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Abstract

This paper derives the asymptotic covariance matrix of estimated
mean-variance efficient portfolio weights, both for gross returns (without
a riskiree asset available) and for excess returns (in excess of the riskfree
rate). When returns are assumed to be normally distributed, we obtain
simple formulas for the covariance matrices. The results show that the
estimation error increases as the risk aversion underlying the portfolio de-
creases and as the (asymptotic) slope or Sharpe ratio of the mean-variance
frontier increases. For the tangency portfolio there is an additional esti-
mation risk because the location of the tangency portfolio is not known
beforehand. The empirical analysis of efficient portfolios based on the
G7 countries indicates that the estimation error can be big in practice.
It also shows that the standard errors that assume normality are usually
very close to the standard errors that do not assume normality in returns,
except for portfolios close to the Global Minimum Variance portfolio.
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1 Introduction

Mean-variance efficient (MVE) portfolios play an important role for both finance
practitioners and academics. A well-known problem in mean-variance analysis
is that the necessary parameters have to be estimated from the data, inducing
sampling noise in the MVE portfolio weights. Huberman & Kandel (1987), Job-
son & Korkie (1989), Gibbons, Ross & Shanken (1989) and Britten-Jones (1999)
have shown how regression analysis can be used to make statistical inferences
about the efficiency of certain portfolios. In particular, Britten-Jones (1999) has
shown how an OLS regression that uses a constant as the dependent variable
and excess returns as the independent variables, yields the efficient portfolio
weights and can be used as a basis for statistical tests regarding these portfolio
weights.

This paper uses a more direct approach to analyze the estimation error in
MVE portfolio weights. We start from the distribution of the parameters that
underlie the efficient portfolio weights: the means and covariances of the asset
returns. The derivatives of the efficient portfolio weights with respect to the
asset returns’ means and covariances enable us to derive the limit distribution
of the efficient portfolio weights. If we assume that returns are normally dis-
tributed, we obtain simple formulas for the covariance matrix of the estimated
efficient portfolio weights.

For gross returns, with no riskfree asset available, the covariance matrix
of the estimated efficient portfolio weights depends in a straightforward way
on the covariance matrix of the asset returns, the efficient set constants, and
the risk aversion that underlies the portfolio choice. We also show that the
Global Minimum Variance (GMYV) portfolio plays a special role in the covariance
matrix of the efficient portfolio weights. From the results it follows that the
estimation error increases as the risk aversion decreases and as the asymptotic
slope of the MVE frontier increases. Our empirical analysis of portfolios based
on the G7 countries illustrates that the estimation error is indeed very big for
portfolios associated with low risk aversions, making the estimated portfolio
weights imprecise. For instance when the risk aversion is 5, the standard errors
for the G7 country weights are about 0.25, whereas for the GMV portfolio they
are only about 0.05. We also find that for a risk aversion of 5, more than 80
percent of the estimation error is due to estimation error in the means rather
than in the covariances.

For excess returns, the covariance matrix of the efficient portfolio weights
turns out to be a straightforward function of the covariance matrix of the asset
returns, the risk aversion underlying the portfolio, and the squared Sharpe ratio
of the portfolio. When the risk aversion is specified beforehand, the standard
errors we find coincide with the ones suggested by Britten-Jones. Focussing on
the tangency portfolio, without specifying the agent’s risk aversion beforehand,
there is an additional estimation error. This estimation error results from the
fact that the risk aversion associated with the tangency portfolio is not known
beforehand, but has to be estimated as well. Again, our empirical analysis for
the G7 countries shows that the estimation error in the efficient portfolio weights



can be big. For the tangency portfolio of the G7 countries, the standard errors
are between 0.22 and 0.44.

The framework outlined in the paper also applies when returns are not nor-
mally distributed. However, in that case, no simple formulas for the covariance
matrix of the portfolio weights are obtained. The empirical analysis suggests
that the difference in estimation error when assuming normality or not are very
big in most cases, except for portfolios close to the GMV portfolio.

The plan of this paper is as follows. Section 2 gives an outline of the approach
used in the paper. Section 3 derives the covariance matrix for portfolios based
on gross returns, i.e., when there is not a riskfree asset available. Here we
also illustrate the standard errors associated with portfolios based on the G7
countries for various levels of risk aversion. Section 4 derives the covariance
matrix for portfolios based on excess returns (in excess of the riskfree rate). Here
we distinguish between the case where the risk aversion is known and the case
of the tangency portfolio, where the implied risk aversion has to be estimated.
Finally, Section 5 provides a summary and some concluding remarks.

2 The limiting distribution of MVE portfolio
weights: outline

In this section we sketch the general approach to derive the limiting distribution
of Mean-Variance Efficient (MVE) portfolio weights. We first consider the case
where the investor can invest in K risky assets only, without a riskfree asset
available. The gross returns on the assets are given by the K-dimensional vector
Ry, with R;y = (P4 + D; s — Piy—1) /P;+—1. The vector of expected returns is
denoted by F [R;] = u and the K x K covariance matrix of the returns is denoted
by Var[R;] = ¥. An investor with a mean-variance utility function and risk
aversion parameter y will choose his portfolio by solving the problem

1
mue)xxw’u - §7w’2w, (1)
st.w'e = 1,

where ¢ is K-vector containing only ones. The resulting optimal portfolio is
given by
wo =787 (-, (2)

where 7 is the zero-beta rate associated with the portfolio wy. The zero-beta
rate 7 is also the Lagrange multiplier for the portfolio constraint w’c = 1, i.e.,
the portfolio weights have to sum to one.

In characterizing mean-variance efficient portfolios that satisfy (2) it is useful
to define the efficient set constants:

A = /Y7l (3a)
B = /Yy, (3b)
C = Wi lu (3c)



Using these constants it is straightforward for instance to show that the zero-
beta rate 1 can be written as a function of v: n = (B —v)/A.!

In practice we do not know the actual expected returns and covariances, but
we have to estimate them from the data. In general, if returns are independently
and identically distributed with means and covariances given by p and X, and
assuming the relevant moments exist, then we have for the limiting distribution
of the estimated means i and covariances X:

(s )5 ((0)(2 22 ) o

where the vec operator stacks the columns of a K x K matrix into a K? x 1
vector. Here @, is the K x K covariance matrix of the estimated mean returns
7, Pxyx is a a K2 x K? matrix, containing the (co)variances of the elements of
i, and @5 is a K x K2 matrix containing the covariances between the elements
of i and . For instance, if o;; is the ij-th element of ¥, then the covariance
between 7;; and 7y is

Cov[0ij,01) = FElepcjcricn] —0ijon, (5)
gt = Rt — M.

This covariance would then be the element on the (i x K + j)-th row and the
(k x K +1)-th column of ®yy. Similarly, the covariance between o;; and fi, is

Cov iy, 0] = E [eigjickt] — ijug,

which would be the element on the k-th row and the (i x K + j)-th column
of ®,5. The covariance matrix ®,,, is simply the covariance matrix X of the
returns themselves.

The procedure that we will follow in this paper is in itself straightforward.
From the central limit theorem it follows that we can derive the limiting distri-
bution of the estimated portfolio weights @, using (4) and the derivatives of wq
with respect to g and . Thus, for different portfolios, we will derive the vectors
of derivatives dw /0y’ and dw/Ovec (L)', where the derivatives are evaluated in
the optimal portfolio weights. The limit distribution of the estimated portfolio
weights @ then follows from combining these derivatives with (4):

VT (@ —wo) ~ N (0,) 62)

Qu = (Ow/op) @, (Qw/OW) + (dw/dvec (L)) Pss (Ow/dvec (2)')(6b)
+2(w/Op) @5 (w/Bvee (B)'). (6¢)

(
(

The important step in deriving the limiting distribution of w is therefore to
obtain the various derivatives dw /0y’ and dw/dvec (), which together with
the estimated covariance matrix ® will give the asymptotic distribution of the

I This follows from premultiplying (2) with ¢/ and noting that ¢/wg = 1.



efficient portfolio weights. As we will illustrate in Section 4, the same procedure
can be applied in case there is a riskfree asset, except that in that case we will
focus on the distribution of excess returns rather than gross returns.

If, as a special case, we assume that returns are normally distributed, it
turns out that we can obtain simple expressions for the covariance matrix of the
efficient portfolio weights. When returns are normally distributed,

RN (1, %), (7)

the limit distribution of the estimated means and covariances 1 and 5 simplifies
a great deal and is given by (see, e.g., Hamilton (1994)):

ﬁ(vecﬁ(iuz)>“§y]v<<8)7<§ 2;2». (8)

Because the covariance matrix of vec (i) now depends on X itself, the covari-

ance matrix of @w can usually be expressed in simple terms. The covariance
matrix of @ now follows from

VT (@ —wo) ™ N (0, ), (9)
Qu = (0w/oy) = (0w/ou') + (dw/dvec (E)')I (Z® %) (Ow/dvec (£)')ab)

3 MVE portfolios without a riskfree asset

In case we construct MVE portfolios without a riskfree asset, it turns out that
the Global Minimum Variance (GMV) portfolio plays a special role. When
considering estimation errors, the GMV portfolio is an interesting portfolio in
itself, since it only depends on the covariances of asset returns and not on their
expected returns. Thus, the estimation error in the GMV portfolio is caused
by uncertainty in covariances only and not by uncertainty in mean returns.
Therefore, we will first focus on the estimation error in the GMV portfolio
before turning to the estimation error in efficient portfolios in general.

3.1 The estimation error in the GMYV portfolio

The GMV portfolio only aims to minimize portfolio variance and results as a
limiting case from (2) when v — co. The GMV portfolio is given by
1 o1 1

L= —=%"1 (10)

W, = ——
ST St ) A

Since this portfolio only depends on the covariance matrix > and not on the
expected returns y, we only have to take into account the derivatives of wy with
respect to the elements of ¥. Using the results in Magnus & Neudecker (1988)



e.g., we find in Appendix A for the derivatives of the elements of w, with respect
to the elements of >:
Owy 1

W :Z{(L/(X)I)*wg (L/®L/)} (271@)271). (11)

In the general case, substituting these derivatives in (6), the limit distribution
of Wy is given by

VI (i, —wy) N (0.9). (120)
. Owy Owy '

When normality is assumed, the resulting expression for the covariance ma-
trix Qg gives more insights. Substituting (11) in (9), we obtain for the limit
distribution of w:

asy
VT (@g —wy) ™~ N (0,9), (13a)
with Q, = % (=7! = Awgwy) . (13b)

The details of this derivation are given in Appendix A. Equation (13b) presents
the first main result of the paper. The covariance matrix 2, gives a simple
expression for the covariance matrix of the GMV portfolio that only depends
on the covariance matrix of the returns X, the efficient set constant A and the
GMV portfolio wy itself. Notice that 1/A is equal to the variance of the GMV
portfolio returns.

Using the limit distribution of @, either from (12) or from (13) it is then
straightforward to construct confidence bounds for the portfolio weights in wy.
Knowing the limiting distribution of @, we can perform all kinds of hypothesis
tests on the estimated portfolio weights. The only caveat in performing hypoth-
esis tests is that the matrix €24 is not of full rank, because of the restriction that
w'gL = 1. This means that the rank of 2, is actually only K — 1. If we want to
test hypotheses of the form Quw, = g, where ) is an N x K restriction matrix
and ¢ is an N X 1 vector, we can have at most N = K — 1 restrictions.

3.2 The estimation error in efficient portfolios

Having established the limit distribution of the GMV portfolio, we next move on
to the limit distribution of estimated efficient portfolios @ in general. Starting
from (2) it follows that we have to take into account the sampling error in
both i and s Taking the risk aversion of the investor, v, as given, we can in
addition use the result n = (B — «)/A. Therefore, the portfolio weights are a
function of v, u, and ¥ only, and each MVE portfolio is uniquely defined by
~. Following the procedure outlined above, we first find the derivatives of the



efficient portfolio weights wy with respect to the elements of both p and 3. It
is shown in Appendix B that these derivatives are given by

aat? =7 I —wgt) 27 (14)
and
gt = {7 e D —wy W e )= (7 F - 5 ) (We D—wy (e ) (5 o=,

(15)
These derivatives can be substituted in (6) to obtain, with the estimate of ®,
the limit distribution of .
Again, as with the Global Minimum Variance portfolio, more intuitive re-
sults can be obtained when it is assumed that returns are normally distributed.
Combining (14) and (15) with (9), we get for the limit distribution of @:?

VT (@ —wo) =~ N (0,Q4) (16a)
with Q, = {% +7 72 (1+ (AC - B?) /A)} (57! — Awguwy)  (16b)

Equation (16b) presents the second main result of the paper. Notice that the
covariance matrix {2, can also be written as

Q= {14+~ (A+ (AC - B?))} Q.

This formula highlights the special role of the GMV portfolio. Since the risk
aversion v, A, and AC — B? are all positive numbers, it follows that the estima-
tion error in individual portfolio weights is smallest for the GMV portfolio and
increases as the risk aversion underlying the chosen portfolio decreases. This is
natural since the effect of expected returns on the estimated portfolios increases
as the risk aversion decreases and the estimation error in means is known to
be more important than the estimation error in covariances (see, e.g., DeRoon,
TerHorst, & Werker (2003)).

It is also important to note that /(AC — B2) /A is the slope of the as-
ymptote of the Mean-Variance Frontier (in mean-standard deviation space), or
the asymptotic Sharpe ratio (defining excess returns as returns in excess of the
zero-beta rate). Therefore, as the frontier is steeper, the estimation error for
portfolios associated with lower risk aversions is bigger.

Equation (16b) is an easy to implement formula to derive the covariance
matrix of estimated efficient portfolio weights, and therefore of the standard
errors of the estimated portfolio weights, provided that returns are normally
distributed.

2Details are given in Appendix B



3.3 Empirical application: Estimation error in interna-
tional portfolios

To illustrate the estimation error of portfolios at different points of the Mean-
Variance Frontier, we will construct portfolios from the MSCI indices of the
G7 countries. We use monthly returns for the total return indices (including
dividends) for the period January 1975 until December 2000. Table 1 presents
the summary statistics for these returns, as well as the efficient set constants A,
B, and C. Means and standard deviations are reported both for gross returns
and for returns in excess of the 1-month Eurodollar rate. Similarly, for the
correlations reported in Table 1, the correlations above the diagonal are for
gross returns whereas below the diagonal they are for excess returns. Notice that
excess returns are slightly more risky than gross returns. The excess returns
will be the focus of Section 4.

Table 2 presents the estimated efficient portfolio weights along with the
asymptotic standard errors for various levels of the risk aversion parameter
~. The most left column of Table 2 shows the GMV portfolio weights. The
next two columns show the asymptotic standard errors, either without or with
assuming normally distributed returns. The GMV has the largest weight in
the US market, which is also the market with the lowest standard deviation.
Except for Germany and Japan all other positions are smaller than 10 percent in
absolute value, with small short positions in France and the UK. The standard
errors for these weights are all around five percent, implying that the GMV
weights are estimated fairly precisely. These standard errors also mean that the
weights for Germany, Italy, Japan and the US are significantly different from
zero, whereas for the other three markets they are less than 1.5 standard errors
away from zero. These conclusions hold when the standard errors are calculated
assuming normally distributed returns as well as when this is assumption is
not made. As the two columns show, the two standard errors are similar in
magnitude, although the differences can be as big as 20 percent (for Canada)
or even 40 percent (for the UK) of the reported standard errors.

Looking at the other columns in Table 2, portfolio weights and associated
standard errors for lower risk aversions are reported. Thus, as we move to
the right, the importance of expected returns increases. The table shows that
for lower risk aversions, the estimated portfolio weights become very imprecise.
When the risk aversion = is 10, the standard errors are about three times the
ones of the GMV portfolio. In this case only the weight for the US (74 percent)
is significantly different from zero. When the risk aversion decreases to 5, the
standard errors are in the order of magnitude of 25 percent.

When the risk aversion decreases, the difference between the two standard
errors, with or without assuming normality of returns, also decreases as the
table illustrates. Except for the UK the differences between the two standard
errors are now less than five percent and usually less than one percentage point.
The fact that the difference in standard errors is smaller for lower risk aver-
sions follows from the fact that non-normalities only show up in the asymptotic
covariance matrix of the elements of ¥ and not of fi. Therefore, the biggest



differences occur in the GMV portfolio and the differences decrease as the risk
aversion -y decreases.

Thus, Table 2 illustrates the familiar effect that estimation error in the means
is very big and therefore that estimated portfolio weights, especially for low risk
aversions, can be very imprecise. To see the effect that estimation error in the
means has relative to the total estimation error reported in Table 2, Table 3
reports the standard errors of the efficient portfolio weights assuming there is
no uncertainty in the estimated covariances, i.e., assuming that ¥ = ¥. In terms
of the limit distribution in (4) this implies that ®,5; and ®yyx are equal to zero.

Since the GMV portfolio is not affected by estimation error in mean returns
by construction, Table 3 only considers the two portfolios based on risk aversions
7 of 5 and 10. For both risk aversion the table shows the standard errors of the
portfolio weights neglecting uncertainty in 3 as well as the percentage of the
variance of the portfolio weights that is caused by estimation error in the means
only.? Table 3 clearly illustrates the importance of estimation error in the means
relative to estimation error in the variances. Except for the UK weights, in all
cases at least 70 percent of the total estimation error is due to the estimation
error in the means. For the lowest risk aversion, v = 5, this is even more than
80 percent and usually around 90 percent.

Notice from Table 2 that the portfolios considered here do not contain very
extreme positions, except for the short position in Canada. Also, the expected
portfolio returns and risks are not very different for the three portfolios. Even
for these fairly realistic portfolios we find that estimation error in the portfolio
weights rapidly increases as we move away from the GMV portfolio and that
this is largely due to the estimation error in the mean returns.

4 MVE portfolios with a riskfree asset: excess
returns

In case we construct an efficient portfolio including a riskfree asset, the analysis
simplifies since we can work with returns in excess of the riskfree rate, Ry 1,
and thereby substitute out the portfolio constraint. Defining excess returns as
rit = R; 1 — Ry —1, we denote the K-dimensional excess return vector as ry, the
vector of expected excess returns as p, and the covariance matrix of the excess
returns as Y,,.. Solving the problem in (1) in terms of excess returns, without
the portfolio constraint, the optimal portfolio for the K risky assets equals

wy =18, (17)

In order to derive the limit distribution of the estimated portfolio weights .,
we now assume that excess returns are distributed with mean p,. and covariance
matrix X,... With abuse of notation, it follows that we can use (4) and (8) again,
replacing ¢ with p,. and 3 with 3.,

3This percentage is the squared standard error in Table 3 divided by the squared standard
error in Table 2.



4.1 The estimation error in case of excess returns
The derivatives of w, with respect to the elements of 4, and 3,, are given by

gwr
ou!

T

= 7712;"17 (18)

and
ow,
dvec (2,,)"

It is straightforward to combine these derivatives with the distribution of fi, and

=y (oI (5, ©5,}). (19)

vec (ir,») to obtain the limit distribution of @,. Assuming normally distributed

returns, we obtain (see Appendix C):

asy
VT (@, —w,) ~ N(0,9,), (20a)
with Q. = 2 (1+p3 ) S50 (20b)

Focusing on the asymptotic covariance matrix of w,, {2, we see that this has a
simple structure. The covariance matrix 2, of the estimated portfolio weights
is now proportional to the inverse of the covariance matrix of the excess returns,
¥,-. The proportionality is a function of y~2 as it was with the gross returns
in Section 2, and of the term y/. %1, which is the squared Sharpe ratio of the
efficient portfolio. Since the squared Sharpe ratio is always positive, we have
again that the estimation error in portfolio weights increases as the risk aversion
decreases. The asymptotic covariance matrix €2, is similar to the one for gross
returns, ), in (16b), except that the GMV portfolio does not play any role
now. This is natural, because in case of excess returns the GMV portfolio is
the riskfree asset with no variance. Notice that since we work in excess returns
now, without the portfolio constraint that w/.c = 1, Q, is of full rank, and the
caveat that we encountered with the gross returns in Section 3 does not apply
here.

A special case arises for the portfolio of excess returns for which w.. = 1,
since this is the tangency portfolio w,. When focusing on the tangency portfolio,
we do not specify the risk aversion beforehand, but choose it in such a way that
the portfolio weights sum to one. Thus,

1 = Jw, =y,
-1
& v, =080
The fact that we focus on the tangency portfolio implies that v, has to be
estimated as well, inducing additional estimation risk. Therefore, in deriving
the limit distribution of w,, we also have to take into account the estimation

error in .. Allowing for this additional estimation error, the derivatives of w.
with respect to the elements of u, and X, are:

ow;
Oy

=7 I —w Y B (21)
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and
ow;

dvec (L)

Assuming normally distributed returns again, these derivatives combined with

=7 (@) —w- (@)} (E @35 (22)

the distribution of fi, and vec (fJTT> imply for the limit distribution of w:

asy
VT (6, —w,) ~ N(0,9,), (23a)
with Q, = 772 (1+ .S ) (I —w) S (I —wl).  (23b)

The covariance matrix of w, is very similar to the covariance matrix of w,.,
except for the premultiplication and postmultiplication of X! by (I — ).
The multiplication with (I — ww’) reflects the additional estimation error that
results from the fact that the location of the tangency portfolio, 7., has to be
estimated as well. Notice that because (23) is derived with the constraint that
W)t =1, the rank of the covariance matrix Q. is only K — 1.

4.2 Estimation error in international portfolios: excess re-
turns

The estimation error in case of excess returns is illustrated for the G7 countries
in Table 4. The first three columns show the estimated portfolio weights and
the associated standard errors (without and with assuming normality) for a risk
aversion 7 of 10 whereas the last three columns show the same results for a risk
aversion of 5.

Comparing the standard errors for the two levels of risk aversion in Table
4, we see - as follows from (20b) - that the standard errors for v = 5 are twice
the standard errors for v = 10. Thus, independent of the level of risk aversion,
the ratio of the estimated portfolio weights to the standard errors is constant.
This is consistent with the standard errors suggested by Britten-Jones (1999),
which are based on the ratio of the estimated portfolio weight and the ¢-value
of the Britten-Jones regression of 1 on the excess returns. As in Table 2, we
see in Table 4 that the standard errors assuming normality are usually close
to the standard errors without assuming normality. However, for the UK the
difference is sizable again, about 20 percent of the reported standard errors.

The first column of Table 5 shows the estimated tangency portfolio for the
G7 countries. When the risk aversion is 4.02, the portfolio weights sum exactly
to one, implying that an agent with a risk aversion of 4.02 invests 100 percent
of his wealth in risky assets (i.e., the G7 countries) and nothing in the riskfree
asset. The next columns show the standard errors o, that takes the risk aversion
v = 4.02 as a given. In case we assume normally distributed returns, the
standard errors as reported in the third column of Table 5 coincide with the
standard errors suggested by Britten-Jones (1999). The last two columns report
the standard errors o, that take into account that the risk aversion v = 4.02 has
to be estimated, i.e., adjusted for the constraint that for the tangency portfolio
the weights have to sum to one. Although the standard errors o, and o, are

11



comparable, the estimates show that in three out of seven countries (Canada,
UK and US) the differences between o, and o, are about 10 percent. This
illustrates that it is important to take the portfolio constraint for the tangency
portfolio into account. The fact that we do no not know the location of the
tangency portfolio, i.e., we do not know which risk aversion is associated with
it, induces additional estimation error which is nontrivial.

The standard errors for the tangency weights are big. It is only for Italy and
Japan that they are smaller than 0.25, but there the estimated weights are close
to zero. For Canada and the UK the estimated weights are about one standard
error away from zero and it is only for the US that the estimated weight is
significantly different from zero. This is due to the large estimated weight for
the US, since the US also has the biggest standard error (0.44).

5 Summary and conclusions

This paper shows how to derive the asymptotic covariance matrix of estimated
MVE portfolio weights for various cases. First, assuming normality, we obtain
simple expressions for the covariance matrix in case there is no riskfree asset
(gross returns) and in case there is a risk free asset available (excess returns).
For the case of gross returns, we start out with the GMV portfolio, where the
asymptotic covariance matrix of the GMV portfolio weights depends on the
variance of this portfolio, the covariance matrix of the asset returns and the
GMYV portfolio itself. For MVE portfolios associated with lower risk aversions,
the asymptotic covariance matrix of the portfolio weights is proportional to the
covariance matrix of the GMV portfolio, where the constant of proportionality is
always bigger than one and is a function of the risk aversion and the asymptotic
slope of the MVE Frontier. Therefore, the estimation error is smallest for the
GMYV portfolio. We illustrate this for the G7 countries, where the standard
errors for the weights in the GMV portfolio are about 5 percent, increasing to
about 25 percent for a MVE portfolio based on a risk aversion of 5.

For excess returns, we find that the covariance matrix of the efficient portfolio
weights also depends on the covariance matrix of the excess returns, the risk
aversion and the Sharpe ratio of the tangency portfolio (i.e., the slope of the
frontier). For the tangency portfolio we show that there is additional estimation
error because of the fact that the location of the tangency portfolio (i.e., the
risk aversion that makes sure that the weights sum to one) has to be estimated.
For the G7 countries, the standard errors of the tangency portfolio weights are
found to be between 0.22 and 0.44.

The empirical illustration shows that relaxing the normality assumption usu-
ally yields similar standard errors as in the case normality is assumed, except
for portfolios close to the GMV portfolio. However, in specific cases the differ-
ences between the standard errors with or without assuming normalities can be
sizable, even for portfolios based on low risk aversions.

12



A The covariance matrix of the GMYV portfolio
weights

To find the asymptotic covariance matrix for the GMV portfolio, start from (10)
and the derivatives of A and ¥ ', with respect to the elements of 3, which are:

0A _ _
Goec(my — ¢ (T eET
and o
rec(my ~ODET ST

Using these, we can apply the rules of differentiation to obtain the derivatives
of wy with respect to the elements of X:

Owg

dvec () (Ven(Eten)- s u@ el (tex)

A2

= % (Vo) —w,(Ve)} (E es™).

BN

When returns are normally distributed, applying these to the covariance matrix
of vec (E) = (X ® X) gives us:

ow ow'
2 = w7 (Ze¥) Ovec E]E)

= (/) -—w, (V@) (ETeE)EeD)(E' e ) (ko) - (te)w

which is the first result in the paper.

B The covariance matrix of MVE portfolio weights:

gross returns

This appendix shows the necessary steps to derive (16). We start from (2),
substituting n = (B — v)/A:

wo = ST (w—m)
B—
_ 7—12—1M_7—1TVE—1L

= ity — 'y_leg + wy.

13
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In order to derive the derivatives in (14) and (??) we first have to find these
derivatives for the various elements of wg:

3’)/;5/1M — el
—agvf(z;“ — ylWen(Elest).
and for B:
g—f, = /Y
—81)2:]?2), = (We/)(Eex™).

The derivatives of w, with respect to vec(X) are given in Section 2.1. Combining
these subresults with the rules of differentiation then yields the derivatives in
(14) and (15). If we assume normally distributed returns, combining these
derivatives with (9) in turn gives us for the first part of €,:

Jw o' _
o Ou

Y2 —wet ) STIES T (I — )
= 772 (Z7! = Awguy) ,

and for the second part:

#UEE)' (x'ex) %
- e n-v e - (£-5)@en-u@ s}

(e s - e sty u) - (£ - 1) (o) - e s ) )
= o (B ) (- Al + (57 - Awgu).

Combined, these two parts give the expression for the covariance matrix €2, in
(16b).

C The covariance matrix of MVE portfolio weights:
excess returns

In case of excess returns, the relevant derivatives are obtained as:

dwy —1y—1
= by
a//’/; 7 rro?
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and

ow,
dvec (2,,)

In case of normally distributed returns, it is straightforward to combine these
with (6) and obtain €,

=7 el (o8 ).

Q= (0w, /0u) T (Qw, /OpL) + (Qw, /Ovec (E4r)) (e @ Bp) (O, /Ovec (EM)’)/
= 7SR (e D) (B 9 ) (B 0 2n) (B 0 ) (8, © 1)
= 28y (S e @50 =2 (L4 S ) S5

For the tangency portfolio, we know that w/. = 1, and therefore, v, =
Y7y, Therefore, we have to apply the rules of differentiation and also take
derivatives of v, with respect to u, and X,,.. First,

0
JT — LIE;Tl-
"
Similarly,
_ 0w
dvec (2,,)

Using these additional results we get for the derivative of the tangency portfolio
with respect to p, and X,

() (S, 0.

ow;
o,

_a—lg-1 -1, y—1
=7 X — Y, Wrl X

giving for the first part of ,:

(120 = B0 B (1 — e )
= 772 —wd) B = ).

Next, we have:

ow _ B )
dvec(z)y T @ 1) —wr (. @)} (5 @551,

giving for the second part of €2, :

(vt (@ 1) =7 e (@) (B @ 550 (vt (e @ 1) = 37 (i @ 1) wir)
= () (=) SR - ).

Combining the two parts, we obtain for €2.:

Q=72 (14 w25 ) (I —wed) S (1 — k).
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Table 1: Summary statistics

The table presents summary statistics for both gross returns and excess returns on the
MSCI indices for the G7 countries. All returns are monthly US Dollar-based returns.
The first two rows present the monthly means and standard deviations in percentages
for gross returns. The next two rows show similar statistics for the excess returns.
The correlation matrix shows the correlations between the gross returns in the upper
right part, whereas it shows the correlations between the excess returns in the lower
left part. Finally, the bottom row presents the efficient set constants. The sample
period is January 1975 until December 2000.

Can Fra Ger Ita Jap UK US

Mean (gross) 1.10 1.46 1.25 1.18 1.18 1.64 1.32
Stdev (gross) 563 6.66 594 T7.64 6.70 6.85 4.32
Mean (excess) 045 0.81 060 054 053 099 0.67
Stdev (excess) 565 6.69 597 7.65 6.71 686 4.34
Correlations (excess \ gross)

Can 0.443 0.336 0.302 0.301 0.494 0.702
Fra 0.447 0.615 0.463 0.410 0.542 0.456
Ger 0.341 0.617 0.396 0.345 0.446 0.389
Ita 0.304 0.464 0.398 0.361 0.349 0.249
Jap 0.303 0.413 0.348 0.362 0.366  0.295
UK 0.496 0.544 0.449 0.350 0.368 0.502
US 0.704 0.460 0.395 0.251 0.299 0.504

Efficient Set Constants: A: 666.8 B: 8.40 C: 0.116

17



Table 2: Standard errors for portfolio weights without a riskfree asset
The table shows the MVE portfolio weights and the associated standard errors (in
brackets) for the GMV portfolios and for portfolios based on risk aversions 5 and 10.
Standard errors in square brackets assume normally distributed returns. The bottom
two rows show the mean portfolio return and the standard deviation of the portfolio
return for each portfolio. Results are for Dollar-based returns for the period January
19975 until December 2000.

GMV v=10 vy=5

W o 04 [norm] W Ow Oy [norm] w Ow Oy [norm]
Can  0.014 (0.069) [0.057] -0.161 (0.160) [0.158] -0.336 (0.301) [0.301]
Fra -0.054 (0.041) [0.048]  0.021 (0.132) [0.133] 0.097 (0.254) [0.252]
Ger 0.184 (0.051) [0.047]  0.118 (0.147) [0.131] 0.052 (0.267) [0.250]
Ita 0.089 (0.029) [0.033] 0.062 (0.095) [0.093] 0.036 (0.179) [0.176]
Jap  0.145 (0.039) [0.037] 0.103 (0.108) [0.102]  0.061 (0.200) [0.193]
UK -0.017 (0.058) [0.042] 0.113 (0.162) [0.117]  0.243 (0.285) [0.221]
US 0.641 (0.071) [0.066] 0.743 (0.186) [0.183] 0.846 (0.351) [0.347]
R, 1.26% 1.37% 1.47%
Op 3.87% 4.01% 4.38%

Table 3: Standard errors of portfolio weights caused by estimation error in the
means only

The table shows the standard errors MVE portfolios based on risk aversions 7y = 5 and
~ = 10 respectively. The reported standard errors o, assume that there is estimation
error in the means only and not in the covariances. The columns "% Total" show
the fraction of the total variance of the estimated portfolio weigths attributed to the
estimation error in the means, i.e., aiﬂ/ai}yi. Results are for Dollar-based returns for
the period January 1975 until December 2000.

v =10 y=5

oy % Total oy % Total
Can (0.147)  84.4% (0.294)  95.3%
Fra (0.123)  86.4% (0.246)  93.8%
Ger (0.122)  69.1% (0.244)  83.5%
Ita  (0.086)  81.9% (0.172)  92.0%
Jap  (0.094)  75.9% (0.189)  88.8%
UK (0.108)  44.6% (0.216)  57.8%
US  (0.170)  83.7% (0.339)  93.6%
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Table 4: Standard errors for portfolio weights with a riskfree asset

The table shows various MVE efficient portfolios and the associated standard errors
(in brackets), based on excess returns. The first three columns show the estimated
weights and standard errors for a level of risk aversion v = 10. The last three columns
show the weights and standard errors for a risk aversion v = 5. Standard errors in
square brackets assume normally distributed returns. The bottom two rows show the
mean excess portfolio return and the standard deviation of the excess portfolio return
for each portfolio. Results are for Dollar-based returns for the period January 1975
until December 2000.

v =10 v=25
Wy oy o, [norm] Wy oy o [norm)]

Can -0.160 (0.149)  [0.150] -0.339 (0.298)  [0.299]
Fra  0.053 (0.126) [0.126]  0.106 (0.252)  [0.251]
Ger 0.008 (0.131) [0.127]  0.015 (0.263)  [0.254]
Ita  0.010 (0.090) [0.089]  0.020 (0.180)  [0.177]
Jap  0.017 (0.102)  [0.098]  0.033 (0.203)  [0.197]
UK 0.124 (0.138) [0.110] 0.248  (0.277) [0.220]
US 0361 (0.194) [0.197] 0721 (0.388)  [0.394]
7, 0.35% 0.70%

o, 187% 3.75%

Table 5: Standard errors for the tangency portfolio weights

The table shows portfolio weights and the associated standard errors (in brackets), for
the tangency portfolio. The first three columns show the estimated weights and stan-
dard errors for a level of risk aversion v = 4.02, that yields the tangency portfolio and
takes the risk aversion as given. Standard errors in square brackets assume normally
distributed returns. The last three columns show the weights and standard errors for
the same tangency portfolio, taking into account that the v has to be estimated. The
bottom two rows show the mean excess portfolio return and the standard deviation of
the excess portfolio return for each portfolio. Results are for Dollar-based returns for
the period January 1975 until December 2000.

v = 4.02, tan v,
Wy oy o, [norm)] Wy o o [norm]

Can -0.421 (0.371) [0.372] -0.421 (0.392)  [0.405]
Fra 0131 (0.314) [0.312]  0.131 (0.319)  [0.319]
Ger 0.019 (0.326) [0.316]  0.019 (0.326)  [0.314]
Ita 0025 (0.223) [0.220]  0.025 (0.222)  [0.219]
Jap 0041 (0.252) [0.245]  0.041 (0.249)  [0.242]
UK 0308 (0.344) [0.274]  0.308 (0.347)  [0.298]
US 0896 (0.482) [0.490]  0.896 (0.442)  [0.439]
7, 087% 0.87%

o,  4.46% 4.46%
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