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Abstract

Even after a careful choice of the sample size, the estimates obtained often
are unsatisfactory; in particular, their accuracy may turn out to be insufficient. If
time and resources allow, a rather usual remedy is to make additional observations.
The same situation arises whenever a pilot sample is used to determine the final
sample size, as many textbooks advise.

This type of two-step sequential sampling results in a random final sample
size, leading to several complications; in particular, most standard estimators will
be biased. To illustrate and quantify these complications, gamma distributed
populations will be considered here.

Two procedures to acquire an additional sample will be dealt with. The first
is based on the observed sample variance: if it is considered too high, the original
sample size is doubled. The second sample extension procedure concerns indepen-
dent samples from two populations: the ratio of the observed variances determines
the number of additional observations from one of the populations. The main con-

clusion is that sizable biases remain, even for intermediate sample sizes.

JEL-codes: (13, C15, C42, M41
Key-words: estimation bias, extended sampling, sample extension,

stochastic sample size, two-step sampling

1 Introduction

Two-step sampling procedures will be considered, where the first step consists of a

random sample of fixed size. An additional sample is drawn only if the outcomes satisfy



a given criterion C'; if so, the second step observations are combined with the original
ones. The resulting final sample size therefore is a random variable.

Generally the random variables n, ¥ and 52 will denote size, mean and variance of
the final sample. The indices 1, 2 and 3 indicate step 1, step 2 and the union of both

samples, respectively. Consequently,

g, s2) if C'
(n,7,5%) = { (i, %1’ §;) 1 (1.1)
(n3, Ys s3) if C

with the obvious relations

{ ﬂ3 = N1 +ﬂ2> gg = (n1g1 +ﬂ2@2)/ﬂ3 (1 2)

(n3 —1)s3 = (n1 — 1)si + (ny — 1)s5 +nuny (7, —7,)°/ns

Note that a certain criterion C' is used only once: either step 1 is followed by step 2, or
not; that explains our title.

The set-up of this paper is very similar to MOORS & STRIJBOSCH (2000), to be
abbreviated to M&S in the sequel, the important difference being that now populations
will be assumed to have a gamma distribution - instead of the normal distribution

N(u,0?). But the same framework is used, with main features being:

o simple random sampling (with replacement) is used,
o the final sample mean 7 is the estimator of p,

o its accuracy is measured by s%/n.

Besides, the same two sample extension procedures as in M&S are applied.

In Sections 2 and 3, the extension criterion is C' = {s? > ¢} with predetermined
constant ¢; if C' occurs, a step 2 sample of - again - size ny is observed. So, n can take
either the value n; or 2n;. This situation ocurs in practice if unsatisfactory accuracy of
y1 brings the investigator to doubling the original sample.

In Section 4, s? is compared with the variance, t? say, of an independent size n;
sample from another population. Only if C = {s? > t3} occurs, a step 2 sample of

random size
n, = entier[n; (s7/t2 — 1)] (1.3)

is drawn; in case C” occurs, the sample from the second population is increased compara-
bly. This procedure is relevant when the investigator wants to estimate two population

means with about equal accuracy.



For both two-step sampling procedures M&S showed the consequences of applying
standard statistical procedures in the case of normally distributed populations. For
two reasons, however, this latter assumption does not fully illustrate all pitfalls: the
normal distribution is symmetric and it has the (unique) property that sample mean
and variance are independent. Consequently, the estimator y for u for example was still
unbiased in M&S. Hence, we wanted to repeat our investigations for other distributions.
We chose the class of gamma distributions; for variables taking only positive values, this
rich class is a logical choice. Besides, for large shape parameter the gamma distribution
resembles a normal one; hence, we are able to compare our new results with M&S.
Finally, the nice analytical properties of gamma distributions allow some theoretical
derivations.

So, we start with some theoretical derivations in Section 2; we restricted ourselves
to a few simple parameter values. They were checked by means of simulations, that
gave also results for other parameter values.

To be more precise, for both two-step sampling procedures we present:

o the expectation of the estimator y for u,

o variance and Mean Squared Error of § as accuracy measures,
o the loss of accuracy due to the random final sample size,

o the expectation of the estimator s* for o2,

o the expectation of the estimator s*/n for MSE(y).

The final Section 5 discusses our results.

2 Extension based on sample variance; n; = 2

Only in very simple cases we finished the theoretical derivation of all expectations and
variances needed. Hence, in this section we will consider only extension criterion C' =
{s? > c}, with ny = ny = 2.

Without loss of generality, the scale parameter A in the gamma distribution IT'(A, k)
may be taken equal to 1. Full derivations are presented for k = 1 (i.e. the exponential
distribution), as well as the main results for £ = 2. Since the latter were obtained quite
similar, we expect that solutions for all integer-valued k& can be obtained.

So, start with n; = 2 independent observations z and z from I'(1,1) = Ne(1);



p = o = 1. The joint density p of (z,z) is given by
plz,z)=e % >0, 2>0

With the transformation
u=(x+2)/2, w=z—2

the density ¢ of (u,w) reads

2u

alu,w) = e, u > [w]/2

The (conditional) densities

1
QI(U) = 4ue—2u7 u > 07 QQ(w|“) = 4_7 |U)| <2u
u

follow immediately.

Denote the sample variance by t, so that
t=(z—2)*/2=uw’/2

and

V2t

P(zgtyu)ZQP(o<w<@yu):2—, 0<t<2u?
u

(2.1)

Differentiation and combination with (2.1) then gives the conditional density go(¢|u) and

related densities:

1
th) = ——, 0 <t < 2u?
1 VA
)= ——eVE 50
92() \/ﬂ

g1(ult) = 2V 0 < t < 27
Direct results are
E(ult) = (14+V2t)/2, E@?|t) = (1 + V2t +1)/2

and, with the notation p = e V2¢(= P(C) for k = 1),

E@C)P(C) = | E@t)g:()dt = (1 + /o2

C

E?|C)P(C) = (3 + 2v/2¢ + ¢)p/2

(2.2)

(2.3)

(2.4)



while E(t|C)P(C) =1+ +v2¢c +c.
Note the consequences of (2.3) and (2.4):

Var(ult) =1/4, Var(u|C) =1/2 = Var(u)

So, surprisingly, the conditional variance of the sample mean u, given (a lower bound ¢
for) the sample variance ¢, is independent of ¢ and c.

Now, we turn to our general notation:
E(y) = B(y,|C)P(C) + E(g,|C)P(C)
B(g,) + 3B, ~5,|0)P(C)
= 1-1(1—-1++/20)p

according to (2.4), so that the bias B(y) equals
B(@) = -2V2c (2.5)

Hence, extension criterion {s7 > ¢} now leads to a (negatively) biased estimator g, with
minimum bias -0.092 (for ¢ = 1/2).
Quite similarly, it follows
B@) = B@E)+ 1B, + 25,52 - 37,|C)P(C)
= 3 —(2+4V2c+3c)p/8

leading to the accuracy measures
Var(y) =4 —pBc+cp+2)/8
and
MSE(y) =3 —p(3c+2)/8 (2.6)

The latter function is increasing in ¢ from 0.25 to 0.5.
Denote the variance of a sample of fixed size E(n) = 2(14p) by Var*(y). Then the
loss of accuracy due to the random sample size equals
MSE(®)/Var(g) — 1 = 2[2 — 3¢ — (2+ 30)p] (2.7)
This function is positive only for ¢ < 0.208; hence, the accuracy of a sample of fixed size
may be improved in this case by applying the two-step procedure.
Since only high values of s? lead to extension of the original sample, it may be

expected that s? is negatively biased. Indeed,

E(s*) = E(s}) + E(s5 — 5;/C)P(C)



and use of (1.2) and (2.4) gives
B(s?) = —%(30 +4v/20) (2.8)

The minimum bias equals -0.351 for ¢ = 8/9.

Finally, with the notation v= s*/n for the variance estimator, it follows likewise

E(v) = B(s1/2)+ E(s3/4 - 53/2|C)P(C)
+ 15 Bls3 + (3, —7,)* - 5s1|C1P(C)

1
2
1 — 2(9¢+ 10v/2c + 6)

The bias of the variance estimator with respect to MSE(¥y) therefore equals

Bl) = 5V (2.9)

The minimum is -0.145 for ¢ = 0.5.
The analysis for £ = 2 is more tedious, but quite similar. Two independent variables

z, z from T'(1,2) have joint distribution

plz,z) =xze ™%, >0, 2> 0
Defining (u,w) as before leads to

q(u,w) = (u? —w?/4)e ", |w| < 2u
and, consequently,

ga(wlu) = §[1 - (52)°], |w] < 2u

Introducing ¢t = w?/2 again gives

1

—)e*\/ﬂ, t>0
V2t

g2(t) = 5(1 +

4u? — 2t V-2
g1(ult) = H0<t<u®
142t V2
Hence, the conditional expectations

2t 2t
E(ﬂyt) = M) t>0

2(1 + v/2t)

E(UQ‘t)_t\/ﬂ+5t+6\@+6 .
- 2(1+v/2t) ’




are obtained, as well as
E(u|C)P(C) = 1(2¢ + 5v2¢ + 8)p

Eu?|C)P(C) = H(ev2e + 8¢ + 14v2c + 20)p

The main formulae for the final estimators are gathered in Table 2.1; to facilitate the

comparison the previous results for £ = 1 are presented as well.

Table 2.1. Theoretical results for gamma distributions (n; = 2)

MSE(G) L-2(Bc+2) 1-2£(3cv2e+4v2c+8)
Bly)  —fvze ~2(2¢ 4 v/2)
B(s?  —E(Bc+4v20) —%(3cv2e+16c+8v20)
Blv)  —fv2 —32(2¢ + /2)

The numerical outcomes were checked by means of simulation; details are explained in
the next section. Appendix A shows that, overall, the agreement between the simulated

and theoretical results is quite good.

Figure 2.1. Theoretical biases for gamma and normal distributions (n; = 2)
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Figure 2.1 shows the biases of s? and v from Table 2.1, plus the comparable results
of M&S for the normal distribution. To achieve a fair comparison, all three distributions
were given variance 1; this implies that the values for £ = 2 had to be halved. Note that

0% and MSE(g) may be underestimated by 35 and 20%, respectively.

3 Extension based on sample variance; general n;

Since theoretical derivations for n; > 2 become very tedious, this section is fully based
upon simulation results. In principle, the same simulation set-up was used in M&S,
which can be summarized as follows. For each value of k € {1,2,3,5,10,20} separately,
a vector V' was drawn consisting of 400,000 random observations from I'(1, k); this vector
was used to obtain results for all n; € {4,9,16,25}. To achieve this, approximately the
first half of V' was split up into (approximately) 200,000/n; initial samples. If a sample
satisfied C' = {s? > c}, then the corresponding second step sample was taken from the
remaining part of V. To be precise: in this way 50,000; 22,000; 12,500 and 8,000 final
samples were obtained respectively for the four chosen values of n;. For any pair (k,n1),
7, s* and v were calculated from each final sample: the simulated values of E(7), Var(7),
E(s*) and E(v) followed directly.

To enable a fair comparison of the results for different values of k£ (and for the normal
distribution), we made the population variance o2 equal to 1 throughout; furthermore,
we wanted to study ¢ € {0.5,1,2}. That implies that we had to transform our gamma
distribution to I'(v/k, k). This was achieved by taking ¢ € {k/2, k, 2k} in our simulation
run, while the final sample mean 7 was divided by vk, and both s? and v by k.

For the final variance estimator v, we think the bias relative to the M\SE of j is a

more interesting quantity; hence we present the simulated values of the relative bias
RB(v) = B(v)/MSE(F) ~ 1

All corresponding values for the standardnormal distribution can be found in M&S;

particularly, their formulae (4.2) and (4.3) give:

2v+2

_br+4 . cgy, (ve)

2v+1 14G,(ve)
Here, v = n; — 1, while g, and G, denote density and distribution function of the
A2-distribution. Since T'(Vk, k) — vk — N(0,1) for k — oo, this is an extra check

RB(v) =




on our results. Figures 3.1-3.3 present the results graphically; the four broken lines in
every box correspond to the nj-values 4 (top) to 25 (bottom). Note that the scale on
the horizontal axes is not equidistant! Appendix B shows the calculated biases, but for

brevity only for ¢ = 1. A discussion of these results is postponed to Section 5.

Figure 3.1. B(y) for distributions I'(V'k, k) and N(0,1)

By
0.08

0.04r

0;

0.08

0.04r

0.04r
0.027




10

Figure 3.2. B(s?) for distributions I'(v/k, k) and N(0,1)
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Figure 3.3. RB(v) for distributions I'(v/k, k) and N(0,1)
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4 Extension based on two sample variances

In this section, two populations are considered, the first having variance k, the second
with variance k/7. Initial size n; samples are drawn independently from both popu-
lations, leading to sample variances s? and 3, respectively. Since the purpose is to
estimate both population means p,; (i = 1,2) with about equal accuracy, the extension

criterion for the first population now is
C = {s > ti}.

If this event occurs, an additional sample of random size
ny — entier{n; (3/82 — 1)

is drawn from population 1. (If C” occurs, the sample from population 2 is extended
analogously; we will however concentrate on population 1.)

The final sample of random size

ny if Cl
n =
N entier(nysi/t3) if C

leads to the estimators y for u, s% for k and v? = s%/n for MSE(y). Again we are
interested in the biases of these standard estimators. For two normal distributions, this
problem was studied in M&S, Section 5; here, we consider the case of two gamma-
distributions: T'(1, k) and I'(1, k/7).

Since theoretical derivations become rather complicated, we restricted ourselves to
simulations. For the same values of £ and n; as in the previous case, final samples
from population 1 were generated, according to the above two-step sampling procedure,
leading to sample sizes 80,000; 40,000; 25,000 and 20,000 for n; = 4, 9, 16 and 25,
respectively. For practical reasons however, an upperbound of 1000 was used for n. This
hardly influenced our outcomes, since the upperbound was very rarely exceeded for the
chosen values of 7 € {0.5,1,2}.

Figures 4.1-4.3 show the simulated biases of ¥ and s? as well as the relative bias
of v. For comparison, under the heading oo the values for two normal distributions,
derived from M&S, are added. The lay-out of the figures in the same as in the previous
section: again, the four broken lines represent the results for ny = 4 (top), 9, 16 and
25 (bottom); note that the horizontal axes are not equidistant. The precise values for

7 =1 are given in Appendix C.



12

Figure 4.1. B(y) for gamma (and normal) distributions
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Figure 4.2. B(s?) for gamma (and normal) distributions

-B(S) 1

03 T T T T T T T T

02 *\\\\\\\,“‘R_“‘\\\\\\\‘__"‘Rh“k“*¥‘;“ﬁ¥“*1 1203
01

0 -

1 2 3 5 10 20 00
03 T T T T T T T
02 =10
o m
0 L | | | \' \; f
1 2 3 5 10 20 oo
03 T T T T T T T T

1=2.0
0.2 .\'\.\1—0‘.\1




13

Figure 4.3. RB(v) for gamma (and normal) distributions
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5 Discussion

Stochastic sample sizes are a recurring phenomenon in statistical practice. The relevant
literature generally clearly indicates the disadvantages, as the following two quotations
from SARNDAL et al. (1992) illustrate:

‘BE (Bernoulli) sampling is often considerably less precise that simple random
sampling (...) explained by the variablility of the size of the BE sample’  (p.55),
‘(...) there is a nonnegligible loss of precision caused by the lack of control of

domain sample size’ (p. 397)

Sometimes however, no mention is made of the ensuing problems; e.g. KISH (1965, p.
52) advises:

‘First, collect a basic sample of reasonable minimum size that might meet the
demands. Then compute the results and, if the demands are not met, collect a
supplementary sample of desired size. This procedure can be used to obtain

either a desired variance or sample size’



14

An early discussion of specific double sampling procedures was given by STEIN (1945).
He described how to obtain a confidence interval of fixed width and confidence level for
a normal mean. COX (1952) presented large sample results for general distributions.

To make practitioners aware (once more) of the consequences of stochastic (final)
sample sizes, we considered two specific sample extension situations in detail: a one
sample case with a fixed second step sample size, and a two sample situation leading to
an additional sample of stochastic size. In our previous paper M&S, normal distributions
were assumed, for which exact theoretical results could be derived. Since two-step
procedures are applied as well in case of unknown population distributions, we felt the
need to investigate other distributions too. We chose gamma distributions, allowing
theoretical derivations for n; = 2, at least for the one sample case.

These theoretical results were presented in Section 2. Among them was the curious
feature that accuracy may be improved by using the two-step procedure. Note that
this phenomenon was found as well in M&S: the accuracy ‘loss’ in Figure 3.2 can take
negative values. The simulation results for general n; in Section 3 show that for gamma
distributions I'(v/k, k) the final sample mean ¥ is no longer unbiased; biases decrease

2 is more slowly decreasing in

with increasing k. The bias of the final sample variances s
k, while the bias of the estimate v for MSE () is even less dependent of k. As was to
be expected, all biases are decreasing in n;.

For the two sample problem in Section 4 only simulation results were obtained,
summarized in Figures 4.1-4.3. The behaviour of the biases here is similar to that of
the previous case. Throughout, the results are in accordance with the outcomes for the
normal distribution in M&S.

The main numerical conclusion is that for both extension procedures considered
here, the relative bias of the estimator v for the accuracy of the final estimator y ranges
from about 10% (n; = 25) up to 30% (n; = 4). The accuracy of both methods therefore
is seriously overestimated by the usual techniques. In a testing situation this may easily

lead to incorrect conclusions.
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Appendix A

For n; = 2, the simulations described at the beginning of Section 3 were carried out
with N = 150, 000; besides, they were repeated once, with different seeds. The two sets
of simulated values of £(y), E(s,) and E(v) are presented in Tables A1-A3, respectively.

The theoretical values are given as well.

Table Al. Simulated and theoretical values of E(%)

E=1 k=2
c/k  true simulated true simulated
1/2 0.9080 0.9082 0.9080 1.8962 1.8970 1.8981
1 09140 0.9140 0.9139 1.8985 1.8991 1.8985
2 09323 0.9305 0.9323 1.9200 1.9207 1.9215

Table A2. Simulated and theoretical values of F(s?)

k=1 k=2
c/k  true simulated true simulated
1/2 0.6628 0.6585 0.6631 1.3607 1.3568 1.3486
1 0.6492 0.6445 0.6517 1.3233 1.3187 1.3154
2 0.6842 0.6757 0.6873 1.4061 1.4028 1.4005

Table A3. Simulated and theoretical values of E(v)

k=1 k=2
c/k  true simulated true simulated
1/2 0.1858 0.1846 0.1859 0.3822 0.3814 0.3790
1 0.2048 0.2036 0.2054 0.4248 0.4241 0.4225
2 0.2519 0.2494 0.2526 0.5366 0.5372 0.5352
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Appendix B

The more extensive simulations for n; > 2 and general k are reported here, but only for
¢/k = 1. The resulting simulated values of (minus) the biases of 7 and s* and (minus)
the relative bias of v = s? /n are presented in the Tables B1-B3. The last columns

contain the exact values for the standard normal distribution.

Table B1. Values of —B(y): simulated from I'(vk, k) and exact for N(0, 1)

k 1 2 3 5) 10 20 00

n

0.0719 0.0614 0.0531 0.0436 0.0304 0.0222
0.0501 0.0428 0.0363 0.0301 0.0202 0.0155
16 0.0381 0.0317 0.0277 0.0220 0.0149 0.0115
25 0.0298 0.0257 0.0201 0.0177 0.0113 0.0088

o O O O

Table B2. Values of —B(s?): simulated from I'(v/k, k) and exact for N (0, 1)

k 1 2 3 ) 10 20 o0

ny

0.2398 0.2127 0.2060 0.1891 0.1808 0.1742 0.1762
0.1698 0.1434 0.1353 0.1169 0.1065 0.1038 0.1034
16 0.1343 0.1110 0.1047 0.0848 0.0765 0.0738 0.0744
25 0.1096 0.0911 0.0832 0.0671 0.0589 0.0580 0.0584

Table B3. Values of —RB(v): simulated from T'(vk, k) and exact for N(0,1)

k 1 2 3 5) 10 20 00

ny

0.2171 0.2426 0.2594 0.2805 0.3012 0.2952 0.3013
0.1329 0.1490 0.1583 0.1704 0.1850 0.1914 0.1907
16 0.1026 0.1169 0.1259 0.1386 0.1444 0.1532 0.1410
25 0.0821 0.0897 0.0894 0.1257 0.1198 0.1316 0.1123
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Appendix C

For the extension problem based on two independent sample variances only simulation
results are available. They are reported here for the case 7 = 1 (equal population

variances). The Tables C1-C3 have exactly the same lay-out as those in Appendix B.

Table C1. Values of —B(y): simulated from I'(VEk, k)

k 1 2 3 5) 10 20 00

n

0.0863 0.0670 0.0581 0.0469 0.0333 0.0209
0.0498 0.0383 0.0330 0.0248 0.0171 0.0132
16 0.0342 0.0245 0.0191 0.0137 0.0112 0.0068
25 0.0208 0.0163 0.0105 0.0110 0.0046 0.0043

o O O O

Table C2. Values of —B(s?): simulated from I'(v/k, k) and N(0,1)

k 1 2 3 5) 10 20 00

ny

0.2784 0.2268 0.2092 0.1967 0.1789 0.1646 0.1602
0.1807 0.1356 0.1240 0.1089 0.0912 0.0849 0.0793
16 0.1278 0.0924 0.0751 0.0638 0.0562 0.0477 0.0465
25 0.0917 0.0646 0.0508 0.0489 0.0358 0.0338 0.0311

Table C3. Values of —RB(v): simulated from I'(v/k, k) and N(0,1)

k 1 2 3 ) 10 20 o0

ny

0.2757 0.2618 0.2572 0.2807 0.2570 0.2467 0.2566
0.1376 0.1416 0.1507 0.1370 0.1370 0.1355 0.1331
16 0.0984 0.1062 0.0874 0.0940 0.0940 0.0774 0.0725
25 0.0521 0.0591 0.0615 0.0814 0.0596 0.0740 0.0573




