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Abstract

We consider hedonic games with separable preferences, and explore
the existence of stable coalition structures if only individual deviations
are allowed. For two natural subdomains of separable preferences,
namely preference domains based on (1) aversion to enemies and (2)
appreciation of friends, we show that an individually stable coalition
structure always exist, and a Nash stable coalition structure exists
when mutuality is imposed. Moreover, we show that on the domain of
separable preferences a contractual individually stable coalition struc-
ture can be obtained in polynomial time. Finally, we prove that, on
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each of the two subdomains, the corresponding algorithm that we use
for finding Nash stable and individually stable coalition structures
turns out to be strategy-proof.
Journal of Economic Literature Classification Numbers: C71, A14,

D20.
Keywords: additive separability, coalition formation, hedonic games,

stability, strategy-proofness.

1 Introduction

The formal model of a hedonic coalition formation game as introduced by

Banerjee, Konishi and Sönmez (2001) and Bogomolnaia and Jackson (2002)

consists of two components, namely a finite set of players and a preference

ranking for each player defined over the coalitions that player may belong to.

The outcome of such a game is a partition of the society (the set of players)

into coalitions, where a partition of the society into coalitions is called a

coalition structure. This model explicitly takes into account the dependence

of an agent’s utility on the identity of the members of his or her coalition as

recognized in the seminal paper of Drèze and Greenberg (1980).

In this paper we consider hedonic games with separable preferences, and

study the existence of stable coalition structures if only individual deviations

are allowed. A player’s preference is separable if he or she views every other

player either as a friend or as an enemy, and the division between friends

and enemies guides the ordering of coalitions in the sense that adding a

friend leads to a more preferable coalition, while adding an enemy leads to

a less preferable coalition. More specifically, we concentrate on two natural

subdomains of separable preferences, namely preference domains based on

aversion to enemies and appreciation of friends.

The preference domain based on aversion to enemies corresponds to a
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situation in which, when comparing two coalitions, every player looks first at

his or her enemies in either coalition. The coalition that contains less enemies

is declared by the player as better than the other, and if the two coalitions

have the same number of enemies, then the number of friends is decisive for

the comparison. This kind of preference restriction can be illustrated by the

formation of swimming teams, where a bad guy can affect the whole outcome

of the coalition.

The preference domain based on appreciation of friends corresponds to a

situation in which, when comparing two coalitions, every player pays atten-

tion first to his or her friends in either coalition. The coalition that contains

more friends is declared by the player as better than the other, and if the

two coalitions have the same number of friends, then the coalition with less

enemies wins the comparison. This kind of preference restriction is appropri-

ate in contexts where friendship collaboration is crucial for the payoff that

a player obtains from a coalition, while the harm produced by the remain-

ing players in the coalition is small for the player. An example may be the

formation of research groups that compete for grants.

Notice that these two subdomains allow for indifferences in the corre-

sponding rankings over coalitions. For the two classes of hedonic games cor-

responding to these two subdomains, Dimitrov, Borm, Hendrickx, and Sung

(2004) study the existence of core stable coalition structures, and provide

algorithms for generating such coalition structures. However, there are cases

in which coalitional deviations are not possible and, hence, solution concepts

that consider only individual deviations are warranted. We concentrate in

this paper on Nash stability and individual stability. A coalition structure is

Nash stable if no player wishes to migrate to another coalition in the same

coalition structure. Individual stability, in addition, pays attention to the
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reaction of the welcoming coalition in the sense that no one in that coalition

should be made worse off.

It turns out that individually stable coalition structures for the two classes

of hedonic games always exist. The way we restrict players’ preferences allow

us also to present a positive result on the existence of Nash stable coalition

structures when, in addition, mutuality on the preferences is imposed (i.e.

the friendship among players is always mutual). It should be noted that, in

contrast to Bogomolnaia and Jackson (2002), symmetry (requiring that the

players have the same reciprocal values for each other and being stronger than

mutuality) is no longer crucial for the existence proofs. For an excellent study

of the role of symmetric additive separable preferences in hedonic games the

reader is referred to Burani and Zwicker (2003).

When looking for individually stable or Nash stable coalition structures,

we make use of the two algorithms proposed by Dimitrov, Borm, Hendrickx,

and Sung (2004) for generating core stable coalition structures, and show that

these core stable coalition structures are also individually stable or Nash sta-

ble. Moreover, on the separable preference domain a contractual individually

stable coalition structure can be obtain in polynomial time by using one of

the proposed algorithms.

The algorithms suggested by Dimitrov, Borm, Hendrickx, and Sung (2004)

can be considered also as functions which assign a coalition structure to each

hedonic game in the proposed domains. We show that these algorithms are

strategy-proof on the corresponding domains, in the sense that no player can

profitably misrepresent his or her preference to obtain a better outcome.

The rest of the paper is organized as follows. Section 2 presents the for-

mal model of a hedonic game and different stability notions for this class

of games already known in the literature; it introduces also the classes of
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preferences based on aversion to enemies and appreciation of friends, respec-

tively. The algorithms used by Dimitrov, Borm, Hendrickx, and Sung (2004)

for generating core stable coalition structures for these two classes of hedonic

games are described and exemplified in Section 3. Section 4 presents our

results on the existence of stable coalition structures on the corresponding

domains when only individual deviations are allowed. Section 5 is devoted

to the study of strategy-proofness of the proposed algorithms. We conclude

in Section 6 with some final remarks.

2 Basic notions

Consider a finite set of players N = {1, 2, . . . , n}. A coalition is a non-empty
subset of N . For each player i ∈ N , we denote by Ni = {X ⊆ N | i ∈ X}
the collection of all coalitions containing i. A collection C of coalitions is
called a coalition structure if C is a partition of N , i.e. the coalitions in C are
pairwise disjoint and

S
X∈C X = N . The set of all coalition structures on N

is denoted by CN . For each coalition structure C and each player i ∈ N , by

C(i) we denote the coalition in C containing i, i.e. {C(i)} = C ∩Ni.

We assume that each player i ∈ N is endowed with a preference ºi over

Ni, i.e. a binary relation over Ni which is reflexive, complete, and transitive.

We denote by Pi the set of all player i’s preferences, by P = (º1,º2, . . . ,ºn)

a profile of preferences ºi for all i ∈ N , and by P = P1 × . . . × Pn the set

of all preference profiles. Moreover, we assume that the preference of each

player i ∈ N over coalition structures is purely hedonic, i.e. it is completely

characterized by ºi in such a way that, for each C and C0, each player i

weakly prefers C to C0 if and only if C(i) ºi C0(i).
A hedonic game on a finite set N of players with a preference profile
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P ∈ P is denoted by the pair (N,P ). The set of all hedonic games will be

denoted by G.
Let C be a coalition structure. We say that

• C is weak core stable if there does not exist a nonempty coalition X

such that X Âi C(i) for all i ∈ X;

• C is strong core stable if there does not exist a nonempty coalition X

such that X ºi C(i) for all i ∈ X, and X Âj C(j) for at least one
j ∈ X;

• C is Nash stable if there do not exist i ∈ N and a coalition X ∈ C∪{∅}
such that X ∪ {i} Âi C(i);

• C is individually stable if there do not exist i ∈ N and a coalition

X ∈ C∪{∅} such that X∪{i} Âi C(i), and X∪{i} ºj X for all j ∈ X;

• C is contractual individually stable if there do not exist i ∈ N and a

coalition X ∈ C ∪ {∅} such that X ∪ {i} Âi C(i), X ∪ {i} ºj X for all

j ∈ X, and C(i) \ {i} ºj C(i) for all j ∈ C(i) \ {i}.

Clearly, Nash stability implies individual stability that, in turn, implies

contractual individual stability. Moreover, individual stability is implied by

strong core stability as well.

We now specify the preference domains that will be considered. For each

i ∈ N , we let Gi = G(ºi) = {j ∈ N : {i, j} ºi {i}} be the set of friends
of player i, and its complement Bi = N \ Gi the set of enemies of player i.

Notice that, from {i} ºi {i}, we have i ∈ Gi for each i ∈ N . The next

definition suggests two natural ways of how each player i ranks the sets in

Ni depending on the numbers of his or her friends and enemies.
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Definition 1 Let P = (º1,º2, . . . ,ºn) ∈ P be a preference profile.

• We say that P is based on aversion to enemies if, for all i ∈ N and

all X, Y ∈ Ni, X ºi Y if and only if (1) |X ∩ Bi| < |Y ∩ Bi| or (2)
|X ∩ Bi| = |Y ∩ Bi| and |X ∩Gi| ≥ |Y ∩Gi|.

• We say that P is based on appreciation of friends if, for all i ∈ N

and all X, Y ∈ Ni, X ºi Y if and only if (1) |X ∩ Gi| > |Y ∩ Gi| or
(2) |X ∩Gi| = |Y ∩Gi| and |X ∩ Bi| ≤ |Y ∩Bi|.

Observe that if the preference profile is based on aversion to enemies,

each player looks first at his or her enemies in the corresponding coalitions;

if the preference profile is based on appreciation of friends, we have a priority

for friends when comparing two coalitions. In the following, the set of all

preference profiles based on aversion to enemies is denoted by Pe, and the

set of all preference profiles based on appreciation of friends is denoted by

Pf . The corresponding sets of hedonic games will be denoted by Ge and Gf ,

respectively.

It is not difficult to see that if players’ preferences are induced by either

way suggested by Definition 1, then each player i will be equipped with

a preference relation over Ni with Gi being its top and Bi ∪ {i} being its
bottom. In fact, the preference profiles based on aversion to enemies and the

preference profiles based on appreciation of friends belong to a more general

class of preference profiles, namely the class of additive separable preferences.

A preference profile P ∈ P is additive separable if, for all i ∈ N , there

exists a function vi : N → R such that for all X,Y ∈ Ni, X ºi Y if and

only if
P

j∈X vi(j) ≥
P

j∈Y vi(j). We denote the set of all additive separable

preference profiles by Pas, and the corresponding set of hedonic games by

Gas. For example, when P ∈ Pe, one can take, for each i ∈ N , vi(j) = 1
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if j ∈ Gi, and vi(j) = −n otherwise; when P ∈ Pf , one can take, for each

i ∈ N , vi(j) = n if j ∈ Gi, and vi(j) = −1 otherwise. Therefore, we have
(Pe ∪ Pf) ⊂ Pas and (Ge ∪ Gf ) ⊂ Gas. All additive separable preference

profiles are also separable.

Definition 2 A preference profile P ∈ P is separable if, for every player

i ∈ N , there is a partition (Gi, Bi) of N such that for every j ∈ N and

X ∈ Ni with j /∈ X, we have [X ∪ {j} ºi X ⇔ j ∈ Gi] and [X ∪ {j} ¹i

X ⇔ j ∈ Bi].

Since (Gi, Bi) is partition of N , each separable preference profile P is such

that, for every i, j ∈ N and X ∈ Ni with j /∈ X, we have either X∪{j} ºi X

or X∪{j} ¹i X but not both. Hence, an equivalent definition of separability

can be obtained by replacingºi and¹i respectively byÂi and≺i. We denote

the set of all separable preference profiles by Ps and the corresponding set of

games on player set N by Gs. Clearly, we have (Pe ∪ Pf ) ⊂ Pas ⊂ Ps ⊂ P
and (Ge ∪ Gf ) ⊂ Gas ⊂ Gs ⊂ G.

3 Two algorithms

Let H = (V,E) be a directed graph with set of vertices V and set of directed

edges E ⊆ V × V . A path (k1, k2, . . . , km) in H is a sequence of vertices

k1, k2, . . . , km ∈ V for some positive integer m such that (kl, kl+1) ∈ E for

each 1 ≤ l ≤ m− 1, and we say that (k1, k2, . . . , km) is a path from k1 to km.

Let X ⊆ V . We say that X is strongly connected if, for every i, j ∈ X, there

is a path from i to j which only contains vertices belonging toX. We say that

X is a strongly connected component if X is strongly connected and, for all

Y ⊆ N which properly contains X, Y is not strongly connected. Moreover,

we say that X is a clique in H if (i, j) ∈ E for every i, j ∈ X.
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For each (N,P ) ∈ Gs and each nonempty Y ⊆ N , let H(Y,P ) = (V,E) be

a directed graph with V = Y and E = {(i, j) ∈ Y × Y | i 6= j, j ∈ Gi}. In
the following, two ways of partitioning the player set N in terms of H(Y,P )s

are described.

Algorithm 1

• Set Y := N and C := ∅.

• Repeat the following until Y = ∅:
- Find a clique X ⊆ Y in H(Y,P ) with the largest number of vertices.

- Set Y := Y \X and C := C ∪ {X}.

• Return C.

Algorithm 1 partitions the set N into coalitions in such a way that it first

subtracts the largest clique X in H(N,P ) from N , then it subtracts the largest

clique X 0 in H(Y,P ) from Y = N \X, and so on, until no vertex remains.

Algorithm 2

• Set Y := N and C := ∅.

• Repeat the following until Y = ∅:
- Find a strongly connected component X ⊆ Y in H(Y,P ).

- Set Y := Y \X and C := C ∪ {X}.

• Return C.

Algorithm 2 partitions the setN into coalitions each of which is a strongly

connected component in H(N,P ). That is, Algorithm 2 finds the strong de-

composition of graph H(N,P ), and it can be done in O(|N |2) time (see Tarjan
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(1972)). Note that it is always possible to generate coalition structures by

Algorithm 2 provided that players’ preferences are separable. However, it is

not guaranteed that all coalition structures generated by this algorithm will

be for example core stable for a corresponding hedonic game with separable

preferences: as exemplified by Banerjee, Konishi, and Sönmez (2001) the core

of a hedonic game may be empty even when players’ preferences are additive

separable and symmetric.

Suppose now that we disallow for mutuality (and, hence, for symmetry)

but restrict players’ additive separable preferences to be based on aversion

to enemies or on appreciation of friends. It turns out that in this case the

above algorithms generate core stable coalition structures as follows.

Theorem 1 Let (N,P ) ∈ Ge and let C be a coalition structure generated by
Algorithm 1. Then C is a weak core stable coalition structure for (N,P ).

Theorem 2 Let (N,P ) ∈ Gf and let C be a coalition structure generated by
Algorithm 2. Then C is a strong core stable coalition structure for (N,P ).

For proofs of these statements the reader is referred to Dimitrov, Borm,

Hendrickx, and Sung (2004).

Note that the largest clique in H(N,P ) may not be unique, and in such a

case, it is not clear from the description of Algorithm 1 which clique will be

selected. In other words, a different selection of cliques may lead to a different

outcome. A more precise description of Algorithm 1 will be given in Section 5

in order to obtain a unique outcome for each game (N,P ) ∈ Gs. In contrast,

the outcome of Algorithm 2 is unique, because the strong decomposition of

each directed graph is unique. This point is illustrated by the next example

in which every player is indifferent among coalitions on the same row and, for

each i ∈ N , the top row corresponds to Gi and the bottom row corresponds
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to Bi ∪ {i}.

Example 1 Let N = {1, 2, 3, 4} and G1 = {1, 2, 3, 4}, G2 = {2, 3, 4}, G3 =

{1, 3}, and G4 = {1, 3, 4}. Then we have the following preferences of the
players over the coalitions they may belong to.

Aversion to Enemies:

1 2 3 4

134 234 1234 14

13, 14 23, 24 123, 134, 234 4

1 2 13, 23, 34 . . .

. . . . . . 3

Appreciation of Friends:

1 2 3 4

134 234 1234 14

1234 1234 123, 134, 234 124, 134

13, 14 23, 24 13, 23, 34 1234

123, 124 123, 124 3 4

1 2 . . .

. . . . . .

Algorithm 1 selects as weak core stable coalition structure for the case of aver-

sion to enemies either C = {{1, 3} , {2} , {4}} or C0 = {{1, 4} , {2, 3}}. Note
that player 2 for example is not indifferent between C and C0 (i.e. between
C (2) and C0 (2)). Algorithm 2 selects {1, 2, 3, 4} as a strong core coalition
structure for the case of appreciation of friends. In this case the coalition

structures {{1, 3, 4} , {2}} and {{1, 4} , {2, 3}} are strong core stable as well.
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4 Individual deviations and stability

Having described the algorithms for generating core stable coalition struc-

tures for hedonic games with preference profiles belonging to Pe and Pf ,

we redirect now our attention to the Nash stability, individual stability, and

contractual individual stability for such games.

4.1 Nash stability

Although appreciation of friends and aversion of enemies are very strong

restrictions, it turns out that they do not guarantee the existence of Nash

stable coalition structures. The next example shows a hedonic game (N,P ) ∈
Ge ∩ Gf for which there is no Nash stable coalition structure.

Example 2 Let N = {1, 2, 3} and G1 = {1}, G2 = {2}, and G3 = {1, 2, 3}.
Then we have the the following preferences of the players over the coalitions

they may belong to:

1 2 3

1 2 123

12, 13 12, 23 13, 23

123 123 3

Note that each of the players 1 and 2 would prefer to stay alone, i.e. we

have to check only the coalition structure C = {{1} , {2} , {3}}. However,
{1, 3} Â3 {3} (and {2, 3} Â3 {3}). Hence, a Nash stable coalition structure
does not exist.

Remark 1 For the game in Example 2 a (strong) core stable coalition struc-

ture still exists ({{1} , {2} , {3}}), and it is selected by both Algorithm 1 and

Algorithm 2.
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As shown next, adding mutuality (for all i, j ∈ N , i ∈ Gj if and only if

j ∈ Gi) to enemy aversion always guarantees the existence of a Nash stable

coalition structure.

Proposition 1 Let (N,P ) ∈ Ge satisfy mutuality. Then a Nash stable coali-

tion structure exists.

Proof. Let C be a coalition structure generated by Algorithm 1. By Theo-

rem 1, C is weak core stable. We show that C is Nash stable as well. Suppose
not. Then there is i ∈ N and X ∈ C ∪ {∅} such that X ∪ {i} Âi C(i). We
distinguish the following two cases:

(1) X = ∅. In this case we have {i} Âi C(i) that contradicts the fact that
C is weak core stable.
(2) ∅ 6= X ∈ C. Since C(i) is a clique in H(N,P ), we have C(i) ⊆ Gi. It

follows from X ∪ {i} Âi C(i) and C(i) ⊆ Gi that X ∪ {i} ⊆ Gi, i.e., j ∈ Gi

for all j ∈ X. Then, by mutuality, we have i ∈ Gj for all j ∈ X, and thus,

X ∪ {i} Âj C(j) = X for all j ∈ X. Therefore, X ∪ {i} Âj C(j) for all
j ∈ X ∪ {i}, which contradicts again the weak core stability of C.

Proposition 2 Let (N,P ) ∈ Gf satisfy mutuality. Then a Nash stable coali-

tion structure exists.

Proof. Let C be a coalition structure generated by Algorithm 2. By Theo-

rem 2, C is strong core stable. We show that C is Nash stable as well.
Let H(N,P ) be the directed graph that corresponds to (N,P ), and let

i ∈ N . Notice that each coalition in C is a strongly connected component of
H(N,P ). When C(i) 6= {i}, there exists j ∈ C(i) \ {i} such that j ∈ Gi. Hence

C(i) ºi {i} = ∅ ∪ {i}. Moreover, it follows by mutuality that there are no
edges between players belonging to different strongly connected subgraphs,

i.e., X ⊆ Bi for each X ∈ C \ {C(i)}. Hence, we have C(i) ºi {i} Âi X ∪ {i}
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for each X ∈ C \ {C(i)}. Finally, it is obvious that C(i) ∪ {i} ºi C(i).
Therefore, each i ∈ N satisfies C(i) ºi X ∪ {i} for all X ∈ C ∪ {∅}, i.e. C is
Nash stable.

Remark 2Note that mutuality is a crucial condition for proving the existence

of a Nash stable coalition structure in Propositions 1 and 2 but symmetry is

not. A proof for the existence of Nash stable coalition structures when player

preferences are additive separable and symmetric is provided by Bogomolnaia

and Jackson (2002).

4.2 Individual stability

As exemplified above, restricting players’ preferences in a hedonic game to

be based either on aversion to enemies or on appreciation of friends does not

guarantee the existence of a Nash stable coalition structure. However, these

restrictions are sufficient for individual stability as shown next.

Proposition 3 Let (N,P ) ∈ Ge. Then an individually stable coalition struc-

ture exists.

Proof. Let C be a coalition structure generated by Algorithm 1. By Theo-

rem 1, C is weak core stable. We show that C is individually stable as well.
Suppose not. Then there is i ∈ N and X ∈ C∪{∅} such that X ∪{i} Âi C(i)
and X ∪ {i} ºj X for all j ∈ X. We distinguish the following two cases:

(1) X = ∅. In this case we have {i} Âi C(i) that contradicts the fact that
C is weak core stable.
(2) ∅ 6= X ∈ C. From X ∪ {i} ºj X for all j ∈ X, we have i ∈ Gj for all

j ∈ X. Thus, in fact we have X ∪ {i} Âj X for all j ∈ X. Combining with

X ∪ {i} Âi C(i), we can conclude that X ∪ {i} is a strong deviation from C,
which contradicts again the weak core stability of C.
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Proposition 4 Let (N,P ) ∈ Gf . Then an individually stable coalition struc-

ture exists.

Proof. Let C be a coalition structure generated by Algorithm 2. By Theorem
2, C is strong core stable. Because strong core stability implies individual
stability we are done.

4.3 Contractual individual stability

Since individual stability implies contractual individual stability, it follows

that the coalition structures generated by Algorithm 1 and Algorithm 2 are

also contractual individually stable on the domains based on aversion to

enemies and appreciation of friends, respectively. We ask now the question

whether these algorithms always generate a contractual individually stable

coalition structure on a larger preference domain.

Indeed, as suggested by Ballester (2004), a contractual individually stable

coalition structure on any preference domain can be obtained by an algorithm

which starts with an arbitrary coalition structure C (say, a coalition structure
consisting of singletons only), and repeats the following operation until the

resulting coalition structure becomes contractual individually stable: If some

player i wishes to migrate to another coalition X 6= C(i) in C and no one in
X and C(i) is worse off (i.e., C is not contractual individually stable), then
remove i from C(i) and put i in X. Observe that, by applying this operation,

no one is worse off and at least one player is strictly better off. Hence, the

algorithm halts after a finite number of applications of the operation. As a

straightforward estimation, the running time of this algorithm is exponential

of |N |.
In the following, we show that, when the domain of separable preferences
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is under consideration, a contractual individually stable coalition structure

can be obtained by Algorithm 2, whose running time is O(|N |2), a polynomial
of |N |. Observe that Algorithm 2 only requires a partial description of each

separable preference ºi, namely the set Gi for each i ∈ N , while a complete

description of a preference may have length exponential of |N | even if players’
preferences are separable.

Proposition 5 Let (N,P ) ∈ Gs. Then a contractual individually stable

coalition structure can be obtained by Algorithm 2.

Proof. Let (N,P ) ∈ Gs. Recall that, for every i, j ∈ N and X ∈ Ni with

j /∈ X, we have [X∪{j} Âi X ⇔ j ∈ Gi] and [X∪{j} ≺i X ⇔ j ∈ Bi]. Let C
be the coalition structure constructed by Algorithm 2, i.e. C is the strong
decomposition of the directed graph H(N,P ). In the following, we show that

C is contractual individually stable. Let i ∈ N , and consider the following

two cases:

(1) C(i) = {i}. Since each X ∈ C is a strongly connected component
in H(N,P ), for all X ∈ C \ {C(i)}, i 6∈ Gj for all j ∈ X if j ∈ Gi for some

j ∈ X. Thus, for all X ∈ C with X 6= C(i), we have C(i) = {i} Âi X ∪ {i} or
X Âj X ∪ {i} for all j ∈ X.

(2) C(i) 6= {i}. Again, since each X ∈ C is a strongly connected com-
ponent in H(N,P ), there exists j ∈ C(i) \ {i} such that i ∈ Gj. Thus,

C(i) Âj C(i) \ {i} for some j ∈ C(i) \ {i}.
Therefore, we can conclude that C is contractual individually stable.

Example 3 In order to show that there are cases in which Algorithm 1 does

not deliver a contractual individually stable coalition structure on the class of

separable games, let us consider the following game: Let N = {1, 2, 3} and
let the players have the following preferences over the coalitions they may
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belong to:

1 2 3

12 123 123

123 12, 23 13, 23

1 123 3

13

Suppose now that Algorithm 1 selects {{1} , {2, 3}}. Notice that this coalition
structure is not contractual individually stable because all players are better

off in the coalition structure {1, 2, 3}.

5 Strategy-proofness

In this section, we study the question whether the algorithms presented in

Section 3 prevent players from strategic behavior. In other words, we ask

whether there is a player who can obtain a more preferred outcome by sub-

mitting to the proposed algorithms a preference different from his or her true

preference.

Let ϕ : G → CN be a rule that associates a coalition structure to each

hedonic game on player set N . Then, for each (N,P ) ∈ G, ϕ(N,P ) denotes

the coalition structure obtained by applying ϕ to (N,P ). For each i ∈ N ,

we denote by ϕi(N,P ) the coalition in ϕ(N,P ) to which player i belongs.

For every P = (º1,º2, . . . ,ºn), P
0 = (º01,º02, . . . ,º0n) ∈ P , we denote by

δ(P, P 0) = {i ∈ N |ºi 6≡º0i} the set of players whose preferences in P and

P 0 are different.

Definition 3 Let P̄ ⊆ P. We say that ϕ : G → CN is strategy-proof

on P̄ if ϕi(N,P ) ºi ϕi(N,P 0) for each i ∈ N and every P, P 0 ∈ P̄ with

δ(P, P 0) = {i}, where ºi is the preference of player i ∈ N in preference

17



profile P .

In what follows in this section we concentrate on the rule ϕ1 : G → CN

that associates a coalition structure to each (N,P ) ∈ G according to Algo-
rithm 1, and on the rule ϕ2 : G → CN that associates a coalition structure

to each (N,P ) ∈ G according to Algorithm 2. However, as mentioned in

Section 3, the outcome of Algorithm 1 may not be unique when the largest

clique in H(N,P ) is not unique. In the following, a more precise description of

Algorithm 1 is given.

For each X ⊆ N , let eX = (eX1 , e
X
2 , . . . , e

X
n ) be the n-dimensional vector

with eXi = 1 if i ∈ X, and eXi = 0 otherwise. Then, for all X,Y ⊆ N , we

write X D Y if and only if (1) eX = eY or (2) there is k ∈ {1, . . . , n} such
that eXi = eYi for all i < k and eXk < eYk . Notice that D is a lexicographic

order over all subsets of N . We formulate now Algorithm 1*.

Algorithm 1*

• Set Y := N and C := ∅.

• Repeat the following until Y = ∅:
- Find all cliques X ⊆ Y in H(Y,P ) with the largest number of vertices,

and collect them in the set X .
- Find the clique X ∈ X such that X D X 0 for all X 0 ∈ X .
- Set Y := Y \X and C := C ∪ {X}.

• Return C.

Notice that, in Algorithm 1∗, the selection of cliques is guided by the

lexicographic order D. We denote by ϕ1
∗
the rule that associates a coalition

structure to each (N,P ) ∈ Ge according to Algorithm 1*, and we consider

ϕ1
∗
instead of ϕ1.
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Proposition 6 The rule ϕ1
∗
is strategy-proof on Pe.

Proof. Let i ∈ N , and let P, P 0 ∈ Pe with δ(P, P 0) = {i}. For each j ∈ N ,

we denote by Gj and G0
j the set of friends of player j respectively in P and

P 0. From δ(P, P 0) = {i}, we have Gi 6= G0
i and Gj = G0

j for each j ∈ N \{i}.
We distinguish the following two cases:

(1) G0
i ⊂ Gi. Keeping in mind that ϕ1

∗
selects cliques and players’ prefer-

ences are based on aversion to enemies, we conclude that it will be always the

case that
¯̄
ϕ1

∗
i (N,P 0)

¯̄ ≤ ¯̄ϕ1∗i (N,P )
¯̄
, and therefore, ϕ1

∗
i (N,P ) ºi ϕ

1∗
i (N,P 0).

In other words, player i has no incentive to report a smaller set of friends

under aversion to enemies.

(2) G0
i ∩ Bi 6= ∅. Since ϕ1

∗
selects cliques and players’ preferences are

based on aversion to enemies, we have ϕ1
∗

i (N,P 0) Âi ϕ1
∗

i (N,P ) only if¯̄
ϕ1

∗
i (N,P 0)

¯̄
>
¯̄
ϕ1

∗
i (N,P )

¯̄
. Notice that this can happen only if there is

at least one player k ∈ ϕ1
∗

i (N,P 0) with i ∈ Gk and k ∈ G0
i \ Gi. But this

means that k ∈ N \Gi = Bi, and therefore, ϕ1
∗

i (N,P ) Âi ϕ
1∗
i (N,P 0). Hence,

player i has no incentive to declare a player k as his friend if k ∈ Bi.

Therefore, player i has no incentive to misrepresent his preference, i.e.,

ϕ1
∗
is a strategy-proof on Pe.

We turn now to the rule ϕ2 that associates a coalition structure to each

game (N,P ) ∈ G according to Algorithm 2.

Proposition 7 The rule ϕ2 is strategy-proof on Pf .

Proof. Let i ∈ N , and let P, P 0 ∈ Pf with δ(P, P 0) = {i}. For each j ∈ N ,

we denote by Gj and G0
j the set of friends of player j respectively in P and

P 0. From δ(P, P 0) = {i}, we have Gi 6= G0
i and Gj = G0

j for each j ∈ N \{i}.
We first show that (ϕ2i (N,P 0)∩Gi) ⊆ (ϕ2i (N,P )∩Gi). Let j ∈ (ϕ2i (N,P 0)∩

Gi). Since ϕ2i (N,P 0) is a strongly connected component in H(N,P 0), there ex-

19



ists a path from j to i. Without loss of generality we assume that i appears

exactly once on such a path (because a shorter path from j to i can be ob-

tained from a path from j to i on which i appears more than once). Then,

i appears only as the last vertex on such a path. It follows that such a path

is also in H(N,P ), because Gj = G0
j for each j ∈ N \ {i}. From j ∈ Gi,

there exists a path from i to j in H(N,P ), because edge (i, j) is contained in

H(N,P ). Therefore, j ∈ ϕ2i (N,P ), because ϕ2i (N,P ) is a strongly connected

component in H(N,P ).

Suppose (ϕ2i (N,P 0) ∩ Gi) is a proper subset of (ϕ2i (N,P ) ∩ Gi). Then,

we have ϕ2i (N,P 0) ≺i ϕ2i (N,P ), because player’s preferences are based on

appreciation of friends. Thus, player i has no incentive to misrepresent Gi

by G0
i, and we are done.

Now suppose (ϕ2i (N,P 0) ∩ Gi) = (ϕ2i (N,P ) ∩ Gi), and we show that

(ϕ2i (N,P )∩Bi) ⊆ (ϕ2i (N,P 0)∩Bi). Let j ∈ (ϕ2i (N,P )∩Bi). Since ϕ2i (N,P )

is a strongly connected component in H(N,P ), there exists a path p from i to j

inH(N,P ), and there also exists a path p0 from j to i inH(N,P ). Again, without

loss of generality, we assume that i appears exactly once on each of p and p0.

It follows that all vertices which appear on p belong to ϕ2i (N,P ). Let k be

the vertex appearing on path p immediately after i. Observe that k ∈ Gi,

and thus, k ∈ (ϕ2i (N,P )∩Gi). By assumption, we have k ∈ (ϕ2i (N,P 0)∩Gi),

and thus, there is a path from i to k in H(N,P 0).

Let p00 be the subpath of p from k to j. Observe that i does not appear

on p00, and thus, p00 is also a path (from k to j) in H(N,P 0). Moreover, observe

that p0 is also a path (from j to i) in H(N,P 0), because i appears only as the

last vertex on p0. Therefore, we have j ∈ ϕ2i (N,P 0), because ϕ2i (N,P 0) is a

strongly connected component in H(N,P 0), and there are paths from i to k,

from k to j, and from j to i.
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Now we can conclude that ϕ2i (N,P 0) ¹i ϕ
2
i (N,P ). Therefore, each player

has no incentive to misrepresent his or her preference, i.e., ϕ2 is a strategy-

proof on Pf .

6 Conclusion

We have shown in this paper that for a separable hedonic game two simple al-

gorithms play an important role: the first algorithm (Algorithm 1) partitions

the set of players into coalitions each of which is a clique in the directed graph

corresponding to the game; the second algorithm (Algorithm 2) partitions the

set of players into coalitions each of which is a strongly connected compo-

nent of the directed graph corresponding to the game. The importance of

these algorithms is due to the following observations: (1) Algorithm 2 deliv-

ers a contractual individually stable coalition structure in polynomial time

when players’ preferences are separable; (2) Algorithm 1 and Algorithm 2

generate core stable and individually stable coalition structures when play-

ers’ preferences are based on aversion to enemies and appreciation of friends,

respectively; (3) adding mutuality to aversion to enemies and to appreciation

of friends guarantees that the coalition structures generated by Algorithm 1

and Algorithm 2 are Nash stable on the corresponding preference domains as

well; (4) both algorithms (with a slight modification of Algorithm 1) prevent

players from strategic behavior on the corresponding domains.
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