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Abstract

This paper focuses on sharing the costs and revenues of maintaining a public network commu-

nication structure. Revenues are assumed to be bilateral and communication links are publicly

available but costly. It is assumed that agents are located at the vertices of an undirected

graph in which the edges represent all possible communication links. We take the approach

from cooperative game theory and focus on the corresponding network game in coalitional form

which relates any coalition of agents to its highest possible net bene…t, i.e., the net bene…t cor-

responding to an optimal operative network. Although …nding an optimal network in general is

a di¢cult problem, it is shown that corresponding network games are (totally) balanced. In the

proof of this result a speci…c relaxation, duality and techniques of linear production games with

committee control play a role. Su¢cient conditions for convexity of network games are derived.

Possible extensions of the model and its results are discussed.
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1 Introduction

This paper analyzes an allocation problem associated to maintaining a communication network

between various economic agents. Communication links are widely observed in reality and our

framework applies to many such situations like telecommunication, utilities, computer networks

and information technology. The latter application is particularly interesting as …rms increasingly

invest in information technology equipment to improve …rm-wide availability of divisional-speci…c

(or lower-level) information. In principle the model assumes that all links within the underlying

communication network are publicly available apart from possible exogenously determined restric-

tions. The use of a link however is assumed to be costly: a …xed cost is imposed on each link

independent who exactly is using this particular link to establish communication. Next to these

communication costs there are also revenues from communication. These revenues are assumed to

be bilateral, i.e., the actual revenues of a group of agents is determined as the sum of the revenues

of the pairs of those agents within this group who can directly or indirectly communicate via a

sequence of communication links whose costs are accounted for by the group as a whole. If a group

of agents chooses a particular subnetwork to be operative by paying the corresponding communi-

cation costs, this implicitly determines the total bene…ts from communication within this group.

So the problem the agents face is to …nd an optimal operative network, i.e., an operative network

with highest possible net bene…ts. Moreover, next to this optimization problem the agents also face

an allocation problem: how to divide the net bene…ts of an optimal operative network among the

agents?

Our setting constitutes a typical example in which the fundamental economic issue of cost

and revenue allocation resulting from a cooperative endeavor takes place in the context of discrete

optimization on networks (cf. Sharkey (1991)). The analysis will incorporate and intermingle

techniques from optimization and cooperative game theory. Related literature with respect to

restricted cooperation possibilities based on exogenous communication graphs was initiated by

Myerson (1977), for a survey we refer to Slikker,van den Nouweland (2001). Closely related within

this stream of literature is Slikker, van den Nouweland (2000) on network formation with costs for

establishing links. There, however, the costs per link are assumed to be identical and the focus is

not on a bilaterally based revenue structure. In our framework this means that the optimization

problem with respect to …nding the optimal operative communication network is relatively easy to

solve. In the same spirit as this paper on determining optimal operative networks and allocating

the corresponding net bene…ts are e.g. Claus,Kleitman (1973) and Granot, Huberman (1981) on

minimum cost spanning tree problems and games. In our setting, however, the focus is not solely
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on costs but to …nd in some sense an optimal compromise between maximizing joint revenues and

minimizing joint costs.

The paper incorporates two main results. The …rst result is that the core of a network game,

i.e. a cooperative game in coalitional form in which the value of a coalition equals the maximal net

bene…ts of communication, is non-empty. This implies that core-allocation exists and that these

allocations induce stable cooperation in the sense that no subgroup can improve their individual

payo¤s by establishing a communication network on their own. The proof of this result nicely com-

bines the OR-techniques of relaxation and duality with a game theoretic technique of constructing

core elements similar to the one used in Curiel, Derks, Tijs (1989) within the context of linear

production situations (cf. Owen (1975)) with committee control.

The second result provides su¢cient conditions on the network situation such that the correspond-

ing network game is convex. The proof involves relations between optimal networks of various

coalitions. The interest in convexity is motivated by the nice properties these games possess. For

example, for convex games the core is equal to the convex hull of all marginal vectors (cf. Shapley

(1971) and Ichiishi (1992)), and , as a consequence, the Shapley value is the bary centre of the

core (Shapley (1971)). Moreover, the bargaining set and the core coincide, and the kernel coincides

with the nucleolus (cf. Maschler, Peleg, Shapley (1972)). The proof is obtained by establishing

relation between optimal networks of various coalitions.

The outline of the paper is as follows. Section 2 formalizes network situations and its associated

cooperative games. Total balancedness of network games is shown in Section 3. Section 4 focuses

on convexity. In general network games need not be convex. Su¢cient conditions for convexity of

the underlying situation are derived. Possible extensions of the model and its results, in particular

with respect to directed graphs and the incorporation of public nodes are discussed in Section 5.

An appendix contains the more technical proofs.

2 Network games

We will model the agents’ decision problem regarding the use of a public communication network as

a cooperative TU-game. A TU-game is a pair (N; v) with N representing the …nite set of agents and

v : 2N ! IR the characteristic function describing the gains of cooperation v(S) for each coalition

S µ N . By assumption it holds that v(;) = 0. The core of a cooperative game (N; v) is the set of

allocations of v(N) for which no subcoalition S has an incentive to part company with the grand

coalition N because it can do better on its own. Core allocations thus induce stable cooperation.

The core C(v) is de…ned as C(v) = fx 2 IRN j8SµN :
P

i2S xi ¸ v(S);
P

i2N xi = v(N)g. A game
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(N; v) is called balanced if the core is nonempty. In particular, (N; v) is called totally balanced if

the core of each subgame (S; vjS) is nonempty, where vjS(U) = v(U) for all U µ S.

For de…ning network games, let N denote a …nite set of agents. The revenues of communication

between two agents i and j are denoted by bfi;jg, with bfi;jg ¸ 0. Let E µ ffi; jgji; j 2 N; i 6= jg
denote the set of available (communication) links. The cost of using the link fi; jg 2 E is denoted by

kfi;jg, with kfi;jg ¸ 0. Whenever we write fi; jg it is implicitly assumed that i 6= j, an assumption

that holds in the whole paper and which is adopted to avoid unnecessary notational inconveniences.

For communication, coalition S µ N has the links E(S) µ E at its disposal. Note that it may

be possible that a coalition S is allowed to use links that involve agents outside S. So, agents i and

j do not necessarily possess the ownership rights of the link fi; jg in the sense that this link can

only be used by other agents with the permission, i.e. cooperation, of agents i and j. We make the

following natural assumptions:

(i) E connects all players in N ,

(ii) if S µ T , then E(S) µ E(T ),

(iii) E(N) = E.

Two special networks can be viewed as two extreme situations. First, if each coalition can use

all available links, i.e. E(S) = E for all S 2 2N , the network is called fully public. Second, if each

coalition can only use links that connects players in that coalition, i.e.,

E(S) = E \ ffi; jg j i; j 2 Sg for all S 2 2N , the network is called fully private.

A possible operative network for a coalition S µ N is represented by a subset E µ E(S). A com-

munication link fi; jg is used and paid for if and only if fi; jg 2 E. Consequently, the total costs

of the network E equal
P

fi;jg2E kfi;jg. Agents i; j 2 S can communicate with each other in the

network E if there exists a path from agent i to agent j. By de…ning Cfi;jg(E) = 1 if agents i

and j can communicate with each other in E and Cfi;jg(E) = 0 otherwise, the total revenues from

communication in the network E equal
P

fi;jgµS:Cfi;jg(E)=1 bfi;jg. Hence, the net (total) bene…ts

equal
P

fi;jgµS:Cfi;jg(E)=1 bfi;jg ¡ P
fi;jg2E kfi;jg. Because each coalition maximizes the bene…ts of

cooperation, the corresponding cooperative network game (N; v) is de…ned by

v(S) = max
EµE(S)

X
fi;jgµS:Cfi;jg(E)=1

bfi;jg ¡
X

fi;jg2E

kfi;jg; (1)

for all S µ N .



4

Example 2.1 Consider the network given in Figure 2.1 with N = f1; 2; 3; 4g and E = ffi; jgji; j 2
Ng. Each link fi; jg comes with two numbers, the bold faced number represents the revenues bfi;jg

of communication between agents i and j while the italic faced number represents the costs kfi;jg

of the link fi; jg. So, for example, bf1;2g = 2 and kf1;2g = 3.

1

2

4

3

2

10

4

4

4

0
,3

,2

,2

,2

,20

,20

Figure 2.1: A network situation.

To illustrate the e¤ect of the set E(S) of available links on the corresponding game, de…ne

E1(S) = ffi; jgji; j 2 Sg for all S µ N . So, each coalition S µ N can only use links that

connect agents in S, i.e., we have a fully private network. For coalition f1; 3g this means that

E1(f1; 3g) = ff1; 3gg. Since bf1;3g ¡ kf1;3g < 0, coalition f1; 3g will not use the link f1; 3g so

that in the corresponding game v1 we have that v1(f1; 3g) = 0. Coalition f1; 2; 3g has the links

E1(f1; 2; 3g) = ff1; 2g; f1; 3g; f2; 3gg at its disposal. Maximal bene…ts are obtained if they use the

links f1; 2g and f2; 3g, so v1(f1; 2; 3g) = bf1;2g + bf1;3g + bf2;3g ¡ kf1;2g ¡ kf2;3g = 11. In a similar

way one obtains that v1(S) = 2 if S 2 ff2; 3g; f3; 4g; f1; 4gg, v1(S) = 0 if S 2 ff2; 4g; f1; 2gg,

v1(f1; 2; 4g) = 2, v1(f1; 3; 4g) = 14, v1(f2; 3; 4g = 4, and v1(f1; 2; 3; 4g) = 18. Note that in the

optimal network for coalition f1; 2; 3; 4g the links f1; 4g, f2; 3g, and f3; 4g are used.

Next, de…ne E2(S) = E for all S µ N , i.e., a fully public network situation. Since coalition

f1; 3g now can use the links f1; 4g and f3; 4g, the maximal bene…ts that they can obtain equal

v2(f1; 3g) = bf1;3g ¡ kf1;3g ¡ kf3;4g = 6. Note that v2(f1; 3g) > v1(f1; 3g). In a similar way one

obtains that v2(S) = v1(S) for all S µ Nnf1; 3g.

3 Total balancedness

For Example 2.1 determining an optimal communication network is straightforward as the number

of possible networks that need to be considered is relatively low. As the number of agents increases

though, the number of possible networks grows exponentially, making the discrete optimization
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problem in (1) more complex. The following game (N; w) considers a relaxation of the optimization

problem and coincides with the network game (N; v). For all S µ N de…ne w(S) by

w(S) = max
xE ;yfi;jg

X
fi;jgµN

yfi;jgbfi;jg ¡
X
EµE

xE

0@ X
fi;jg2E

kfi;jg

1A (2)

s.t. yfi;jg ¡
X
EµE

xECfi;jg(E) · 0 for all fi; jg µ N

yfi;jg · ufi;jg(S) for all fi; jg µ N

xE · uE(S) for all E µ E
xE ¸ 0 for all E µ E

yfi;jg ¸ 0 for all fi; jg µ N

where (N; ufi;jg) is the unanimity game for coalition fi; jg, that is ufi;jg(S) = 1 if fi; jg µ S and

ufi;jg(S) = 0 otherwise, and (N; uE) is the game de…ned by uE(S) = 1 if E 2 E(S) and uE(S) = 0

otherwise. Note that in an optimal solution it holds that yfi;jg = minfP
EµE(S) xECfi;jg(E); ufi;jg(S)g

for all fi; jg µ N . Hence, we can reduce (2) to the following nonlinear program

w(S) = max
X

fi;jgµS

bfi;jg minf
X

EµE(S)

xECfi;jg(E); 1g ¡
X

EµE(S)

xE

0@ X
fi;jg2E

kfi;jg

1A
s.t. 0 · xE · 1 for all E µ E(S):

(3)

This game can be interpreted as a more dynamic version of the original game, in which the

bene…ts do not only depend on whether or not communication takes place but also on the duration

of the communication in an in…nite horizon setting. For this, let bfi;jg denote the revenues of

communication per time unit and let kfi;jg denote the operational cost per time unit of the link

fi; jg. Suppose further that each network E µ E can be maintained with a certain reliability

xE 2 [0; 1]. The interpretation is that the network E is down (1 ¡ xE) percent of the time due

to repair. Repair is costless but takes some time during which the agents cannot communicate

via the network E. To illustrate, consider the network E = ffi; jgg that enables communication

between agents i and j. Let xE be the reliability of E. Then (1 ¡ xE) percent of the time agents

i and j cannot communicate because the network is down. As a result, the average revenue from

communication per time period equals xfi;jgbfi;jg. Similarly, since the network is in operation for

xfi;jg percent of time, the average operational cost per time period equals xfi;jgkfi;jg. More general,

suppose that agents i; j 2 S are connected in the networks E1; E2 µ E(S), which are maintained

with reliability xE1 and xE2 , respectively. Since (1 ¡ xE1) percent of the time the network E1 is

down, agents i and j can communicate with each other through the network E1 for xE1 percent of

the time. Hence, communication via the network E1 yields agents i and j an average revenue per

time period of xE1bfi;jg. Similarly, communication via the network E2 yields an average revenue
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per time period of xE2bfi;jg. Since agents i and j can not communicate more than 100 percent

of the time and we consider an in…nite horizon, the average total revenue per time period can

be set to minfxE1 + xE2 ; 1gbfi;jg. Similarly, the average operational costs per time period equal

xE1

P
fs;tg2E1

kfs;tg + xE2

P
fs;tg2E2

kfs;tg. Summarizing, (3) expresses that each coalition S µ N

wants to maximize the net average bene…ts (per time unit) over the reliabilities of the networks

E µ E(S) that they can use. Obviously, the maximal average bene…ts (per time unit) equals at least

the maximal bene…ts a coalition can obtain in the static case, i.e. v(S), because they can always

choose the network that maximizes (1) with reliability 1 and all other networks with reliability 0.

The following proposition states the converse is also true. The proof of this proposition can be

found in the Appendix.

Proposition 3.1 For each S µ N it holds that v(S) = w(S).

The game (N; w) as de…ned in (2) closely resembles the formulation of linear production games

with committee control as considered by Curiel, Derks, Tijs (1989). Linear production games were

introduced in Owen (1975) and describe the bene…ts of cooperation when agents combine their

individual resource bundles to produce and subsequently sell commodities. Curiel, Derks, Tijs

(1989) extended this model to linear production situations with committee control, where resource

bundles may be controlled by coalitions instead of individuals. They showed that linear production

games with committee control have a nonempty core if the cooperative games describing the re-

sources are simple games with nonempty cores. To illustrate the similarity, consider, for instance,

the variable yfi;jg. The ‘resources’ for yfi;jg are described by the unanimity game (N; ufi;jg), that

is coalition S has an amount 1 of the resource yfi;jg if fi; jg µ S and an amount zero otherwise.

This means that for coalition S it holds true that yfi;jg · ufi;jg(S). Note that the game (N; ufi;jg)

has a nonempty core. Similarly, we have that xE · uE(S). So, for the reliability of the network

E 2 E, the ’resources’ are described by the game (N; uE) with uE(S) = 1 if and only if E 2 E(S).

This game, however, is not balanced if, for example, E(S) = E for all S µ N . So, the game de…ned

in (2) does not meet the balancedness conditions of Curiel, Derks, Tijs (1989). Nevertheless, the

same type of techniques as in Curiel, Derks, Tijs (1989) can be used to show that the game (N; w),

and hence (N; v), has a nonempty core.

Theorem 3.2 The network game (N; v) is totally balanced.
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The proof of Theorem 3.2 is given in the Appendix. It considers an optimal solution

(¸¤
fi;jg)fi;jgµN ; (¹¤

fi;jg)fi;jgµN ; (º¤
E)EµE of the dual program with respect to w(N):

w(N) = min
¸fi;jg;¹fi;jg;ºE

X
fi;jgµN

¸fi;jg +
X
EµE

ºEuE(N)

s.t.: ¸fi;jg + ¹fi;jg ¸ bfi;jg; for all fi; jg µ NX
fi;jgµN

¹fi;jgCfi;jg(E) · ºE +
P

fi;jg2E kfi;jg for all E µ E

¸fi;jg ¸ 0 for all fi; jg µ N

¹fi;jg ¸ 0 for all fi; jg µ N

ºE ¸ 0 for all E µ E:

(4)

Moreover, it shows that the allocation xi = 1
2

P
j2Nnfig ¸¤

fi;jg, i 2 N , is a core-allocation for the

game (N; v).

In its present formulation the dual program (4) consists of

2n(n ¡ 1) + 2jEj variables and n(n ¡ 1) + 2jEj restrictions. It includes a variable and a restriction

for each network E 2 E. Since the number of possible networks can be very large, this program is

not (very) practical to solve. We can reduce the number of variables and restrictions to 1
2n(n ¡ 1)

and 2n, respectively.

A coalition S µ N is called connected if S is connected in the graph (N; E(S)). For a connected

coalition S, T ¤(S) denotes the set of edges of a minimum cost spanning tree for S in the graph

(N; E(S)).

Proposition 3.3

w(N) =
X

fi;jgµN

bfi;jg ¡ max
¹fi;jg

X
fi;jgµN

¹fi;jg (5)

s:t: :
X

fi;jgµS

¹fi;jg · ·(S) for all connected S µ N

¹fi;jg ¸ 0 for all fi; jg µ N

where for each connected S µ N , ·(S) := minfP
fi;jgµS bfi;jg;

P
fi;jg2T ¤(S) kfi;jgg.

Given an optimal solution (¹¤
fi;jg)fi;jgµN of the optimization problem (5), a core-allocation now

can be de…ned by xi = 1
2

P
j2Nnfig(bfi;jg ¡ ¹¤

fi;jg) for all i 2 N . Furthermore, notice that an

equal distribution of bfi;jg ¡ ¹¤
fi;jg is not necessary to obtain a core-allocation, any nonnegative

distribution su¢ces.



8

Each optimal solution of the dual program (5) results in core-allocations for the corresponding

network game by varying the nonnegative distribution of the pairwise net bene…ts bfi;jg ¡ ¹¤
fi;jg.

However, not every core-allocation can be obtained in this way. The following example shows that

the core can be much larger than the allocations that arise from optimal dual solutions.

Example 3.4 Consider the network in Figure 3.1. We assume that E(S) = ffi; jgji; j 2 Sg for all

S µ N , .i.e., the fully private case.

1 2

3

12, 10

2, 1 2, 1

Figure 3.1: A 3-person network.

The resulting network game (N; v) is given by v(fig) = 0 for all i 2 N , v(f1; 2g) = 2, v(f1; 3g) =

v(f2; 3g) = 1, and v(f1; 2; 3g) = 14. The core of this game is depicted in Figure 3.2. The set of

optimal solutions f¹¤
f1;2g; ¹¤

f1;3g; ¹¤
f2;3gg of the dual program (5).

v(N) = bf1;2g + bf1;3g + bf2;3g ¡ max
¹fi;jg

¹f1;2g + ¹f1;3g + ¹f2;3g

s.t.: ¹f1;2g · 10

¹f1;3g · 1

¹f2;3g · 1

¹f1;2g + ¹f1;3g + ¹f2;3g · 2

¹fi;jg ¸ 0 for all fi; jg µ N;

is given by Conv(f(2; 0; 0); (1; 1; 0); (0; 1; 1)g). All core-allocations corresponding to optimal dual

solutions are depicted in Figure 3.2.
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Figure 3.2: The core of a network game.

As Figure 3.2 illustrates, not all core-allocations are supported by optimal dual solutions. This

‘de…ciency’ is caused by the fact that core-allocations based on optimal dual solutions give each

pair of connected agents i and j their bene…ts of communication bfi;jg minus some part of the total

costs of the optimal network that they have to pay. Since in our example, the optimal network

costs 2, the pair f1; 2g receives at least bf1;2g ¡ 2 = 10, which is much more than they can obtain

on their own, i.e. v(f1; 2g) = 2. To make a cheap connection, the pair of agents 1 and 2 need the

cooperation of agent 3. Agent 3, however, does not pro…t from the additional bene…ts that the pair

f1; 2g makes in this way, if the allocation is based on an optimal dual solution.

4 Convexity

This section considers two special classes of network situations that yield convex network games.

Both focus on network situations in which the underlying graph is a tree. As before, a public

network situation is called fully public if E(S) = E for all S µ N . It is called fully private if

E(S) = E \ ffi; jgg j i; j 2 Sg.

Before we present the convexity result, we recall the de…nition of a convex game. A game (N; v)

is called convex if for k 2 N and any S µ T µ Nnfkg it holds

v(T [ fkg) ¡ v(T ) ¸ v(S [ fkg) ¡ v(S):

The following example illustrates that both fully public and private network games need not be

convex.
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Example 4.1 Consider the network presented in Example 2.1. The fully public network game

(N; v1) is not convex since

v1(f1; 3; 4g) ¡ v1(f1; 3g) = 14 ¡ 6 > 18 ¡ 11 = v1(f1; 2; 3; 4g) ¡ v1(f1; 2; 3g):

Similarly, the fully private network game (N; v2) is not convex since

v2(f1; 3; 4g) ¡ v2(f1; 3g) = 14 ¡ 0 > 18 ¡ 11 = v2(f1; 2; 3; 4g) ¡ v2(f1; 2; 3g):

For network situations in which the available communication links form a tree, the fully public

and fully private case leads to a convex network games.

Theorem 4.2 For any fully public or private network situation in which E is a tree, the corre-

sponding network game is convex.

For the proof of this theorem we refer to the Appendix. The driving lemma is the following.

Lemma 4.3 Consider a network situation where E is a tree. Let S µ T µ N . If D is an optimal

network for S and F is and optimal network for T , then D [ F is also optimal for T .

In particular, Lemma 4.3 implies that within a network situation where E is a tree, any optimal

network for a speci…c coalition S can be extended to an optimal operational network for a larger

coalition containing S. Note that with respect to the network of Example 4.1 this is not the case

for e.g. S = f1; 2; 3g in both the fully public and private setting.

5 Concluding remarks

In network games, the structure of the revenues of communication have a bilateral additive struc-

ture; there are no synergies or positive/negative external e¤ects of communication. Similar to

Myerson (1977), one could describe the revenues of communication by a cooperative TU-game

(N; b) with the interpretation that b(S) equals the revenues of communication for coalition S µ N .

The corresponding spanning network game (N; vb) is then de…ned by

vb(S) = max
EµE(S)

X
U2C(E)

b(U \ S) ¡
X

fi;jg2E

kfi;jg (6)

for all S µ N , where C(E) denotes the connected components of N in the network E. The core of

such a game, however, can be empty, even if the game (N; b) has a nonempty core, as the following

example shows.
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Example 5.1 Let N = f1; 2; 3g; E = ffi; jg j i; j 2 Ng and let b(fig) = 0 for all i 2 N , b(f1; 2g) =

b(f1; 3g) = b(f2; 3g) = 4, and b(f1; 2; 3g) = 6. Note that the core of the game (N; b) equals

f(2; 2; 2)g. Next, let the maintenance costs of the links be equal to one, that is kfi;jg = 1 for all

fi; jg µ N and take E(S) = ffi; jgji; j 2 Sg for all S µ N . Then the corresponding network

game (N; vb) equals vb(fig) = 0 for all i 2 N , vb(f1; 2g) = vb(f1; 3g) = vb(f2; 3g) = 3, and

vb(f1; 2; 3g) = 4. The core of this game is empty.

Note that Example 5.1 features negative external e¤ects of communication since b(f1; 2; 3g) <

b(f1; 2g) + b(f1; 3g) + b(f2; 3g). The following example shows that also in the positive externality

case with C(b) 6= ;, the corresponding network game may not be balanced.

Example 5.2 Let N = f1; 2; 3; 4g; E = ffi; jg j i; j 2 Ng and let b(fig) = 0 for all i 2 N ,

b(S) = 2 if jSj = 2, b(S) = 9 if jSj = 3, and b(f1; 2; 3; 4g) = 13. Note that the game (N; b) satis…es

b(S) ¸ P
fi;jgµS b(fi; jg) for all S µ N . Next, let the maintenance costs of each link be kfi;jg = 4,

and take E(S) = ffi; jgji; j 2 Sg for all S µ N . Then the corresponding network game (N; vb)

equals vb(S) = 0 if jSj · 2, vb(S) = 1 if jSj ¸ 3. The core of this game is empty while the core of

the game (N; b) is nonempty.

From the examples above it follows that the structure of the revenues b(S); S µ N , requires

more than just balancedness to induce stable cooperation in network games. A su¢cient condition

is additivity, that is b(S) =
P

fi;jgµS b(fi; jg).

A second extension concerns the characteristics of communication links. In the present model

communication links are undirected. Dependent on the underlying situation, directed links may

be more appropriate to consider, for instance when the links in the network represent railroad or

motor tra¢c. Our results on network games extend straightforwardly to directed networks.

The …nal extension introduces public nodes. To illustrate, consider the network presented in

Figure 5.1 with three agents and one public node. In the absence of the public node, the minimum

cost spanning tree for the agents 1, 2, and 3 costs 2
p

2. If, however, they can also use the links

that connect to the public node, the minimum cost spanning tree is less expensive at 22
3 . Public

nodes have a practical meaning in network games as they can represent, for instance, switchboards

in a telephone network or switches in railroads.

For the inclusion of public nodes in our model, let M with N \ M = ; denote the …nite set of

public nodes and de…ne E µ ffi; jgji; j 2 N [ Mg as the set of available links. In particular, let

E(S) µ E be the available links for coalition S µ N and make the same basic assumptions as in

Section 2. Notice that we do not assume that each coalition can use all existing links with public



12

Figure 5.1: Public nodes in a network.

nodes. In that sense, the term public node may be somewhat misleading. The extended network

game (N; vp) is now de…ned by by

vp(S) = max
EµE(S)

X
fi;jgµS:Cfi;jg(E)=1

bfi;jg ¡
X

fi;jg2E

kfi;jg (7)

for all S µ N . Note that the agents do not obtain any bene…ts from connections with public nodes.

Only connections with other agents might be pro…table. It can be shown that the corresponding

network game is totally balanced.

6 Appendix

Proof of Proposition 3.1: The proof consists of three steps. In the …rst step, we reformulate

the optimization problem (2) based on some properties of the optimal solution. In the second step,

we show that there exists an optimal solution of (2) in which the reliability xE¤ of a given optimal

network E¤ µ E(S) with respect to (1) is equal to one. Hence, we may assume that xE¤ = 1.In the

third step we then show that there exists an optimal solution of (2) in which xE = 0 for all other

networks E µ E(S) with E 6= E¤, so that w(S) = v(S).

Let S µ N . Consider the linear program as formulated in (2). Since xE = 0 for all E 6µ E(S) we

can restrict our attention to E µ E(S). For ease of notation, let E(S) = fE1; E2; : : : ; Erg such thatP
fi;jgµS:Cfi;jg(Ep)=1 bfi;jg ¡ P

fi;jg2Ep
kfi;jg ¸ P

fi;jgµS:Cfi;jg(Eq)=1 bfi;jg ¡ P
fi;jg2Eq

kfi;jg if p < q.

So, E1 is an optimal network with respect to (1). Further, de…ne Kp =
P

fi;jg2Ep
kfi;jg for each

p 2 f1; 2; : : : ; rg.

First, note that yfi;jg · min
nPr

p=1 xpCfi;jg(Ep); ufi;jg(S)
o

for all fi; jg µ N , where xp is a short

notation for xEp . Furthermore, since each yfi;jg has a nonnegative contribution to the objective

function, it follows that in an optimal solution yfi;jg = min
nPr

p=1 xpCfi;jg(Ep); ufi;jg(S)
o

for all
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fi; jg µ N . Hence,

w(S) = max
xp;yfi;jg

X
fi;jgµN

yfi;jgbfi;jg ¡
rX

p=1

xpKp

s.t. yfi;jg ¡
rX

p=1

xpCfi;jg(Ep) · 0 for all fi; jg µ N

yfi;jg · ufi;jg(S); for all fi; jg µ N

xp · 1 for all p 2 f1; 2; : : : ; rg
xp ¸ 0 for all p 2 f1; 2; : : : ; rg

yfi;jg ¸ 0 for all fi; jg µ N

(8)

= max
0·xp·1

X
fi;jgµN

min

8<:
rX

p=1

xpCfi;jg(Ep); ufi;jg(S)

9=; bfi;jg ¡
rX

p=1

xpKp

= max
0·xp·1

X
fi;jgµS

min

8<:
rX

p=1

xpCfi;jg(Ep); 1

9=; bfi;jg ¡
rX

p=1

xpKp

De…ne the function R : IRr
+ ! IR by

R(x) =
X

fi;jgµS

min

8<:
rX

p=1

xpCfi;jg(Ep); 1

9=; bfi;jg ¡
rX

p=1

xpKp; (9)

for each x 2 IRr
+, so that w(S) = maxfR(x)j0 · xp · 1; 8p2f1;2;:::;rgg. Furthermore, notice

that R(ep), where ep 2 IRr
+ is de…ned by ep

q = 1 if q = p and ep
q = 0 otherwise, equals the

net total bene…ts of the network Ep, i.e. revenues minus costs. So, by de…nition we have that

R(e1) ¸ R(e2) ¸ : : : ¸ R(er) and v(S) = R(e1). Hence, it is su¢cient to show that w(S) = R(e1).

Next, we show that it is optimal to take x1 = 1. Let x 2 IRr
+ be such that x1 < 1. We

distinguish two cases:
Pr

p=1 xp < 1 and
Pr

p=1 xp ¸ 1.

If
Pr

p=1 xp < 1, then

R(x) =
X

fi;jgµS

minf
rX

p=1

xpCfi;jg(Ep); 1gbfi;jg ¡
rX

p=1

xpKp

=
X

fi;jgµS

0@ rX
p=1

xpCfi;jg(Ep)

1A bfi;jg ¡
rX

p=1

xpKp

=
rX

p=1

X
fi;jgµS:Cfi;jg(Ep)=1

xpbfi;jg ¡
rX

p=1

xpKp

=
rX

p=1

xp

0@ X
fi;jgµS:Cfi;jg(Ep)=1

xpbfi;jg ¡ Kp

1A
=

rX
p=1

xpR(ep)

·
rX

p=1

R(e1) · R(e1):
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Hence, each vector x with
Pr

p=1 xp < 1 yields lower bene…ts than the vector e1.

If
Pr

p=1 ¸ 1 and x1 < 1, then take y 2 IRr
+ such that y1 = 1 and yp 2 [0; xp] such thatPr

p=2(xp ¡ yp) = 1 ¡ x1. So, the increase from x1 to y1 = 1 is compensated by decreasing xp to yp

for all p > 1. Since

R(y) =
X

fi;jgµS

min

8<:
rX

p=1

ypCfi;jg(Ep); 1

9=; bfi;jg ¡
rX

p=1

ypKp

and

R(x) =
X

fi;jgµS

min

8<:
rX

p=1

xpCfi;jg(Ep); 1

9=; bfi;jg ¡
rX

p=1

xpKp

we have that

R(y) ¡ R(x) =

=
X

fi;jgµS

0@minf
rX

p=1

ypCfi;jg(Ep); 1g ¡ minf
rX

p=1

xpCfi;jg(Ep); 1g
1A bfi;jg

¡
rX

p=1

(yp ¡ xp)Kp

=
X

fi;jgµS:Cfi;jg(E1)=1

0@minf
rX

p=1

ypCfi;jg(Ep); 1g ¡ minf
rX

p=1

xpCfi;jg(Ep); 1g
1A bfi;jg

+
X

fi;jgµS:Cfi;jg(E1)=0

0@minf
rX

p=1

ypCfi;jg(Ep); 1g ¡ minf
rX

p=1

xpCfi;jg(Ep); 1g
1A bfi;jg

¡(y1 ¡ x1)K1 ¡
rX

p=2

(yp ¡ xp)Kp

=
X

fi;jgµS:Cfi;jg(E1)=1

0@1 ¡ minf
rX

p=1

xpCfi;jg(Ep); 1g
1A bfi;jg

+
X

fi;jgµS:Cfi;jg(E1)=0

0@minf
rX

p=2

ypCfi;jg(Ep); 1g ¡ minf
rX

p=2

xpCfi;jg(Ep); 1g
1A bfi;jg

¡(1 ¡ x1)K1 ¡
rX

p=2

(yp ¡ xp)Kp

=
X

fi;jgµS:Cfi;jg(E1)=1

(1 ¡ x1)bfi;jg +
X

fi;jgµS:Cfi;jg(E1)=1

0@x1 ¡ minf
rX

p=1

xpCfi;jg(Ep); 1g
1A bfi;jg

+
X

fi;jgµS:Cfi;jg(E1)=0

0@minf
rX

p=2

ypCfi;jg(Ep); 1g ¡ minf
rX

p=2

xpCfi;jg(Ep); 1g
1A bfi;jg

¡(1 ¡ x1)K1 ¡
rX

p=2

(yp ¡ xp)Kp
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= (1 ¡ x1)R(e1) +
X

fi;jgµS:Cfi;jg(E1)=1

0@x1 ¡ minf
rX

p=1

xpCfi;jg(Ep); 1g
1A bfi;jg

+
X

fi;jgµS:Cfi;jg(E1)=0

0@minf
rX

p=2

ypCfi;jg(Ep); 1g ¡ minf
rX

p=2

xpCfi;jg(Ep); 1g
1A bfi;jg

¡
rX

p=2

(yp ¡ xp)Kp

¸ (1 ¡ x1)R(e1) +
X

fi;jgµS:Cfi;jg(E1)=1

(x1 ¡ 1)bfi;jg

+
X

fi;jgµS:Cfi;jg(E1)=0

0@ rX
p=2

ypCfi;jg(Ep) ¡
rX

p=2

xpCfi;jg(Ep)

1A bfi;jg

¡
rX

p=2

(yp ¡ xp)Kp

= (1 ¡ x1)R(e1) +
X

fi;jgµS:Cfi;jg(E1)=1

(x1 ¡ 1)bfi;jg

+
X

fi;jgµS:Cfi;jg(E1)=0

0@ rX
p=2

(yp ¡ xp)Cfi;jg(Ep)

1A bfi;jg ¡
rX

p=2

(yp ¡ xp)Kp

= (1 ¡ x1)R(e1) +
X

fi;jgµS:Cfi;jg(E1)=1

rX
p=2

(yp ¡ xp)bfi;jg

+
X

fi;jgµS:Cfi;jg(E1)=0

0@ rX
p=2

(yp ¡ xp)Cfi;jg(Ep)

1A bfi;jg ¡
rX

p=2

(yp ¡ xp)Kp

= (1 ¡ x1)R(e1) +
X

fi;jgµS

0@ rX
p=2

(yp ¡ xp)Cfi;jg(Ep)

1A bfi;jg ¡
rX

p=2

(yp ¡ xp)Kp

= (1 ¡ x1)R(e1) +
rX

p=2

X
fi;jgµS:Cfi;jg(Ep)=1

(yp ¡ xp)bfi;jg ¡
rX

p=2

(yp ¡ xp)Kp

= (1 ¡ x1)R(e1) +
rX

p=2

(yp ¡ xp)

0@ X
fi;jgµS:Cfi;jg(Ep)=1

bfi;jg ¡ Kp

1A
= (1 ¡ x1)R(e1) +

rX
p=2

(yp ¡ xp)R(ep)

¸ (1 ¡ x1)R(e1) +
rX

p=2

(yp ¡ xp)R(e1)

= 0;

where the …rst inequality follows from a ¡ minfb; 1g ¸ a ¡ 1 for all a; b 2 IR and

minfa; 1g ¡ minfb; 1g ¸ a ¡ b if a · b; the subsequent equality follows from
Pr

p=2 yp ¡ xp = x1 ¡ 1

and the last inequality follows from yp ¡ xp · 0 and R(e1) ¸ R(ep) for all p 2 f2; 3; : : : ; rg.

So, there exists an optimal solution for which x1 = 1. What remains to show is that R(e1) ¸
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R(x) for all x 2 IRr
+ with x1 = 1. Therefore, let x be such a vector. Then

R(x) =
X

fi;jgµS

minf
rX

p=1

xpCfi;jg(Ep); 1gbfi;jg ¡
rX

p=1

xpKp

=
X

fi;jgµS:Cfi;jg(E1)=1

minf
rX

p=1

xpCfi;jg(Ep); 1gbfi;jg ¡ x1K1

+
X

fi;jgµS:Cfi;jg(E1)=0

minf
rX

p=1

xpCfi;jg(Ep); 1gbfi;jg ¡
rX

p=2

xpKp

=
X

fi;jgµS:Cfi;jg(E1)=1

bfi;jg ¡ K1

+
X

fi;jgµS:Cfi;jg(E1)=0

minf
rX

p=1

xpCfi;jg(Ep); 1gbfi;jg ¡
rX

p=2

xpKp

= R(e1) +
X

fi;jgµS:Cfi;jg(E1)=0

minf
rX

p=1

xpCfi;jg(Ep); 1gbfi;jg ¡
rX

p=2

xpKp

so that

R(e1) ¡ R(x) = ¡
X

fi;jgµS:Cfi;jg(E1)=0

minf
rX

p=1

xpCfi;jg(Ep); 1gbfi;jg +
rX

p=2

xpKp

¸ ¡
X

fi;jgµS:Cfi;jg(E1)=0

rX
p=1

xpCfi;jg(Ep)bfi;jg +
rX

p=2

xpKp

= ¡
rX

p=1

X
fi;jgµS:Cfi;jg(E1)=0 and Cfi;jg(Ep)=1

xpbfi;jg +
rX

p=2

xpKp

= ¡
rX

p=2

xp

0B@ X
fi;jgµS:Cfi;jg(E1)=0 and Cfi;jg(Ep)=1

bfi;jg ¡ Kp

1CA
¸ 0;

where the …rst inequality follows from the fact that minfa; bg · a and the last equality follows from

ffi; jg µ S : Cfi;jg(E1) = 0 and Cfi;jg(Ep) = 1g = ; for p = 1. Regarding the last inequality, sup-

pose that
P

fi;jgµS:Cfi;jg(E1)=0 and Cfi;jg(Ep)=1 bfi;jg ¡ Kp > 0 for some p 2 f2; 3; : : : ; rg. Consider

the network E = E1 [ Ep. Then

X
fi;jgµS:Cfi;jg(E)=1

bfi;jg ¡
X

fi;jg2E

kfi;jg =

¸
X

fi;jgµS:Cfi;jg(E1)=1 or Cfi;jg(Ep)=1

bfi;jg ¡
X

fi;jg2E

kfi;jg

=
X

fi;jgµS:Cfi;jg(E1)=1

bfi;jg +
X

fi;jgµS:Cfi;jg(E1)=0 and Cfi;jg(Ep)=1

bfi;jg ¡
X

fi;jg2E

kfi;jg

=
X

fi;jgµS:Cfi;jg(E1)=1

bfi;jg ¡
X

fi;jg2E1

kfi;jg
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+
X

fi;jgµS:Cfi;jg(E1)=0 and Cfi;jg(Ep)=1

bfi;jg ¡
X

fi;jg2Ep

kfi;jg

= R(e1) +
X

fi;jgµS:Cfi;jg(E1)=0 and Cfi;jg(Ep)=1

bfi;jg ¡
X

fi;jg2Ep

kfi;jg

> R(e1);

which contradicts the optimality of E1. Hence,P
fi;jgµS:Cfi;jg(E1)=0 and Cfi;jg(Ep)=1 bfi;jg ¡ Kp · 0. 2

Proof of Theorem 3.2: From Proposition 3.1 we know that it is su¢cient to prove that the

game (N; w) is balanced. Recall that

w(N) = max
xE ;yfi;jg

X
fi;jgµN

yfi;jgbfi;jg ¡
X
EµE

xE

0@ X
fi;jg2E

kfi;jg

1A
s.t.: yfi;jg · ufi;jg(N); for all fi; jg µ N

yfi;jg ¡
X
EµE

xECfi;jg(E) · 0 for all fi; jg µ N

xE · uE(N) for all E µ E
xE ¸ 0 for all E µ E

yfi;jg ¸ 0 for all fi; jg µ N

From duality theory we know that

w(N) = min
¸fi;jg;¹fi;jg;ºE

X
fi;jgµN

¸fi;jg +
X
EµE

ºEuE(N)

s.t.: ¸fi;jg + ¹fi;jg ¸ bfi;jg; for all fi; jg µ NX
fi;jgµN

¹fi;jgCfi;jg(E) · ºE +
P

fi;jg2E kfi;jg for all E µ E

¸fi;jg ¸ 0 for all fi; jg µ N

¹fi;jg ¸ 0 for all fi; jg µ N

ºE ¸ 0 for all E µ E:

(10)

Let ¸¤
fi;jg; ¹¤

fi;jg; º¤
E be an optimal solution of (10) such that º¤

~E
> 0 for some ~E µ E(N). We

will show that there exists an optimal solution for which º ~E = 0. The optimality of ¸¤
fi;jg; ¹¤

fi;jg; º¤
E

implies that
P

fi;jgµN ¹¤
fi;jgCfi;jg( ~E) = º¤

~E
+

P
fi;jg2 ~E kfi;jg. Since kfi;jg ¸ 0 for all fi; jg µ N ,

we can take ¢¹fi;jg 2 [0; ¹¤
fi;jg] such that

P
fi;jgµN :Cfi;jg( ~E)=1 ¢¹fi;jg = º¤

~E
and ¢¹fi;jg = 0 for

all fi; jg µ N with Cfi;jg( ~E) = 0. For each fi; jg µ N , de…ne ¹fi;jg = ¹¤
fi;jg ¡ ¢¹fi;jg and

¸fi;jg = maxfbfi;jg ¡ ¹fi;jg; 0g, and for each E µ E, de…ne º ~E = 0 and ºE = º¤
E for all E µ E

such that E 6= ~E. Note that ¸fi;jg; ¹fi;jg; ºE is a feasible solution for the dual program because

¹fi;jg · ¹¤
fi;jg for all fi; jg µ N . Furthermore, note that ¢¸fi;jg = ¸¤

fi;jg ¡ ¸fi;jg



18

= maxfbfi;jg ¡ ¹¤
fi;jg; 0g ¡ maxfbfi;jg ¡ ¹fi;jg; 0g · ¢¹fi;jg for all fi; jg µ N . Now, it holds that

X
fi;jgµN

¸fi;jg +
X
EµE

ºEuE(N)

=
X

fi;jgµN

¸¤
fi;jg +

X
fi;jgµN

¢¸fi;jg +
X

EµE:E 6= ~E

ºEuE(N)

·
X

fi;jgµN

¸¤
fi;jg +

X
fi;jgµN

¢¹fi;jg +
X

EµE:E 6= ~E

º¤
EuE(N)

=
X

fi;jgµN

¸¤
fi;jg + º¤

~E
+

X
EµE:E 6= ~E

º¤
EuE(N)

=
X

fi;jgµN

¸¤
fi;jg +

X
EµE

º¤
EuE(N);

so that ¸fi;jg; ¹fi;jg; ºfi;jg is also an optimal solution. Hence, we may assume that º¤
E = 0 for all

E µ E(N).

Let ¸¤
fi;jg; ¹¤

fi;jg; º¤
E be an optimal solution with º¤

E = 0 for all E µ E(N). De…ne the allocation

z 2 IRN by zi =
P

j2N
1
2¸¤

fi;jg for all i 2 N . We will show that z is a core-allocation for the game

(N; w). Take S µ N . Duality theory implies that

w(S) = min
¸fi;jg;¹fi;jg;ºE

X
fi;jgµN

¸fi;jgufi;jg(S) +
X
EµE

ºEuE(S)

s.t.: ¸fi;jg + ¹fi;jg ¸ bfi;jg; for all fi; jg µ NX
fi;jgµN

¹fi;jgCfi;jg(E) · ºE +
P

fi;jg2E kfi;jg for all E µ E

¸fi;jg ¸ 0 for all fi; jg µ N

¹fi;jg ¸ 0 for all fi; jg µ N

ºE ¸ 0 for all E µ E:

(11)

Since ¸¤
fi;jg; ¹¤

fi;jg; º¤
E is a feasible solution of this optimization program, we have that

w(S) ·
X

fi;jgµN

¸¤
fi;jgufi;jg(S) +

X
EµE

º¤
EuE(S)

=
X

fi;jgµS

¸¤
fi;jg

=
X
i2S

X
j2S

1

2
¸¤

fi;jg

·
X
i2S

X
j2N

1

2
¸¤

fi;jg

=
X
i2S

zi;

where the …rst equality follows from uE(S) = 0 if E 6µ E(S) and º¤
E = 0 if E µ E(S) µ E(N).

Hence, z is a core-allocation of the game (N; w). By using the same argument (and it can be used

by the monotonicity condition (ii) in Section 2 one can show that the game is totally balanced if
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E(U) µ E(S) for all U; S µ N with U µ S. 2

Proof of Proposition 3.3: Consider the dual of w(N) as formulated in (4). From the proof of

Theorem 3.2 we know that º¤
E = 0 for all E 2 E(N). Hence, it holds true that

w(N) = min
¸fi;jg;¹fi;jg

X
fi;jgµN

¸fi;jg

s.t.: ¸fi;jg + ¹fi;jg ¸ bfi;jg; for all fi; jg µ NX
fi;jgµN

¹fi;jgCfi;jg(E) · P
fi;jg2E kfi;jg for all E µ E(N)

¸fi;jg ¸ 0 for all fi; jg µ N

¹fi;jg ¸ 0 for all fi; jg µ N:

Next, we show that

ff¹fi;jggfi;jgµN j8EµE(N) :
X

fi;jgµN

¹fi;jgCfi;jg(E) ·
X

fi;jg2E

kfi;jgg = (12)

ff¹fi;jggfi;jgµN j8SµN;S connected :
X

fi;jgµS

¹fi;jg ·
X

fi;jg2T ¤(S)

kfi;jgg:

The µ-part in (12) follows from the fact that T ¤(S) 2 E(N) for all S µ N . To see the ¶-part,

take E µ E(N) and let C(E) = fU1; U2; : : : ; Umg be the maximally connected components of N

with respect to the network E. This means that the agents in Up are connected to each other while

agents in Up are not connected to agents in Uq, p 6= q. ThenX
fi;jgµN

¹fi;jgCfi;jg(E) =
mX

p=1

X
fi;jgµUp

¹fi;jgCfi;jg(E) =
mX

p=1

X
fi;jgµUp

¹fi;jgCfi;jg(EjUp)

=
mX

p=1

X
fi;jgµUp

¹fi;jg ·
mX

p=1

X
fi;jg2T ¤(Up)

kfi;jg

·
mX

p=1

X
fi;jg2EjUp

kfi;jg =
X

fi;jg2E

kfi;jg;

where the second inequality follows from the fact that T ¤(Up) is a minimum cost spanning tree for

Up.

Having (12), the dual can now be reduced to

w(N) = min
¸fi;jg;¹fi;jg

X
fi;jgµN

¸fi;jg

s.t.: ¸fi;jg + ¹fi;jg ¸ bfi;jg; for all fi; jg µ NX
fi;jgµS

¹fi;jg · P
fi;jg2T ¤(S) kfi;jg for all S µ N; S connected

¸fi;jg ¸ 0 for all fi; jg µ N

¹fi;jg ¸ 0 for all fi; jg µ N:
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Clearly, ¹fi;jg · bfi;jg and ¸fi;jg = 0 if ¹fi;jg ¸ bfi;jg. Consequently, it holds for an optimal dual

solution that ¸fi;jg = bfi;jg ¡ ¹fi;jg for all fi; jg µ N . Using these observations in the dual program

we obtain

w(N) =
X

fi;jgµN

bfi;jg ¡ max
¹fi;jg

X
fi;jgµN

¹fi;jg

s.t.: ¹fi;jg · bfi;jg; for all fi; jg µ NX
fi;jgµS

¹fi;jg · P
fi;jg2T ¤(S) kfi;jg for all S µ N; S connected

¹fi;jg ¸ 0 for all fi; jg µ N:

The restrictions ¹fi;jg · bfi;jg imply that
P

fi;jgµS ¹fi;jg · P
fi;jgµS bfi;jg for all S µ N . De…ne

·(S) = minfP
fi;jgµS bfi;jg;

P
fi;jg2T ¤(S) kfi;jgg for all S µ N . Then

w(N) =
X

fi;jgµN

bfi;jg ¡ max
¹fi;jg

X
fi;jgµN

¹fi;jg

s.t.:
X

fi;jgµS

¹fi;jg · ·(S) for all S µ N; S connected

¹fi;jg ¸ 0 for all fi; jg µ N;

which proves the result. 2

Proof of Lemma 4.3: Consider a network situation where E is a tree and denote the correspond-

ing network game by (N; v). For convenience we denote the set of optimal operative networks for

coalition U with respect to (1) by E¤(U). Let S µ T µ N and take D 2 E¤(S) and F 2 E¤(T ).

Then D can be partitioned in D1 and D2 such that D1 µ F and D2 µ EnF . We show that

D [ F 2 E¤(T ), or equivalently, that D2 [ F 2 E¤(T ). It follows that

X
fi;jgµT :Cfi;jg(D2[F )=1

bfi;jg ¡
X

fi;jg2D2[F

kfi;jg

=
X

fi;jgµT :Cfi;jg(D2)=1

bfi;jg +
X

fi;jgµT :Cfi;jg(F )=1

bfi;jg

+
X

fi; jg µ T : Ci;j(D2 [ F ) = 1;

Cfi;jg(F ) = 0;

Cfi;jg(D2) = 0

bfi;jg ¡
X

fi;jg2D2[F

kfi;jg

= v(T ) +
X

fi;jgµT :Cfi;jg(D2)=1

bfi;jg +
X

fi; jg µ T : Cfi;jg(D2 [ F ) = 1;

Cfi;jg(F ) = 0;

Cfi;jg(D2) = 0

bfi;jg ¡
X

fi;jg2D2

kfi;jg
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¸ v(T ) +
X

fi;jgµS:Cfi;jg(D2)=1

bfi;jg +
X

fi; jg µ S : Cfi;jg(D1 [ D2) = 1;

Cfi;jg(D1) = 0;

Cfi;jg(D2) = 0

bfi;jg ¡
X

fi;jg2D2

kfi;jg

= v(T ) +
X

fi; jg µ S : Cfi;jg(D1 [ D2) = 1;

Cfi;jg(D1) = 0

bfi;jg ¡
X

fi;jg2D2

kfi;jg

= v(T ) + v(S) ¡ (
X

fi;jgµS:Cfi;jg(D1)=1

bfi;jg ¡
X

fi;jg2D1

kfi;jg

¸ v(T );

where the …rst equality holds since D2 [ F is a forest, the …rst inequality holds since D1 µ F and

S µ T and the last inequality from the fact that D1 [ D2 2 E¤(S). 2

Proof of Theorem 4.2: Let (N; v) be a network game corresponding to a fully public or

fully private network situation where E is a tree. Take S µ T µ Nnfkg. We will show that

v(S [ fkg) ¡ v(S) · v(T [ fkg) ¡ v(T ). According to Lemma 4.3 we can take optimal operative

networks E¤(S); E¤(S [ fkg); E¤(T ); E¤(T [ fkg) corresponding to coalition S; S [ fkg; T; T [ fkg,

respectively, such that E¤(S) µ E¤(S [ fkg) µ E¤(T [ fkg) and E¤(S) µ E¤(T ) µ E¤(T [ fkg).

De…ne the set A1 as the set of edges that is contained in E¤(S [ fkg) and E¤(T ), but not in

E¤(S), i.e.,

A1 = ffi; jg 2 E j fi; jg 2 E¤(S [ fkg)nE¤(S); fi; jg 2 E¤(T )g:

Note that A1 µ E(S) is satis…ed directly in fully public but also in fully private networks.

The set A2 is the set of edges that is contained in E¤(S [ fkg), but not in E¤(S) and not in

E¤(T ), i.e.,

A2 = ffi; jg 2 E j fi; jg 2 E¤(S [ fkg)nE¤(S); fi; jg 62 E¤(T )g:

Observe that the de…nitions of A1 and A2 imply that E¤(S [ fkg) can be written as the union of

three disjoint sets, i.e.,

E¤(S [ fkg) = E¤(S) [ A1 [ A2: (13)

Next we introduce the following notation. With A; B µ E and fi; jg µ N we de…ne CA
fi;jg(B) = 1

if the unique path between i and j in E is contained in B and this path contains at least one link

of A; otherwise we set CA
fi;jg(B) = 0.
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Now we can make the following observation

X
fi; jg µ S : CA1

fi;jg(E¤(S [ fkg) = 1

CA2
fi;jg(E¤(S [ fkg) = 0

bij ¡
X

fi;jg2A1

kij · 0: (14)

To prove (14) note that the revenues to S of the network E¤(S) [ A1 µ E(S) is smaller than or

equal to the revenues to S of E¤(S), since E¤(S) is an optimal network. Hence the extra revenues

to S by adding A1 to E¤(S) are smaller than or equal to zero, i.e.,

X
fi;jgµS:C

A1
fi;jg(E¤(S)[A1)=1

bij ¡
X

fi;jg2A1

kij · 0 (15)

From equation (13) it follows that

ffi; jg µ S : CA1

fi;jg(E¤(S) [ A1) = 1g =

ffi; jg µ S : CA1

fi;jg(E¤(S [ fkg) = 1; CA2

fi;jg(E¤(S [ fkg) = 0g;

which proves (14).

Now, we introduce the set A3, which consists of all edges in E¤(T [ fkg) that are not in

E¤(S [ fkg) and not in E¤(T ), i.e.,

A3 = ffi; jg 2 E j fi; jg 2 E¤(T [ fkg)nE¤(T ); fi; jg 62 E¤(S [ fkg)g:

Observe that the de…nitions of A2 and A3 imply that E¤(T [ fkg can be written as the union

of three disjoint sets, i.e.,

E¤(T [ fkg) = E¤(T ) [ A2 [ A3: (16)

Now, we have

v(S [ fkg) ¡ v(S)

=
X

i2S:Cfi;kg(E¤(S[fkg))=1

bfi;kg +
X

fi; jg µ S : Cfi;jg(E¤(S [ fkg)) = 1

Cfi;jg(E¤(S)) = 0

bfi;jg

¡
X

fi;jg2E¤(S[fkg)nE¤(S)

kfi;jg

=
X

i2S:Cfi;kg(E¤(S[fkg)=1

bfi;kg +
X

fi; jg µ S : CA1
fi;jg(E¤(S [ fkg) = 1

CA2
fi;jg(E¤(S [ fkg) = 0

bfi;jg ¡
X

fi;jg2A1

kfi;jg

+
X

fi;jgµS:C
A2
fi;jg(E¤(S[fkg)=1

bfi;jg ¡
X

fi;jg2A2

kfi;jg
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·
X

i2S:Cfi;kg(E¤(S[fkg)=1

bfi;kg

+
X

fi;jgµS:C
A2
fi;jg(E¤(S[fkg)=1

bfi;jg ¡
X

fi;jg2A2

kfi;jg

·
X

i 2 T : Cfi;kg(E¤(T [ fkg) = 1

CA3
fi;kg(E¤(T [ fkg) = 0

bfi;kg

+
X

fi; jg µ T : CA2
fi;jg(E¤(T [ fkg) = 1

CA3
fi;jg(E¤(T [ fkg) = 0

bfi;jg ¡
X

fi;jg2A2

kfi;jg

·
X

i 2 T : Cfi;kg(E¤(T [ fkg) = 1

CA3
fi;kg(E¤(T [ fkg) = 0

bfi;kg

+
X

fi; jg µ T : CA2
fi;jg(E¤(T [ fkg) = 1

CA3
fi;jg(E¤(T [ fkg) = 0

bij ¡
X

fi;jg2A2

kfi;jg

+
X

fi;jgµT [fkg:C
A3
fi;jg(E¤(T [fkg)=1

bfi;jg ¡
X

fi;jg2A3

kfi;jg

=
X

i2T :Cfi;kg(E¤(T [fkg)=1

bfi;kg +
X

fi; jg µ T : Cfi;jg(E¤(T [ fkg) = 1

Cfi;jg(E¤(T )) = 0

bfi;jg

¡
X

fi;jg2E¤(T [fkg)nE¤(T )

kfi;jg

= v(T [ fkg) ¡ v(T )

where the …rst equality holds by the de…nition of a network game, the second equality follows

from (13),the …rst inequality holds by (14), the second inequality is a consequence of E¤(S [fkg µ
E¤(T [ fkg and the de…nition of A3, the third inequality holds by the optimality of E¤(T [ fkg),

thee third equality follows from (16) and the last equality holds by the de…nition of a network

game. 2
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