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Abstract

In this paper we are especially interested how to optimize the production/inventory

control for a manufacturer of sweets, under the following circumstances: short production

lead times in combination with an intermittent demand pattern for the so-called B-taste

items. As for A-taste items a compound renewal approach appeared appropriate to

control inventory/production, we formulated and tested an adjusted compound renewal

approach for B-taste items, because a certain condition was not satis�ed for those items.

For several experiments where the condition was not satis�ed and the adjusted approach

was compared with the unadjusted one, it then appears that the di¤erence in performance

was small. So the �rst two moments with the compound renewal model appear to be

more robust than the restriction given in the literature.

Keywords: production/inventory control, compound renewal demand processes
JEL Codes: C44, M11

1 Introduction and problem formulation

Let�s introduce the problem by �rst describing the production process of a manufacturer

of sweets in the Netherlands, namely Van Melle Inc. (see Stoop [6]). Van Melle in Breda,

The Netherlands, produces the following brands: Mentos, Dummy and Meller. The
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production process consists of several phases: preparation of di¤erent kinds of dough,

gumming, drying, attaching a protective layer, sorting and packing.

During the production process, the mint-drops are sorted by thickness. After this

sorting process has taken place, the semi-�nished products are kept in stock until they

can be packed. In order to have an optimal production/inventory control procedure,

taking into account the uncertainty in demand for di¤erent types of mint-drops, the

company wanted to have a trade-o¤ between inventory costs and the direct availability

of products for customers. Specifying a given customer service level, one would like to

know at which inventory level of the semi-�nished products a new production run should

be started and how large it should be. However, as the so-called B-tastes have a less

smooth demand pattern than A-tastes, an adjusted procedure for demand description is

needed. (See for more details section 4).

In this research we are primarily interested how to handle B-tastes, as the standard

renewal approach cannot be safely used in this situation.

2 The demand process

Since the inventory level of semi-�nished products has to be optimized, the packing

department�s demand for the various types of Mentos is relevant. In this research only

Mentos products were considered, as for other brands the same idea could be used. For

every type of Mentos, the demand is approximated by a probability distribution and it

is investigated whether the chosen distribution �ts the data.

2.1 ABC-analysis

AnABC-analysis was performed to classify the di¤erent types of Mentos into three groups.

Therefore all tastes are sorted by their average demand.

² The tastes with the highest average demand that are cumulative responsible for
80% of the total demand are classi�ed as A-tastes;

² The tastes with the lowest average demand that cumulatively cause about 5% of

the total demand are classi�ed as C-tastes;

² All other tastes are classi�ed as B-tastes.

The results of the ABC-analysis are given in appendix A.

For the three categories, di¤erent control policies are needed. Since C-tastes hardly

contribute to company pro�t, the control of these products should be as simple as possi-

ble. A make-to-order strategy would be appropriate. For A- and B-tastes the (R; s;Q)
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inventory model could be used, as the production quantities are �xed at level Q in this

model. An (s;Q) model could also have been used, but since the (s;Q) model is a special

case of the (R; s;Q) model, it su¢ces to analyse the latter model.

2.2 Renewal processes for demand description

Tijms [7] de�nes a renewal process as a stochastic process counting the number of events

that take place as a function of time, where the interoccurrence times are independent

and identically distributed (iid). Formally, let X1;X2; : : : be iid interoccurrence times

with Xn the time between the (n¡ 1)-th and n-th event. De�ne S0 = 0 and

Sn =
nX
i=1

Xi; n = 1; 2; : : : :

Then Sn is the time at which the n-th event occurs. Let N(t) be the largest non-

negative integer n for which Sn 6 t: N(t) represents the number of events up to time

t: The counting process fN(t); t > 0g is called the renewal process generated by the
interoccurrence times X1;X2; : : : :

A compound renewal process is a stochastic process fX(t); t > 0g with

X(t) =

N(t)X
i=1

Di;

where fN(t); t > 0g is a renewal process andD1; D2; : : : are iid and independent of fN(t)g:
It is easily seen that the ordinary renewal process is a special case of the compound renewal

process, by taking Di = 1 for all i = 1; 2; : : : : In a compound renewal process, customers

arrive according to a renewal process and every customer asks a speci�c amount of the

product. This amount can be larger than 1 unit.

At Van Melle, the demand for A-tastes of Mentos can be modelled as a compound

renewal process. The reason that a compound renewal process is chosen is that there

are days without any demand for Mentos. Renewal processes are appropriate if there

are periods with zero demand. Other models often assume that every period demand

is positive. The compound renewal process is a good model for A-tastes because the

average interarrival time of the demand epochs is smaller than the production lead time

of a few days. Therefore the formulas provide good approximations. See section 3.7 for

a formal condition under which the approximations are good.

For example, if one is interested in the variance of demand during a relatively short

time interval, the formula that estimates this variance will provide a good approximation

only if enough events occurred during the considered time interval. For B-tastes the

average interarrival time of the demand epochs is probably larger than the production

lead time. In that case, the demand for B-tastes cannot be modelled by a compound
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renewal process. However, Janssen [1] suggests an adjustment to the compound renewal

process that can be used to model the demand for B-tastes. This adjusted model will be

discussed in section 4.

3 The (R; s;Q) inventory model with compound renewal

demand

3.1 Introduction

In the (R; s;Q) inventory model the lot size is �xed. Note that the inventory position

is de�ned as the on-hand inventory plus outstanding orders minus backorders. Every R

periods the inventory position is checked and if this level has dropped to s or below, a

production order of size Q is placed. The following assumptions are made in this model:

² The expected demand is constant over time

² The undershoot is strictly positive

² No crossing of orders

² The �rst two moments of the probability distributions of the demand order sizes,
interarrival times and lead times are known

² Shortages are backordered, so there are no lost sales

² Shortages at the beginning of a delivery cycle are allowed

Next, the parameters of the (R; s;Q) model have to be estimated. Because of the

limited production capacity, it should be checked whether the solution of the model is

feasible. This can be done using a simulation program, which also provides information

about the realized average inventory levels. The value of s depends on the chosen cost

criterion or service criterion. In this case, a P2-service criterion is used, where P2 denotes

the average fraction of demand that can be satis�ed during a delivery cycle. The reason

why a service criterion is used is the fact that few information is available about all kinds

of costs. The P2-criterion is chosen because it was considered to be suitable for this �rm.

Since there is a lack of data concerning all sorts of costs, the production order sizes are

determined intuitively instead of using the economic order quantity.

The demand for A-tastes during the production lead time is modelled by a compound

renewal process. This process can be described by interarrival times between demand

epochs and the demand quantities at these epochs. A Â2-goodness-of-�t test shows that
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the gamma distribution is a good approximation of the distribution of the demand quanti-

ties. An advantage of the gamma distribution is the fact that gamma distributed random

variables only take non-negative values. For example, if the demand is assumed to be

normally distributed, there is a positive probability of a negative demand, which is non-

sense. Another advantage of the gamma distribution is the fact that it can be quite good

approximated by mixed Erlang distributions, which are numerically attractive. Further-

more, the gamma distribution is skewed to the right, which often occurs in practical data.

By changing the two positive parameters ¸ and ® of the gamma distribution, a lot of

di¤erent shapes can be created.

3.2 Notation

To analyse the (R; s;Q) inventory model, the following notation is used (see also Janssen,

Heuts, de Kok [2], [3]).

R := length of the review interval

s := reorder point

Q := order quantity

Di := demand quantity of i-th order

D := an arbitrary demand order size

Ai := interarrival time between (i¡ 1)-th and i-th order
A := an arbitrary interarrival time

Lm := lead time of the m-th production order

Z(n) :=
Pn

i=1Di; total demand during n periods

Xt := inventory position at time t

Tk := the k-th time epoch that Xt decreases beyond s

Uk := s¡X(Tk); the k-th undershoot
U := an arbitrary undershoot

¿k := the �rst review epoch after Tk
Wk := ¿ k ¡ Tk; waiting time until the next review epoch
L0k := Lk +Wk: In this paper, L0k is called �pseudo lead time�

L0 := pseudo lead time of an arbitrary production order

UR;k := s¡X(¿k); number of units below the reorder level at the review epoch
Vk := Z(L0k); demand during the pseudo lead time

V := demand during an arbitrary pseudo lead time

Zk := Vk + Uk = Z(L
0
k) + Uk; undershoot plus demand during pseudo lead time

Z := demand during an arbitrary pseudo lead time plus undershoot

The term �pseudo lead time� is used because of the following. At a time epoch at

which the inventory level reaches the reorder point, it is not possible to place an order
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immediately. One has to wait for the next review moment. Therefore, the time span

between the epoch at which the inventory level reaches the reorder point and the time at

which the order arrives, consists of the waiting time until the next review moment plus

the actual production lead time. Here the sum of these two terms is called the pseudo

lead time.

3.3 Assumptions

Besides the assumptions of the (R; s;Q) model stated in section 3.1, some additional

assumptions are made:

² The demand process is a renewal process

² D1; D2; : : : iid with expectation ¹D; standard deviation ¾D and coe¢cient of varia-
tion cD := ¾D=¹D; where Di > 0 for all i = 1; 2; : : :

² A1; A2; : : : iid with expectation ¹A; standard deviation ¾A and coe¢cient of varia-
tion cA := ¾A=¹A; where Ai > 0 for all i = 1; 2; : : :

² Ai and Di independent

² L1; L2; : : : iid with expectation ¹L and standard deviation ¾L; where Lm > 0 for all
m = 1; 2; : : :

² The demand order sizes are gamma distributed: Di » ¡(®; ¸); where ® is the shape
parameter and ¸ is the scale parameter. These parameters can be estimated using

E(D) and E(D2); which are assumed to be known. See the assumptions of the

(R; s;Q) inventory model. The estimation of the parameters is discussed in the

next section.

² Zk = Z(L0k) + Uk » ¡(®; ¸): Not only the demand quantity per order is gamma

distributed, but also the undershoot plus the aggregated demand during the pseudo

lead time. It should be noted however, that the parameters ® and ¸ need not be

the same as for the Di process.

Not all of these assumptions hold in practice. For example, the interarrival time and

the demand order size will probably be interrelated. However, these assumptions are a

reasonable approximation of reality.

3.4 The method of moments for the gamma parameters

Tijms [7, page 355] shows how to estimate the parameters of the gamma distribution,

using the �rst two moments of the empirical distribution of D: Let ®1 = E(D) and
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®2 = E(D2): The mean of the ¡(®; ¸) distribution is ®=¸ and the variance is ®=¸2: It

follows that the second moment equals

E(D2) = [E(D)]2 + Var(D) =
³®
¸

´2
+
®

¸2
=
®(1 + ®)

¸2
(1)

To express ® and ¸ as functions of ®1 and ®2; solve the following equalities for ® and ¸:

®1 =
®

¸
(2)

®2 =
®(1 + ®)

¸2
(3)

This system of equations has a unique solution if and only if ®2 6= ®21; which is given by
¸ =

®1
®2 ¡ ®21

(4)

® =
®21

®2 ¡ ®21
(5)

If ®2 = ®21; then it is not possible to �t a gamma distribution. In practice this will not

be a problem. It holds that Var(D) = E(D2) ¡ [E(D)]2 = ®2 ¡ ®21; so ®2 = ®21 implies
that the variance is 0, i.e. that demand is deterministic. In that case, nothing has to be

estimated at all.

3.5 The P2-service equation to determine the reorder point

For all A-tastes the reorder point s is determined using the P2-service criterion. Here

P2 is the fraction of demand that can be satis�ed during a delivery cycle. This fraction

will be denoted by ¯; which is a function of R; s and Q: The delivery cycle is the time

span from the epoch at which an order has just arrived until the epoch just before the

next order arrives. Taking into account the possibility of a shortage at the beginning of a

delivery cycle, the expected demand that cannot be satis�ed during a delivery cycle can

be expressed as the expected shortage at the end of a delivery cycle minus the expected

shortage at the beginning of a delivery cycle.

Using the notation introduced above, ¿2+L2 represents the delivery epoch of the order

placed at the second review epoch. The expected net stock just before this order arrives

is equal to EfX¿2+L2g¡ = s ¡ EfZ2g and the expected net stock just after this order
arrives is equal to EfX¿2+L2g+ = s+Q¡EfZ1g: Let f be the density of X and denote

maxf0; x¡ sg by (x¡ s)+; such that

EfX ¡ sg+ :=
Z 1

s

(x¡ s)f(x) dx (6)

Let fZ be the density of the undershoot plus the demand during the pseudo lead time.

Then the expected shortage at the end of a delivery cycle is

EfZ2 ¡ sg+ =
Z 1

s

(x¡ s)fZ(x) dx (7)
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The expected shortage at the beginning of a delivery cycle is

EfZ1 ¡ (s+Q)g+ =
Z 1

s+Q

(x¡ (s+Q)) fZ(x) dx (8)

Hence, the expected demand that cannot be satis�ed per delivery cycle isZ 1

s

(x¡ s)fZ(x) dx¡
Z 1

s+Q

(x¡ (s+Q)) fZ(x) dx (9)

The expected total demand per delivery cycle is Q, because shortages are backordered.

The service equation is then given by

¯(R; s;Q) = 1¡ 1

Q

�Z 1

s

(x¡ s)fZ(x) dx¡
Z 1

s+Q

(x¡ (s+Q)) fZ(x) dx
¸

(10)

From this service equation, the optimal value of s can be solved. The distribution of the

demand during the pseudo lead time plus undershoot is needed, in order to solve for s: In

appendix C some information is given about how to evaluate the integrals in (10) easily.

3.6 The �rst two moments of the undershoot

The �rst two moments of the distribution of the undershoot U can be approximated using

a result from renewal theory, which states that if Q is large enough and Di is gamma

distributed for all i = 1; : : : ; n with scale parameter ¸ and shape parameter ®; then

¹U ¼
®+ 1

2¸
and ¾2U ¼

(®+ 1)(®+ 5)

12¸2
(11)

where ¹U := E(U) and ¾
2
U := Var(U): Note that ® and ¸ are the parameters of the Di

process in this case. Using a method of moments, the distribution of the undershoot can

now be approximated, analogous to section 3.4.

3.7 The �rst two moments of the demand during the pseudo

lead time

The expectation and the variance of the demand during the pseudo lead time (V ) can

also be approximated using results from renewal theory, see Tijms [7]. However, these

results only hold if the production lead time is at least as large as some value t0; where

t0 =

8><>:
3
2
c2A¹A; if c2A > 1

¹A; if 0:2 < c2A 6 1
1
2cA
¹A; if 0 < c2A 6 0:2

Recall that cA denotes the coe¢cient of variation of the interarrival times of demand

moments.
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If the condition is satis�ed, the following results can safely be used, see De Kok [4]:

¹V ¼ ¹L
¹A
¹D +

(c2A ¡ 1)
2

¹D (12)

¾2V ¼ ¹L
¹A
¾2D +

¹L
¹A
c2A¹

2
D +

¹2D
¹2A
¾2L +

(c2A ¡ 1)
2

¾2D +
(1¡ c4A)
12

¹2D (13)

where ¹V := E(V ) and ¾
2
V := Var(V ):

For A-tastes the condition is satis�ed, so the results can safely be used for these items

(see appendix C.2 for an example). However, for B-tastes the condition is probably not

satis�ed and so (12) and (13) cannot be used. To resolve this we shall consider a so-called

adjusted compound renewal process for B-tastes in section 4.

3.8 Distribution of the demand during the pseudo lead time

plus undershoot and an expression for the average physical

inventory level

Consider the distribution of the demand during the pseudo lead time plus undershoot (Z):

The expectation ¹Z and the variance ¾
2
Z of Z can be approximated using the relationship

Zk = Uk+Vk; i.e. by considering the undershoot and the demand during the pseudo lead

time separately. Since the variables U and V are independent, the following results can

be used:

¹Z = ¹U + ¹V (14)

¾2Z = ¾2U + ¾
2
V (15)

The aforementioned method of moments can be used to approximate the distribution of

Z: Finally, the optimal values of s can be solved from equation (10).

Let X be the physical inventory level, then once s is known, the average physical

inventory level for an (s;Q) inventory model can be computed with the following formula

(see e.g. de Kok [4]):

E(X) ¼
R s+Q
0

(s+Q¡ x)2fV (x) dx¡
R s
0
(s¡ x)2fV (x) dx

2Q
; (16)

where fV is the density of the demand during the pseudo lead time. Using simulation,

one can compare this value with the actual physical inventory level. In appendix D it is

shown how to evaluate the integrals in (16) easily.
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4 The (R; s;Q) inventory model with adjusted moments

for the compound renewal demand

Janssen [1] suggests an adjusted procedure to determine the �rst two moments of the

compound renewal process,which can be used for cases in which the condition of sec-

tion 3.7 is not satis�ed. This concept could be used to model the demand process for

B-tastes of Mentos during a short period of time.

4.1 Notation

In the adjusted model the same notation is used as in section 3.1, together with some extra

variables. Let N(0; t) indicate the number of customer arrivals during (0; t] and let N(T )

denote the number of arrivals during a time interval of length T . For example, N(L0)

denotes the number of customer arrivals during the pseudo lead time of a production

order. Let D(0; t) be the total demand during the time interval (0; t]. Then V := D(L0)

denotes the demand during the pseudo lead time of a production order. Furthermore,

recall that for a renewal process the variable Sk denotes the time of the k-th renewal.

4.2 Quantities of interest

The goal of this model is to approximate the demand for B-tastes during the pseudo lead

time of a production order. According to Janssen [1], the following relationships hold:

EfD(0; t)g = EfN(0; t)g ¢ E(D) (17)

EfD(0; t)2g = EfN(0; t)g ¢ Var(D) + EfN(0; t)2g ¢ (E(D))2 (18)

From these relationships it follows that the �rst two moments of N(0; t) need to be com-

puted, in order to determine the �rst two moments of the demand during a certain period

(0; t]. For example, the �rst two moments of N(L0) are needed in order to determine the

�rst two moments of D(L0); the demand during the pseudo lead time of a production

order.

4.3 The algorithm

The following algorithm can be used to determine the �rst two moments of N(L0):

² Calculate the �rst two moments of L0 and S1; S2; : : : : Recall that L0 is the pseudo
lead time of a production order and that Sk is the sum of k successive interarrival

times. This means that in the time interval of length Sk exactly k customers have

arrived.
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² Fit a mixed Erlang distribution on L0 and on S1; S2; : : : :Mixed Erlang distributions
are discussed in appendix B.

² Compute P (Sk 6 L0): Note that a closed form solution exists in case of mixed

Erlang distributions (see appendix E).

² Using the property
fSk 6 L0g = fN(L0) > kg; (19)

compute PfN(L0) = 0g = 1 ¡ PfN(L0) > 1g = 1 ¡ P (S1 6 L0): Furthermore,

compute PfN(L0) = kg = P (Sk 6 L0)¡ P (Sk+1 6 L0) for k = 1; 2; : : : ; kmax; where
kmax is chosen such that

kmaxP
j=0

PfN(L0) = jg > 0:99999:

² The �rst two moments of N(L0) can be computed as follows:

EfN(L0)g =
kmaxX
j=1

j ¢ PfN(L0) = jg (20)

EfN(L0)2g =
kmaxX
j=1

j2 ¢ PfN(L0) = jg (21)

E(V ) and E(V 2) can now be computed using equations (17) and (18). This gives

E(V ) : = EfD(L0)g = EfN(L0)g ¢ E(D) (22)

E(V 2) : = EfD(L0)2g = EfN(L0)g ¢ Var(D) + EfN(L0)2g ¢ (E(D))2 (23)

4.4 The �rst two moments of Z for B-taste items

Using ¹U and ¾U ; see section 3.6, ¹V = E(V ) and ¾
2
V = E(V

2)¡ [E(V )]2; the mean and
variance of Z can be determined, just like in section 3.8:

¹Z = ¹U + ¹V (24)

¾2Z = ¾2U + ¾
2
V (25)

4.5 Order policy for B-taste items

The P2-service criterion is also used for B-tastes. It follows that the optimal values of

the reorder points (s) can again be solved from the service equation (10). In addition,

the average physical inventory level can again be approximated by (16).
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5 Di¤erences in performance for a B-taste itemwhen

the adjusted moments procedure is compared with

the unadjusted one

To investigate whether the (s;Q) inventory model with the adjusted moments approach

performs better than with the unadjusted one, we considered the following example.

The review interval is 1 day, so it is always possible to place an order immediately.

This implies that L0 = L: The average lead time is ¹L = 2:008 days, with standard

deviation ¾L = 0:4. The squared coe¢cient of variation is c2L = 0:03968: The probability

that demand on a day is positive is 0.23. Suppose the mean ¹S, standard deviation ¾S
and squared coe¢cient of variation c2S of Sk; k = 1; : : : ; 10 are as given in table 1.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

¹S 4.22 8.40 12.59 16.80 21.01 25.25 29.46 33.67 37.89 42.14

¾S 3.36 4.45 5.39 6.29 6.93 7.82 8.69 9.51 10.33 11.09

c2S 0.634 0.281 0.183 0.140 0.109 0.096 0.087 0.080 0.074 0.069

Table 1: Information about Sk:

The coe¢cient of variation of interarrival times is c2A = 0:634; so the condition in

section 3.7 states that the ordinary model could be used if the production lead time is

at least as large as the average interarrival time. Since ¹L = 2:008 and ¹A = 4:22, the

condition is not satis�ed. Therefore, we will perform the adjusted approach.

The �rst step is to �t a mixed Erlang distribution on S1; S2; : : : ; S10: All coe¢cients

of variation but one are smaller than 0.5. Since the coe¢cient of variation of S1 is larger

than 0.5, the following hyperexponential density with parameters p; '1 and '2 will be

used for S1:

f(x) =

2X
j=1

pj'
kj
j

xkj¡1

(kj ¡ 1)!e
¡'jx; x > 0; (26)

with

k1 = 1; k2 = 1

p =
'1('2¹S ¡ 1)
'2 ¡ '1

= ¡0:9603
p1 = p = ¡0:9603; p2 = 1¡ p = 1:9603

'1 =
2

¹S

0@1 +sc2S ¡ 1
2

c2S + 1

1A = 0:6102

'2 =
4

¹S
¡ '1 = 0:3386:
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The following density will be used for S2; : : : ; S10:

f(x) =
2X
j=1

pj'
kj

xkj¡1

(kj ¡ 1)!e
¡'x; x > 0; (27)

with

k =

¹
1

c2S
+ 1

º
k1 = k ¡ 1; k2 = k
p =

1

1 + c2S

µ
kc2S ¡

q
k(1 + c2S)¡ k2c2S

¶
p1 = p; p2 = 1¡ p
' =

k ¡ p
¹S

:

The parameter values are given in table 2.

S2 S3 S4 S5

k 4 6 8 10

p 0.2584 0.3283 0.6360 0.5640

' 0.4457 0.4505 0.4384 0.4491

S6 S7 S8 S9 S10

k 11 12 13 14 15

p 0.3566 0.2939 0.2768 0.3274 0.3367

' 0.4216 0.3974 0.3779 0.3608 0.3480

Table 2: Parameter values in mixed Erlang densities.

The same mixed Erlang distribution as for S2; : : : ; S10 will be used for L, but with

other symbols. Let g(s) be the mixed Erlang density of L:

g(s) =
2X
i=1

qi½
li
sli¡1

(li ¡ 1)!e
¡½s; s > 0; (28)

with

l =

¹
1

c2L
+ 1

º
= 26

l1 = l ¡ 1 = 25; l2 = l = 26
q =

1

1 + c2L

µ
lc2L ¡

q
l(1 + c2L)¡ l2c2L

¶
= 0:5550

q1 = q = 0:5550; q2 = 1¡ q = 0:4450
½ =

l ¡ q
¹L

= 12:6718:
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The next step is to compute P (Sk 6 L) for k = 1; : : : ; 10: The derivation of a closed
form solution can be found in appendix E. From this derivation, it follows that

P (Sk 6 L) =

2X
j=1

2X
i=1

pjqi

0@1¡ kj¡1X
t=0

µ
t+ li ¡ 1

t

¶
't½li

('+ ½)t+li

1A (29)

= pq

Ã
1¡

k¡2X
t=0

µ
t+ l ¡ 2

t

¶
't½l¡1

('+ ½)t+l¡1

!

+p (1¡ q)
Ã
1¡

k¡2X
t=0

µ
t+ l ¡ 1

t

¶
't½l

('+ ½)t+l

!

+(1¡ p) q
Ã
1¡

k¡1X
t=0

µ
t+ l ¡ 2

t

¶
't½l¡1

('+ ½)t+l¡1

!

+(1¡ p) (1¡ q)
Ã
1¡

k¡1X
t=0

µ
t+ l ¡ 1

t

¶
't½l

('+ ½)t+l

!
:

For k = 1 this reduces to:

P (Sk 6 L) =
2X
j=1

2X
i=1

pjqi

Ã
1¡

µ
½

'j + ½

¶li!
(30)

For k = 2; : : : ; 10 formula (29) is used. The results are given in table 3.

P (S1 6 L) = 0:28803091711052 P (S6 6 L) = 3:784919£ 10¡8
P (S2 6 L) = 0:02797809545450 P (S7 6 L) = 1:84248£ 10¡9
P (S3 6 L) = 0:00135190636514 P (S8 6 L) = 9:1706£ 10¡11
P (S4 6 L) = 0:00004592232223 P (S9 6 L) = 4:9229£ 10¡12
P (S5 6 L) = 0:00000082585922 P (S10 6 L) = 2:3624£ 10¡13

Table 3: P (Sk � L) for k = 1; : : : ; 10:

Now it is possible to compute PfN(L) = kg: The results are summarized in table 4.
kmax = 4; because

P4
j=0 PfN(L) = jg > 0:99999:

From (20) and (21) it follows that EfN(L0)g = 0:3174 and EfN(L0)2g = 0:3790: Now
E(V ) and E(V 2) can be computed using (22) and (23). The average daily demand on

days with a positive demand is E(D) = 12:638 tons with standard deviation 10.543. The

variance is Var(D) = 111:15: Hence,

E(V ) = 4:0113

E(V 2) = 95:82

c2V = 4:9549:
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PfN(L) = 0g = 0:71196908 Cumulative:

PfN(L) = 1g = 0:26005282
1P
j=0

PfN(L) = jg = 0:972022

PfN(L) = 2g = 0:02662619
2P
j=0

PfN(L) = jg = 0:998648

PfN(L) = 3g = 0:00130598
3P
j=0

PfN(L) = jg = 0:999954

PfN(L) = 4g = 0:00004510
4P
j=0

PfN(L) = jg = 0:999999

Table 4: PfN(L) = kg for k = 0; 1; : : : ; kmax:

Next the reorder point will be determined, given the service level, using the procedure

in appendix C. The order quantity is Q = 30 tons. The other parameter values are

®1 = 12:638; ®2 = 270:87; ¸ = 0:1137; ® = 1:4369; ¹U = 10:7166; ¾2U = 101:12;

¹Z = 14:7280; ¾
2
Z = 180:85; c

2
Z = 0:8337: The parameters of the mixed Erlang distribu-

tion of Z are k1 = 1; k2 = 1; ¹1 = 0:1937; ¹2 = 0:0779 and p = ¡0:2454. The mixed
Erlang distribution that is needed to determine the average physical inventory level, has

parameter values k1 = 1; k2 = 1; ¹1 = 0:9298; ¹2 = 0:0673 and p = 0:7869. The results

are summarized in table 5.

P2 s (tons) Average physical inventory (tons)

0.95 30 41.17

0.96 32 43.15

0.97 36 47.11

0.98 41 52.07

0.99 50 61.04

0.995 59 70.01

0.999 80 90.99

Table 5: Results adjusted compound renewal model.

Now suppose that the ordinary compound renewal model would have been used, al-

though the condition in section 3.7 is not satis�ed. Then (12) and (13) give ¹V = 3:7057

and ¾2V = 90:2130: Hence, E(V
2) = 103:95: The results are given in table 6.

Finally, the compound renewal model can be compared with the adjusted compound

renewal model. In table 7 the inventory reduction is given if one uses the adjusted model

instead of the ordinary model.

Dependent on the required service level, an inventory reduction between 1% and 4%

is possible.
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P2 s (tons) Average physical inventory (tons)

0.95 30 41.55

0.96 33 44.51

0.97 37 48.47

0.98 42 53.42

0.99 52 63.37

0.995 61 72.34

0.999 83 94.31

Table 6: Results compound renewal model.

P2 Inventory reduction if adjusted model is used (in %)

0.95 0.9

0.96 3.1

0.97 2.8

0.98 2.5

0.99 3.7

0.995 3.2

0.999 3.5

Table 7: Inventory reduction.

6 Conclusions

According to Stoop [6], a lot of money could be saved by implementing the compound

renewal model for A-tastes of Mentos. More speci�cally, an inventory reduction of 17%

was possible for A-tastes. This conclusion was based on the results of a simulation study.

In this simulation study, the average physical inventory level and the service level that

have actually been realized are determined, for every taste separately.

For B-taste items we tested the adjusted compound renewal approach and compared

the results with the unadjusted one, knowing that the restriction in section 3.7 was

not satis�ed, and the renewal formulae (12) and (13) might be doubtful. For several

experiments, the adjusted approach appears to give reduction in average inventory of 1

to 4% for speci�ed �ll rate service levels, compared to using the unadjusted approach.

Given this small reduction and the complexity of the adjusted approach, we believe that

the formulae (12) and (13) are more robust than the restriction in section 3.7 suggests.

16



A Results ABC-analysis

To perform an ABC-analysis, the demand data of the last 28 weeks of 1996 are considered.

The results of the ABC-analysis are summarized in table 8.

Taste Demand (tons) % of total demand Cumulative Class

Mint 7508 38.90 38.90

Strawberry 2956 15.31 54.21 A

Orange 2294 11.88 66.09

Lemon 2071 10.73 76.82

Chlorophylle 1096 5.68 82.50

Apple 811 4.20 86.70 B

Licorice 664 3.44 90.14

Grape 583 3.02 93.16

Reglisse 220 1.14 94.30

Strong 207 1.07 95.37

Peach 200 1.03 96.40

Citrus-fresh 194 1.01 97.41

Mini orange 124 0.64 98.05 C

Mini apple 120 0.62 98.67

Mini lemon 117 0.61 99.28

Mini strawberry 90 0.47 99.75

Grapefruit 49 0.25 100

Table 8: Results ABC-analysis.

B The mixed Erlang distribution

Amixed Erlang distribution is a mixture of two Erlang distributions (see e.g. Tijms [7, pp.

358-361]). Variables that are mixed Erlang distributed can be interpreted as a random

sum of independent exponential variables. Let X be a mixed Erlang distributed variable.

The density f of X is given by

f(x) = p¹k11
xk1¡1

(k1 ¡ 1)!e
¡¹1x + (1¡ p)¹k22

xk2¡1

(k2 ¡ 1)!e
¡¹2x; x > 0; (31)

where k1; k2 2 N:
Let cV := ¾V =¹V be the coe¢cient of variation of V: If the squared coe¢cient of

variation of the demand for a certain taste is larger than 0.5, the following mixed Erlang
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density can be used:1

fV (x) = p¹1e
¡¹1x + (1¡ p)¹2e¡¹2x; x > 0 (32)

This is a special case of (31) with k1 = k2 = 1: According to Janssen [1] the parameters

¹1; ¹2 and p satisfy the following equations:

¹1 =
2

¹V

0@1 +sc2V ¡ 1
2

c2V + 1

1A
¹2 =

4

¹V
¡ ¹1 (33)

p =
¹1(¹2¹V ¡ 1)
¹2 ¡ ¹1

Here ¹V is the mean of the mixed Erlang distribution for this speci�c A- or B-taste item.

If the squared coe¢cient of variation of the demand for a certain taste is smaller than

0.5, the following mixed Erlang density can be used:

fV (x) = p¹
k¡1 xk¡2

(k ¡ 2)!e
¡¹x + (1¡ p)¹k xk¡1

(k ¡ 1)!e
¡¹x; x > 0; (34)

This is a special case of (31) with k1 = k ¡ 1 and k2 = k. The parameters satisfy the

following equations:

k =

¹
1

c2V
+ 1

º
p =

1

1 + c2V

µ
kc2V ¡

q
k(1 + c2V )¡ k2c2V

¶
(35)

¹ =
k ¡ p
¹V

:

C Solving the service equation

C.1 The procedure

In order to solve the service equation (10), one has to deal with integrals of gamma

densities, since the demand during the pseudo lead time plus undershoot is assumed to

be gamma distributed. Recall that fZ is the density of the demand during the pseudo

lead time plus undershoot. It holds that

fZ(x) =
¸®

¡(®)
x®¡1e¡¸x; x > 0: (36)

1Note that the boundary for c2V is not 1 (as in Tijms [7]) but 0.5. This is done as experiments showed

that better percentile estimations in the upper tail were obtained then.

18



The distribution of Z can be approximated by a mixed Erlang distribution, see appendix

B, to simplify the integrals in the service equation. The mixed Erlang density f of Z is

given by

f(x) = p¹k11
xk1¡1

(k1 ¡ 1)!e
¡¹1x + (1¡ p)¹k22

xk2¡1

(k2 ¡ 1)!e
¡¹2x; x > 0; (37)

where k1; k2 2 N:
Let c2Z be the squared coe¢cient of variation of Z: If c

2
Z 6 0:5, the density of Z is

approximated by the mixed Erlang density

f(x) = p¹k¡1
xk¡2

(k ¡ 2)!e
¡¹x + (1¡ p)¹k xk¡1

(k ¡ 1)!e
¡¹x; x > 0; (38)

with

k =

¹
1

c2Z
+ 1

º
p =

1

1 + c2Z

µ
kc2Z ¡

q
k(1 + c2Z)¡ k2c2Z

¶
(39)

¹ =
k ¡ p
¹Z

An Erlang distribution is the same as a gamma distribution, except for the fact that the

shape parameter must be an integer. Consider the density of the Erlang(r; ¸) distribution,

with r a positive integer number and ¸ > 0 :

fr;¸(x) =
¸r

(r ¡ 1)!x
r¡1e¡¸x: (40)

To simplify expressions, de�ne two auxiliary functions, see Valkenburg [8, page 112]:

G¸(j) :=
(¸s)j

j!
e¡¸s (41)

H¸(r) :=

rX
j=0

G¸(j) =
1

¸s

r+1X
j=0

jG¸(j) (42)

Using these de�nitions, the integrals in (10) can be simpli�ed:Z 1

s

(x¡ s)f(x) dx = 1

¹

k¡1X
j=0

(k ¡ j ¡ p)G¹(j) = e¡¹s

¹

k¡1X
j=0

(k ¡ j ¡ p)(¹s)
j

j!
(43)

Z 1

s+Q

(x¡ (s+Q))f(x) dx = e¡¹(s+Q)

¹

k¡1X
j=0

(k ¡ j ¡ p)(¹(s+Q))
j

j!
: (44)

If c2Z > 0:5, the density of Z is approximated by the following mixed Erlang density:

fZ(x) = p¹1e
¡¹1x + (1¡ p)¹2e¡¹2x; x > 0 (45)
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where

¹1 =
2

¹Z

0@1 +sc2Z ¡ 1
2

c2Z + 1

1A
¹2 =

4

¹Z
¡ ¹1 (46)

p =
¹1(¹2¹Z ¡ 1)
¹2 ¡ ¹1

Here ¹Z is the mean of the mixed Erlang distribution. The integrals in (10) can now be

simpli�ed as follows:Z 1

s

(x¡ s)f(x) dx = p 1
¹1
H¹1(0) + (1¡ p)

1

¹2
H¹2(0) = p

1

¹1
e¡¹1s + (1¡ p) 1

¹2
e¡¹2s (47)Z 1

s+Q

(x¡ (s+Q))f(x) dx = p 1
¹1
e¡¹1(s+Q) + (1¡ p) 1

¹2
e¡¹2(s+Q): (48)

A derivation of these results can be found in Valkenburg [8]. After substituting these

expressions into the service equation, the optimal value of the reorder level can easily be

solved.

C.2 An example for an A-taste item

To give an example, let�s consider Mentos Mint and assume management has speci�ed

a P2-service level of respectively 95%; 96%; : : : ; 99:9%: The following additional input

parameters with their respective values are needed:

² the review interval R = 1 day

² the order quantity Q = 64:8 tons

² the average lead time of a production order ¹L = 1:208 days

² the standard deviation of the production lead time ¾L = 0:017 days

² the average demand quantity ¹D = 53:63 tons

² the standard deviation of the demand quantity ¾D = 9:59 tons

² the average interarrival time ¹A = 1 day

² the standard deviation of the interarrival times ¾A = 0:

Now compute the following second moment of the demand quantity:

®2 = ¾
2
D + ¹

2
D = (9:59)

2 + (53:63)2 = 2968:15:
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From section 3.4 it follows that the parameters of the demand process have values

¸ = 0:5831 and ® = 31:27: From section 3.6 it follows that ¹U ¼ 27:67 and ¾2U ¼ 286:89:
Furthermore, ¹V ¼ 37:97; ¾2V ¼ 305:63; ¹Z ¼ 65:64; ¾2Z ¼ 592:52; c2Z ¼ 0:1375: The

mixed Erlang approximation of Z has parameter values k = 8; p = 0:4860 and ¹ = 0:1145:

The service equation has now become an equation with only one unknown. It can be

solved by a numerical procedure.

For the A-taste item Mentos Mint the production moment (s) and the average physical

inventory level are given in table 9 (see appendix D for details about the calculation).

P2 s (tons) Average physical inventory (tons)

0.95 87 81.45

0.96 91 85.45

0.97 96 90.44

0.98 102 96.44

0.99 113 107.43

0.995 123 117.43

0.999 146 140.43

Table 9: Production moment and average physical inventory

D The calculation of the average physical stock for

an (s;Q) inventory model, using mixed Erlang dis-

tributions

The average physical inventory level (see formula (16)) can be approximated using mixed

Erlang distributions. Since the coe¢cients of variation of demand during the lead time

will most probably di¤er for A-tastes and B-tastes, we will separate two cases.

D.1 A-tastes

Let c2V be the squared coe¢cient of variation of V: Since probably c
2
V 6 0:5 for A-tastes,

the density of V is approximated by the mixed Erlang density

f(x) = p¹k¡1
xk¡2

(k ¡ 2)!e
¡¹x + (1¡ p)¹k xk¡1

(k ¡ 1)!e
¡¹x; x > 0; (49)

with

k =

¹
1

c2V
+ 1

º
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p =
1

1 + c2V

µ
kc2V ¡

q
k(1 + c2V )¡ k2c2V

¶
¹ =

k ¡ p
¹V

Let fr;¸(x) be the density of Erlang(r; ¸): To simplify expressions, the auxiliary func-

tions are used again, see (41) and (42). Consider three properties of the Erlang(k; ¹)

distribution: Z s

0

f(x) dx = 1¡H¹(k ¡ 1) (50)Z s

0

xf(x) dx =
k

¹
(1¡H¹(k)) (51)Z s

0

x2f(x) dx =
(k + 1)k

¹2
(1¡H¹(k + 1)) (52)

The expression
R s
0
(s ¡ x)2f(x) dx in (16) will be simpli�ed using these properties. The

derivation is given below.Z s

0

(s¡ x)2f(x) dx =
Z s

0

(x2 ¡ 2sx+ s2) (pfk¡1;¹(x) dx+ (1¡ p)fk;¹(x) dx)

= p

Z s

0

(x2 ¡ 2sx+ s2)fk¡1;¹(x) dx+ (1¡ p)
Z s

0

(x2 ¡ 2sx+ s2)fk;¹(x) dx

= p
k(k ¡ 1)
¹2

(1¡H¹(k)) + (1¡ p)(k + 1)k
¹2

(1¡H¹(k + 1))

¡2spk ¡ 1
¹

(1¡H¹(k ¡ 1))¡ 2s(1¡ p)k
¹
(1¡H¹(k))

+s2p (1¡H¹(k ¡ 2)) + s2(1¡ p) (1¡H¹(k ¡ 1)) (53)

To �nd a simpli�ed expression of
R s+Q
0

(s + Q ¡ x)2f(x) dx; replace s by s + Q in (53).

Note that also in de�nitions (41) and (42) s should be replaced by s+Q: This givesZ s+Q

0

(s+Q¡ x)2f(x) dx =

= p
k(k ¡ 1)
¹2

(1¡H¹(k)) + (1¡ p)(k + 1)k
¹2

(1¡H¹(k + 1))

¡2(s+Q) pk ¡ 1
¹

(1¡H¹(k ¡ 1))¡ 2(s+Q)(1¡ p)k
¹
(1¡H¹(k))

+(s +Q)2p (1¡H¹(k ¡ 2)) + (s+Q)2(1¡ p) (1¡H¹(k ¡ 1)) :

After substituting these expressions into (16), the average physical stock can easily be

computed, using the optimal value of the reorder point s:
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D.2 B-tastes

For B-tastes the squared coe¢cient of variation of V is probably larger than 0.5. There-

fore, the density of V is approximated by the mixed Erlang density

f(x) = p¹1e
¡¹1x + (1¡ p)¹2e¡¹2x; x > 0: (54)

Similar to the previous section,
R s
0
(s¡ x)2f(x) dx can again be simpli�ed.Z s

0

(s¡ x)2f(x) dx =
Z s

0

(x2 ¡ 2sx+ s2) ¡pf1;¹1(x) dx+ (1¡ p)f1;¹2(x) dx¢
= p

Z s

0

(x2 ¡ 2sx+ s2)f1;¹1(x) dx+ (1¡ p)
Z s

0

(x2 ¡ 2sx+ s2)f1;¹2(x) dx

=
2p

¹21

¡
1¡H¹1(2)

¢¡ 2sp
¹1

¡
1¡H¹1(1)

¢
+ s2p

¡
1¡H¹1(0)

¢
+
2(1¡ p)
¹22

¡
1¡H¹2(2)

¢¡ 2s(1¡ p)
¹2

¡
1¡H¹2(1)

¢
+ s2(1¡ p) ¡1¡H¹2(0)¢ :

Analogously, it follows thatZ s+Q

0

(s+Q¡ x)2f(x) dx =

=
2p

¹21

¡
1¡H¹1(2)

¢¡ 2(s+Q)p
¹1

¡
1¡H¹1(1)

¢
+ (s+Q)2p

¡
1¡H¹1(0)

¢
+
2(1¡ p)
¹22

¡
1¡H¹2(2)

¢¡ 2(s+Q)(1¡ p)
¹2

¡
1¡H¹2(1)

¢
+(s+Q)2(1¡ p) ¡1¡H¹2(0)¢ :

E Closed form solution

The derivation of the closed form solution of P (Sk 6 L) is given below. If the coe¢cient
of variation of Sk is smaller than 0.5, the solution will be as follows.

P (Sk 6 L) =
1Z
0

P (Sk 6 LjL = s)g(s) ds =
1Z
0

0@ sZ
0

f(x) dx

1A g(s) ds: (55)

Recall that k1 = k ¡ 1; k2 = k; '; p1 = p and p2 = 1 ¡ p are the parameters of the
mixed Erlang distribution of Sk: Furthermore, l1; l2; ½; q1 = q and q2 = 1 ¡ q are the
parameters of the mixed Erlang distribution of L: To �nd a closed form solution, �rst

determine
R s
0
f(x) dx:

sZ
0

f(x) dx =

sZ
0

2X
j=1

pj'
kj

xkj¡1

(kj ¡ 1)!e
¡'x dx
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=

2X
j=1

pj

sZ
0

'kj
xkj¡1

(kj ¡ 1)!e
¡'x dx

=

2X
j=1

pj

sZ
0

fkj ;'(x) dx

=

2X
j=1

pj (1¡H'(kj ¡ 1)) ;

where fkj ;'(x) is the density of the Erlang(kj ; ') distribution and the functionH is de�ned

as in (42). Use this result to determine P (Sk 6 L): In the derivation, fli;½(s) is the density
of the Erlang(li; ½) distribution.

P (Sk 6 L) =

1Z
0

0@ sZ
0

f(x) dx

1A g(s) ds
=

1Z
0

2X
j=1

pj (1¡H'(kj ¡ 1)) g(s) ds

=

1Z
0

2X
j=1

pj (1¡H'(kj ¡ 1))
2X
i=1

qi½
li
sli¡1

(li ¡ 1)!e
¡½s ds

=
2X
j=1

2X
i=1

pjqi

1Z
0

(1¡H'(kj ¡ 1)) ½li sli¡1

(li ¡ 1)!e
¡½s ds

=

2X
j=1

2X
i=1

pjqi

1Z
0

(1¡H'(kj ¡ 1)) fli;½(s) ds

=

2X
j=1

2X
i=1

pjqi

0@ 1Z
0

fli;½(s) ds¡
1Z
0

H'(kj ¡ 1)fli;½(s) ds
1A

=

2X
j=1

2X
i=1

pjqi

0@1¡ 1Z
0

H'(kj ¡ 1)fli;½(s) ds
1A

=

2X
j=1

2X
i=1

pjqi

0@1¡ ½li

(li ¡ 1)!

1Z
0

sli¡1e¡('+½)s
kj¡1X
t=0

('s)t

t!
ds

1A
=

2X
j=1

2X
i=1

pjqi

0@1¡ kj¡1X
t=0

(t+ li ¡ 1)!
t!(li ¡ 1)!

't½li

('+ ½)t+li

1A
=

2X
j=1

2X
i=1

pjqi

0@1¡ kj¡1X
t=0

µ
t+ li ¡ 1

t

¶
't½li

('+ ½)t+li

1A : (56)
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If the coe¢cient of variation of Sk is larger than 0.5, the solution will be as follows.

P (Sk 6 L) =
2X
j=1

2X
i=1

pjqi

Ã
1¡

µ
½

'j + ½

¶li!
(57)

As before, '1; '2; p1 = p and p2 = 1 ¡ p are the parameters of the mixed Erlang
distribution of Sk: Furthermore, l1; l2; ½; q1 = q and q2 = 1 ¡ q are the parameters of
the mixed Erlang distribution of L:
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