(θ)x(t)dt + ζ(dt), (16)

where {x(t),−∞ < t < ∞} is an n-dimensional continuous time random process, A is an

n × n matrix whose eigenvalues have strictly negative real parts and whose elements are

known functions of a p-dimensional vector θ of unknown parameters (p < n2), and ζ(dt) is

a vector of white noise innovations with covariance matrix Σdt. Bergstrom (1984) showed

how to derive a system of stochastic difference equations satisfying the time-invariant linear

stochastic differential equation system driven by white noise disturbances in (16). A sequence

of equispaced observations x(0), x(1), . . . , x(T ) generated by (16) satisfies the exact discrete

model

x(t) = F (θ)x(t− 1) + εt, t = 1, . . . , T, (17)

where F (θ) = eA(θ) = I +
∑∞

r=1 A(θ)r/r! and εt is a white noise disturbance vector with

covariance matrix Ω(θ) =
∫ 1
0 erA(θ)ΣerA(θ)′dr. The exact discrete analogue (17) has the form
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of a VAR model in discrete time. In this context only, we note that if there is no environment

and x has components x1 and x2, if the matrix A is lower triangular, implying local Granger

non-causality of x2 onto x1, then F will also be lower triangular and so there will be discrete

time Granger non-causality of x2 onto x1. In higher-order models, however, this property

does not carry over. For example, in the second-order model discussed by Bergstrom (1985),

we have

d[Dx(t)] = [A1(θ)Dx(t) + A2(θ)x(t)]dt + ζ(dt), t > 0, (18)

where x(0) and Dx(0) are assumed to be non-random. As shown by Bergstrom (1985) the

observations of x(t) observed at integer points in time10 satisfy the VARMA model

x(t) = F1(θ)x(t− 1) + F2(θ)x(t− 2) + ηt, t = 3, . . . , T, (19)

where ηt is an MA(1) disturbance process and may be written ηt = ut + Gut−1 for some

particular white noise process ut and matrix G. The non-causality of x2 onto x1 in continuous

time is represented by the restrictions [A1]12 = 0 and [A2]12 = 0 in (18), where [·]12 denotes

the (1,2)-block of a matrix. Following CR we can use the condition by Boudjellabah, Dufour

and Roy (1992) to characterize the discrete time Granger non-causality of x2 onto x1 by the

nullity of

[(I + Gz)−1(I − F1z − F2z
2)]12 = 0 ∀z. (20)

While the Granger local non-causality of x2 onto x1 implies in discrete time that F1 and F2

are lower triangular, in general (20) will not be fulfilled, even when there is no environment,

owing to the complication arising from the moving average term in the exact discrete model.

In other words, the Granger local non-causality of x2 onto x1 does not imply Granger non-

causality in the discretized process. It is worth remarking that this result is not dependent

on the form of Σ. As CR show, in the absence of an environment variable, their ‘local

instantaneous causality’ restrictions on Σ, necessary to establish the independence of x1 and

x2, are independent of whether x2 locally Granger causes x1 or vice versa.

4. An empirical illustration

In this section we provide an empirical illustration of testing for Granger causality when

the effects of temporal aggregation are explicitly taken into account.11 We focus on the

10It is possible to allow for a sample of mixed stock and flow data but doing so adds nothing to the
discussion here.

11This section was added to the original paper on the suggestion of the editor and a referee. The meth-
ods and results are meant to be illustrative rather than definitive and we have focused exclusively on the
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widely-studied issue of money-income causality which, following Sims (1972), has been the

subject of intense research activity. There has, however, been much conflicting evidence

produced concerning the key issue of whether money Granger causes income. Recently,

however, theoretical advances in the area of unit roots and cointegration have led to a re-

examination of some of the earlier results in the literature. An important contribution in

this vein is Stock and Watson (1989), who undertake a careful analysis of stochastic and

deterministic trends in monthly U.S. industrial production and money stock (M1) data over

the period January 1960 to December 1985. One of their key findings is that innovations in

M1 i.e. in the appropriately detrended series, have statistically significant marginal predictive

value for industrial production. This finding is robust to consideration of both a bivariate

system and a multivariate system that also incorporates a price index and an interest rate.

Our empirical application also uses monthly U.S. data on the industrial production index

(IP) and M1 but over a longer period than that considered by Stock and Watson (1989). Our

sample period covers January 1960 to December 2001, with observations from 1959 used as

intitial values in the dynamic models. The sample size used for all estimations is therefore

T = 504. We define y = ln(IP) and m = ln(M1). Table 1 contains the results of testing for

unit roots and cointegration in the two series y and m, as well as tests of the significance

of deterministic time trends in these two series. The univariate Stock-Watson qc(1, 0) and

augmented Dickey-Fuller τ6 tests for unit roots provide strong evidence for the presence of

unit roots in each of the series, although we note that the augmented Dickey-Fuller statistic

with a linear time trend is significant for y. The two cointegration tests both fail to reject the

null hypothesis of two unit roots in the bivariate system against the alternative of only one,

suggesting that these two series are not cointegrated but that the system contains two unit

roots. Although these findings are in accordance with those of Stock and Watson (1989), the

t-statistics on the deterministic trend terms suggest the presence of a quadratic as opposed to

a linear trend in m, although the growth of IP appears only to contain a drift component.12

We therefore proceed under the maintained hypothesis that y and m are well described by

the following univariate representations in discrete time:13

∆yt = αy0 + ∆ηt, (21)

∆mt = αm0 + αm1t + αm2t
2 + ∆µt, (22)

importance for causality tests of incorporating temporal aggregation restrictions on discrete time data. We
acknowledge that our results could be sensitive to changes in the sample period (Friedman and Kuttner,
1993) or to different orthogonalizations of the covariance matrices of residuals (Swanson and Granger, 1997).
However, such issues are beyond the scope of the illustration provided here.

12Eliminating time2 in the regression for y yields a t-ratio of −0.6620 on time; further eliminating time
results in a t-ratio of 3.3524 on the drift term.

13We have borrowed the notation from Stock and Watson (1989).
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where ∆ηt and ∆µt denote mean zero stationary processes. Furthermore, defining the vector

x = (y, m)′, we also maintain that x contains two unit roots and that its components are

not cointegrated.

In view of the above properties of the series, the usual approach to testing for Granger

causality from m to y would be to specify a VAR in first differences (with a quadratic trend)

and to test the significance of the coefficients on the lagged ∆mt variables in the equation

for ∆yt. The validity of such an approach is established by Toda and Phillips (1993),14 who

state (in the context of Wald tests) that “if it is known that the system is I(1) with no

cointegration, causality tests based on difference VARs are also valid, and in these tests the

usual chi-square critical values are employed” (pp. 1376–1377). Furthermore, “causality tests

in difference VARs are likely to have higher power in finite samples” (p. 1377). Adopting

this approach with a VAR specified in terms of the vector of detrended series x̂t = (ηt, µt)′

we consider testing causality in the system

∆x̂t = b0 +
p∑

j=1

Bj∆x̂t−j + ut, (23)

where ut is assumed to be vector white noise with covariance matrix Σu. Estimation of this

system suggests that the null of no Granger causality from (detrended) money to (detrended)

output is represented by the p restrictions [Bj ]12 = 0 (j = 1, . . . , p), where [Bj ]12 denotes

the second element in the first row of the matrix Bj i.e. the coefficient of ∆µt−j in the

equation for ∆ηt. On the basis of the Akaike and Schwarz order selection criteria, as well as

a likelihood ratio test for testing the null that the order is p against the alternative that it is

p + 1, the value of p = 3 is chosen. However, there is strong evidence of serial correlation in

the residuals of both equations, and it therefore seems prudent to increase the order of the

model in an attempt to eradicate the serial correlation. There is, however, a trade-off to be

made. Incorporating too many lagged terms may adversely affect the power of the tests, but

incorporating an insufficient number may lead to the tests being biased due to the presence

of serial correlation. We therefore consider two values of p, namely p = 6 and p = 12, and

note that Lagrange Multiplier tests of serial correlation up to order 12 do not reject the null

of no serial correlation in either equation when p = 12, but do reject (at the 5% level) when

p = 6.

Likelihood ratio tests of the hypothesis of no Granger causality for these two VARs are

presented in Table 2. In neither case is the null hypothesis rejected at the 5% (or even the

10%) level of significance, although we note the marginal probability value is much higher

(i.e. further away from rejecting the null) in the absence of serial correlation (when p = 12).

14See also Sims, Stock and Watson (1990) for related results.
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These results, obtained without consideration of temporal aggregation issues, indicate that

innovations in money do not Granger cause output growth, contrary to the findings of Stock

and Watson (1989). We shall use these results as a benchmark against which to compare

our findings when temporal aggregation is accounted for, and to which we now turn.

The continuous time model that we shall estimate is based around our earlier find-

ings concerning the trend properties of the two variables y and m. The continuous time

counterparts of (21) and (22) are, respectively,

d ln IP(t) = γ0ydt + dη(t), (24)

d lnM1(t) =
(
γ0m + γ1mt + γ2mt2

)
dt + dµ(t), (25)

where η(t) and µ(t) denote mean zero stationary continuous time random processes. We shall

treat both IP and M1 as being flow variables in view of the M1 data being monthly averages

of daily values and the IP index being a measure of output produced during each month.

The raw observations are therefore in the form of the integrals Yt =
∫ t
t−1IP(r)dr and Mt =∫ t

t−1M1(r)dr. Ideally, because the model is specified in terms of logarithms, we would wish to

observe the integrals of the logarithms themselves, but we shall proceed on the assumption

that the logarithm of the observed integrals provides an accurate approximation.15 Taking

yt = ln Yt and mt = ln Mt, we are therefore assuming that

yt = ln
∫ t

t−1
IP(r)dr ≈

∫ t

t−1
ln IP(r)dr, mt = ln

∫ t

t−1
M1(r)dr ≈

∫ t

t−1
lnM1(r)dr. (26)

The least squares detrending that we applied in the discrete time approach remains equally

valid here. To verify this, observe that integrating the left hand side of (24) twice over the

unit interval yields

∫ t

t−1

∫ s

s−1
d ln IP(r)ds =

∫ s

s−1
[ln IP(s)− ln IP(s− 1)] ds = ∆yt.

Integrating the right hand side twice yields γ0y +∆ηt, where ∆ηt =
∫ t
t−1

∫ s
s−1 dη(r)ds denotes

the discrete time detrended series. Applying a similar procedure to (25) and dealing with

the double integrals
∫ t
t−1

∫ s
s−1 rdrds and

∫ t
t−1

∫ s
s−1 r2drds yields the equation

∆mt = (γ0m − γ1m +
7
6
γ2m) + (γ1m − 2γ2m)t + γ2mt2 + ∆µt,

which is of the same form as (22).

15This approximation is not without precedent in the empirical continuous time literature. See, for example,
Bergstrom, Nowman and Wymer (1992).
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The specification of the continuous time model is completed by equations describing the

dynamic evolution of η(t) and µ(t). In discrete time, this is achieved by the specification

of a VAR model containing a sufficient number of lags to render the disturbance vector

approximately white noise. In continuous time, the specification is in the form of a system

of stochastic differential equations whose order is sufficiently high to model the dynamics

adequately. Following Harvey and Stock (1989) we assume the vector x̂(t) = (η(t), µ(t))′

satisfies a third-order stochastic differential equation with zero roots, given by

d
[
D2x̂(t)

]
=

[
A2D

2x̂(t) + A1Dx̂(t) + A0x̂(t)
]
dt + ζ(dt), t > 0, (27)

where A0, A1 and A2 are 2× 2 matrices of unknown parameters and ζ(dt) is a 2× 1 vector

of random measures satisfying Eζ(dt) = 0, Eζ(dt)ζ(dt)′ = dtΣζ , and Eζ(∆1)ζ(∆2)′ = ∅ for

∆1 and ∆2 any two disjoint subsets of [0, T ]. The zero roots assumption is incorporated by

setting A0 = 0, resulting in a second-order stochastic differential equation in the stationary

vector w(t) = Dx̂(t), given by

d [Dw(t)] = [A2Dw(t) + A1w(t)] dt + ζ(dt), t > 0, (28)

Effectively, this is a third-order system in the underlying variables lnIP and lnM1 but which

contains zero roots. The detrending equations (24) and (25) deal with the continuous time

zero roots as well as the deterministic trends, the result being the second-order system in

the vector of detrended variables Dx̂(t) in (28).

Our approach to estimation is based on the exact discrete representation of (28). Note

that ∆x̂t =
∫ t
t−1

∫ s
s−1 dx̂(r)ds =

∫ t
t−1

∫ s
s−1 w(r)drds and define θ to be the vector of unknown

parameters comprising the elements of A2, A1 and Σζ . The vector θ therefore has 11 free

parameters. It is possible to show that ∆x̂t satisfies a VARMA(2,3) system of the form

∆x̂t = F1(θ)∆x̂t−1 + F2(θ)∆x̂t−2 + ξt, t = 1, . . . , T, (29)

where ξt is a vector MA(3) disturbance satisfying Eξt = 0, Eξtξ
′
t−j = Ωj(θ) (j = 0, . . . , 3)

and Eξtξ
′
t−j = 0 (j > 3), and the elements of F1, F2 and the Ωj are complicated functions of

the elements of θ. Details of the precise formulae relating F1, F2 and the Ωj to θ, along with

their derivations, may be found in the Appendix. We take the pre-sample values ∆x̂−1 and

∆x̂0 to be fixed and condition the likelihood function accordingly. The null hypothesis that

innovations in money do not Granger cause output is represented by the two restrictions

[A2]12 = 0 and [A1]12 = 0, which we test using the likelihood ratio principle.

We shall also consider two approximate discrete time models derived from (28) in an

attempt to assess the importance of imposing the exact restrictions on the discrete time
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data. The first approximation replaces the derivative Dkx̂(t) in (27) with the difference

∆kx̂t to yield

∆3x̂t = A2∆2x̂t + A1∆x̂t + vt, (30)

where vt is assumed to be vector white noise with covariance matrix Σv. This equation can

be rearranged into a VAR(2) in the variable ∆x̂t of the form

∆x̂t = C1∆x̂t−1 + C2∆x̂t−2 + et, (31)

where C1 = K−1(2I − A2), C2 = −K−1, K = (I − A1 − A2), and et = K−1vt is vector

white noise. The second approximation is more sophisticated and is derived by integrating

(28) four times over the interval (t− 1, t) and using the fact that
∫ t
t−1

∫ s
s−1 w(r)drds = ∆x̂t

as well as the approximation
∫ t
t−1 α(r)dr ≈ [α(t) + α(t− 1)]/2 = F (L)α(t) for a continuous

time integrable variable α(t), where F (z) = (1 + z)/2 and L denotes the lag operator. The

result is a VARMA(2,3) system in ∆x̂t of the form

∆x̂t = G1∆x̂t−1 + G2∆x̂t−2 + εt, (32)

where G1 = H−1(2I + 1
2A1), G2 = H−1(1

4A1 − 1
2A2 − I), H = (I − 1

4A1 − 1
2A2), and εt is

a vector MA(3) process. The differences between the exact discrete time model (29) and

the approximations (31) and (32) lie in the way in which the discrete time autoregressive

matrices relate to the continuous time parameters and the nature of the disturbance vectors.

In (31) the disturbance vector is assumed to be white noise, while in (32) it is MA(3)

although, once again, the precise form of the autocovariance matrices in (29) and (32) are

different. Each of the two discrete time approximations is estimated by maximising the

(Gaussian) likelihood function, conditional on ∆x̂−1 and ∆x̂0 being fixed. Further details of

the derivations leading to the approximations (31) and (32) may be found in the Appendix.

Table 3 presents estimates of the continuous time parameters obtained from the exact

discrete model and the two approximations, both with and without the causality restrictions

imposed. Rather than estimating the covariance matrix Σζ directly, we estimated the ele-

ments of the lower triangular Cholesky factorisation Mζ such that MζM
′
ζ = Σζ . This was

done to ensure that the covariance matrix remained positive definite in the optimisation of

the likelihood function, and Table 3 reports estimates of the elements of Mζ (denoted [Mζ ]11,

[Mζ ]21 and [Mζ ]22). Taking the results obtained from the exact discrete model first, it is clear

to see that imposition of the causality restrictions has a dramatic impact on the estimates

of the remaining free parameters and there is a corresponding sharp fall in the value of the

maximised likelihood function. This is perhaps not surprising in view of the significance in
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the unrestricted model of the two parameters that are being constrained to be equal to zero

in the restricted model. As a result the likelihood ratio statistic convincingly rejects the

null of Granger non-causality when the temporal aggregation restrictions are accounted for

exactly. In contrast, imposition of the restrictions via the two approximate discrete models

results in much smaller changes in the remaining free parameters, and a much smaller drop

in the maximised likelihood function, than when the exact discrete model is employed. As

a result, neither likelihood ratio statistic rejects the null hypothesis in the two approximate

discrete models, a finding that is in line with the discrete time VARs reported earlier.

Our empirical results suggest that correctly accounting for temporal aggregation restric-

tions can have an important bearing on inferences drawn when testing for Granger causality.

It also appears that even the approximate discrete time models do not adequately reflect the

temporal aggregation restrictions, in line with purely unrestricted discrete time VARs. It is

also worth noting that the MA(3) disturbance in the exact discrete model appears to account

for the serial correlation in the disturbance term, a feature not shared in the approximations

(nor in the low order VARs). Our result, that innovations in money cause output (growth)

in the continuous time system, is at variance with Harvey and Stock (1989), who found

that, using data from January 1960 to December 1985, accounting for temporal aggregation

resulted in a non-rejection (at the 5% level) of the restrictions. We note, however, that

our method of detrending the data is different to theirs, as is our approach to estimation,

which is based on the exact discrete model while Harvey and Stock used Kalman filtering

techniques applied to the state space form of the model. Our sample period is also longer.

5. Conclusion

The paper has considered, from a continuous time perspective, the problem that spurious

Granger causality relationships can arise due to temporal aggregation. We showed that

formulating models in continuous time offers a basis for correcting for the effects of temporal

aggregation in observed discrete data through a discrete time analogue, in a way that does

not rely on our positing a definite time unit in which the data are generated. In an empirical

application, we showed that imposing these restrictions, and precisely, matters in testing for

Granger causality.

Our results complement those in the fixed-interval time aggregation literature, especially

those recently obtained by Marcellino (1999) and Breitung and Swanson (2002). Our appli-

cation to money-income causality was designed to be illustrative of the effects of causality

testing and no attempt was made to present a definitive study. One direction for future

research would be to devise a data-determined method for continuous time models along the

lines of Swanson and Granger (1997) for discrete time models, to examine the sensitivity of
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causality results to different residual orthogonalizations and under different a priori causal

restrictions on the variables.

Appendix

Derivation of the exact discrete time representation

In this section we derive the formulae for the exact discrete model corresponding to a

third-order continuous time system with flow variables and zero roots using the approach in

Chambers (1999). The system in which we are interested may be written

d
[
D2x̂(t)

]
=

[
A2D

2x̂(t) + A1Dx̂(t) + A0x̂(t)
]
dt + ζ(dt), t > 0, A0 = 0, (33)

where ζ(dt) is a 2 × 1 vector of random measures satisfying Eζ(dt) = 0, Eζ(dt)ζ(dt)′ =

dtΣζ , and Eζ(∆1)ζ(∆2)′ = ∅ where ∆1 and ∆2 are any two disjoint subsets of [0, T ]. It is

convenient to rewrite (33) in terms of the stationary variable w(t) = Dx̂(t), which gives

d [Dw(t)] = [A2Dw(t) + A1w(t)] dt + ζ(dt), t > 0. (34)

The underlying observations in our system are given by the n× 1 vector

∆x̂t =
∫ t

t−1

∫ s

s−1
dx̂(r)ds =

∫ t

t−1

∫ s

s−1
w(r)drds; (35)

the first difference form reflects the zero roots in the continuous time system. The parameters

to be estimated are the elements of A1, A2 and Σζ ; denote these by the vector θ.

Theorem. Let x̂(t) be generated by (33) and let the observations be given by (35). Then

∆x̂t satisfies

∆x̂t = F1(θ)∆x̂t−1 + F2(θ)∆x̂t−2 + ξt, t = 1, . . . , T, (36)

where F1 = F11 + F12F22F
−1
12 , F2 = F12

[
F21 − F22F

−1
12 F11

]
,

F =

 F11 F12

F21 F22

 = eA =
∞∑

j=0

Aj

j!
, A =

 0 I

A1 A2

 ,

Eξtξ
′
t−j = Ωξ,j (j = 0, . . . , 3),

Ωξ,0 = S0Ω0S
′
0 + S0Ω1S

′
1 + S1Ω′

1S
′
0 + S1Ω0S

′
1,

Ωξ,1 = S0Ω1S
′
0 + S0Ω2S

′
1 + S1Ω0S

′
0 + S1Ω1S

′
1,

Ωξ,2 = S0Ω2S
′
0 + S1Ω1S

′
0 + S1Ω2S

′
1,

Ωξ,3 = S1Ω2S
′
0,
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S0 = [I, 0], S1 = [−F12F22F
−1
12 , F12],

Ω0 =
∫ 1

0
Φ0(r)ΣζΦ0(r)′dr +

∫ 1

0
Φ1(r)ΣζΦ1(r)′dr +

∫ 1

0
Φ2(r)ΣζΦ2(r)′dr,

Ω1 =
∫ 1

0
Φ1(r)ΣζΦ0(r)′dr +

∫ 1

0
Φ2(r)ΣζΦ1(r)′dr,

Ω2 =
∫ 1

0
Φ2(r)ΣζΦ0(r)′dr,

Φ0(r) = −A−2 −A−1r + A−2erA,

Φ1(r) = A−2(F + I)−A−1 + A−1(I + F )r − 2A−2erA,

Φ2(r) = A−1(F −A−1F )−A−1Fr + A−2erA.

Proof. Let z(t) = [w(t)′, Dw(t)′]′. Then z(t) satisfies

dz(t) = Az(t)dt + u(dt), (37)

where u(dt) = [0′, ζ(dt)′]′. Integrating (37) yields ∆z(t) = A
∫ t
t−1 z(r)dr +

∫ t
t−1 u(dr) so that

∫ t

t−1
z(r)dr = A−1∆z(t)−A−1

∫ t

t−1
u(dr). (38)

But, from Theorem 3 of Bergstrom (1984), z(t) = Fz(t − 1) +
∫ t
t−1 F (t − r)u(dr), where

F (r) = erA. Hence

z(t)−z(t−1) = F [z(t− 1)− z(t− 2)]+
∫ t

t−1
F (t−r)u(dr)−

∫ t−1

t−2
F (t−1−r)u(dr).(39)

Substituting (39) into (38) results in

∫ t

t−1
z(r)dr = F

∫ t−1

t−2
z(r)dr + A−1

{∫ t

t−1
[F (t− r)− I]u(dr)

−
∫ t−1

t−2
[F (t− 1− r)− F ]u(dr)

}
, (40)

which uses the properties A−1F = FA−1 and A−1FA = F . Integrating (40) over (t− 1, t):

∫ t

t−1

∫ s

s−1
z(r)drds = F

∫ t

t−1

∫ s−1

s−2
z(r)drds + A−1

{∫ t

t−1

∫ s

s−1
[F (s− r)− I]u(dr)ds

−
∫ t

t−1

∫ s−1

s−2
[F (s− 1− r)− F ]u(dr)ds

}
. (41)

Noting that

∫ t

t−1

∫ s

s−1
z(r)drds =

∫ t

t−1

∫ s

s−1

 w(r)

Dw(r)

 drds =

 ∆x̂t

∆2x̂(t)
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indicates that we need the first n equations of (41). Let zt = [z′1t, z
′
2t]

′ =
∫ t
t−1

∫ s
s−1 z(r)drds

and define vt = [v′1t, v
′
2t]

′ where

vt = A−1
{∫ t

t−1

∫ s

s−1
[F (s− r)− I]u(dr)ds−

∫ t

t−1

∫ s−1

s−2
[F (s− 1− r)− F ]u(dr)ds

}
.

Then (41) is zt = Fzt−1 + vt and is comprised of

z1t = F11z1t−1 + F12z2t−1 + v1t, (42)

z2t = F21z1t−1 + F22z2t−1 + v2t. (43)

From (42),

z2t−1 = F−1
12 (z1t − F11z1t−1 − v1t) , (44)

z2t−2 = F−1
12 (z1t−1 − F11z1t−2 − v1t−1) , (45)

while from (43),

z2t−1 = F21z1t−2 + F22z2t−2 + v2t−1. (46)

Substituting (44) and (45) into (46):

F−1
12 (z1t − F11z1t−1 − v1t) = F21z1t−2 + F22F

−1
12 (z1t−1 − F11z1t−2 − v1t−1) + v2t−1. (47)

Solving this equation for z1t yields (29) as required, where

ξt = v1t − F12F22F
−1
12 v1t−1 + F12v2t−1. (48)

This completes the proof. 2

Autocovariance properties of ξt

Note, first, that ξt has the representation ξt = S0vt + S1vt−1. The double integrals defining

vt can be reduced to single integrals using the methods of McCrorie (2000). This yields

∫ t

t−1

∫ s

s−1
[F (s− r)− I]u(dr)ds

=
∫ t−1

t−2

[∫ r+1

t−1

[
e(s−r)A − I

]
ds

]
u(dr) +

∫ t

t−1

[∫ t

r

[
e(s−r)A − I

]
ds

]
u(dr)

=
∫ t−1

t−2

[
A−1F − I + (t− 1− r)I −A−1e(t−1−r)A

]
u(dr)
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+
∫ t

t−1

[
−A−1 − (t− r)I + A−1e(t−r)A

]
u(dr),∫ t

t−1

∫ s−1

s−2
[F (s− 1− r)− F ]u(dr)ds

=
∫ t−2

t−3

[∫ r+2

t−1

[
e(s−1−r)A − F

]
ds

]
u(dr) +

∫ t−1

t−2

[∫ t

r+1

[
e(s−1−r)A − F

]
ds

]
u(dr)

=
∫ t−2

t−3

[
A−1F − F + (t− 2− r)F −A−1e(t−2−r)A

]
u(dr)

+
∫ t−1

t−2

[
−A−1 − (t− 1− r)F + A−1e(t−1−r)A

]
u(dr).

Hence vt has the representation

vt =
∫ t

t−1
Φ0(t− r)u(dr) +

∫ t−1

t−2
Φ1(t− 1− r)u(dr) +

∫ t−2

t−3
Φ2(t− 2− r)u(dr). (49)

The matrices Ωj (j = 0, 1, 2) defined in the Theorem correspond to the autocovariances of

vt derived using (49). It is then a straightforward matter to derive the autocovariances of ξt

using the relationship between ξt and vt given in the first line of this section.

Discrete time approximation: method 1

Our simplest discrete time approximation replaces the derivatives Dkx̂(t) in (27) with the

differences ∆kx̂t, yielding

∆3x̂t = A2∆2x̂t + A1∆x̂t + vt, (50)

where vt is assumed to be vector white noise. Expressing the higher-order differences in

terms of ∆x̂t gives

∆x̂t − 2∆x̂t−1 + ∆x̂t−2 = A2 (∆x̂t −∆x̂t−1) + A1∆x̂t + vt,

which, upon rearranging, yields

∆x̂t = C1∆x̂t−1 + C2∆x̂t−2 + et, (51)

where C1 = (I −A1 −A2)−1(2I −A2), C2 = −(I −A1 −A2)−1 and et = (I −A1 −A2)−1vt

is also vector white noise.

Discrete time approximation: method 2

The second method is more sophisticated. Integrate (28) over (t− 1, t):

∆Dw(t) = A2∆w(t) + A1

∫ t

t−1
w(r)dr +

∫ t

t−1
ζ(dr). (52)
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Integrating again yields

∆2w(t) = A2∆
∫ t

t−1
w(r)dr + A1∆x̂t + φt, (53)

where φt =
∫ t
t−1

∫ s
s−1 ζ(dr)ds. We shall use the approximation

∫ t

t−1
α(r)dr ≈ [α(t) + α(t− 1)]/2 = F (L)α(t)

for a continuous time integrable variable α(t), where F (z) = (1+z)/2 and L denotes the lag

operator. For future reference, note that F (z)2 = (1 + 2z + z2)/4. Integrating (53) again:

∆2
∫ t

t−1
w(r)dr = A2∆2x̂t + A1F (L)∆x̂t + F (L)φt. (54)

Integrating a fourth and final time yields

∆3x̂t = A2F (L)∆2x̂t + A1F (L)2∆x̂t + F (L)2φt. (55)

Now, F (L)∆2x̂t = (∆x̂t − ∆x̂t−2)/2, F (L)2∆x̂t = (∆x̂t + 2∆x̂t−1 + ∆x̂t−2)/4, and define

ηt = F (L)2φt = (φt + 2φt−1 + φt−2)/4, so that (55) can be written as

∆x̂t − 2∆x̂t−1 + ∆x̂t−2 = A2(∆x̂t −∆x̂t−2)/2 + A1(∆x̂t + 2∆x̂t−1 + ∆x̂t−2)/4 + ηt.

Collecting terms and solving results in

∆x̂t = G1∆x̂t−1 + G2∆x̂t−2 + εt, (56)

where G1 = H−1(2I + 1
2A1), G2 = H−1(1

4A1 − 1
2A2 − I), H = (I − 1

4A1 − 1
2A2), and

εt = H−1ηt is a vector MA(3) process.

The properties of εt may be established as follows. First, using the results of McCrorie

(2000), it is possible to show that

φt =
∫ t

t−1

∫ s

s−1
ζ(dr)ds

=
∫ t

t−1
(t− r)ζ(dr)−

∫ t−1

t−2
(t− 2− r)ζ(dr).

Hence φt is MA(1) with Eφtφ
′
t = (2/3)Σζ and Eφtφ

′
t−1 = (1/6)Σζ . The properties of ηt then

follow from its definition in terms of φt, resulting in Eηtη
′
t = (1/3)Σζ , Eηtη

′
t−1 = (11/48)Σζ ,

Eηtη
′
t−2 = (1/12)Σζ , and Eηtη

′
t−3 = (1/96)Σζ . The autocovariances of εt then follow directly.
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Table 1
Tests for integration, cointegration, and time trends

Univariate unit root tests

Levels First differences

Series qt2
c (1, 0) qt

c(1, 0) τ t2
6 τ t

6 qt
c(1, 0) τ t

6

y −11.7618 −10.3866 −3.5057 −3.7499 −421.1183 −5.8979

m −2.0643 −1.5254 −1.4185 −1.3499 −563.1799 −3.8239

5% c.v. −27.7289 −21.2162 −3.8607 −3.4318 − 21.2162 −3.4318

Significance of deterministic trends and multivariate cointegration tests

t-statistics on: Cointegration

Series constant time time2 qt
c(2, 1) qt2

c (2, 1)

y 1.4416 −0.1332 −0.0255 −11.6123 −20.6597

m 0.4713 2.2801 −2.4459 5% c.v. −30.3688 −36.9354

Note: qt2

c (k, k − 1) and qt
c(k, k − 1) denote the Stock and Watson (1988) statistics for

testing for k against k − 1 unit roots using quadratic and linear time trends, respectively,
based on a Parzen kernel estimate of the long run variance matrix with 12 lags; τ t2

p and τ t
p

denote the augmented Dickey-Fuller statistics for testing for a unit root using p lags of the
dependent variable with quadratic and linear time trends, respectively; the t-statistics on
the deterministic trend components are obtained in a regression of ∆x on 6 of its lags plus
a quadratic trend; 5% critical values are taken from the COINT package by Ouliaris and
Phillips (1994).
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Table 2
Causality tests in discrete time VARs

Unrestricted Restricted
p lnL lnL LR

6 3742.1 3737.3 9.6208
[0.1416]

12 3757.4 3752.0 10.7610
[0.5495]

Note: p denotes the order of the VAR; fig-
ures in square brackets denote marginal proba-
bility values; lnL denotes the maximised value
of the likelihood function; LR denotes the likeli-
hood ratio test statistic.
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Table 3
Estimates of the continuous time model

Parameter Exact discrete model Approximation (31) Approximation (32)

Unrestricted model

[A1]11 −8.6804 (1.0236) −0.5532 (0.0510) −15.9991 (0.3770)

[A1]12 −29.8579 (1.0303) −0.0476 (0.0800) 0.2876 (2.1967)

[A1]21 0.9432 (0.3906) 0.0844 (0.0423) 0.5493 (0.4792)

[A1]22 −1.3574 (2.0038) −0.6558 (0.0530) −17.4982 (0.3775)

[A2]11 −3.4070 (0.4312) 1.6752 (0.0445) −6.8921 (0.3376)

[A2]12 −9.2767 (0.7165) −0.0834 (0.0767) −1.2872 (0.3793)

[A2]21 1.7207 (0.2275) −0.0238 (0.0445) −0.5346 (0.3450)

[A2]22 −0.3231 (0.4892) 1.7651 (0.0442) −5.3688 (0.3355)

[Mζ ]11 0.2072 (0.0095) 0.0078 (0.0002) 0.1759 (0.0070)

[Mζ ]21 −0.0146 (0.0025) 0.0050 (0.0002) −0.1096 (0.0044)

[Mζ ]22 0.0005 (0.0131) 0.0003 (0.0002) 0.0010 (0.0065)

lnL 3704.8497 3693.3063 3678.9276

Restricted model

[A1]11 −92.4106 (1.1647) −0.5516 (0.0507) −16.0899 (1.4624)

[A1]12 0.0000 na 0.0000 na 0.0000 na

[A1]21 −32.7328 (1.0850) 0.0843 (0.0327) 0.4378 (0.8883)

[A1]22 −35.3998 (1.1353) −0.6578 (0.0529) −17.4496 (1.4399)

[A2]11 −16.5473 (1.5857) 1.6814 (0.0444) −6.7693 (0.7711)

[A2]12 0.0000 na 0.0000 na 0.0000 na

[A2]21 −5.9420 (1.3331) −0.0241 (0.0272) −0.5825 (0.5455)

[A2]22 −6.1268 (0.8638) 1.7616 (0.0442) −5.4031 (0.7024)

[Mζ ]11 0.9158 (0.0314) 0.0078 (0.0002) 0.1758 (0.0152)

[Mζ ]21 −0.2192 (0.0100) −0.0050 (0.0002) −0.1096 (0.0092)

[Mζ ]22 0.3256 (0.0189) 0.0003 (0.0002) 0.0028 (0.0104)

lnL 3687.4990 3691.2269 3677.7739

Granger causality test

LR 34.7014 [0.0000] 2.1588 [0.3398] 2.3074 [0.3155]

Note: Figures in parentheses denote asymptotic standard errors; figures in square brackets
denote marginal probability values; ln L denotes the value of the maximised likelihood function;
LR denotes the likelihood ratio tests statistic.
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