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Abstract

In this paper we study several issues related to the characterization of specific classes of multi-

variate quadratic mappings that are nonnegative over a given domain, with nonnegativity defined

by a pre-specified conic order. In particular, we consider the set (cone) of nonnegative quadratic

mappings defined with respect to the positive semidefinite matrix cone, and study when it can be

represented by linear matrix inequalities. We also discuss the applications of the results in robust

optimization, especially the robust quadratic matrix inequalities and the robust linear program-

ming models. In the latter application the implementational errors of the solution is taken into

account, and the problem is formulated as a semidefinite program.
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1 Introduction

Let C ⊂ <n be a closed and pointed convex cone. We can define a natural notion of conic ordering:

for vectors x, y ∈ <n, we say x �C y if and only if x − y ∈ C. Thus, x ∈ <n is nonnegative if and

only if x ∈ C. In this paper, we will be primarily interested the conic ordering induced by the cone

of positive semidefinite matrices, which is a very popular subject of study thanks to the recently

developed high performance interior methods for conic optimization.

In general, given a closed and pointed convex cone C, we wish to derive efficiently verifiable conditions

under which a multivariate nonlinear mapping is nonnegative over a given domain (typically a unit

ball), where nonnegativity is defined with respect to C. In [13], Sturm and Zhang studied the

problem of representing all nonnegative (defined with respect to the cone of nonnegative reals <+)

quadratic functions over a given domain. They showed that it is possible to characterize the set

of nonnegative quadratic functions over some specific domains e.g. the intersection of an ellipsoid

and a half-space. Moreover, the characterization is a necessary and sufficient condition in the form

of Linear Matrix Inequalities (abbreviated as LMI hereafter) which is easy to verify. This type of

easily computable necessary and sufficient conditions are particularly useful in systems theory and

robust optimization where the problem data themselves may contain certain design variables to be

optimized. In particular, using these LMI conditions, many robust control or minimax type of robust

optimization problems can be reformulated as Semidefinite Programming (SDP) problems which can

be efficiently solved using modern interior point methods.

The problems to be studied in this paper belong to the same category. In particular, we show that it

is possible to characterize, by LMIs, when a certain type of Nonlinear Matrix Inequalities holds over

a domain. The first case of this type is Quadratic Matrix Inequalities (QMI), where the quadratic

matrix function is assumed to take a specific form. We prove that it is possible to give an LMI

description, in terms of the problem data (i.e., the coefficients of the QMIs) for the quadratic matrix

function to be positive semidefinite for all variables satisfying either a spectral or Frobenius norm

bound. In fact, our methodology works for general quadratic matrix functions as well. What we derive

is an equivalent condition in the dual conic space. However, the membership verification problem of

this dual condition is NP-hard in general. There are several special cases in which the membership

verification boils down to checking a system of LMIs, thus verifiable in polynomial-time. The first

such case is when the variable is one-dimensional (the dimension of the matrix-valued mapping is

arbitrary). Alternatively, if the dimension of the matrix mapping is 2 by 2 (the variable can be in

any dimension), then we prove that the quadratic matrix inequality can again be characterized by

LMIs of the problem data. We also show that our results can be applied to robust optimization.

Specifically, we show that the robust linear programming models, where the implementational errors

of the solution is taken into account, can be formulated as semidefinite programming problems.
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This paper is organized as follows. In Section 2, we introduce the general conic framework and problem

formulation. In Section 3, we present several results concerning the representation of matrix-valued

quadratic matrix functions which are nonnegative over a domain. The discussion is continued in

Section 4 for the general matrix valued mappings. A characterization for the nonnegativity of the

mapping, in terms of the input data, over a general domain, is presented in the same section. This

characterization is further shown to reduce to an LMI system in several special cases, when the

underlying variable is one-dimensional, or 2-dimensional in the homogeneous case. Similarly, and in

fact equivalently, we obtain LMI characterizations when the underlying variable is n-dimensional, but

the mapping is 2× 2 matrix valued. Particular attention is given to the case where the domain is an

n-dimensional unit ball. In Section 5 we discuss the applications of our results in robust optimization.

The notations we use are fairly standard. Vectors are in lower case letters, and matrices are in capital

case letters. The transpose is expressed by T . The set of n by n symmetric matrices is denoted by

Sn; the set of n by n positive (semi)definite matrices is denoted by (Sn
+) Sn

++. For two given matrices

A and B, we use ‘A � B’ (‘A � B’) to indicate that A − B is positive (semi)-definite, ‘A ⊗ B’ to

indicate the Kronecker product between A and B, and A • B :=
∑

i,j AijBij = tr ABT to indicate

the matrix inner-product. For a given matrix A, ‖A‖F stands for its Frobenius norm, and ‖A‖2

stands for its spectrum norm. By ‘cone {x | x ∈ S}’ (‘span {x | x ∈ S}’) we mean the convex cone

(respectively linear subspace) generated by the set S. The acronym ‘SOC’ stands for the second order

cone {(t, x) ∈ <n | t ≥ ‖x‖}, and ‘‖ · ‖’ represents the Euclidean norm. Given a Euclidean space L
with an inner-product X • Y and a cone K ⊆ L, the dual cone K∗ is defined as

K∗ = {Y ∈ L | X • Y ≥ 0 for all X ∈ K}.

Since the choice of L can be ambiguous, we call K∗ the dual cone of K in L. Often, L is chosen as

span(K).

2 Cones of Nonnegative Mappings

One fundamental problem in optimization is to check the membership with respect to a given cone.

Any polynomial-time procedure for the membership problem will lead to a polynomial-time algorithm

for optimizing a linear function over the cone intersected with some affine subspace; see [9]. Checking

the membership for the dual cone is equivalent to asking whether a linear function is nonnegative

over the whole cone itself. In Sturm and Zhang [13], a problem of this nature is investigated in detail.

In particular, the authors studied the structure of all quadratic functions that are nonnegative over

a certain domain D. It turns out that when D is either the level set of a quadratic function, or is the

contour of a convex quadratic function, or is the intersection of the level set of a convex quadratic

function with a half-space, then the cone generated by all nonnegative quadratic functions over this
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domain can be described using Linear Matrix Inequalities (LMI). A consequence of this result is that

the robust quadratic inequality over D can be converted equivalently to a single LMI.

If we consider a general vector-valued mapping, then questions such as the one posed in [13] can be

generally formulated as

Determine a finite convex representation for the cone

K = {f : <n → <m | f ∈ F , f(D) ⊆ C}

where F is a certain vector space of functions, D ⊆ <n is a given domain, and C ⊆ <m is

a given closed convex cone.

Solutions to the problems of this type are essential ingredients in robust optimization [3], since they

allow conversion of semi-infinite constraints into finite convex ones. To appreciate the difficulty of

these problems, let us quote a useful result from [3] as follows.

Proposition 2.1. Let F be the set of all affine linear mappings, D be a unit sphere, C be the cone

of positive semidefinite matrices. Then, it is NP-Complete to decide the membership problem for K.

More explicitly, for given symmetric matrices A0, A1, ..., An of size m × m, it is NP-Complete to

test whether the following implication holds

n
∑

i=1

x2
i ≤ 1 =⇒ A0 +

n
∑

i=1

xiAi � 0.

However, there are positive results as well. It is known [5, 11] that if F is the set of polynomials

of order no more than d, D = <1, and C is the cone of positive semidefinite matrices, then there is

a polynomial reduction of K to an LMI. In other words, K can be described by a reasonably sized

LMI. In the next section, we will show that if F is a certain quadratic matrix function set, and D is

a unit ball defined either by the spectrum norm or the Frobenius norm, then K can still be described

by reasonably sized LMIs. Before we discuss specific results, we need to introduce some definitions.

Let D ⊆ <n be a given domain. Then, its homogenization is given as

H(D) = cl

{[

t

x

] ∣

∣

∣

∣

∣

x/t ∈ D

}

⊆ <1+n.

We consider the cone of co-positive matrices over D to be

C+(D) = {Z ∈ Sn | xT Zx ≥ 0 for all x ∈ D}. (1)

Let D1 ⊆ <n and D2 ⊆ <m be two domains. The bi-linear positive cone is defined as

B+(D1, D2) = {Z ∈ <n×m | xT Zy ≥ 0 for all x ∈ D1, y ∈ D2}.
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Obviously, the description of C+ or B+ are the same as that of K, when F is taken as the set of

quadratic forms, and C is simply <+.

If we have a general nonhomogeneous quadratic function q(x) = c+2bT x+xT Ax, then we introduce

M(q(·)) =

[

c bT

b A

]

.

Consider

FC+(D) = {M(q(·)) | q(x) ≥ 0 for all x ∈ D}.

It can be shown [13] that

FC+(D) = C+(H(D)).

This implies that we need only to concentrate on the homogeneous form.

The following lemma plays a key role in our analysis.

Lemma 2.2. Let K, K1 and K2 be closed cones. It holds that

C∗
+(K) = cone{xxT | x ∈ K}

and

B∗
+(K1,K2) = cone{xyT | x ∈ K1, y ∈ K2}.

Proof. Let us only consider the second assertion. It can be shown ([13], Lemma 1) that

cone{xyT | x ∈ K1, y ∈ K2} is closed.

Using the bi-polar theorem, it therefore suffices to prove that

B+(K1,K2) = (cone{xyT | x ∈ K1, y ∈ K2})∗. (2)

It is clear that

B+(K1,K2) ⊆ (conv {xyT | x ∈ K1, y ∈ K2})∗.

We now wish to establish the other containing relation. Suppose, by contradiction, that there is

Z ∈ (conv {xyT | x ∈ K1, y ∈ K2})∗ \ B+(K1,K2).

Then, since Z 6∈ B+(K1,K2), by definition there exist u ∈ K1 and v ∈ K2 such that uT Zv < 0. We

arrive now at a contradiction, namely

0 > uT Zv = Z • (uvT ) ≥ 0

where the latter inequality holds since Z ∈ (conv {xyT | x ∈ K1, y ∈ K2})∗. For a proof of the first

statement of the lemma, see Proposition 1 in [13]. Q.E.D.
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We note that although we are primarily interested in C+(K) or B+(K1,K2), it can be advantageous to

work with their dual counterparts first, and then again dualize to get the original cone. For instance,

in [13], Sturm and Zhang used this technique to show that

C∗
+( SOC(1 + n)) =

{[

z11 zT

z Z

]

� 0

∣

∣

∣

∣

∣

z11 ≥ Tr (Z)

}

, (3)

which is an explicit LMI system. Relation (3) is dual to the S-lemma [15], see Proposition 3.1 below.

3 Robust Quadratic Matrix Inequalities

Suppose that we consider an ordinary inequality, say f(x) ≥ 0, where x can be viewed as a parameter,

which is uncertain. Assume that this uncertain parameter x can attain any value within a set D. We

call the inequality f(x) ≥ 0 to be robust if f(x) ≥ 0 for all x ∈ D.

In this regard, the S-lemma of Yakubovich [15] plays a key role in robust analysis, where f is quadratic

and D is given as either the level set or the contour of a quadratic function. Actually, there are several

variants of the S-lemma of Yakubovich, of which we list two. For proofs, see e.g. [13].

Proposition 3.1 (S-lemma, level set). Let f : <n → < and g : <n → < be quadratic functions

with g(x̄) > 0 for some x̄. It holds that

f(x) ≥ 0 for all x : g(x) ≥ 0

if and only if there exists t ≥ 0 such that

f(x) − tg(x) ≥ 0 for all x ∈ <n.

Proposition 3.2 (S-lemma, contour). Let f : <n → < and g : <n → < be quadratic forms with

g(x(1)) < 0 and g(x(2)) > 0 for some x(1) and x(2). It holds that

f(x) ≥ 0 for all x : g(x) = 0

if and only if there exists t ∈ < such that

f(x) + tg(x) ≥ 0 for all x ∈ <n.

In this section, we derive extensions of the S-lemma to the matrix case, viz. the robust QMI.

Our first extension of Proposition 3.1 concerns the following robust QMI:

(S1) : C + XT B + BTX + XT AX � 0 for all X with I − XT DX � 0.

We show that this robust QMI holds if and only if the data matrices (A,B,C,D) satisfy a certain

LMI relation.
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Theorem 3.3. The robust QMI (S1) is equivalent to

[

C BT

B A

]

∈
{

Z

∣

∣

∣

∣

∣

Z − t

[

I 0

0 −D

]

� 0, t ≥ 0

}

. (4)

Proof. We first show that the robust QMI (S1) is equivalent to the robust quadratic inequality

(S2) below:

(S2) : ξT Cξ + 2ηT Bξ + ηT Aη ≥ 0, for all ξ, η with ξT ξ − ηT Dη ≥ 0.

To see that (S2) implies (S1), we fix an X satisfying

I − XT DX � 0.

Then, by letting ξ be an arbitrary vector, and η := Xξ, we see that

ξT ξ − ηT Dη ≥ 0,

which, in light of (S2), implies

ξT Cξ + 2ηT Bξ + ηT Aη ≥ 0,

or, equivalently,

ξT (C + XT B + BTX + XT AX)ξ ≥ 0.

This shows that

C + XT B + BT X + XT AX � 0.

Next we shall show that (S1) implies (S2). Suppose that (S1) holds and let ξ and η be such that

ξT ξ − ηT Dη ≥ 0. (5)

Consider first the case that ξ = 0 and let X(u) = ηuT /uT u for u 6= 0. Due to (5) we have

X(u)T DX(u) =
ηT Dη

(uT u)2
uuT � 0 ≺ I for all u 6= 0.

It thus follows from (S1) that

0 ≤ uT
(

C + X(u)T B + BTX(u) + X(u)T AX(u)
)

u = ηT Aη + o(‖u‖),

and hence ηT Aη ≥ 0. This establishes (S2) for the case that ξ = 0. If ξ 6= 0 we let X = ηξT /ξT ξ.

Due to (5) we have

XT DX =
ηT Dη

(ξT ξ)2
ξξT � 1

ξT ξ
ξξT � I.
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Then, by (S1) we have

C + XT B + BT X + XT AX � 0.

Pre- and post-multiplying on both sides of the above matrix inequality by ξT and ξ respectively, we

get

ξT Cξ + 2ηT Bξ + ηT Aη ≥ 0.

This establishes the equivalence between (S1) and (S2). Now, applying Proposition 3.1 on (S2),

Theorem 3.3 follows. Q.E.D.

Theorem 3.3 may be applied with D = I (or a multiple of the identity matrix) to yield a robust QMI

where the uncertainty set is a level set of the spectral radius. At first sight, this is a more conservative

robustness than one based on the Frobenius norm, since ‖X‖2 ≤ ‖X‖F , with a strict inequality if

the rank of X is more than one. Nevertheless, these uncertainty sets turn out to be equivalent for

the form of QMIs treated in this section. More precisely, we have the following:

Proposition 3.4. If D � 0, then (S1) is equivalent to the following robust QMI:

(S3) : C + XT B + BT X + XT AX � 0, for all X with Tr (D(XXT )) ≤ 1.

Proof. Observe first that if X is such that 1 ≥ Tr (D(XXT )) = Tr (XT DX) with D � 0 then also

I − XT DX � 0. Therefore, (S1) implies (S3).

Now we wish to show the converse. Suppose that (S3) holds, and let ξ and η be such that

ξT ξ − ηT Dη ≥ 0.

Then by letting X = ηξT /ξT ξ we have Tr (D(XXT )) = ηT Dη/ξT ξ ≤ 1. It thus follows from (S3)

that

C + XT B + BT X + XT AX � 0.

By pre- and post-multiplying both sides by ξT and ξ we further get

ξT Cξ + 2ηT Bξ + ηT Aη ≥ 0,

establishing (S2). By Theorem 3.3, (S3) is also implies (S1). Q.E.D.

As a consequence of the above results, we have derived an LMI description (4) for the data (A,B,C,D)

when the following quadratic matrix function inequality holds:

C + XT B + BT X + XT AX � 0 for all I − XT DX � 0.

If D � 0, then the same LMI description (4) applies to the nonnegativity condition

C + XT B + BT X + XT AX � 0 for all Tr (D(XXT )) ≤ 1.
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Below we shall further extend the results in Theorem 3.3 to a setting where a matrix quadratic

fraction is present.

Consider the data matrices (A,B,C,D, F,G,H) satisfying the following robust fractional QMI

I − XT DX � 0 =⇒











H � 0,

C + XT B + BT X + XT AX � 0,

H − (F + GX)(C + XT B + BTX + XT AX)+(F + GX)T � 0,

(6)

where M+ stands for the pseudo inverse of M � 0. We remark that (A,B,C,D) satisfies (S1) if and

only if (A,B,C,D, 0, 0, 0) satisfies (6).

Theorem 3.5. The data matrices (A,B,C,D, F,G,H) satisfy the robust fractional QMI (6) if and

only if there is t ≥ 0 such that






H F G

F T C BT

GT B A






− t







0 0 0

0 I 0

0 0 −D






� 0.

Proof. Consider the QMI
[

H F + GX

(F + GX)T C + XT B + BTX + XT AX

]

� 0 for all I − XT DX � 0. (7)

By taking Schur-complements, it is clear that (6) and (7) are equivalent. Unfortunately, the above

QMI is not in the form of (S1); Theorem 3.3 is therefore not applicable. Nevertheless, we can use a

similar argument as in the proof of Theorem 3.3.

We shall show that the QMI (7) is equivalent to the robust quadratic inequality (8) below:

ξT Hξ + 2ξT Fη + 2ξT Gγ + ηT Cη + γT Bη + ηT BT γ + γT Aγ ≥ 0, for all ηT η − γT Dγ ≥ 0. (8)

Suppose first that (8) holds, and fix an X satisfying I−XT DX � 0. Let ξ and η be arbitrary vectors,

and let γ := Xη. By construction, we have ηT η − γT Dγ ≥ 0, so that (8) implies

0 ≤ ξT Hξ + 2ξT Fη + 2ξT Gγ + ηT Cη + γT Bη + ηT BTγ + γT Aγ

=

[

ξ

η

]T [

H F + GX

(F + GX)T C + XT B + BT X + XT AX

][

ξ

η

]

,

establishing (7). Conversely, suppose that (7) holds, and let ξ, η and γ be such that

ηT η − γT Dγ ≥ 0 (9)

Consider first the case that η = 0 and let X(u) = γuT /uT u for u 6= 0. Due to (9) we have

X(u)T DX(u) =
γT Dγ

(uT u)2
uuT � 0 ≺ I for all u 6= 0.
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It thus follows from (7) that

0 ≤
[

ξ

u

]T [

H F + GX(u)

(F + GX(u))T C + X(u)T B + BT X(u) + X(u)T AX(u)

] [

ξ

u

]

=

[

ξ

γ

]T [

H G

GT A

][

ξ

γ

]

+ o(‖u‖).

This establishes (8) for the case that η = 0. If η 6= 0 we let X = γη/ηT η. Due to (9) we have

XT DX � I. Then, by (7) we have

0 ≤
[

ξ

η

]T [

H F + GX(u)

(F + GX(u))T C + X(u)T B + BT X(u) + X(u)T AX(u)

] [

ξ

η

]

= ξT Hξ + 2ξT Fη + 2ξT Gγ + ηT Cη + γT Bη + ηT BT γ + γT Aγ,

establishing (8). We have proved the equivalence between (6) and (8). The theorem now follows by

applying Proposition 3.1 to (8). Q.E.D.

Analogous to Proposition 3.4, we have the following equivalence result.

Proposition 3.6. If D � 0, then (6) is equivalent to the following robust fractional QMI:

Tr (DXXT ) ≤ 1 =⇒











H � 0,

C + XT B + BT X + XT AX � 0,

H − (F + GX)(C + XT B + BT X + XT AX)+(F + GX)T � 0.

It is interesting to note a related, but somewhat surprising result which we formulate in the following

theorem.

Theorem 3.7. The data matrices (A,B,C, F,G,H) satisfy

[

H F + GX

(F + GX)T C + XT B + BTX + XT AX

]

� 0, for all XT X = I (10)

if and only if






H F G

F T C BT

GT B A






− t







0 0 0

0 I 0

0 0 −I






� 0, for some t ∈ <.

Proof. Just as in the proof of Theorem 3.5, the robust QMI (10) is equivalent to the following

robust quadratic inequality:

ξT Hξ + 2ξT Fη + 2ξT Gγ + ηT Cη + γT Bη + ηT BT γ + γT Aγ ≥ 0, for all ηT η − γT γ = 0.
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Applying Proposition 3.2 to the above relation, the theorem follows. Q.E.D.

Theorem 3.7 allows us to model the robust QMI over the orthonormal matrix constraints as a linear

matrix inequality.

Matrix orthogonality constrained quadratic optimization problems were studied in [1, 14], where it

was shown that if the objective function is homogeneous, either purely linear or quadratic, then by

adding some seemingly redundant constraints one achieves strong duality with its Lagrangian dual

problem.

4 General Robust Quadratic Matrix Inequalities

Section 3 shows how we can transform some special type of robust QMIs into a linear matrix inequality.

In this section, we consider general robust quadratic matrix inequalities.

Remark that the matrix inequality Z � 0 is equivalent to the fact that xT Zx ≥ 0 for all x ∈ <n.

Thus, the linear matrix inequality itself is nothing but a special type of robust quadratic inequality.

The same is true for the co-positive matrix cone (1). From this viewpoint, we may formulate the

general robust quadratic matrix inequalities as an ordinary robust inequality involving polynomials

of order no more than 4.

Consider a domain D ⊆ <n and a domain ∆ ⊆ <m. In the same spirit as (1), let us define

C+(D,∆) :=







Z ∈ Ln,m

∣

∣

∣

∣

∣

∣

n
∑

i=1

n
∑

j=1

xixjy
T Zijy ≥ 0 for all x ∈ D, y ∈ ∆







, (11)

where Ln,m represents the mn(m+1)(n + 1)/4-dimensional linear space of bi-quadratic forms. More

precisely, Ln,m is defined as follows:

Ln,m :=



































G11 G12 · · · G1n

G21 G22 · · · G2n

...
...

...
...

Gn1 Gn2 · · · Gnn













∈ Sn×m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

GT
ij = Gij ∈ Sm for all i, j = 1, 2, ..., n























.

Notice that C+(D) = C+(D,<+) = C+(D,<).

Certainly, C+(∆) is a well-defined closed convex cone. It is easy to see that C+(D,∆) can be equiv-

alently viewed as robust quadratic matrix inequality over D in the conic order defined by C+(∆),

i.e.

C+(D,∆) =







Z ∈ Ln,m

∣

∣

∣

∣

∣

∣

n
∑

i=1

n
∑

j=1

xixjZij ∈ C+(∆) for all x ∈ D







.
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Given a quadratic function q : <n → Sm,

q(x) = C + 2
n

∑

j=1

xjBj +
n

∑

i=1

n
∑

j=1

xixjAij , (12)

we let M(q(·)) ∈ Ln+1,m denote the matrix representation of q(·), i.e.

M(q(·)) =













C B1 · · · Bn

B1 A11 · · · A1n

...
...

...
...

Bn An1 · · · Ann













.

The cone of C+(∆)-nonnegative quadratic functions over D is now conveniently defined as

FC+(D,∆) = {M(q(·)) | q(x) ∈ C+(∆) for all x ∈ D}.

Clearly, FC+(D) = FC+(D,<). Furthermore, it can be shown [13] that

FC+(D,∆) = C+(H(D),∆).

This implies that we need only to concentrate on the homogeneous form.

Similar to Lemma 2.2, we have the following representation.

Lemma 4.1. Let D ⊆ <n and ∆ ⊆ <m. In the linear space Ln,m it holds that

C∗
+(D,∆) = cone {(xxT ) ⊗ (yyT ) | x ∈ D, y ∈ ∆} (13)

= cone {(xxT ) ⊗ Y | x ∈ D, Y ∈ C+(∆)∗} (14)

= cone {X ⊗ Y | X ∈ C+(D)∗, Y ∈ C+(∆)∗}. (15)

Proof. It can be shown ([13, Lemma 1]) that

cone {(xxT ) ⊗ (yyT ) | x ∈ D, y ∈ ∆} is closed.

Using also the bi-polar theorem, an equivalent statement of (13) is therefore

C+(D,∆) = cone {(xxT ) ⊗ (yyT ) | x ∈ D, y ∈ ∆}∗. (16)

If Z ∈ C∗
+(D,∆) then for all x ∈ D and y ∈ ∆ we have

0 ≤ yT





n
∑

i=1

n
∑

j=1

xixjZij



 y = (x ⊗ y)T Z(x ⊗ y) = Z • ((xxT ) ⊗ (yyT )).

This shows that

C∗
+(D,∆) ⊆ cone {(xxT ) ⊗ (yyT ) | x ∈ D, y ∈ ∆}.
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In order to establish the converse relation, suppose by contradiction that there exists

Z ∈ cone {(xxT ) ⊗ (yyT ) | x ∈ D, y ∈ ∆}∗ \ C+(D,∆). (17)

Since Z 6∈ C+(D,∆) there must exist x ∈ D and y ∈ ∆ such that

0 > yT





n
∑

i=1

n
∑

j=1

xixjZij



 y = Z • ((xxT ) ⊗ (yyT )) ≥ 0,

where the latter inequality follows from (17). This impossible inequality completes the proof of (16)

and hence (13). The equivalence between (13) and (14) and (15) follows from Lemma 2.2. Q.E.D.

It can be seen that

Ln,m = span {X ⊗ Y | X ∈ Sn, Y ∈ Sm}.

To verify this relation, we first notice that the right hand side linear subspace is contained in Ln,m

since each matrix of the form X ⊗ Y is in Ln,m. Then we check that the dimension of the two linear

subspaces are actually equal. This establishes the above equality.

There is an one-to-one correspondence between Ln,m and Lm,n by means of a permutation operator.

In particular, we implicitly define the permutation matrix Nm,n by

Nm,nvec(X) = vec(XT ) for all X ∈ <m×n. (18)

We are now in a position to list some standard results on the Kronecker product.

Proposition 4.2. Let A ∈ <p×m, B ∈ <m×n and C ∈ <n×q. Then

vec(ABC) = (CT ⊗ A)vec(B), (19)

N−1
m,n = NT

m,n = Nn,m, (20)

Np,q(C
T ⊗ A)Nn,m = A ⊗ CT . (21)

Proof. We prove only (21), since the other two results are straightforward. We have

Np,q(C
T ⊗ A)Nn,mvec(BT )

(18)
= Np,q(C

T ⊗ A)vec(B)

(19)
= Np,qvec(ABC)

(18)
= vec(CTBT AT )

(19)
= (A ⊗ CT )vec(BT )

for arbitrary B. Hence (21). Q.E.D.

Notice that in particular from (21) that

Nm,n(X ⊗ Y )Nn,m = Y ⊗ X for all X ∈ Sn, Y ∈ Sm,
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so that

Lm,n = {Nm,nZNn,m | Z ∈ Ln,m}.

Theorem 4.3. Let D ⊆ <n and ∆ ⊆ <m. Consider the cones C+(D,∆), C+(∆, D) and their duals

in Ln,m and Lm,n respectively. It holds that

C+(∆, D) = {Nm,nXNn,m ∈ Lm,n | X ∈ C+(D,∆)}, (22)

and

C∗
+(∆, D) = {Nm,nZNn,m ∈ Lm,n | Z ∈ C∗

+(D,∆)}. (23)

Proof. Relation (23) follows from applying (21) to Lemma 4.1. Relation (22) follows by dualization.

Q.E.D.

We shall first consider the cone C+(<n,<m) residing in Ln,m. The following theorem provides an LMI

characterization if either n = 2 or m = 2.

Theorem 4.4. Consider the cone C+(<2,<m) and its dual in L2,m. It holds that

C+(<2,<m) = FC+(<,<m) = (L2,m ∩ S2m
+ )∗

=

{[

A B

B C

]

∈ Ln,m

∣

∣

∣

∣

∣

[

A B + B̃

B − B̃ C

]

∈ S2m
+ for some B̃ = −B̃T

}

.

The cone

C+(<n,<2) = FC+(<n−1,<2) = (Ln,2 ∩ S2n
+ )∗

has a similar LMI characterization due to Theorem 4.3.

Proof. The relation FC+(<,<m) = (L2,m ∩S2m
+ )∗ is a special case of Theorem 2 in Genin et al. [6]

on matrix polynomials. The second part of the lemma follows from Theorem 4.3. For completeness,

we provide a direct proof below.

By Lemma 4.1, we have

C∗
+(<2,<m) ⊆ S2m

+ ∩ L2,m.

Now we proceed to showing the converse containing relation. For this purpose, we take any

G =

[

G11 G12

G12 G22

]

∈ S2m
+ ∩ L2,m,

and prove that G ∈ C∗
+(<2,<m). We will use the obvious invariance relation

C∗
+(<2,<m) =

{[

P 0

0 P

]

Z

[

P T 0

0 P T

]∣

∣

∣

∣

∣

Z ∈ C∗
+(<2,<m)

}

,
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where P is any nonsingular real matrix.

Let G(ε) = G + εI � 0, where ε > 0 is an arbitrarily small (but fixed) positive number. Since

G22(ε) � 0 and G12(ε) = G12 is symmetric, there exists a nonsingular matrix Pε such that

PεG22(ε)P
T
ε = I and PεG12(ε)P

T
ε = Λε

where Λε = diag (λ1(ε), ..., λm(ε)) is a diagonal matrix. In fact, Pε = G22(ε)
−1/2Qε for some orthog-

onal matrix Qε. To show G(ε) ∈ C∗
+(<2,<m), we only need to prove

[

Pε 0

0 Pε

]

G(ε)

[

P T
ε 0

0 P T
ε

]

=

[

PεG11(ε)P
T
ε Λε

Λε I

]

∈ C∗
+(<2,<m).

By the well known Schur complement lemma, we have

PεG11(ε)P
T
ε − Λ2

ε � 0.

Therefore, we obtain the following representation:
[

PεG11(ε)P
T
ε Λε

Λε I

]

=

[

PεG11(ε)P
T
ε − Λ2

ε 0

0 0

]

+

[

Λ2
ε Λε

Λε I

]

=

[

1 0

0 0

]

⊗ (PεG11(ε)P
T
ε − Λ2

ε ) +
m

∑

i=1

[

λ2
i λi

λi 1

]

⊗ (eie
T
i ), (24)

where ei ∈ <m is the i-th column of the m ×m identity matrix. By Lemma 4.1, the above represen-

tation shows that the matrix
[

PεG11(ε)P
T
ε Λε

Λε I

]

lies in C∗
+(<2,<m). Consequently, G(ε) ∈ C∗

+(<2,<m). Since C∗
+(<2,<m) is a closed cone, we have

G = limε→0 G(ε) ∈ C∗
+(<2,<m). This proves the first part of the theorem. The characterization of

the primal cone C+(<2,<m) follows by dualization, viz.

C+(<2,<m) = cl (C+(<2,<m)) = C∗∗
+ (<2,<m)

= cl (L⊥
n,m + S2m

+ ) ∩ Ln,m

=

{[

A B

B C

]

∈ Ln,m

∣

∣

∣

∣

∣

[

A B + B̃

B − B̃ C

]

∈ S2m
+ for some B̃ = −B̃T

}

.

Q.E.D.

We remark that C+(<2,<m) (or equivalently C+(<m,<2)) is not self-dual. For instance, we have












1 0 0 1/2

0 0 1/2 0

0 1/2 0 0

1/2 0 0 1













∈ C+(<2,<2) \ C∗
+(<2,<2).
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The membership problem of C+(<n,<m) for general n and m is a hard problem; see Corollary 4.10

later in this paper.

We study now the mixed co-positive/positive semi-definite bi-quadratic forms, i.e. C+(<n
+,<m) and

C+(<n,<m
+ ). For m = 2, we arrive at a special case of nonnegative polynomial matrices on the

positive real half-line (see [11] for the scalar case).

Theorem 4.5. There holds

C∗
+(<2

+,<m) =

{[

G11 G12

G12 G22

]

∈ L2,m ∩ S2m
+

∣

∣

∣

∣

∣

G12 � 0

}

. (25)

Consequently, the primal cone C+(<2
+,<m) can be characterized as

C+(<2
+,<m) = FC+(<+,<m) =

{[

C B

B A

]

∈ L2,m

∣

∣

∣

∣

∣

[

C B

B A

]

−
[

0 E

ET 0

]

� 0, E + ET � 0∃E

}

.

Proof. First, it follows from Lemma 4.1 that

C∗
+(<2

+,<m) ⊆
{[

G11 G12

G12 G22

]

∈ S2m
+ ∩ L2,m

∣

∣

∣

∣

∣

G12 � 0

}

.

It remains to argue the inclusion in the reverse direction. To this end, let

G ∈
{[

G11 G12

G12 G22

]

∈ S2m
+ ∩ L2,m

∣

∣

∣

∣

∣

G12 � 0

}

be arbitrary. We follow the same proof technique for Theorem 4.4, and we use G(ε), Pε and Λε defined

there. The only difference is that Λε � 0, due to the fact that G12 � 0. Relation (24) states that
[

PεG11(ε)P
T
ε Λε

Λε I

]

=

[

1 0

0 0

]

⊗ (PεG11(ε)P
T
ε − Λ2

ε) +

m
∑

i=1

[

λ2
i λi

λi 1

]

⊗ (eie
T
i ).

Obviously,

[

1

0

]

,

[

λi

1

]

∈ <2
+. By Lemma 4.1, the above representation thus shows that the matrix

[

PεG11(ε)P
T
ε Λε

Λε I

]

lies in C∗
+(<2

+,<m). Consequently, G(ε) ∈ C∗
+(<2

+,<m), and by continuity G ∈ C∗
+(<2

+,<m).

The remaining claim about the characterization of the primal cone C+(<2
+,<m) can be easily verified

by taking the dual on both sides of (25). Q.E.D.

As a special case of the above theorem, we see that C+(<2
+) = S2

+ + <2×2
+ , which is a well known

characterization of the 2×2 co-positive cone. However, for n > 2 one merely has S n
++<n×n

+ ⊂ C+(<n
+).
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In fact, the membership problem of the co-positive cone in co-NP-Complete [10]. Hence also the

membership problem of C+(<n
+,<m) is co-NP-Complete.

Consider the case of D = [0, 1]. This is a special case of nonnegative polynomial matrices on an

interval (see [11] for the scalar case).

Theorem 4.6. Let D = [0, 1]. Then, we have

C∗
+(H([0, 1]),<m) =

{[

G11 G12

G12 G22

]

∈ L2,m ∩ S2m
+

∣

∣

∣

∣

∣

G12 − G22 � 0

}

. (26)

As a result, the primal cone C+(H([0, 1]),<m) = FC+([0, 1],<m) can be characterized as

FC+([0, 1],<m) =

{[

C B

B A

]

∈ L2,m

∣

∣

∣

∣

∣

[

C B − E

B − ET A + E + ET

]

� 0, E + ET � 0, ∃E

}

.

Proof. First, it follows from Lemma 4.1 that

C∗
+(H([0, 1]),<m) ⊆

{[

G11 G12

G12 G22

]

∈ S2m
+ ∩ L2,m

∣

∣

∣

∣

∣

G12 � G22

}

.

(Of course, one also has G11 � G12, but this relation is implied by G � 0 and G12 � G22.)

It remains to argue the inclusion in the reverse direction. To this end, let

G ∈
{[

G11 G12

G12 G22

]

∈ S2m
+ ∩ L2,m

∣

∣

∣

∣

∣

G12 � G22

}

be arbitrary. We follow the same proof technique for Theorem 4.4, and we use G(ε), Pε and Λε defined

there. The only difference is that Λε � I, due to the fact that G12 � G22. Relation (24) states that

[

PεG11(ε)P
T
ε Λε

Λε I

]

=

[

1 0

0 0

]

⊗ (PεG11(ε)P
T
ε − Λ2

ε) +

m
∑

i=1

[

λ2
i λi

λi 1

]

⊗ (eie
T
i ).

Obviously,

[

1

0

]

,

[

λi

1

]

= λi

[

1

1/λi

]

∈ H([0, 1]), because 1/λi ∈ [0, 1] for all i. By Lemma 4.1,

the above representation thus shows that the matrix

[

PεG11(ε)P
T
ε Λε

Λε I

]

lies in C∗
+(<2

+,<m). Consequently, G(ε) ∈ C∗
+(<2

+,<m), and by continuity G ∈ C∗
+(<2

+,<m).

The characterization of the primal cone FC+([0, 1],<m) can be easily established by taking the dual

on both sides of (26). Q.E.D.
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Quadratic programming over a box [0, 1]n is well-known to be NP-Complete for general n, see [10].

Hence, also the membership problems of FC+([0, 1]n) and FC+([0, 1]n,<m) with general n are co-

NP-Complete.

Recall from (3) that

C+(SOC(n)) = FC+({x ∈ <n | xT x ≤ 1}) = {Z ∈ Sn
+ | J • Z ≥ 0}∗,

where J := 2e1e
T
1 − I. Using Lemma 4.1, we have

C∗
+(SOC(n),<m) = cone {X ⊗ Y | X ∈ C+(SOC(n))∗, Y ∈ C+(<m)∗}

= cone {X ⊗ Y | X ∈ Sn
+, Y ∈ Sm

+ , J • X ≥ 0}. (27)

Furthermore, we know from Theorem 4.3 that this cone is isomorphic to (i.e. in one-to-one corre-

spondence with)

C∗
+(<m,SOC(n)) = cone {X ⊗ Y | X ∈ Sm

+ , Y ∈ Sn
+, J • Y ≥ 0}. (28)

From this relation, it is clear that

C∗
+(<2,SOC(m)) ⊆

{[

Z11 Z12

Z21 Z22

]

∈ L2,m ∩ S2m
+

∣

∣

∣

∣

∣

[

J • Z11 J • Z12

J • Z21 J • Z22

]

� 0

}

. (29)

A natural conjecture is that (29) might be an equality. Unfortunately, this conjecture turns out to

be false.

Counter-Example: Let p =
[

2 1 0
]T

and

Z11 = ppT + 2e3e
T
3 , Z12 = Z21 = ppT , Z22 = ppT + 6e1e

T
1 ,

that is,

Z =

[

p

p

][

p

p

]T

+ 2

[

e3

0

][

e3

0

]T

+ 6

[

0

e1

][

0

e1

]T

,

where e1 =
[

1 0 0
]T

and e3 =
[

0 0 1
]T

. Clearly, Z ∈ L2,3 and Z � 0. Moreover, we find

that
[

J • Z11 J • Z12

J • Z21 J • Z22

]

=

[

1

3

][

1

3

]T

. (30)

So Z lies in the cone defined by the right hand side of (29). We claim that Z 6∈ C ∗
+(<2,SOC(3)).

Suppose to the contrary that Z ∈ C∗
+(<2,SOC(3)). Then Z =

∑k
i=1(xix

T
i ) ⊗ (yiy

T
i ), where xi ∈ <2,

yi ∈ SOC(3). Notice that

[

J • Z11 J • Z12

J • Z21 J • Z22

]

=

k
∑

i=1

(J • (yiy
T
i ))xix

T
i =

[

1

3

][

1

3

]T

,
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where the last step follows from (30). Since yi ∈ SOC(3), it follows J •(yiy
T
i ) ≥ 0, for all i. Therefore,

the above relation implies that each xi must be a constant multiple of the vector
[

1 3
]T

. By a

renormalization if necessary, we can assume xi =
[

1 3
]T

for all i. As a result, we obtain

Z =





[

1

3

][

1

3

]T


 ⊗ Y =

[

1 3

3 9

]

⊗ Y,

where Y =
∑

i yiy
T
i . This implies that Z22 = 3Z12 = 9Z11. This clearly contradicts with the

definitions of Z11, Z12 and Z22. We therefore have proved that Z 6∈ C∗
+(<2,SOC(3)).

It remains an open question as to whether the cone C∗
+(<2,SOC(m)) is representable by linear matrix

inequalities. Below, we shall characterize the cone

{

(A,C) ∈ Ln,m × Sm

∣

∣

∣

∣

∣

[

C 0

0 A

]

∈ C+(SOC(n),∆)

}

, (31)

for given ∆ ⊆ <m. In other words, we consider quadratic functions q : {x ∈ <n | xT x ≤ 1} → C+(∆)

where the Bj ’s in (12) are all zero. Our result is the following.

Theorem 4.7. Let r > 0 be a given scalar quantity and let ∅ 6= ∆ ⊆ <m be a given domain. It holds

that A ∈ Ln,m, C ∈ Sm satisfy

yTCy +
n

∑

i=1

n
∑

j=1

xixj yTAijy ≥ 0 for all xT x ≤ r, y ∈ ∆ (32)

if and only if

C ∈ C+(∆), rA + I ⊗ C ∈ C+(<n,∆). (33)

Proof. We shall use the Rayleigh-Ritz characterization of the smallest eigenvalue of a symmetric

matrix Z = ZT . The smallest eigenvalue, denoted λmin(Z), is characterized as follows:

λmin(Z) = min{uT Zu | uT u = 1}. (34)

Suppose now that (32) holds. Setting x = 0 we obtain that C ∈ C+(∆). It also follows immediately

from (32) that for arbitrary y ∈ ∆,

0 ≤ yT Cy + min
x

{
n

∑

i=1

n
∑

j=1

xixj yT Aijy | xT x = r}

= yT Cy + r min
ξ

{ξT (I ⊗ y)T A(I ⊗ y)ξ | ξT ξ = 1}

= yT Cy + rλmin

(

(I ⊗ y)T A(I ⊗ y)
)
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where we used (34). It follows that

r(I ⊗ y)T A(I ⊗ y) � −(yTCy)I for all y ∈ ∆.

Pre- and post-multiplying both sides with an arbirary ξ ∈ <n, we obtain that

0 ≤ r(ξ ⊗ y)T A(ξ ⊗ y) + (yT Cy)ξT ξ

= (ξ ⊗ y)T (rA + I ⊗ C)(ξ ⊗ y)

= (rA + I ⊗ C) • ((ξξT ) ⊗ (yyT ))

for all ξ ∈ <n, y ∈ ∆. From Lemma 4.1, this in turn is equivalent to

rA + I ⊗ C ∈ C+(<n,∆).

We have shown that (32) implies (33). Conversely, suppose that (A,C) satisfies (33), and let x ∈ <n,

y ∈ ∆, xT x ≤ r be arbitrary. We have

yT Cy +
n

∑

i=1

n
∑

j=1

xixj yT Aijy =
(x ⊗ y)T (rA + I ⊗ C)(x ⊗ y) + (r − xT x)yT Cy

r
≥ 0,

where the inequality follows immediately from (33) and the nonnegativity of r − xT x. Q.E.D.

By the same argument, the following theorem is readily proven.

Theorem 4.8. Let ∅ 6= ∆ ⊆ <m and let r > 0 be a given scalar quantity. It holds that A ∈ Ln,m,

C ∈ Sm satisfy

yTCy +

n
∑

i=1

n
∑

j=1

xixj yTAijy ≥ 0 for all xT x = r, y ∈ ∆

if and only if

rA + I ⊗ C ∈ C+(<n,∆).

Recall from Theorems 4.4–4.6 that C+(<n,<2), C+(<n,<2
+) and FC+(<n, [0, 1]) are efficiently LMI

representable. Theorems 4.7–4.8 therefore provide an efficient LMI characterization for the class of

2 × 2 robust multivariate QMIs whose entries are co-centered (e.g., centered at the origin) over the

unit ball. Stated more clearly, we have obtained an efficient LMI representation for the following

robust QMI:
[

xT Cx + c xT Bx + b

xT Bx + b xT Ax + a

]

∈ FC+(∆), for all x ∈ D,

where D is either {x ∈ <n | xT x ≤ r} or {x ∈ <n | xT x = r}, and ∆ is either <, <+ or [0, 1]. In

particular, we have the following equivalences:
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1. For symmetric matrices A, B and C, the robust QMI

[

xT Cx + c xT Bx + b

xT Bx + b xT Ax + a

]

� 0, for all ‖x‖2 ≤ r

holds if and only if

[

C B

B A

]

∈ L2,m,

[

rC + cI rB + bI − E

rB + bI + E rA + aI

]

� 0,

[

c b

b a

]

� 0,

for some E with E + ET = 0.

2. For symmetric matrices A, B and C, the condition

yT

[

xT Cx + c xT Bx + b

xT Bx + b xT Ax + a

]

y ≥ 0, for all ‖x‖2 ≤ r and for all y ∈ <2
+

holds if and only if

[

C B

B A

]

∈ L2,m,

[

rC + cI rB + bI − E

rB + bI − ET rA + aI

]

� 0,

[

c b − e

b − e a

]

� 0,

for some e ≥ 0 and some E with E + ET � 0.

3. For symmetric matrices A, B and C, the condition

yT

[

xT Cx + c xT Bx + b

xT Bx + b xT Ax + a

]

y ≥ 0, for all ‖x‖2 ≤ r and for all y ∈ <2
+ with y1 ≥ y2

holds if and only if

[

C B

B A

]

∈ L2,m,

[

rC + cI rB + bI − E

rB + bI − ET rA + aI + E + ET

]

� 0,

[

c b − e

b − e a + 2e

]

� 0,

for some e ≥ 0 and some E with E + ET � 0.

Similar equivalence relations hold for the case where ‘‖x‖2 ≤ r’ is replaced by ‘‖x‖2 = r’. In this

case, we only need to remove from the above equivalence relations the nonnegative parameter e and

the respective conditions on the 2 × 2 matrix involving a, b, c, d.

It remains an open question whether one can obtain an LMI description for the general 2× 2 robust

QMIs over the unit ball without the co-centeredness condition.

For ∆ = <m with general m, however, checking the membership problem (31) is a hard problem:
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Theorem 4.9. For general n and m, the (ε-approximate) membership problem
[

C 0

0 A

]

∈ C+(SOC(n),<m) (35)

with data (A,C) ∈ Ln,m × Sm is co-NP-Complete.

Proof. We choose to use the well-known NP-Complete partition problem for the purpose of reduc-

tion:

Decide whether or not one can partition a given set of integers a1, ..., an such that the

two subsets will have the same subset sum.

The above decision problem can be further reduced to the following decision problem

Given a ∈ Zn (the n-dimensional integer lattice) and a scalar t ≥ 0, decide whether or

not p(x; t) ≥ 0 for all ‖x‖2
2 = n, where p(x; t) = (t + (aT x)2)2 − n2 +

∑n
i=1 x4

i .

To see why it is so, we notice that for t ≥ 0 and x with ‖x‖2 = n that

p(x; t) = (t + (aT x)2)2 − n2 +

n
∑

i=1

x4
i ≥ t2 − n2 +

n
∑

i=1

x4
i ≥ t2 − n2 +

(
∑n

i=1 x2
i )

2

n
= t2 − n(n − 1)

where the second inequality is based on the Cauchy-Schwarz inequality.

The lower bound is attained, i.e. p(x; t) = t2 − n(n − 1), if and only if x2
i = 1 for all i = 1, ..., n, and

aT x = 0, which is equivalent to the existence of a partition. Thus, a partition does not exist if and

only if for t =
√

n(n − 1) − 1 there holds p(x; t) ≥ 0 for all ‖x‖2
2 = n.

Next we notice that

‖x‖4
2 = (

n
∑

i=1

x2
i )

2 =
n

∑

i=1

x4
i +

∑

i6=j

x2
i x

2
j ,

so that

p(x; t) = (t + (aT x)2)2 + (‖x‖4
2 − n2) −

∑

i6=j

x2
i x

2
j ,

where the second term vanishes if ‖x‖2
2 = n. It follows that p(x; t) ≥ 0 for all ‖x‖2

2 = n if and only if

t + (aT x)2 ≥ ‖{xixj}i6=j‖2 for all xT x = n. (36)

The above robust quadratic SOC-constraint can be transformed into an equivalent rubust QMI in

the familiar way, viz.

L(t + (aT x)2, {xixj}i6=j) ∈ S1+n(n−1)
+ for all xT x = n, (37)
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where L(·, ·) denotes the so-called arrow-hat (or Jordan product representation) matrix

L(s, y) =

[

s yT

y sI

]

.

We have reduced the partitioning problem to the robust QMI (37), which is of the form (35). Q.E.D.

Corollary 4.10. The membership problem X ∈ C+(<n,<m) is co-NP-Complete.

Proof. Due to Theorem 4.8, the co-NP-Complete problem in Theorem 4.9 can be reduced to the

membership problem for C+(<n,<m), which must therefore also be co-NP-Complete. Q.E.D.

To close the section, we remark that it is NP-hard in general to check whether a fourth order

polynomial is nonnegative over the unit sphere (or over the whole space). The same partition problem

as in the proof of Theorem 4.9 can also be used to reduce to the unconstrained minimization of the

following fourth order polynomial
n

∑

i=1

(x2
i − 1)2 + (aT x)2.

In particular, a partition exists if and only if the polynomial attains zero. Now we pose as an open

question the complexity of deciding whether a third order polynomial is nonnegative over the unit

sphere. If this can be done in polynomial-time, then the next question will be: Can we describe the

set of the coefficients of such nonnegative third order polynomials (over the unit sphere) by (Linear)

Matrix Inequalities?

5 Applications in Robust Linear Programming

Robust optimization models in mathematical programming have received much attention recently;

see, e.g. [2, 3, 7]. In this section we will discuss some of these models using the techniques developed

in the previous sections.

Consider the following formulation of a robust linear program:

minimize max‖∆x‖≤δ,‖∆c‖≤ε0(c + ∆c)T (x + ∆x)

subject to (ai + ∆ai)
T (x + ∆x) ≥ (bi + ∆bi),

for all ‖(∆ai,∆bi)‖ ≤ εi, i = 1, 2, ...,m, ‖∆x‖ ≤ δ.

(38)

Here two types of perturbation are considered. First, the problem data ({ai}, {bi}, c) might be affected

by unpredictable perturbation (e.g., measurement error). Second, the optimal solution xopt is subject

to implementation errors caused by the finite precision arithmetic of digital hardware. That is, we
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Figure 1: An example of spectral mask constraint

have xactual := xopt + ∆x, where xacutal is the actually implemented solution. To ensure xactual

remains feasible and delivers a performance comparable to that of xopt, we need to make sure xopt

is robust against both types of perturbations. This is essentially the motivation of the above robust

linear programming model. Notice that our model is more general than the ones proposed by Ben-Tal

and Nemirovskii [3] in that the latter only considers perturbation error in the data ({ai}, {bi}, c).

The above model of robust linear programming arises naturally from the design of a linear phase FIR

(Finite Impulse Response) filter for digital signal processing. In particular, for a linear phase FIR

filter h = (h1, ..., hn) ∈ <n, the frequency response is

H(ejω) = e−jnω(h1 + h2 cos ω + · · · + hn cos(nω)) = e−jnω(cos ω)T h,

where cos ω = (1, cos ω, · · · , cos(nω))T . The FIR filter usually must satisfy a given spectral envelope

constraint (typically specified by design requirement or industry standards), see Figure 1 for an

example.

This gives rise to

L(e−jω) ≤ (cos ω)T h ≤ U(e−jω), ∀ ω ∈ [0, π]. (39)

To find a discrete h (say, 4-bit integer) satisfying (39) is NP-hard. Ignoring discrete structure of h,

we can find a h satisfying (39) in polynomial time [4]. However, rounding such solution to the nearest
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discrete h may degrade performance significantly. Our design strategy is then to first discretize the

frequency [0, π], then find a solution robust to discretization and rounding errors. This leads to the

following notion of robustly feasible solution:

L(e−jωi) ≤ (cos ωi + ∆i)
T (h + ∆h) ≤ U(e−jωi), for all ‖∆i‖ ≤ ε, ‖∆h‖ ≤ δ,

where ∆i accounts for discretization error, while ∆h models the rounding errors.

We now reformulate the robust linear program (38) as a semidefinite program. We say the solution

x is robustly feasible if, for all i = 1, 2, ...,m,

(ai + ∆ai)
T (x + ∆x) ≥ (bi + ∆bi), for all ‖(∆ai,∆bi)‖ ≤ εi, ‖∆x‖ ≤ δ, i = 1, 2, ...,m.

It can be shown [3] that x is robustly feasible if and only if

aT
i x − bi − εi

√

‖x + ∆x‖2 + 1 ≥ 0, ∀ ‖∆x‖ ≤ δ, i = 1, 2, ...,m. (40)

Constraint (40) can be formulated as








I
√

εi

[

x + ∆x

1

]

√
εi

[

(x + ∆x)T 1
]

aT
i (x + ∆x) − bi









� 0, ∀ ‖∆‖ ≤ δ, i = 1, 2, ...,m. (41)

Now the objective function can also be modelled by introducing an additional variable t to be min-

imized, and at the same time set as a constraint t − (c + ∆c)T (x + ∆x) ≥ 0, for all ‖∆c‖ ≤ ε0 and

‖∆x‖ ≤ δ. Then the objective can be modelled by t − cT (x + ∆x) ≥ ε0‖x + ∆x‖, for all ‖∆x‖ ≤ δ,

which is equivalent to
[

I
√

ε0(x + ∆x)
√

ε0(x + ∆x)T t − cT (x + ∆x)

]

� 0, ∀ ‖∆x‖ ≤ δ. (42)

Now we apply the results in Section 3 to get an explicit form in terms of LMIs with respect to

(A, b, c) and x. In particular, we apply Theorem 3.5. It is clear that if we let H = I, F =
√

εi

[

x

1

]

,

G =
√

εi

[

I

0

]

, C = aT
i x− b, B = 1

2ai and A = 0, then Theorem 3.5 gives us an equivalent condition

for (41) as follows: there exists a µi ≥ 0 such that






















I
√

εi

[

x

1

]

√
εi

[

I

0

]

√
εi

[

xT

1

]

aT
i x − bi

1
2aT

i

√
εi

[

I

0

]

1
2ai 0























− µi







0 0 0

0 δ 0

0 0 −I






� 0. (43)
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Similarly, (42) holds for all ‖∆x‖ ≤ δ if and only if there is a µ0 ≥ 0 such that







I
√

ε0x
√

ε0I√
ε0x

T t − cT x −1
2cT

√
ε0I −1

2c 0






− µ0







0 0 0

0 δ 0

0 0 −I






� 0. (44)

Therefore, the robust linear programming model becomes a semidefinite program: minimize t, subject

to (43) and (44).
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