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Abstract

Asymmetric information models predict comovements among trade
characteristics such as returns, bid-ask spread, and trade volume on
one hand and the trading intensity on the other hand. In this paper
we investigate empirically the two-sided causality between trade char-
acteristics and trading intensity. We apply a VAR-model for returns,
bid-ask spread, trade volume, and trading intensity to transaction data
on five stocks traded on the NYSE, covering the period August 1 until
October 31, 1999. Similar to Dufour and Engle (2000), we find that
the price impact of a trade is larger, the higher the trading intensity.
Moreover, we establish significant feedback from the trade characteris-
tics to the the trading intensity. Wide spreads, large volume, and high
returns have a significantly positive impact on the trading intensity.
We show that this feedback affects the price impact of large trades in
transaction and in calendar time.
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1 Introduction

One of the major issues in market microstructure theory is how information
is incorporated into asset prices, cf. O’Hara (1995). An important component
of market microstructure theories is the concept of asymmetric information.
This phenomenon arises when both uninformed and informed traders are
present at the market. Uninformed traders trade for liquidity reasons. In-
formed traders, however, have private information on the fundamental value
of the security to be traded. They trade to take advantage of their superior
knowledge. Due to the presence of informed traders, the transaction process
itself potentially reveals information on the underlying fundamental value of
the security.
Information dissemination through trading has been the subject of both the-
oretical and empirical research. Hasbrouck (1991a, 1991b) uses a VAR-model
to jointly model returns and trade volume. He shows that trades have per-
sistent impact on prices, which confirms that trades convey information. Re-
cently, the information content of the trading intensity has been investigated.
The trading intensity refers to the process of durations, where a duration is
defined as the time that elapses between two consecutive transactions. The
main question is whether the trading intensity conveys any information on
the underlying value of the asset in addition to trade volume. The models
developed by Diamond and Verrecchia (1987) and Easley and O’Hara (1992)
predict that this is indeed the case, due to the aforementioned asymmetric
information. Dufour and Engle (2000) model the trading intensity using the
ACD-model proposed by Engle and Russell (1998) and subsequently analyze
a bivariate VAR-model for returns and trade sign to assess the effect of the
trading intensity on the price adjustment process in both transaction and cal-
endar time. They show that the price impact of a trade is larger the higher
the trading intensity, implying that trades are more informative in periods
of frequent trading.
This paper extends Hasbrouck (1991a, 1991b) and Dufour and Engle (2000)
by proposing a joint model for trade characteristics (returns, trade size, bid-
ask spread) and the trading intensity. We allow the trade characteristics to
fully interact with the trading intensity in the sense that the possibly two-
sided causality between the trade characteristics and the trading intensity
is taken into account. The results show that the expected price impact is
larger ceteris paribus when the trading intensity is higher, in line with the
model proposed by Easley and O’Hara (1992) and the empirical results of
Dufour and Engle (2000). Moreover, we show that the entire distribution
of the price impact depends upon the trading intensity. The distribution of
the price change with fast trading first-order stochastically dominates the
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distribution with slow trading. Additionally, as in Engle and Lunde (1998),
we document significant causality from trade characteristics to the trading
intensity. Wide spreads, large volume and high returns significantly increase
the trading intensity. Moreover, we show that this feedback affects the dis-
tribution of the price impact of trades, both in transaction and in calendar
time.
The organization of this paper is as follows. In section 2 we review some
market microstructure underpinnings with the focus on the role of the trading
intensity in information dissemination. Section 3 briefly discusses the market
setting on the NYSE and provides a description of the data and their sample
properties. Section 4 is devoted to a multivariate model for returns, trade
volume and bid-ask spread that ignores the possible role for the trading
intensity. Section 5 discusses the modeling of the trading intensity, while
Section 6 examines the impact of trades on prices in a VAR-model that takes
the possible role of the trading intensity into account. In Section 7 the trading
intensity is endogenized and the effects of the endogenous trading intensity
on price changes are investigated. Finally, Section 8 summarizes the main
conclusions of this paper.

2 Existing models for the information con-

tent of the trading intensity

In this section we briefly review some information-based market microstruc-
ture studies that predict a relation between the trading intensity and the
underlying value of the asset.
In the model of Easley and O’Hara (1992) the market maker is uncertain
about the existence of an information signal; i.e. he does not know whether
or not an information event has taken place. Additionally, he does not know
the direction of the possible news event (high or low information signal).
Whether or not an information event has taken place, a no trade outcome
can occur in both cases. In the model it is more likely that a no trade will
take place when no news has been released. Since the market maker knows
all relevant probabilities, he will lower the probability he attaches to a news
event when the trading intensity is low. Moreover, he will change his bid
and ask quotes correspondingly which will lead to a lower bid-ask spread
as a direct consequence of adverse selection. The empirical implications of
the Easley and O’Hara (1992) model are as follows. The model predicts that
lagged durations are negatively correlated to the bid-ask spread. Since the
market maker associates slow trading to a decreased risk of informed trading,
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lagged durations will also be negatively correlated to price volatility.
Easley and O’Hara (1992) also conjecture a role for aggregated volume. This
follows directly from the fact that each trade has unit size in the model.
Therefore, aggregated volume equals the number of trades up to that mo-
ment. As a consequence, lagged aggregated volume is also positively related
to the bid-ask spread and the volatility of prices. However, the assumption
of a market with only unit size trades is unrealistic. It is therefore useful
to consider the Easley and O’Hara (1987) model. The setting of the lat-
ter model is basically the same as in Easley and O’Hara (1992). However,
although there is event uncertainty, uninformed traders are not allowed to
refrain from trading. Therefore, durations do not play a role in this model.
However, traders are allowed to trade either a small or a large quantity. When
news has been released at the beginning of a trading day, it is more likely
that a large quantity will be traded. Therefore, there is no unique spread:
it is positively related to trade volume. It is straightforward to combine the
Easley and O’Hara (1987,1992) models, which yields a model in which dura-
tions and different trade sizes play a role. In the combined model the absence
of a trade is more likely when no news has been released and a large trade is
more likely in case of a high information signal.
In a different framework Diamond and Verrecchia (1987) also relate the trad-
ing intensity to the presence of news. In this model traders either own or do
not own the stock. If they do not own the stock, they might wish to short-sell
when there is an opportunity to trade. However, all traders fall into three
groups: those who face no costs in short selling, those who are prohibited
from short selling and finally, those who are restricted in short selling. In the
latter case the proceeds from short-selling are delayed until the price of the
asset falls. Neither the market maker, nor the traders can observe why there
has been no trade and whether a sell is a short sell or not. However, every
agent knows all relevant probabilities. A no trade outcome may indicate sev-
eral situations. A trader may wish to refrain from trading, or he may not be
able to trade due to the short-sell restrictions or prohibitions. In this specific
setup of the model, the probability of no trade is higher in case of bad news.
Hence, in this model slow trading is associated to bad news. The empirical
implications of this model are the following. Lagged durations and spread are
positively correlated. Moreover, lagged durations and price volatility are also
positively correlated in the setting of this model. Finally, lagged durations
and (mid)prices as well as bid/ask quotes are negatively correlated.
Admati and Pfleiderer (1988) distinguish informed traders and liquidity traders.
Liquidity traders are either nondiscretionary traders who must trade a cer-
tain number of shares at a particular time or discretionary traders who time
their trades such that the expected cost of their transactions are minimized.
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We consider the version of the model with endogenous information acqui-
sition; i.e. private information is acquired at some cost and traders obtain
this information if and only if their expected profit exceeds this cost. In this
framework the presence of informed traders lowers the cost of trading for liq-
uidity traders. Moreover, informed traders also prefer to trade when there are
many liquidity traders are present at the market. Hence, both informed and
uninformed traders want to trade when the market is ‘thick’. This results in
concentrated patterns of trading: informed traders and liquidity traders tend
to clump together. This implies that prices are more informative in periods
of frequent trading; i.e. the trading intensity positively affects volatility.
Table 1 summarizes the empirical implications of Easley and O’Hara (1987,
1992), Diamond and Verrecchia (1987) and Admati and Pfleiderer.
One of the crucial assumptions underlying the Easley and O’Hara (1987,
1992) model and Diamond and Verrecchia (1987) is the absence of feedback
from the trade characteristics such as returns, bid-ask spread and trade vol-
ume to the trading intensity. Goodhart and O’Hara (1997) put forward that
trade characteristics convey information on the value of the asset. Therefore,
traders may learn from it and change their intensity of trading in reaction
to this. Consequently, trade characteristics may affect the trading intensity.
As indicated in Dufour and Engle (2000), for example, a large change in
the market maker’s mid quote may be a signal to the informed traders that
their information, initially unknown to other market participants, has been
revealed to the market maker assuming that no new signal has been released
thereafter. This means that their information is no longer superior. There-
fore, the incentive to trade disappears, which decreases the trading intensity.
However, from an inventory perspective, large quote changes would attract
opposite-side traders, thus increasing the trading intensity. Similar effects oc-
cur when informed traders observed wide spreads or large volume trades. An
additional complexity arises, however, when informed traders show strate-
gic behavior as well, see O’Hara (1995). They will increase the probability
they attach to the risk of informed trading when they notice large absolute
returns, wide spreads and large trade volume and thus slow down their trad-
ing intensity in this situation. The overall effect on the trading intensity is
therefore unclear when both informed and uninformed traders show strategic
behavior.

3 The data

In this paper we use high frequency data on five of the most actively traded
stocks listed on the NYSE, see Table 2. The data are taken from the Trade and
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Quote (TAQ) database. For each stock, the data consist of all transactions
during the months August, September and October, 1999 and consists of 64
trading days.
We remove all trades that take place outside the opening hours; i.e. before
9.30 AM and after 4.00 PM. Moreover, we also delete trades that take place
before the first quotes are generated. For each stock the associated character-
istics of each trade are recorded: trade moment τt, unsigned log trade size |xt|
and1 trade price pt, where t indexes subsequent transactions (i.e. t indexes
‘transaction time’). All data are measured in transaction time. The duration
(in ‘calendar time’) between subsequent trades is defined as yt = τt − τt−1.
Overnight durations are removed from the data set.
To each trade we also associate a prevailing bid and ask quote, denoted
by qb

t and qa
t . To obtain these prevailing quotes we use the ‘five-seconds

rule’ by Lee and Ready (1989) which associates each trade to the quote
posted at least five seconds before the trade, since quotes can be posted more
quickly than trades are recorded. The five-second rule solves the problem
of potential mismatching. From the prevailing quote the prevailing bid-ask
spread st = qa

t − qb
t is constructed. Following many empirical studies for the

NYSE, we avoid the bid-ask bounce (see e.g. Campbell, Lo, and McKinlay
(1997), page 101), by not taking the transaction price pt as the price of a
trade. Instead, we consider the prevailing mid quote mt as the price of a
trade, where mt = (qb

t + qa
t )/2. The return corresponding to the t-th trade

is then defined as the log return over the prevailing and subsequent mid
quote: rt = log(mt+1/mt). Overnight returns are excluded from the sample.
Since the transaction data provided by the NYSE are not classified according
to the nature of a trade (buy or sell), we use the Lee and Ready (1991)
‘midpoint rule’ to classify a trade. With this rule, the prevailing mid quote
corresponding to a trade is used to decide whether a trade is a buy, a sell,
or undecided. If the price is lower (higher) than the mid quote, it is viewed
as a sell (buy). If the price is exactly at the mid quote, its nature (buy
or sell) remains undecided. To each trade we associate a trade indicator x0

t

which indicates the nature of the trade: 1 (buy), −1 (sell), or 0 (undecided).
From the trade size and the trade indicator we can construct signed log trade
volume xt. If a trade is unclassified, log trade volume will be zero.
To deal with zero-durations, we treat multiple transactions at the same time
as one transaction and aggregate their volume and average bid-ask spreads
and prices. We follow Engle and Russell (1998) and interpret multiple trades
as a single transaction that is split up into several parts.
As a first exploration of our data, we compute sample mean and median

1In the sequel we will refer for simplicity to ‘trade size’, meaning ‘log trade size’.
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of several trade characteristics for each stock, see Table 2. This table shows
that IBM is the most frequently traded stocks in the sample, with the average
duration equal to 11 seconds. Mattel is the least frequently traded stock in
the sample with an average duration of 36 seconds. Average returns are close
to zero for all stocks, average bid-ask spreads vary from 0.087 to 0.160 and
average log trade size varies from 0.328 to 0.857.
For the IBM stock, we also compute sample correlations between the following
variables: unsigned log volume and bid-ask spread (positive), durations and
bid-ask spread (positive), lagged absolute return and durations (negative),
lagged bid-ask spread and durations (positive), lagged unsigned log volume
and durations (negative). The correlations are displayed in Table 3. The
positive contemporaneous correlation between volume and bid-ask spread is
consistent with the Easley and O’Hara (1987) model described in Section
2. The sample correlation between lagged absolute returns and durations
is negative (inventory argument of Dufour and Engle (2000)), while lagged
bid-ask spread is positively correlated to durations (asymmetric information
argument). Lagged volume is negatively correlated to durations (asymmet-
ric information argument with respect to informed traders). Table 3 reports
the exact value of the sample correlations and provides (asymptotic) stan-
dard errors. This table also displays the correlations between lagged and
contemporaneous values of the same variable. We see that these correlations
are considerably larger than the correlations between different variables. The
sign of the correlations is not significant at a 5% level2 for the correlation
between lagged returns and contemporaneous returns and between returns
and durations. We also test for Granger-causality between the variables in
Table 3. The null of no Granger-causality from the variable at the left-hand-
side to that at the right-hand-side is rejected at each reasonable confidence
level. For the other stocks we document similar results.

4 The price impact of trades in a model in

transaction time

In this section we discuss a 3-dimensional VAR-model to capture the de-
pendence among returns, trade size and spreads. This model does not take
into account the possible role of the trading intensity in calendar time. The
approach is based upon on Hasbrouck (1991a, 1991b). We thus specify the

2Unless stated otherwise, we will test all hypotheses at a 5% significance level in this
paper.
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VAR-model (in transaction time) for zt = (rt, stxt, xt)
′ as

A(L)zt = c + υt, IEυt = 0,Var υt = Σt, (1)

where c is a 3-dimensional vector of constants, A(L) an m-th order (3 × 3)
matrix polynomial in the lag operator L. The contemporaneous term in this
matrix polynomial, A0, and the possibly heteroscedastic covariance matrix of
the residuals, Σ, can be normalized in various forms which do not affect the
properties of the model3. We choose the normalization of Hasbrouck (1991a,
1991b) which lets trade size and the product of bid-ask spread and trade
size contemporaneously influence returns. Finally, we assume covariance sta-
tionarity of (zt)t. According to the VAR-specification, the impact of trades
on returns and the correlation between trade sizes depends upon the bid-ask
spread. According to Easley and O’Hara (1987) we would expect that the
impact of trades is larger when the bid-ask spread is wider.
Hasbrouck (1991a, 1991b) explains that the persistent price impact of a tran-
sitory shock in trade volume, is naturally interpreted as the information con-
tent of the trade. The expected price impact of a trade is measured by means
of the generalized impulse response function, cf. Koop et al. (1996). The ex-
pected price impact of a an unexpected trade of size υ after k transactions
is given by the coefficient of Lk in the first element of

υA(L)−1e3, (2)

where e3 = (0, 0, 1)′. Moreover, the long-term impulse response equals the
first element of υA(1)−1e3. We thus see that the disturbances cancel out in
the expected price change. The impulse response function is easily estimated
by replacing the matrix coefficients by the estimated values. The impulse
response function refers to the expected price change of a trade, while the
entire distribution of the price change is of interest. Therefore, we will also
estimate several quantiles of the distribution of the price change, which will
be reported in the form of α% prediction intervals.

Estimation results
In line with Hasbrouck (1991a, 1991b) and Dufour and Engle (2000) we
truncate the model at m = 5. We estimate the VAR-model by means of
OLS and use White (1980)’s heteroskedasticity-consistent covariance matrix.
We test the correctness of the truncation lag by testing for autocorrelation
in the OLS-residuals using the Ljung-Box test. This test is asymptotically
equivalent to the standard LM-test for serial correlation in the residuals of

3The normalization sets the elements (2, 1), (2, 3), (3, 1) and (3, 2) of A0 equal to zero
and imposes

(
Σt

)
12

= 0, IEt(υt) = 0.
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a regression, but computationally less demanding. The results in Table 4
show that for all stocks, both trade size and bid-ask spread have a positive
immediate impact on returns. This empirically confirms the results of Easley
and O’Hara (1987) and confirms Hasbrouck (1991a, 1991b).
We test for Granger-causality for each type of variable in every equation. We
do this by testing the null hypothesis that the coefficients corresponding to
one type of lagged variables are jointly zero. For example, to test whether
or not trade size Granger-causes returns we use a (robust4) Wald-test and
test the null hypothesis H0 : aj,(1,2) = 0 for j = 0, . . . , 5. This null hypothesis
is rejected at a 5% level for all stocks. Similarly, returns, trade size and the
product of bid-ask spread and trade size Granger-cause returns, trade size and
the product of bid-ask spread and trade size. This emphasizes the importance
of taking into account the feedback among the trade characteristics.

The price impact of trades
To investigate the short and long run price impact of a large trade on the
McDonald’s stock, we assume that the market is in a state of ‘equilibrium’.
We define this as a situation in which returns, trade size, and bid-ask spread
are equal to their sample average. We consider a buy consisting of 5,000
shares, which corresponds to the 95% quantile of unsigned trade volume in
our data.
We compute the impulse response functions, including confidence and predic-
tion intervals, for price changes following a trade of 5,000 shares. A paramet-
ric bootstrap from the asymptotic distribution of the OLS-estimates (with
N = 1, 000 draws) is used to obtain confidence intervals for the impulse
response functions.
Figure 1 shows the impulse response function corresponding to the unex-
pected trade of 5,000 shares (in transaction time), including a 90% prediction
interval. After 25 transactions, the impulse response equals 6.6 basis points
(bp). The 95% confidence interval corresponding to the expected price change
is [6.4, 6.8] bp. From Figure 1 we can see that it takes about 10 transactions
before the new efficient price has been reached. Since the average duration
for the McDonald’s stock is 26 seconds, it takes approximately 4.5 minutes
before the new price has been attained.
To estimate prediction intervals, we need some assumptions on the distribu-
tion of the disturbances (υt)t. We do not assume any parametric distribution,
but only assume constant correlation and multiplicative heteroskedasticity cf.
Harvey (1976). We assume that υt = Λ

1/2
t ηt, where Λ(i,i),t = σ2

i,t = exp(γiz̃i,t)
and Λt,(i,j) = ρijσi,tσj,t for i 6= j. Here z̃i,t is a 1×n row vector with regressors

4Robust for heteroskedasticity.
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containing the same regressors as in the corresponding equation of the VAR-
model. Finally, we assume that ηi,t is iid white noise and independent of z̃j,s

for all i, j and s, t. The null hypothesis of no heteroskedasticity is rejected at
each reasonable confidence level for each of the three disturbances. To obtain
prediction intervals we proceed as follows. We randomly draw N = 1, 000
times from the residuals (ηt)t and compute the corresponding price change
following the trade of 5,000 shares. The (1 − α)% prediction interval is ob-
tained by computing the (α/2)% and the (1−α/2)%-quantiles of the realized
price changes.
Apart from the expected price change, figure 1 also displays a 90% prediction
interval for the price change following the large trade. The 90% prediction
interval after 25 trades equals [0.0, 13.0] bp. Thus, with 90% probability, the
true price change following the unexpected trade is between 0.0 bp and 13.0
bp.

5 Modeling the trading intensity

In the VAR-model of Hasbrouck (1991a, 1991b) the price impact of trades
can only be measured in transaction time. It is often useful to have impulse
responses in calendar time, since this allows e.g. for the computation of the
exact time it takes to reach a certain price level. In this section we there-
fore focus on the specification of the data generating process underlying the
trading intensity. We use a version of Engle and Russell (1998)’s ACD-model
for this purpose. We assume that the duration process is strongly exogenous
cf. Engle, Hendry, and Richard (1983) and that (yt)t is generated by a log
ACD(1,1)-model; i.e. yt = ψtεt, where ψt = IE(yt | It−1) and (εt)t identically
distributed with unit mean and independent of It−1 (the information known
up to time τt−1) and independent of υi,s for i = 1, 2, 3 and all s. The log
conditional duration is specified according to

log ψt = ω + α log εt−1 + β log ψt−1.

The model is expressed in terms of diurnally corrected durations which are
also denoted by yt as well, with some abuse of notation. The diurnally cor-
rected durations are obtained by proceeding as in Engle and Russell (1998),
with nodes on 9.30 − 10.00, 10.00 − 11.00, . . . , 14.00 − 15.00, 15.30 − 16.00
hours. We assume covariance stationarity of (yt)t, i.e. β < 1.

Estimation results
We first estimate the diurnal component separately by means of a regres-
sion, cf. Engle and Russell (1998). We then estimate the ACD(1,1)-model by
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means of quasi maximum likelihood (QML), see Drost and Werker (2001)
and use the BHHH-algorithm of Berndt, Hall, Hall, and Hausman (1974) for
the numerical optimization. We assume that the usual regularity conditions
for QML hold. We use the Bollerslev and Wooldridge (1992) robust covari-
ance matrix to obtain consistently estimated standard errors. Note that the
log likelihood function corresponding to QML is the same as the log likeli-
hood function when the εt’s are exponentially distributed. The row with the
caption ‘no feedback’ in Table 5 shows the QML-estimation results of the
ACD(1,1) model for each stock. As usual, the persistence is high. It varies
from 0.96 to 0.97. We used a Wald-test to test for higher-order effects for
which there is no significant evidence. The estimation results for the diurnal
correction factor are available upon request.

6 Dependence of the price impact of trades

on the trading intensity

It is likely that the price impact of trades depends upon the trading intensity,
cf. Diamond and Verrecchia (1987) and Easley and O’Hara (1992). In this
section we follow the line set by Dufour and Engle (2000). With a bivari-
ate VAR-model for returns and trade sign, they investigate how the trading
intensity affect the price impact of trades. We will extend the model of the
previous section along the same line, by incorporating a possible role for
calendar time effects.
As in Section 4, we specify a VAR-model in transaction time for zt =
(rt, stxt, xt)

′, but now A(L) is allowed to depend upon the trading intensity;
i.e.

A(L) = A(yt)(L).

The elements of Aj, for j = 1, . . . , m, are denoted by (aj,(k,`))k,` [k, ` = 1, 2, 3].
To test whether the duration dependence is significant or not, we choose
aj,(k,2) of the form

aj,(k,3) = γ(j,k) + δ(j,k) · log yt−j [j = 1, . . . , 5; k = 1, 2, 3], (3)

similar to Dufour and Engle(2000). In the present model the impact of a trade
on returns depends on the trading intensity. Again we assume covariance
stationarity of (zt)t.

Estimation results
Again we estimate the VAR-model using OLS with truncation at m = 5.
The estimation results for the McDonald’s stock are given in Table 6. Again
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only the results for the return equation are displayed. Similar to the model
of Hasbrouck (1991a, 199b) without durations, we test for Granger-causality.
Again we establish significant Granger-causality from returns, trade size and
the product of bid-ask spread and trade size to (contemporaneous) returns,
trade size and the product of bid-ask spread and trade size. Moreover, the null
hypothesis that the impact of trades does not significantly depends upon the
trading intensity, is rejected for all stocks. Furthermore, we again establish
significant heteroskedasticity in the VAR-disturbances.

The price impact of trades
Again we focus on the price impact of large trades (in transaction and in
calendar time). As in the model of Hasbrouck (1991a, 1991b), we estimate
impulse response functions to measure the price impact. Since the durations
now enter the model in a nonlinear fashion, there are no analytical expressions
for the impulse response function available anymore. We therefore estimate
the impulse response function by simulating N = 1, 000 future paths of
durations. For each path of durations we compute price impact functions as
before and finally, we average the impulse responses over the N simulations
to obtain the final impulse response function.
To simulate future paths of durations, we need values of the ACD-disturbances
(εt)t. Since we used QML to estimate the coefficients of the ACD-model, we
did not make any additional distributional assumptions apart from some
regularity conditions. To obtain random values of the ACD-disturbances, we
randomly draw from the empirical distribution of the ACD-residuals.
We again consider the McDonald’s stock. We compute impulse response func-
tions for the model of Section 5 in two different situations: in a situation of
‘low’ and ‘high’ trading intensity. We compute the 99.5% and the 0.5% quan-
tiles of the durations in our data. Subsequently we initialize the ACD-model
with these durations5. As we compute the impulse response functions by
simulating future paths of durations, we also need to compute the diurnal
correction factor. Therefore, it is necessary that we explicitly specify the time
at which the large trade takes place. Consistent with the daily periodicities
observed in the trading intensity, we assume that the period of slow trading
takes place at 12.30 PM and the fast trading at 10.00 AM. By doing so,
we capture the effect of different trading intensities on the impulse response
functions. As in the model of the previous section, we assume that the trade
characteristics are in a state of equilibrium.
Figure 2 shows the impulse response functions for a trade of size 5, 000 with
‘slow’ and ‘fast’ trading as well as the impulse response function in the model

5Since we use the ACD(1,1)-model we have to initialize one lag of both durations and
conditional expected durations.
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of Hasbrouck (1991a, 199b) in which the trading intensity does not play a
role. We see that 25 transactions after the trade of 5, 000 shares, the impulse
response equals 5.6 bp with slow trading and 7.3 bp with fast trading. Note
that the impulse response of 6.6 bp as computed by the model of Hasbrouck
(1991a, 199b) lies in between these two values. The corresponding 95% con-
fidence intervals equal [5.1, 6.0] bp and [7.0, 7.8] bp. A 95% upper one-sided
confidence interval for the difference between the price impact with slow and
fast trading is [−∞,−2.4] bp, so the price impact with slow trading is sig-
nificantly lower than with fast trading. Moreover, the prediction intervals
show that the distribution of the price change with fast trading first-order
stochastically dominates the distribution with slow trading.
To gain insight into the adjustment process of the price following a large
trade, we now consider the price impact function in calendar time. The im-
pulse response functions in calendar time6 show that it takes approximately
3.5 minutes to reach the new efficient price that follows the unexpected trade
in case of frequent trading7, while this takes about 13.5 minutes in case of
slow trading. See Figure 4. In the model of Hasbrouck (1991a, 199b) without
durations we had estimated the time to reach the new efficient price to be
approximately 4.5 minutes, which lies between the time for fast (3.5 minutes)
and slow trading (13.5 minutes).
Prediction intervals and confidence intervals are estimated as in the model
without durations. The only difference is that durations are averaged out
as described above. The 90% prediction intervals corresponding to the large
trade with slow and fast trading are [0.1, 12.7] bp and [1.5, 15.1] bp, respec-
tively. We thus see that not only the expected price change is larger with fast
trading, also the realized price changes are larger. This means that the entire
distribution of the price change is different in periods of fast and slow trading
and thus depends upon the trading intensity. The distribution of the price
change with fast trading first-order stochastically dominates the distribution
with slow trading. This effect is illustrated in Figure 3.

7 Feedback from the trade characteristics to

the trading intensity

In the previous section we measured the impact of a transitory shock on
prices, assuming that there is no feedback from the trade characteristics

6Since we simulate paths of durations for the computation of the impulse response
function, we can sample each over each five seconds. We then obtain the impulse response
function in calendar time.

7We measure the time it takes to reach 99.5% of the long-run impulse response.
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to the trading intensity. In Section 2 we made clear that it is likely that
there is feedback from the trade characteristics to the trading intensity. This
additional feedback may affect the impulse response functions. In this section
we investigate whether or not the trade characteristics affect the trading
intensity and to what extent the impulse response functions are influenced
by this feedback.
We specify the log ACD(1, 1)-model with feedback as follows. Let again yt =
ψtεt for ψt = IE(yt | It−1) and εt iid with unit mean and independent of It−1

and independent of υi,s for i = 1, 2, 3 and all s. The information known up to
time τt−1 now also includes the trade characteristics up to that moment. The
log conditional expectation is extended with a vector of trade characteristics
in the following way

log ψt = ω + α log εt−1 + β log ψt−1 + ξνt−1. (4)

Here νt−1 is a vector of explanatory variables consisting of trade character-
istics known at time τt−1. Moreover, ξ is the corresponding vector of coeffi-
cients. Again we assume covariance stationarity of (yt)t.
According to Section 2, possible variables to include in νt−1 are returns,
bid-ask spread and trade volume. The effect of trade size and returns on
durations is probably more related to the magnitude of these variables than
their sign, so we would take these variables unsigned. Similar to durations,
trade characteristics such as returns, spreads, and trade volume also show
daily periodicities, cf. Engle and Lunde (1999). Therefore, they have to be
diurnally corrected in the usual way to account this.

Estimation results
In the ACD-model with feedback as specified in equation (4), we take

νt−1 = (|rt−2|, |rt−3|, |st−1xt−1|, |st−2xt−2|, |xt−1|, |xt−2|, Qt−1)
′, (5)

where

Qt−1 = |xt−1 + . . . + xt−5|
represents the imbalance in unsigned volume over the five most recent trans-
actions. Furthermore, the trade characteristics are based upon returns, spreads
and trade volumes that are diurnally corrected in the usual way to account
for daily periodicities. The estimation results for the diurnal components
are available upon request. Again we use QML to estimate the ACD-model.
We used a Wald-test to test for higher-order effects, for which there is no
significant evidence.
The row with the caption ‘with feedback’ in Table 5 displays the estimation
results. The estimation results for the diurnal correction factor are available
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upon request. The null hypothesis of no Granger-causality from the trade
characteristics to the trading intensity is rejected at each reasonable confi-
dence level using a (robust8) Wald-test, making clear that there is significant
feedback between the trading intensity and the various trade characteristics.
To assess the effect of trade characteristics on the trading intensity, note that
(1 − β(1))−1ξ•(1) is the ‘long-term multiplier’ corresponding to the impact
on the (conditional expected) durations of a unit ceteris paribus change in
the (diurnally corrected value of the) trade characteristic. Hence, the sign of
the long run multiplier is given by ξ•(1).
For all stocks the sign of the multiplier corresponding to returns is signifi-
cantly negative. The negative effect of returns on the durations is consistent
with the inventory argument explained in Dufour and Engle (2000): large
returns attract opposite-side traders.
For all stocks the multiplier for trade volume is significantly negative. The
negative impact of trade volume on durations suggests that informed traders
increase trading when they observe large trades. They do this to quickly
benefit from the private information they possess.
For all stocks except Schlumberger the long run multiplier corresponding to
the product of trade volume and bid-ask spread is significantly positive. This
suggests that for these stocks wide spreads increase the trading intensity,
which can be explained using the same arguments as above. Only for Mc-
Donald’s and IBM the multiplier has a positive sign.
Finally, the coefficient of the imbalance in trade volume is significantly neg-
ative for all five stocks. The negative sign of the volume imbalance over the
five most recent transactions suggests some effect of asymmetric information:
when there is imbalance between the buy and the ask side of the market this
may indicate the presence of good or bad news and hence, informed traders
increase trading to quickly benefit from the private information they possess.

The price impact of trades with feedback
Estimation of impulse response functions in the model with feedback is more
involved than in the model without feedback. In the VAR-models considered
until now, the VAR-disturbances cancelled out, see expression (2). With the
additional feedback taken into account in this section, we cannot set future
disturbances in the VAR-model to zero as we did before. This is due to the
fact that the trade characteristics enter the specification for the conditional
duration in a nonlinear way. Therefore, we not only have to average out fu-
ture paths of durations, but also future paths of VAR-disturbances. Moreover,
the durations now depend upon the trade characteristics. This means that we

8We used the robust Wald-test as suggested by Bollerslev and Wooldridge (1992).
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alternately have to simulate durations and trade characteristics. Regarding
the disturbances in the VAR-model, we make the same distributional as-
sumptions as in the model without feedback and proceed as before to obtain
confidence and prediction intervals.
We consider the McDonald’s stock one more time. We estimated impulse
response functions for a trade of 5,000 shares and computed confidence and
prediction intervals. The price change after 25 transactions equals 5.7 bp with
95% confidence interval [4.7, 6.6] bp and 90% prediction interval [0.0, 12.0]
bp with slow trading and 7.5 bp ([6.5, 8.7] bp, [0.0, 15.5] bp) with frequent
trading. In the model without feedback these price changes equal 5.6 bp
([5.1, 6.0] bp, [0.1, 12.7] bp) and 7.3 ([7.0, 7.8] bp, [1.5, 15.1] bp). See Figure
5 and Figure 6, which display the impulse response function in transaction
time. The plots include 90% prediction intervals for a trade of size 5,000 with
and without feedback in case of slow trading. The prediction intervals corre-
sponding to the price impact functions differ in the model with and without
feedback, although the distribution of the price change with fast trading still
first-order stochastically dominates the price impact with slow trading. The
90% quantiles in the model with feedback are below those computed from
the model without feedback. Hence, the feedback has a small effect on the
distribution of the price impact of trades. Similar results are found for the
other stocks, also in periods of fast trading and for other quantiles.

The price impact of trades in calendar time with feedback
Since we now have feedback from the trade characteristics to the trading in-
tensity, we investigate the quantitative effect of the feedback on the impulse
response function in calendar time. We consider the McDonald’s stock one
more time. To see how the trade characteristics influence the trading inten-
sity we consider the distribution of the duration to the first transaction after
the large trade. We compare the result to the distribution of the duration to
the first transaction when no large trade has taken place. For this purpose
we compute expected durations, with corresponding 95% confidence inter-
vals and 90% prediction intervals. We thus compare IE(yt+k | υt = υ) and
IE(yt+k). We estimate the expected durations with the average durations over
the N = 1, 000 simulations that we used to compute the impulse response
function. We consider the situation of slow trading. The average duration
following the unexpected large trade equals 43 seconds with 90% prediction
interval equal to [3, 130] seconds and 95% confidence interval [28, 55] seconds.
The average duration equals 48 seconds without large trade, with prediction
interval [3, 146] seconds and confidence interval [30, 65] seconds. The aver-
age duration directly after trade is significantly shorter than when no large
trade has taken place. The effect of the large trade quickly dies out and the
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difference between the two average durations becomes smaller. Hence, the
additional feedback also has a small impact on the distribution of the du-
rations and this in turn, affects the price impact in calendar time. For the
other stocks and for periods of fast trading we report similar results.

8 Conclusions

Market microstructure theory predicts comovements among bid-ask spread,
trade size, returns and durations in the process of information dissemina-
tion, see e.g. Easley and O’Hara (1987, 1992) and Diamond and Verrecchia
(1987). In this paper we have investigated empirically the two-sided causality
between trade related variables such as returns, bid-ask spread, and trade
volume on one hand and the trading intensity on the other hand for five
frequently traded stocks listed on the NYSE. We established the following
results.
Both the short and long run impact of trades on prices can be measured by
means of the impulse response function. The persistent impact on prices is
naturally interpreted as the information content of the trade. In line with
Dufour and Engle (2000) and Zebedee (2001), we showed that the expected
price impact of a trade is larger in periods of frequent trading. In addition to
this, we showed that the entire distribution of the price impact depends upon
the trading intensity. The distribution of the price change with fast trading
first-order stochastically dominates the distribution with slow trading.
Moreover, we established significant causality from returns, trade size, trade
imbalance, and bid-ask spread to the trading intensity. Ceteris paribus, large
returns, large trades, large trade imbalances and wide spreads tend to increase
the trading intensity.
We have investigated the economic relevance of the impact of the trade char-
acteristics on the trading intensity. The distribution of the price impact of a
large trade differs in the two models, in particular for the higher quantiles.
This holds both in transaction and in calendar time. Thus, the feedback from
the trade characteristics to the trading intensity affects the price impact of
large trades, both in transaction and in calendar time.
There are several extension for further research. Intuitively, the trading in-
tensity is likely to play a more important role for infrequently traded stocks.
Furthermore, since illiquid stocks are likely to be more affected by inventory
effects than frequently traded stocks (cf. Easley, O’Hara, Kiefer and Paper-
man (1996)), this is likely to play a role. Another possible extension deals
with the problem of optimal trading. An important issue for institutional
investors is how large trades have to be split into smaller orders and how the
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individual orders should be spread out over one or more days in an optimal
way. This problem could be investigated using the models proposed in this
paper.
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variables EoH87 EoH92 AP88 DV87

duration, spread ? − − +
yt, st+1

duration, volatility ? − − +
yt, σt+1

duration, mid quote ? ? ? −
yt, mt+1

duration, bid/ask quote ? ? ? −
yt, q

a,b
t+1

volume, spread + ? ? ?
|xt|, st

Table 1:
Implications for the correlation sign

Summary of the implications of market microstructure models for the sign of the correlation between

variables. The studies are Easley and O’Hara (1987, 1992), Admati and Pfleiderer (1988), and Diamond and

Verrecchia (1987), which are abbreviated by EoH87, EoH92, AP88 and DV87, respectively. A question mark

indicates that the model does say anything on the sign of the correlation.
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ticker symbol IBM MAT MCD SLB WMT

company name Int. Business Mattel McDonald’s Schlumberger Wal Mart
Machines Corp. Inc. Corp. Ltd. Stores Inc.

# transactions 140,013 41,822 57,860 63,905 90,042

durations (seconds)
mean 11 36 26 23 16
median 7 19 15 14 10

returns (bp)
mean −0.021 −0.073 −0.002 −0.005 0.033
median 0.000 0.000 0.000 0.000 0.000

spread ($)
mean 0.160 0.086 0.087 0.110 0.097
median 0.125 0.0625 0.0625 0.125 0.0625

volume (log shares)
mean 0.842 0.780 0.328 0.525 0.857
median 0.000 0.000 0.000 0.000 0.000

Table 2:
Sample statistics

Sample statistics (sample mean and median) for volume, durations, spread and returns for the period
August-October, 1999.
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variable/unit correlation

volume, spread 0.157
|xt−1|, st (0.003)

duration, spread 0.005
yt−1, st (0.002)

return, durations −0.008
|rt−2|, yt (0.009)

spread, duration 0.025
st−1, yt (0.002)

volume, duration −0.020
|xt−1|, yt (0.002)

duration, duration 0.062
yt−1, yt (0.004)

return, return 0.003
|rt−1|, |rt| (0.003)

volume,volume 0.250
|xt−1|, |xt| (0.002)

spread,spread 0.772
st−1, st (0.005)

Table 3:
Sample correlations for IBM (asymptotic standard errors between parentheses)
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Figure 1:
Price impact: no durations

Impulse response function and 90% prediction intervals following an unexpected trade of 5,000 shares of the
VAR-model defined in equation (1).
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Figure 2:
Price impact with and without durations

Impulse response functions (trade of 5,000 shares) in the VAR-model defined in equation (1) with and
without durations, applied to the McDonald’s stock.
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Figure 3:
Price impact with durations: slow trading versus fast trading

Impulse response functions and 90% prediction intervals following an unexpected trade of 5,000 shares in the

VAR-model defined in equation (1) with durations. Periods of slow and fast trading are considered, applied to

the McDonald’s stock.
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Figure 4:
Price impact with durations: convergence time

Impulse response function following an unexpected trade of 5,000 shares in the VAR-model of equation (1)
with durations. Period of slow and fast trading are considered, applied to the McDonald’s stock. The
horizontal axes displays the time in seconds starting at the time at which the trade has been initiated.
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Figure 5:
Price impact with durations: feedback versus no feedback

Impulse response function following an unexpected trade of 5,000 shares in the VAR-model defined in
equation (1) with durations. A period of slow trading is considered, with and without feedback, applied to the
McDonald’s stock.
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Figure 6:
Price impact with durations: feedback versus no feedback

Impulse response functions and prediction intervals following an unexpected trade of 5,000 shares in the
VAR-model defined in equation (1) with durations. A period of slow trading is considered, with and without
feedback, applied to the McDonald’s stock.
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