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Abstract

In this paper we review some basic results on linear quadratic differential games. We consider both
the cooperative and non-cooperative case. For the non-cooperative game we consider the open-loop
and (linear) feedback information structure. Furthermore the effect of adding uncertainty is consid-
ered. The overview is based on [9]. Readers interested in detailed proofs and additional results are
referred to this book.
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1 Introduction

Many situations in economics and management are characterized by multiple decision makers/players
and enduring consequences of decisions. The theory which conceptualizes problems of this kind is
dynamic games. Dynamic game theory tries to arrive at appropriate models describing the process.
Depending on the specific problem this model sometimes can be used by an individual decision
maker to optimize his performance. In other cases it may serve as a starting point to introduce
new communication lines which may help to improve upon the outcome of the current process.
Furthermore it is possible by the introduction as "nature” as an additional player in games, which is
trying to work against the other decision makers in a process, to analyze the robustness of strategies
of players w.r.t. worst-case scenarios.

Examples of dynamic games in economics and management science can be found e.g. in [8], [19]
and [27].

In this paper we consider a special class of dynamic games. We study games where the process can
be modeled by a set of linear differential equations and the preferences are formalized by quadratic
utility functions. The so-called linear quadratic differential games. These games are very popular in
literature and a recent exposition (and additional references) of this theory can be found in [9]. The
popularity of these games is caused on the one hand by practical considerations. To some extent
these kinds of differential games are analytically and numerically solvable. On the other hand this
linear quadratic setting naturally appears if the decision makers’ objective is to minimize the effect



of a small perturbation of their optimally controlled nonlinear process. By solving a linear quadratic
control problem, and using the optimal actions implied by this problem, players can avoid most of
the additional cost incurred by this perturbation.

In a dynamic game, information available to the players at the time of their decisions plays
an important role and, therefore, has to be specified before one can analyze these kind of games
appropriately. We will distinguish two cases: the open-loop and the feedback information case,
respectively. In the open-loop information case it is assumed that all players know just the initial state
of the process and the model structure. More specifically, it is assumed that players simultaneously
determine their actions for the whole planning horizon of the process before it starts. Next they
submit their actions to some authority who then enforces these plans as binding commitments. So
players can not react on any deviations occurring during the evolution of the process. In the feedback
information case it is assumed that all players can observe at every point in time the current state
of the process and determine their actions based on this observation.

In this paper we will review some main results for linear quadratic differential games. Both
the case that players cooperate in order to achieve their objectives as the case that players do not
cooperate with eachother are considered. The reason that players do not cooperate may be caused
by individual motivations or for physical reasons. We will take these reasons for granted. In case
the players do not cooperate it seems reasonable that all players individually will try to play actions
which are optimal for them. That is, for actions they can not improve upon themselves. If there
exists a set of actions such that none of the players has an incentive to deviate from his action (or
stated otherwise, given the actions of the other players his choice of action is optimal), we call such
a set of actions a Nash! equilibrium of the game. In general, a game may either have none, one or
more than one Nash equilibrium. This leads on the one hand to the question under which conditions
these different situations will occur and on the other hand, in case there is more than one equilibrium
solution, whether there are additional motivations to prefer one equilibrium outcome to another.

As already indicated above linear quadratic differential games have been studied a lot in the past.
We will review some basic results and algorithms to compute equilibria. As well for the cooperative
case as the open-loop and feedback information case. The outline of the rest of the paper is as follows.
Section 2 considers the cooperative case, section 3 the open-loop information case and section 4 the
feedback information case. Section 5 recalls some results for the case that the system is corrupted
by noise. Finally section 6 reviews some extensions that can be found elsewhere in literature.

For ease of exposition we will just deal with the two-player case. Throughout this paper we will
assume that each player has a (quadratic) cost function (1) he wants to minimize given by

Here the matrices @);, R;; and Qr; are assumed to be symmetric and R;; positive definite (denoted as
R;; > 0). Sometimes some additional positive definiteness assumptions are made w.r.t. the matrices
Q: and Qr,;. In the minimization a state variable x(t) occurs. This is a dynamic variable that can
be influenced by both players. Its dynamics are described by

#(t) = Az(t) + Biuy + Baug, 2(0) = xo, (2)

where A and B;, i = 1,2, are constant matrices, and w; is a vector of variables which can be
manipulated by player i. The objectives are possibly conflicting. That is, a set of policies u; which

IThis after J.F. Nash who proved in a number of papers from 1950-1953 the existence of such equilibria.



is optimal for player one, may have rather negative effects on the evolution of the state variable x
from another player’s point of view.

2 The Cooperative Game

In this section we assume that players can communicate and can enter into binding agreements.
Furthermore it is assumed that they cooperate in order to achieve their objectives. However, no
side-payments take place. Moreover, it is assumed that every player has all information on the state
dynamics and cost functions of his opponents and all players are able to implement their decisions.
Concerning the strategies used by the players we assume that there are no restrictions. That is, every
u;(.) may be chosen arbitrarily from a set & which is chosen such that we get a well-posed problem
(in particular it is chosen such that the differential equation 2 has a unique solution for every initial
state).

By cooperation, in general, the cost one specific player incurs is not uniquely determined anymore.
If all players decide, e.g., to use their control variables to reduce the cost of player 1 as much as
possible, a different minimum is attained for player 1 than in case all players agree to help collectively
a different player in minimizing his cost. So, depending on how the players choose to ”"divide” their
contol efforts, a player incurs different "minima”. Consequently, in general, each player is confronted
with a whole set of possible outcomes from which somehow one outcome (which in general does not
coincide with a player’s overall lowest cost) is cooperatively selected. Now, if there are two strategies
~v1 and 7, such that every player has a lower cost if strategy ~; is played, then it seems reasonable
to assume that all players will prefer this strategy. We say that the solution induced by strategy
v1 dominates in that case the solution induced by the strategy 7,. So, dominance means that the
outcome is better for all players. Proceeding in this line of thinking, it seems reasonable to consider
only those cooperative outcomes which have the property that if a different strategy than the one
corresponding with this cooperative outcome is chosen, then at least one of the players has higher
costs. Or, stated differently, to consider only solutions that are such that they can not be improved
upon by all players simultaneously. This motivates the concept of Pareto efficiency.

Definition 2.1 A set of actions (i1, 1) is called Pareto efficient if the set of inequalities
Ji(u1>u2) < Ji(uAla'&Z)a L= ]-72a

where at least one of the inequalities is strict, does not allow for any solution (u,us) € U. The
corresponding point (J;(1iy, @s), Jo(1iy,42)) € R? is called a Pareto solution. The set of all Pareto
solutions is called the Pareto frontier. O

A Pareto solution is therefore never dominated, and for that reason called an undominated solution.
Typically there is always more than one Pareto solution, because dominance is a property which
generally does not provide a total ordering.

It turns out that if we assume @; > 0, i = 1,2, in our cost functions (1) that there is a simple
characterization for all Pareto solutions in our cooperative linear quadratic game. Below we will
adopt the notation u := (uy,us) and

2
A:={a=(aq,a)|a; >0 and Zai =1}

1=1



2
Theorem 2.2 Assume Q; > 0. Let a; > 0, 1 = 1,2, satisfy Zai = 1. Ifu € U is such that
i=1

2
U . 2']2 )
U € arg 15161511{; a;J;(u)}

then u is Pareto efficient.
Moreover, if U is convez, then for all Pareto efficient . there exist o € A, such that

2
i € arg glelg{; i Ji(7)}, O

Theorem 2.2 shows that to find all cooperative solutions for the linear quadratic game one has
to solve a regular linear quadratic optimal control problem which depends on a parameter a. The
existence of a solution for this problem is related to the existence of solutions of Riccati equations.
In Lancaster et al. [22, Section 11.3], it is shown that if the parameters appearing in an algebraic
Riccati equation are, e.g., differentiable functions of some parameter a (or, more general, depend
analytically on a parameter «), and the maximal solution exists for all @ in some open set V', then
this maximal solution of the Riccati equation will be a differentiable function of this parameter a
too on V (c.q., depend analytically on this parameter « too). Since in the linear quadratic case
the parameters depend linearly on «, this implies that in the infinite horizon case the corresponding
Pareto frontier will be a smooth function of « (provided the maximal solution exists for all ). A
similar statement holds for the finite planning horizon case. In case for all a € V' the cooperative
linear quadratic differential game has a solution or, equivalently, the corresponding Riccati differential
equations have a solution, then it follows in fact directly (see also Perko [26, Theorem 2.3.2] for a
precise statement and proof) that the solution of the Riccati differential equation is a differentiable
function of «, since all parameters in this Riccati differential equation are differentiable functions of
a.

The Pareto frontier does not always have to be a one-dimensional surface in R?, like in the above
corollary. This is, e.g., already illustrated in the two-player case when both players have the same
cost function. In that case the Pareto frontier reduces to a single point in R2.

Example 2.3 Consider the following differential game on government debt stabilization (see van
Aarle et al. [1]). Assume that government debt accumulation, d(t) is the sum of interest payments
on government debt, rd(t), and primary fiscal deficits, f(¢), minus the seignorage (i.e. the issue of
base money) m(t). So,

d(t) = rd(t) + f(t) — m(t), d(0) = do.

Here d(t), f(t) and m(t) are expressed as fractions of GDP and r represents the rate of interest on
outstanding government debt minus the growth rate of output. The interest rate r > 0 is assumed
to be exogenous. Assume that fiscal and monetary policies are controlled by different institutions,
the fiscal authority and the monetary authority, respectively, which have different objectives. The



objective of the fiscal authority is to minimize a sum of time profiles of the primary fiscal deficit,
base-money growth and government debt

Jy = / N e F2(t) + nm2(t) + Ad*(t)}dt.

0

The parameters, n and X express the relative priority attached to base-money growth and government
debt by the fiscal authority. The monetary authorities are assumed to choose the growth of base
money such that a sum of time profiles of base-money growth and government debt is minimized.
That is

Jp = / h e M m2(t) + rd*(t)}dt.

Here 1/k can be interpreted as a measure for the conservatism of the central bank w.r.t. the money
growth. Furthermore all variables are normalized such that their targets are zero, and all parameters
are positive.

Introducing d(t) := e~2%d(t), m := e 2%m(t) and f := e~ 2% f(¢) the above model can be rewritten
as

dt) = (r — %5)61(15) + () — mt), d(0) = do.

Where the cost functions of both players are
7 = /0 TP + () + AP () Yt
and
Jp = /0 Oo{mQ(t) + kd?(t) Ydt.

If both the monetary and fiscal authority agree to cooperate in order to reach their goals, by Theorem
2.2 the set of all Pareto solutions is obtained by considering the simultaneous minimization of

Jo(a) = aJi+ (1 —a)ls
- A (a2 () + B (t) + Gud?(t)

where ) = 1+a(—1+4n) and By = k+a(A—k). This cooperative game problem can be reformulated
as the minimization of

s = [T +1ia]| G 0[]

subject to

d(t) = (r — %5)&(1&) +[1 —1] { / } , d(0) = do.

In Figure 1 we plotted the set of Pareto solutions in case n = 0.1; A = 0.6; k = 0.5; r = 0.06 and
0 = 0.04. O
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Figure 1: Pareto frontier Example 2.3 if n = 0.1; A = 0.6; k = 0.5; » = 0.06 and § = 0.04.

As Theorem 2.2 already indicates, in general, there are a lot of Pareto solutions. This raises the
question which one is the "best”. By considering this question we enter the arena of what is called
bargaining theory.

This theory has its origin in two papers by Nash [24] and [25]. In these papers a bargaining
problem is defined as a situation in which two (or more) individuals or organizations have to agree
on the choice of one specific alternative from a set of alternatives available to them, while having
conflicting interests over this set of alternatives. Nash proposes in [25] two different approaches to the
bargaining problem, namely the axiomatic and the strategic approach. The axiomatic approach lists
a number of desirable properties the solution must have, called the azioms. The strategic approach
on the other hand, sets out a particular bargaining procedure and asks what outcomes would result
from rational behavior by the individual players.

So, bargaining theory deals with the situation in which players can realize -through cooperation-
other (and better) outcomes than the one which becomes effective when they do not cooperate. This
non-cooperative outcome is called the threatpoint. The question is to which outcome the players may
possibly agree.

In Figure 2 a typical bargaining game is sketched (see also Figure 1). The inner part of the
ellipsoid marks out the set of possible outcomes, the feasible set S, of the game. The point d is the
threatpoint. The edge P is the set of individually rational Pareto-optimal outcomes.

We assume that if the agents unanimously agree on a point z = (Ji,Jo) € S, they obtain x.
Otherwise they obtain d. This presupposes that each player can enforce the threatpoint, when he
does not agree with a proposal. The outcome x the players will finally agree on is called the solution
of the bargaining problem. Since the solution depends on as well the feasible set S as the threatpoint
d, it will be written as F'(S,d). Notice that the difference for player i between the solution and the
threatpoint, J; — d;, is the reduction in cost player ¢ incurs by accepting the solution. In the sequel
we will call this difference the utility gain for player i. We will use the notation J := (Ji, J2) to
denote a point in S and x > y(x < y) to denote the vector inequality, i.e. x; > y;(x; < y;), i = 1,2.
In axiomatic bargaining theory a number of solutions have been proposed. In Thomson [28] a survey
is given on this theory. We will present here the three most commonly used solutions: the Nash
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Figure 2: The bargaining game.
Jo
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Figure 3: The Nash Bargaining solution N(S,d).

bargainig solution, the Kalai-Smorodinsky solution and the Egalitarian solution.
The Nash bargaining solution, N(S,d), selects the point of S at which the product of utility gains
from d is maximal. That is,

N
- —d. i < d.
N(S,d) argrgggcil:[l(J, d;), for J € S with J <d

In Figure 3 we sketched the N solution. Geometrically, the Nash Bargaining solution is the point on
the edge of S (that is a part of the Pareto frontier) which yields the largest rectangle (N, A, B, d).

The Kalai-Smorodinsky solution, K (.S, d), sets utility gains from the threatpoint proportional to
the player’s most optimistic expectations. For each agent, the most optimistic expectation is defined
as the lowest cost he can attain in the feasible set subject to the constraint that no agent incurs a
cost higher than his coordinate of the threatpoint. Defining the ideal point as

I(S,d) :==max{J; | J €8, J=<d},



J2

Ji

Figure 4: The Kalai-Smorodinsky solution K (.S, d).
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Figure 5: The Egalitarian solution E(S,d).

the Kalai-Smorodinsky solution is then
K(S,d) :== maximal point of S on the segment connecting d to I(S5,d).

In Figure 4 the Kalai-Smorodinsky solution is sketched for the two-player case. Geometrically, it is
the intersection of the Pareto frontier P with the line which connects the threatpoint and the ideal
point. The components of the ideal point are the minima each player can reach when the other player
is fully altruistic under cooperation.

Finally, the Egalitarian solution, E(S,d), represents the idea that gains should be equal divided
between the players. Formal,

E(S,d) := maximal point in S for which F;(S,d) —d; = E;(S,d) —d;, i,j =1,---,N.

Again, we sketched this solution for the two-player case. In Figure 5 we observe that geometrically
this Egalitarian solution is obtained as the intersection point of the 45°-line through the threatpoint
d with the Pareto frontier P.



Notice that in particular in contexts where interpersonal comparisons of utility is inappropriate
or impossible, the first two bargaining solutions still make sense.

As already mentioned above these bargaining solutions can be motivated using an ”axiomatic
approach”. In this case some people prefer to speak of an arbitration scheme instead of a bargaining
game. An arbiter draws up the reasonable axioms and depending on these axioms, a solution results.

Algorithms to calculate the first two solutions numerically are outlined in [9]. The calculation
of the Egalitarian solution requires the solution of one non-linear constrained equations problem.
The involved computer time to calculate this E-solution approximately equals that of calculating
the N-solution.

3 The Open-Loop Game

In the rest of this paper we consider the case that players do not cooperate in order to realize their
goals. In this section we will be dealing with the open-loop information structure. That is, the case
where every player knows at time ¢ € [0,7] just the initial state zo and the model structure. This
scenario can be interpreted as that the players simultaneously determine their actions, next submit
their actions to some authority who then enforces these plans as binding commitments. For the game
(1,2) we will study the set of Nash equilibria. Formal a Nash equilibrium is defined as follows.

Definition 3.1 An admissible set of actions (uj,u3) is a Nash equilibrium for the game (1,2), if for
all admissible (u1,us) the following inequalities hold:

Ji(uy, uy) < Jy(ug,usy) and Jo(ul, ul) < Jo(uj, us). ]

Here admissibility is meant in the sense that wu;(.) belongs to some restricted set, where this set
depends on the information players have on the game, the set of strategies the players like to use to
control the system, and the system (2) must have a unique solution.

So, the Nash equilibrium is defined such that it has the property that there is no incentive for
any unilateral deviation by any one of the players. Notice that in general one cannot expect to have
a unique Nash equilibrium. Moreover, it is easily verified that whenever a set of actions (uj,u}) is
a Nash equilibrium for a game with cost functions J;, i = 1,2, these actions also constitute a Nash
equilibrium for the game with cost functions «;J;, i = 1,2, for every choice of a; > 0.

Using the shorthand notation S; := B; R;;' B!, we have the following theorem in case the planning
horizon T is finite.

Theorem 3.2 Consider matriz

A =8 =5
M:=|-Q -AT 0 |. (3)
-Q; 0 AT

Assume that the two Riccati differential equations,



have a symmetric solution K;(.) on [0,T].
Then, the two-player linear quadratic differential game (1-2) has an open-loop Nash equilibrium for
every initial state xq if and only if matriz

I
H(T):=[I00e™" | Qir (5)
Qor

1s 1nvertible. Moreover, if for every xo there exists an open-loop Nash equilibrium then the solution
15 unique. The unique equilibrium actions as well as the associated state trajectory can be calculated
from the linear two-point boundary value problem

§(t) = My(t), with Py(0) +Qy(T) = [x5 0 0]". (6)
Here
100 0 0 0
P = 000 and Q = _QlT I 0
000 —Qor 0 1

Denoting [yt (1), yi(t), va(@®)]" = y(t), with yo € R", and y; € R™, i = 1,2, the state and
equilibrium actions are

z(t) = yo(t) and w;(t) = —Ry;' Bl y;(t), i = 1,2,

respectively. U

Assumption (4) is equivalent to the statement that for both players a with this game problem

associated linear quadratic control problem should be solvable on [0, 7']. That is, the optimal control

problem that arises in case the action of his opponent(s) would be known must be solvable for each

player. Generically one may expect that, if there exists an open-loop Nash equilibrium, the set of

Riccati differential equations (4) will have a solution on the closed interval [0, 7] (see [9, p.269)]).
Next consider the set of coupled asymmetric Riccati-type differential equations:

P =—A"P, — PLA— Q, + P,S|P, + P,S;Py; P(T) = Qir (7)

PQI—ATP2—PQA—Q2+PQSQP2+P251P1; PQ(T):QQT (8)

Existence of a Nash equilibrium is closely related to the existenc of a solution of the above set of
coupled Riccati differential equations. The next result holds.

Theorem 3.3 The following statements are equivalent:

a) Forall T € [0,1,) there exists for all xy a unique open-loop Nash equilibrium for the two-player
linear quadratic differential game (1-2).

b) The next two conditions hold on [0,t).

1. H(t) is inwvertible for all t € [0,t1).

10



2. The two Riccati differential equations (4) have a solution K;(0,T) for all T € [0,t,).
c) The next two conditions hold on [0,t;).

1. The set of coupled Riccati differential equations (7,8) has a solution (Py(0,T), P»(0,T))
for all T € [0,t).

2. The two Riccati differential equations (4) have a solution K;(0,T) for all T € [0,t,).

Moreover, if either one of the above conditions is satisfied the equilibrium is unique. The set of
equilibrium actions s in that case given by:

ui(t) = —R;;'BI P(t)®(t,0)q, i = 1,2.

)

Here ®(t,0) satisfies the transition equation

O(t,0) = (A — S, Py — Sy Po)®(t,0); B(t,t) = 1. U

Note that there are situations where the set of Riccati differential equations (7,8) does not have a
solution, whilst there does exist an open-loop Nash equilibrium for the game.
With

_ |, _[A 0] o . _ | @
P—|iP2:|7D—|:O AT}7S.—[5152],andQ.—[Q2 s
the set of coupled Riccati equations (7,8) can be rewritten as the non-symmetric matrix Riccati
differential equation

P=-DP—PA+PSP—-Q; P'(T)=[Qir, Q).

The solution of such a Riccati differential equation can be obtained by solving a set of linear dif-
ferential equations. In particular, if this linear system of differential equations (9), below, can be
analytically solved we also obtain an analytic solution for (Py, P») (see e.g. [2]). Due to this relation-
ship it is possible to compute solutions of (7,8) in an efficient reliable way using standard computer
software packages like, e.g., MATLAB. We have the following result.

Proposition 3.4 The set of coupled Riccati differential equations (7,8) has a solution on [0,T] if
and only if the set of linear differential equations

U(t) Ult) U(T) I
Viit) | =M | Vi(t) |5 | Vi(T) | = | Qur (9)
Va(t) Va(t) Va(T) Qor

has a solution on [0,T], with U(.) nonsingular.
Moreover, if (9) has an appropriate solution (U(.), Vi(.), Va(.)), the solution of (7,8) is obtained as
Pi(t) = V(U (), i =1,2. O

11



Next we consider the infinite planning horizon case. That is, the case that the performance criterion
player ¢ = 1, 2, likes to minimize is:
lim Ji(l'o,ul,UQ,T) (10)

T—o00

where

subject to the familiar dynamic state equation (2). We assume that the matrix pairs (A, B;), i = 1,2,
are stabilizable. So, in principle, each player is capable to stabilize the system on his own.

Since we only like to consider those outcomes of the game that yield a finite cost to both players
and the players are assumed to have a common interest in stabilizing the system, we restrict ourselves
to functions belonging to the set

Us(zo) = {u € Ly | Ji(wo,u) exists in R U {—o0, oo},tlim x(t) = 0} :

A similar remark as for the finite planning horizon case applies here. That is, the restriction to this
set of control functions requires some form of communication between the players.

To find conditions under which this game has a unique equilibrium the next algebraic Riccati equa-
tions play a fundamental role.

0 = ATP,+ P A+Q, — PSi P, — PS> P, (11)

0 = ATP2+P2A+Q2—PQSQPQ—PQS:[Pl; (12)
and

0=ATK; + K;A — K;S;K; +Q;, i =1,2. (13)

Notice that the equations (13) are just the ordinary Riccati equations that appear in the regulator
control problem.

Definition 3.5 A solution (Py, P) of the set of algebraic Riccati equations (11,12) is called
a. stabilizing, if c(A — S1 P — SoP) C C™
b. strongly stabilizing if

i. it is a stabilizing solution, and

ii.

-AT + P S, PS, "
g ({ RS, —AT4+ps, | )T (14)
Here C~ denotes the left open half of the complex plane and C{ its complement. O

The next theorem gives an answer under which conditions the set of algebraic Riccati equations has
a unique strongly stabilizing solution. One of these conditions is that a certain subspace should be

a graph subspace. A subspace V = Im [ §1 } , with X; € R™"™, which has the additional property
2

that X7 is invertible is called a graph subspace (since it can be ”visualized” as the graph of the map:
v — XoX '),

12



Theorem 3.6

1. The set of algebraic Riccati equations (11,12) has a strongly stabilizing solution (Py, Py) if
and only if matriz M has an n-dimensional stable graph subspace and M has 2n eigenvalues
(counting algebraic multiplicities) in Cy .

2. If the set of algebraic Riccati equations (11,12) has a strongly stabilizing solution, then it is
unique.

Then we have the following main result (see also [11]).

Theorem 3.7 The linear quadratic differential game (2,10) has a unique open-loop Nash equilibrium
for every initial state if and only if

1. The set of coupled algebraic Riccati equations (11,12) has a strongly stabilizing solution, and
2. the two algebraic Riccati equations (13) have a stabilizing solution.
Moreover, the unique equilibrium actions are given by
ui(t) = —R;*BI P;®(t,0)x0, i = 1,2. (15)
Here ®(t,0) satisfies the transition equation

O(t,0) = (A — S, Py — Sy Po)®(t,0); B(t,t) = 1. U

To calculate the unique equilibrium numerically one can use the next algorithm.

Algorithm 3.8

Step 1: Calculate the eigenstructure of H; := _122' __j}
If H;, i = 1,2, has an n-dimensional stable graph subspace, then proceed. Otherwise goto Step
5.
A =5 =5
Step 2: Calculate matrix M = | —Q; —AT 0 . Next calculate the spectrum of M. If the
-Q, 0 AT

number of eigenvalues having a strict negative real part (counted with algebraic multiplicities)
differs from n, goto Step 5.

Step 3: Calculate the n-dimensional M-invariant subspace for which Re A < 0 for all A € o(M). That
is, calculate the subspace consisting of the union of all (generalized) eigenspaces associated with

each of these eigenvalues. Let P denote this invariant subspace. Calculate 3n x n matrices
X

X, Y and Z such that Im| Y | =7P.
Z
Verify whether matrix X is invertible. If X is not invertible goto Step 5.

13



Step 4: Denote P, ;=YX !t and P, := ZX~!. Then
ui(t) := —Ri_ilBZTPieAdtxo

2

is the unique open-loop Nash equilibrium strategy for every initial state of the game. Here
Ay = A— 5P, — Sy3P,. The spectrum of the corresponding closed-loop matrix A, equals
o(M|p). The involved cost for player i is xl M;zy, where M; is the unique solution of the
Lyapunov equation:

AqM; + MiAq + Q; + P'S;P, + P;B] R; ' Ry R; ' B; P; = 0.

Step 5: End of algorithm. O

Step 1 in the algorithm verifies whether the two algebraic Riccati equations (13) have a stabilizing
solution. Step 2 and 3 verify whether matrix M has an n-dimensional stable graph subspace. Finally,
Step 4 determines the unique equilibrium.

The next example illustrates the algorithm.

Example 3.9
1. Consider the system

(t) = —22(t) + uy(t) + us(t), x(0) = wo;

and cost functions

Jp = /oo{zz(t) +ui(t)}dt and Jo = /00{4172(15) + ud(t) }dt.

Then,
-2 -1 -1
M=|-1 2 0
-4 0 2

The eigenvalues of M are {—3,2,3}. An eigenvector corresponding with the eigenvalue —3 is
5, 1, 4]T.

So, according Theorem 3.6 item 1, the with this game corresponding set of algebraic Riccati equations
(11,12) has a strongly stabilizing solution. Furthermore, since ¢; > 0, i = 1,2, the two algebraic
Riccati equations (13) have a stabilizing solution. Consequently, this game has a unique open-loop
Nash equilibrium for every initial state xg.

The equilibrium actions and cost are

—1 —4 13
ui(t) = ?x*(t), us(t) = ?x*(t), where ©*(t) = —32*(t) and J; = 7—5363, Jo =

2. Reconsider the game from item 1, but with the system dynamics replaced by
(t) = 2x(t) + ur(t) + ua(t), x(0) = zo.

The with this game corresponding matrix M has the eigenvalues {—3,—2,3}. Since M has two
stable eigenvalues, it follows from Theorem 3.6 item 1 that the with this game corresponding set of
algebraic Riccati equations (11,12) does not have a strongly stabilizing solution. So, see Theorem
3.7, the game does not have for every initial state a unique open-loop Nash equilibrium.

It can be shown (see [9]) that in this example for every initial state there are actually an infinite
number of open-loop Nash equilibria. O

58
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4 The Feedback Game

It is often argued that weak time consistency is a minimal requirement for the credibility of an
equilibrium solution. That is, if the advertised equilibrium action of, say, player one is not weakly
time consistent, player one would have an incentive to deviate from this action during the course of
the game. For the other players, knowing this, it is therefore rational to incorporate this defection
of player one into their own actions, which would lead to a different equilibrium solution. On the
other hand, the property that the equilibrium solution does not have to be adapted by the players
during the course of the game, although the system evolutes not completely as expected beforehand,
is generally experienced as a very nice property. Since the open-loop Nash equilibria in general do
not have this property, the question arises whether there exist strategy spaces I'; such that if we
look for Nash equilibria within these spaces, the equilibrium solutions do satisfy this strong time
consistency property.

Since the system we consider is linear, it is often argued that the equilibrium actions should be a
linear function of the state too. This argument implies that we should consider either a refinement of
the feedback Nash equilibrium concept, or, strategy spaces that only contain functions of the above
mentioned type. The first option amounts to consider only those feedback Nash equilibria which
permit a linear feedback synthesis as being relevant. For the second option one has to consider the
strategy spaces defined by

T = {u(0, T)|us(t) = Fy(t)z(t) where Fj(.) is a piecewise continuous function, i = 1,2},

and consider Nash equilibrium actions (u?,u}) within the strategy space T)/* x T,

It turns out that both equilibrium concepts yield the same characterization of these equilibria for
the linear quadratic differential game, which will be presented below in Theorem 4.5. Therefore, we
will define just one equilibrium concept here.

Definition 4.1 The set of control actions u}(t) = F;*(t)z(t) constitute a linear feedback Nash equi-
librium solution if both

Ji(ul, uy) < Ji(ug,uy) and Jo(uy, up) < Ji(uy, us),
for all u; € T, O

Remark 4.2 In the sequel, with some abuse of notation, sometimes the pair (Fj(t), F5(t)) will be
called a (linear) feedback Nash equilibrium. O

Similar as for open-loop Nash equilibria, it turns out that linear feedback Nash equilibria can be
explicitly determined by solving a set of coupled Riccati equations.

Theorem 4.3 The two-player linear quadratic differential game (1,2) has for every initial state a
linear feedback Nash equilibrium if and only if the next set of coupled Riccati differential equations

15



has a set of symmetric solutions Ki, Ky on [0,T]

Ki(t) = —(A—SyKy(t) Ki(t) — Ki(t)(A — SoKo (1)) + K1 (£)S1 Ki1(t) — Q1 — Ka(t)Sa1 Ka(t),
K(T) = Oir (16)
Ko(t) = —(A—SiK(t) Ky(t) — Ko(t)(A — iK1 (1) + Ko(t)SaKa(t) — Q2 — Ki(t)S1o K (t),
Ky(T) = Qor. (17)

Moreover, in that case there is a unique equilibrium. The equilibrium actions are

ul(t) = —R;'BI K;(t)x(t), i =1,2.

The cost incurred by player i is 8 K;(0)zg, i = 1,2. O

Next we consider the infinite planning horizon case. Like in the open-loop case we consider the
minimization of the performance criterion (10). In line with our motivation for the finite-planning
horizon, it seems reasonable to study Nash equilibria within the class of linear time-invariant state
feedback policy rules. Therefore we shall restrain our set of permitted controls to the constant linear
feedback strategies. That is, to u; = Fyz, with F; € R™*" ¢ = 1,2, and where (F7, F3) belongs to
the set

F = {F = (Fl, Fg) ‘ A + BlFl + BQFQ is stable}.

The stabilization constraint is imposed to ensure the finiteness of the infinite-horizon cost integrals
that we will consider. This assumption can also be justified from the supposition that one is studying
a perturbed system which is temporarily out of equilibrium. In that case it is reasonable to expect
that the state of the system remains close to the origin. Obviously the stabilization constraint is
a bit unwieldy since it introduces dependence between the strategy spaces of the players. So, it
presupposes that there is at least the possibility of some coordination between both players. This
coordination assumption seems to be more stringent in this case than for the equilibrium concepts
we introduced before. However, the stabilization constraint can be motivated from the supposition
that both players have a first priority in stabilizing the system. Whether this coordination actually
takes place, depends on the outcome of the game. Only in case the players have the impression that
their actions are such that the system becomes unstable, they will coordinate their actions in order
to realize this meta-objective and adapt their actions accordingly. Probably for most games the
equilibria without this stabilization constraint coincide with the equilibria of the game if one does
consider this additional stabilization constraint. That is, the stabilization constraint will be in most
cases not active. But there are games where it does play a role.

To make sure that our problem setting makes sense, we assume that the set F is non-empty.
A necessary and sufficient condition for this to hold is that the matrix pair (4, [ By, B |) is
stabilizable.

Summarizing, we define the concept of a linear feedback Nash equilibrium on an infinite-planning
horizon as follows.

Definition 4.4 (F}, Fy) € F is called a stationary linear feedback Nash equilibrium if the following
inequalities hold:

Jl(ZL'Q,Fl*,F;) < Jl(ZL'Q,Fl,F;) and Jg(l’o,Ff,F;) < Jg(l’o,Ff,Fg)
for each zg and for each state feedback matrix F;, ¢ = 1,2 such that (F}, F3) and (Fy, Fy) € F. O
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Unless stated differently, the phrases ”stationary” and ”linear” in the notion of stationary linear
feedback Nash equilibrium are dropped. This, since it is clear from the context here which equilibrium
concept we are dealing with.

Next, consider the set of coupled algebraic Riccati equations

0 = —(A—SK) K| — Ki(A— S,K5) + K191 K — Q1 — K355 Ko, (18)
O = —(A - SlKl)TKQ - KQ(A - 51K1> -+ KQSQKQ - QQ - K1512K1. (19)

Theorem 4.5 below states that feedback Nash equilibria are completely characterized by stabiliz-
ing solutions of (18,19). That is, by solutions (K, K3) for which the closed-loop system matrix
A — S K1 — S5;K5 is stable.

Theorem 4.5 Let (K1, K>,) be a stabilizing solution of (18,19) and define F; := —R;;*BI'K; for
i =1,2. Then (FY, F5) is a feedback Nash equilibrium. Moreover, the cost incurred by player i by
playing this equilibrium action is x} Kz, i =1, 2.

Conversely, if (FY, Fy) is a feedback Nash equilibrium, there ezists a stabilizing solution (K, Ks) of
(18,19) such that F¥ = —R;;' BI'K;. O

Theorem 4.5 shows that all infinite-planning horizon feedback Nash equilibria can be found by solving
a set of coupled algebraic Riccati equations. Solving the system (18,19) is in general a difficult
problem. To get some intuition for the solution set we next consider the scalar two-player game,
where players are not interested in the control actions pursued by the other player. In that case it is
possible to derive some analytic results. In particular it can be shown that in this game never more
than three equilibria occur. Furthermore a complete characterization of parameters which give rise
to either 0, 1, 2, or 3 equilibria is possible.
So, consider the game.

Hawsunu) = [ Ha0) +rahar, i = 1,2, (20)
0
subject to the dynamical system
&(t) = ax(t) + byuy(t) + bous(t), z(0) = xo. (21)

The associated relevant algebraic Riccati equations are obtained from (18,19) by substitution of
Ry = Ry =0, A=a, B =0, Q; = ¢, Ry = r; and s; := b?/r;, i = 1,2, into these equations.
By Theorem 4.5 then a pair of control actions f; := —ff— 5, 1 = 1,2, constitute a feedback Nash
equilibrium if and only if the next equations have a solution =k, 1=12:

Sl.flf% + 28225‘1{172 — 2@2[‘1 —(q1 = 0 (22)
SQZC% + 28125‘1{172 — QCLLUQ — (2 = 0 (23)
a— 8121 — Soxa < 0. (24)

Geometrically, the equations (22) and (23) represent two hyperbolas in the (z1,x3) plane, whereas
the inequality (24) divides this plane into a “stable” and an “anti-stable” region. So, all feedback
Nash equilibria are obtained as the intersection points of both hyperbolas in the “stable” region.
Example 4.6 illustrates the situation.
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Figure 6: A game with three feedback Nash equilibria: a =b; =r; =1,¢; = i, 42 = %

Example 4.6 Considera =b; =r;, =1, i =1,2, ¢ = i and ¢ = % Then the hyperbola describing
(22,23) are

1
= 1—-= — d
i) 2x1+8x1,an
! 1 n 1
T = — —x
! 272 " 102y

respectively.

Both hyperbola, as well as the ”stability-separating” line x5 = 1 — x, are plotted in Figure 6. From
the plot we see that both hyperbola have three intersection points in the stable region. So, the game
has three feedback Nash equilibria. O

Next introduce o; := s;¢; and for all x > 0, satisfying 22 > o, the functions

fi(z) =2 — Va2 —01 — Va2t — oy (25)
fa(z) = 2+ Va2 — o1 — Va2 — oy (26)
f3(x) = 2 — /22 — oy + 2% — 0y (27)
fi(@) = v+ Va2 — oy + /22 — oy (28)

The number of equilibria coincides with the total number of intersection points all of the functions
fi(x), i =1,--- 4, have with the horizontal line a (see Figure 7). Elaboration of this property yields
the following result.

Theorem 4.7 Consider the differential game (20-21), with o; = %’i, 1 = 1,2. Assume, without
loss of generality, that oy > 09. Moreover, let fi(x), i =1,---,4, be defined as in (25-28). Then, if
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la. o1 > 0 and o1 > 09, the game has

- one equilibrium if —oo < a < min f3(x)
- two equilibria if a = min f3(x)

- three equilibria if a > min f3(x).
1b. 0y = 09 > 0 the game has

- one equilibrium if a < \/o|

- three equilibria if a > \/07.
2a. 01 <0 and o1 > 09, the game has

no equilibrium if max fi(x) < a < /—01 — /=09

one equilibrium if either

i) a = max fi(z);

ii) a < —\/—01 — /09, or
i) —y/ 51 — /=53 < 4 < /5T + =03
two equilibria if either

i) —/—01 — /=03 < a < max fi(x), or
i) VT < a < Vo
three equilibria if a > \/—o + /—0s.

2b. 0y = 09 < 0 the game has

no equilibrium if —/—30 < a <0,

one equilibrium if a < —2v/—0,

two equilibria if —2v/—0 < a < —/=30 and 0 < a < 2¢/—0,

three equilibria if a > 2v/—o0. O

Example 4.8
Takea=3,b;=r;=1, i=1,2, ¢t =9 and g = 1. Then, 0; =9 > 1 = g9. Furthermore,

fa(x) —3=2—-3 Va2 -9+ Va2 —1>0, if z > 3.
So, m>1131 fs(x) > 3, and therefore
—00 < a < min f3(x).

According Theorem 4.7, item 1la, the game has one feedback Nash equilibrium. In Figure 7 one can
also see this graphically. O

Below we present a numerical algorithm to calculate all feedback Nash equilibria of the two-player
scalar game (20-21). This algorithm can be generalized for the corresponding N-player scalar game
(see [9]). The algorithm follows from the next result.
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Figure 7: The curves f; for o1 = 9; 09 = 1.

Theorem 4.9

1. Assume that (kq, ko) is a feedback Nash equilibrium strategy. Then the negative of the corre-
sponding closed-loop system parameter \ == —a + Zle sik; > 0 1s an eigenvalue of the matrix
—a S S9 0

q1
M =
@2 0 a —s5

Q
o
|
(V)

I\

(29)

Furthermore, [1,ky, ko, k’lk’g]T is a corresponding eigenvector and \* > Opmaz.

2. Assume that [1, k1, ko, k3T is an eigenvector corresponding to a positive eigenvalue X of M,
satisfying A2 > Opmae, and that the eigenspace corresponding with \ has dimension one. Then,
(k1, ko) is a feedback Nash equilibrium. O

Algorithm 4.10 The following algorithm calculates all feedback Nash equilibria of the linear quadratic
differential game (20,21).

Step 1: Calculate matrix M in (29) and o := max; @

K3

Step 2: Calculate the eigenstructure (A;,;m;), i =1,---  k, of M, where \; are the eigenvalues and m;
the corresponding algebraic multiplicities.

Step 3: For i =1,---,k repeat the following steps:

3.1) If i) \; € R; ii) A; > 0 and iii) A? > o then proceed with Step 3.2 of the algorithm.
Otherwise, return to Step 3.

3.2) If m; = 1 then

20



3.2.1) calculate an eigenvector v corresponding with A; of M. Denote the entries of v by
[vo, v1,va]7. Calculate k; := z—f) and f; = —bjﬁ Then, (fi, f2) is a feedback Nash
equilibrium and J; = k;a3, j = 1,2. Return to Step 3.
If m; > 1 then
3.2.2) Calculate o; := bj—q
3.2.3) For all 4 sequences (t1,t2), t, € {—1,1},

i) calculate
Yy; = >\i+tj\/>\? — 0y, j=12.

i) If \; = —a + Zjvzl y; then calculate k; := %32 and f; := —%%. Then, (fi, fo) is

2 )
bj T

a feedback Nash equilibrium and J; = ka2, j = 1,2.

Step 4: End of the algoritm. O

Example 4.11 Reconsider Example 3.9 where, for a = —2;b; =r; =ql =1 and ¢o =4, i = 1,2,
we calculated the open-loop Nash equilibrium for an infinite planning horizon. To calculate the
feedback Nash equilibria for this game, according Algorithm 4.10, we first have to determine the
eigenstructure of matrix

2 1 1 0

1 -2 0 -1

M=\ o 2
4 1 —2

0 3 3 7

Using Matlab, we find the eigenvalues {—2.6959, —1.4626 + 0.7625¢,2.9543}. Since the square of
2.9543 is larger than o := 4, we have to process Step 3 of the algorithm for this eigenvalue. Since its
algebraic multiplicity is 1, we calculate an eigenvector v corresponding with this eigenvalue 2.9543.
Choosing vT = [vg, vy, vo v3] :=[0.7768, 0.1355, 0.6059, 0.1057] yields then

fy o= 21— 01744 and ky = -2 = 0.7799

Vo Vo

This gives the feedback Nash equilibrium actions

uy(t) = —T—lx(t) = —0.17442(t) and us(t) = —bi—?x

(t) = —0.7799z(t).

The corresponding closed-loop system and cost are
@(t) = —2.9543z(t), 2(0) = xo; and J; = 0.1744x], Jo = 0.7799x7.

Note that these cost almost coincide with the open-loop case. O
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5 The Uncertain Non-cooperative Game

Dynamic game theory brings together three features that are key to many situations in economy;,
ecology, and elsewhere: optimizing behavior, presence of multiple agents, and enduring consequences
of decisions. In this section we add a fourth aspect, namely robustness with respect to variability
in the environment. In our formulation of dynamic games, so-far, we specified a set of differential
equations including input functions that are controlled by the players, and players are assumed to
optimize a criterion over time. The dynamic model is supposed to be an exact representation of the
environment in which the players act; optimization takes place with no regard of possible deviations.
It can safely be assumed, however, that agents in reality follow a different strategy. If an accurate
model can be formed at all, it will in general be complicated and difficult to handle. Moreover it may
be unwise to optimize on the basis of a too detailed model, in view of possible changes in dynamics
that may take place in the course of time and that may be hard to predict. It makes more sense for
agents to work on the basis of a relatively simple model and to look for strategies that are robust
with respect to deviations between the model and reality. In an economic context, the importance
of incorporating aversion to specification uncertainty has been stressed for instance by Hansen et al.
[18].

In control theory, an extensive theory of robust design is already in place; see e.g. Basar [6].
We use this background to arrive at suitable ways of describing aversion to model risk in a dynamic
game context. We assume linear dynamics and quadratic cost functions. These assumptions are
reasonable for situations of dynamic quasi-equilibrium, where no large excursions of the state vector
are to be expected.

Following a pattern that has become standard in control theory two approaches can be considered.
The first one is based on a stochastic approach. This approach assumes that the dynamics of the
system are corrupted by a standard Wiener process (white-noise). Basic assumptions are that the
players have access to the current value of the state of the system and that the positive definite
covariance matrix does not depend on the state of the system. Basically it turns out that under
these assumptions the feedback Nash equilibria also constitute an equilibrium in such an uncertain
environment. For that reason we will not elaborate that case here any further. In the second
approach, a malevolent disturbance input is introduced which is used in the modeling of aversion
to specification uncertainty. That is, it is assumed that the dynamics of the system are corrupted
by a deterministic noise component, and that each player has his own expectation about this noise.
This is modeled by adapting for each player his cost function accordingly. The players cope with this
uncertainty by considering a worst-case scenario. Consequently in this approach the equilibria of the
game, in general, depend on the worst-case scenario expectations about the noise of the players.

In this section we restrict the analysis to the infinite-planning horizon case. We will first consider
the open-loop one-player case.

Consider the problem to find

inf  sup /OOO{:BT(t)Qx(t) +u () Ru(t) — w' (t)Vw(t)}dt (30)

ucls weL(0,00)
subject to
&(t) = Az(t) + Bu(t) + Ew(t), z(0) =z (31)

where R > 0, V > 0 and A is stable.
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This problem formulation originates from the H,, disturbance attenuation control problem and is
in literature known (see [4]) as the soft-constrained open-loop differential game. Since no definiteness
assumptions were made in section 2 w.r.t. the matrices (J; one can use the in that section obtained
results directly to derive the next result.

Corollary 5.1 Consider problem (30,31). Let S := BR™*BT and M := EV—'ET.
This problem has a solution for every initial state xo if

1. The coupled algebraic Riccati equations

ATP + PA+Q— PSP, — PLMP, =
ATPy+ BA—Q— PBMP, — PSP, =

has a strongly stabilizing solution; and
2. The two algebraic Riccati equations

ATK1+K1A—K15K1+Q - 0,
ATKy + KoA — KoMKy — Q =

have a symmetric solution K; such that A — SK; and A — MK, are stable.
Moreover, a worst-case control for the player is
u*(t) = —R'BTPa(t)
whereas the corresponding worst-case disturbance s
w*(t) = =V LET Pya(t).
Here x(t) satisfies the differential equation
#(t) = (A= SP, — MPy)x(t); x(0) = xo. O

In case one additionalyy assumes that () > 0, the above result simplifies even further and one gets the
next result. More results (and, in particular, converse statements) on the soft-constrained open-loop
differential game can be found in [4, Section 4.2.1 and Theorem 9.6] and in [21] some preliminary
results for the multi-player case.

Corollary 5.2 Consider problem (30,31). This problem has a solution for every initial state zo if
the algebraic Riccati equations

A'P+PA+Q—P(S—M)P =0
and
ATK + KA+ KMK +Q = 0.

have a solution P and K, respectively, such that A — (S — M)P and A+ MK are stable.
Furthermore, a worst-case control for the player is

u*(t) = —R™'BT Px(t)
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whereas the corresponding worst-case disturbance is
w*(t) = V'ET Pa(t).
Here x(t) satisfies the differential equation
i(t) = (A— (S — M)P)x(t); z(0) = x.

Moreover, J = zk Pxy. U

From the above corollary we infer in particular that if zy = 0, the best open-loop worst-case controller
is u = 0, whereas the worst-case signal in that case is w = 0. This independent of the choice of V/,
under the supposition that the Riccati equations have an appropriate solution. So if a stable system
is in equilibrium (i.e. o = 0) in this open-loop framework the best reaction to potential unknown
disturbances is not to react.

Next we consider the corresponding problem within a feedback information framework. That is,
consider

t=(A+ BF)r+ Ew, x(0) = x, (32)
with (A, B) stabilizable, F' € F and

J(F,w, ) = /0 oo{:cT(Q + FTRF)z — w"Vwldt. (33)

The matrices ), R and V are symmetric, R > 0, and V' > 0. The problem is to determine for each
o € R™ the value
inf  sup J(F,w,x). (34)
Fe}—wELg(O,oo)
Furthermore, if this infimum is finite, we like to know whether there is a feedback matrix F' € F that
achieves the infimum, and to determine all matrices that have this property. This soft-constrained
differential game can also be interpreted as a model for a situation where the controller designer is
minimizing the criterion (33) by choosing an appropriate F' € F, while the uncertainty is maximizing
the same criterion by choosing an appropriate w € L(0, c0).
A necessary condition for the expression in (34) to be finite is that the supremum

sup  J(F,w,xg)
weL(0,00)

is finite for at least one ' € F. However, this condition is not sufficient. It may happen that the
infimum in (34) becomes arbitrarily small. Below we present a sufficient condition under which the
soft-constrained differential game has a saddle point.

Theorem 5.3 Consider (32-33) and let S and M be as defined before. Assume that the algebraic
Riccati equation
Q+ATX + XA—-XSX+XMX =0 (35)
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has a stabilizing solution X (i.e. A — SX + MX stable) and that additionally A — SX s stable.
Furthermore, assume that there exists a real symmetric n X n symmetric matrix Y that satisfies the
matrix inequality

Q+ATY +YA-YSY >0. (36)

Define F := —R™'B"X and w(t) := V' ET X A=SX+MX)t . Then the matriz F belongs to F, the
function w is in Li(0,00), and for all F € F and w € Li(0, c0)

J(Fa w>$0) < J(Fa w, xO) < J(Fa w, xO)‘
Moreover, J(F,w,x¢) = x% X xy. O
Notice that if @@ > 0, condition (36) is trivially satisfied by choosing Y = 0. Corollary 5.4 summarizes

the consequences of Theorem 5.3 for the problem (34).

Corollary 5.4 Let the assumptions of Theorem 5.3 hold and let X, F, and w be as in that theorem.
Then,

min  su J(F,w,z0) = max J(F,w,zo) =zl Xz
FewaLg(Ig,oo) ( 0) weL4(0,00) ( 0) 0 0
and
werg}zz%gfm) ;‘Telf}_ J(F,w,xo) - %1612 J(F’waxO) = ngxo ]

Next we consider the multi-player soft-constrained differential game. That is, we consider
i(t) = (A+ BiFy + BaFy)a(t) + Bw(t), z(0) = o, (37)

with (A, [By, Bs]) stabilizable, (Fy, I,) € F and
Ji(Fy, Fy,w, z0) = / {27 (t)(Q; + F' Ry Fy + FI RipFy)x(t) — w” (t)Viw(t) Ydt. (38)
0

Here the matrices @Q);, R;; and V; are symmetric, R; > 0, V; > 0, and
F = {(Fl, Fg)‘A + BlFl + BQFQ is stable}.

For this game we want to determine all soft-constrained Nash equilibria. That is, to find all (Fy, F}) €
F such that

sup S (Fy, Fy,w,z0) < sup  Ji(Fy, Fy,w,x), for all (Fy, Fy) € F (39)
weL(0,00) weL(0,00)
and o ) )
sup Jg(Fl,FQ,w,[L’()) < sup JQ(Fl,FQ,’LU,ZL'Q), for all (Fl,Fg) Ef, (40)
weL(0,00) weL(0,00)

for all zop € R™.
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Because the weighting matrix V; occurs with a minus sign in (38), this matrix constrains the
disturbance vector w in an indirect way so that it can be used to describe the aversion to model risk
of player i. Specifically, if the quantity w? Vw is large for a vector w € R?, this means that player i
does not expect large deviations of the nominal dynamics in the direction of Fw. Furthermore, the
larger he chooses V;, the closer the worst case signal he can be confronted with in this model will
approach the zero input signal (that is: w(.) = 0).

From Corollary 5.4, a sufficient condition for the existence of a soft-constrained feedback Nash
equilibrium follows in a straightforward way. Using the shorthand notation

S; = B;R;;'B]', S;j := B;R;;'R;;R;;' B}, i # j, and M, := EV,'ET,

7

we have the next result.

Theorem 5.5 Consider the differential game defined by (37-40). Assume there exist real symmetric
n X n matrices X;, © = 1,2, and real symmetric n X n matrices Y;, 1 = 1,2, such that

— (A= 5X0)TX) — X1(A— SXo) + X151 X — Q1 — X255 Xy — Xi M X, =0, (41)
— (A= 51X1)" Xy — X3(A— 51X1) 4+ X35 X5 — Q2 — X1512X1 — XoMyXo =0, (42)
A—51X] —5Xs+ M X, and A— 51X — S3X5 + My X, are stable, (43)
A— S X, — 5, X, is stable (44)
— (A= %X0)TY) — Yi(A = SXo) + V1S1Y] — Q1 — X251 Xs <0, (45)
— (A= 81X1)TYs — Ya(A = S1.X1) + YaSoYs — Q2 — X1512.X; < 0. (46)

Define F = (F, Fy) by
Fi:=-R;'B'X;, i=1,2.

Then F € F, and F is a soft-constrained Nash equilibrium. Furthermore, the worst-case signal w;
from player i's perspective is

w(t) = ‘/i_lETXie(A—Sle—52X2+M7;X7;)ta,:0.

Moreover the cost for player i under his worst-case expectations are

750(F17F27$0) = $gXi$0, 1= 172

Conversely, if (Fy, Fy) is a soft-constrained Nash equilibrium, the equations (41-44) have a set of
real symmetric solutions (X, Xs). O

Again, notice that if Q; > 0, ¢ = 1,2 and S;; > 0, 4,j = 1,2, the matrix inequalities (45-46) are
trivially satisfied with Y; = 0, ¢ = 1,2. So, under these conditions the differential game defined by
(37-40) has a soft-constrained Nash equilibrium if and only if the equations (41-44) have a set of
real symmetric n X n matrices X;, i =1, 2.

Theorem 5.5 shows that the equations (41-44) play a crucial role in the question whether the
game (37-38) will have a soft-constrained Nash equilibrium. Every soft-constrained Nash equilibrium
has to satisfy these equations. So, the question arises under which conditions (41-44) will have one or
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more solutions and, if possible, to calculate this (these) solution(s). This is a difficult open question.
Similar remarks apply here as were made in Section 4 for solving the corresponding set of algebraic
Riccati equations to determine the feedback Nash equilibria. But, again for the scalar case, one can
devise an algorithm to calculate all soft-constrained Nash equilibria. This algorithm is in the spirit
of Algorithm 4.10 and will be discussed now.

Like in Section 4 we will consider here just the 2-player case under the simplifying assumptions
that b; # 0 and players have no direct interest in eachothers control actions (i.e. S;; =0, ¢ # j). For
more details and the general N-player case we refer again to the literature (][9], [12]). Again lower
case notation will be used to stress the fact that we are dealing with the scalar case. For notational

convenience let € denote either the set {1}, {2} or {1,2}. Furthermore, let
Si S; — My
y e —1 + 2 P = y 47

T = (S + M) Giy Tinae *= MAXT;, p; =
and vq := —1+ QZpi.
i€Q

With some small abuse of notation for a fixed index set €2, 7 will also be denoted without brackets
and comma’s. That is, if e.g. Q = {1,2}, 7 is also written as ;5.
An analogous reasoning as in Theorem 4.9 gives the next Theorem.

Theorem 5.6

1. Assume that (x1,z5) solves (41,42,44) and v; # 0, i =1,2,12. Then X := —a+2?:1 sixy >0
1s an eigenvalue of the matrix

—a S1 S 0
£1q1 a 0 __ 52

. Y1 7 7

M = pP292 0 a _S1 : (48)
72 Y2 Y2
p292  p1g1 _a_

Y12 Y12 Y12

Furthermore, [1,x, Z’Q,l’ll'g]T is a corresponding eigenvector and A\*> > Taz.

2. Assume that [1, 1,29, 237 is an eigenvector corresponding to a positive eigenvalue \ of M,
satisfying A\*> > Tpmaz, and that the eigenspace corresponding with X has dimension one. Then,

(21, 22) solves (41,42,44). O

Using this result we can calculate soft-constrained feedback Nash equilibria by implementing the
next numerical algorithm.

Algorithm 5.7 Let s; := ; and m; := % Assume that for every index set €, yq # 0. Then, the
following algorithm calculates all solutions of (41,42,44).

Step 1: Calculate matrix M in (48) and 7 := max(s; + m;)g;.

Step 2: Calculate the eigenstructure (A\;,n;), @ =1, -k, of M, where \; are the eigenvalues and n;
the corresponding algebraic multiplicities.

Step 3: For i =1,--- , k repeat the following steps:
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3.1) If i) \; € R; ii) A; > 0 and iii) A? > 7 then proceed with Step 3.2 of the algorithm.
Otherwise, return to Step 3.

3.2) If n; = 1 then

3.2.1) calculate an eigenvector z corresponding with A; of M. Denote the entries of z by
20, 21, 22)7. Calculate z; := ﬁ—é Then, (x1,x2) solve (41,42,44). Return to Step 3.

If n; > 1 then
3.2.2) Calculate 7; := s;q;.
3.2.3) For all 4 sequences (t1,t3), tr, € {—1,1},

i) calculate
. Si /2 .
Y; :>\Z+tjsl—|—m >\Z-—O'j,j:1,2.

(2

2
i) If \j =—a+ Zyj then calculate z; := —2.—. Then, (2, x3) solves (41,42,44).

sj+m;
j=1

Step 4: End of the algorithm. O

Example 5.8 Reconsider Example 3.9. That is, consider the two-player scalar game with a = —2,
bi:ezl,mzl,vizé, i:1,2,q1:1andq2:4.

To calculate the soft-constrained Nash equilibria of this game, we first determine all solutions of
(41,42,44). According Algorithm 5.7, we first have to determine the eigenstructure of the next

matrix

2 1 1 0
~1/8 5/2 0  5/4
~1/2 0 5/2  5/4

0 —4/42 —1/42 20/42

M =

Using Matlab, we find that M has the eigenvalues {2.4741,.5435,2.2293 + 0.7671:}. Since none of
the positive eigenvalues squared is larger than 7 = 40, the game has no equilibrium.

Next consider the case v; = 2. In that case numerical computations show that M has the eigenvalues
{—6.7017,—5.0291, —2.4819, 3.0126}. The only positive eigenvalue which is squared larger than 7 = 6
is A = 3.0126. So we have to process Step 3 of the algorithm for this eigenvalue. Since this eigenvalue
has a geometric multiplicity of one, there is one solution satisfying (41,42,44). From the correspond-

ing eigenspace one obtains the solution tabulated below (with ayq = a — s121 — sgzy = —eigenvalue):
eigenvalue | (x1,x9) Qe + M1T1 | Qg + MoTs
3.0126 (0.1735,0.8392) | -2.9259 -2.5931

From the last two columns of this table we see that the solution satisfies the additional conditions
(43). Since ¢; > 0, and thus (45,46) are satisfied with y; = 0, it follows that this game has one
soft-constrained Nash equilibrium. The with this equilibrium corresponding equilibrium actions are

ui(t) = —0.1735x(t) and uj(t) = —0.8392x(t).
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Assuming that the initial state of the system is xy, the worst-case expected cost by the players are
Ji¥ =0.17352% and J5 = 0.8392x¢,

respectively.

Compared to the noise-free case we see that player one’s cost decreases at least by .52% and
player two incurs a cost increase that is maximal 7.60%. In particular this example shows that it is
possible that due to the fact that player 2 takes noise into account in his decision making, player 1
gets better off compared to the noise free case. O

6 Concluding Remarks

In this paper we reviewed some main results in the area of linear quadratic differential games. For
didactical reasons the results were presented for the two-player case. The exposition is based on [9]
where one can find also additional results for the N-player case, proofs, references and a historical
perspective for further reading. In particular this book also contains results on convergence properties
of the finite planning horizon equilibria in case the planning horizon is extended to infinite. An issue
that has not been addressed here.

For the cooperative game one can find an extension of results from section 2 to more general cost
functions (like, e.g., indefinite (); matrices) in [14].

For the non-cooperative game results generalizing on the cost functions considered here can be
found for the open-loop information case in more detail in [10]. For the feedback information case
in [13] the existence of equilibria was considered if players can not observe the state of the system
directly and use static output feedback to control the system.

A review on computational aspects involved with the calculation of the various equilibria can be
found in [16], whereas [15] describes a numerical toolbox that is available on the web to calculate
the unique open-loop Nash equilibrium for an infinite planning horizon.

For the infinite planning horizon case both in the open-loop and the feedback information case the
number of equilibria the game may have can vary between zero and infinity. Theorem 3.7 presents
both necessary and sufficient conditions under which the game has a unique equilibrium for the open-
loop information case. An open problem is whether one can also find for the feedback information
case conditions that are both necessary and sufficient for the existence of a unique equilibrium.
Under such conditions the numerical calculation of this equilibrium is then possible using one of the
algorithms proposed in the literature as described, e.g., in [16].

Several special cases of LQ) differential games have been considered in literature. We like to
mention here two cases where also recently new numerical results were reported.

First, the set of weakly coupled large-scale systems has been studied extensively by e.g. Mukaidani
in a number of papers (see e.g. [23]). This are systems where each player controls a set of states
which are only marginally affected by other players. So, the corresponding L) game almost equals an
ordinary optimal LQ control problem. It can be shown that under the assumption that the coupling
between the various ”subsystems” is marginal the LQ game will have a unique equilibrium.

In [3] the set of positive systems has recently been considered. That is, the case that both the state
and used controls should be positive at any point in time. In this paper conditions are stated under
which such a system has an equilibrium and some algorithms are devised to calculate an equilibrium.

We hope this survey convinced the reader that the last decennia progress has been made in the
theory about linear quadratic differential games and that there are many challenges left in this area
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for research. Without being complete, important references that contributed to this research during
the last decennium are Feucht [17], Weeren [29], Basar and Bernhard [4], Basar and Olsder [5], Kun

[21], van den Broek [7] and Kremer [20].
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