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Abstract

Item nonresponse in micro surveys can lead to biased estimates of the parameters of interest if

such nonresponse is nonrandom. Selection models can be used to correct for this, but parametric

and semiparametric selection models require additional assumptions. Manski has recently

developed a new approach, showing that, without additional assumptions, the parameters of

interest are identified up to some bounding interval. In this paper, we apply Manski’s approach

to estimate the distribution function and quantiles of personal income, conditional on given

covariates, taking account of item nonresponse on income. Nonparametric techniques are used

to estimate the bounding intervals. We consider worst case bounds, as well as bounds which are

valid under nonparametric assumptions on monotonicity or under exclusion restrictions.
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1  Introduction
A problem often encountered in the collection of survey data, is that of nonresponse or missing

values. Nonresponse occurs if individuals do not answer fully to the questionnaire - item

nonresponse -, or if some of the individuals who are asked to fill in the questionnaire, do not

answer at all - unit nonresponse. This paper focuses on item nonresponse. In household surveys,

typical variables that suffer from item nonresponse are income, earnings, or measures of wealth.

While people are usually willing and able to disclose information on family composition, labour

market status, etc., many people do not provide full information on the level of their earnings,

income or wealth.

Item nonresponse implies that for a non-negligible number of respondents, the realization

of the variable of interest is either missing, or is registered as missing by the researcher, because

the information given is inconsistent with other information provided by the respondent. We focus

on the case of item nonresponse in one variable Y, for which we are interested in some feature of

the conditional distribution F , where X is a set of covariates. We neither address unitY|X

nonresponse, nor item nonresponse on X.

Item nonresponse can be seen as an example of the sample selection problem. If item

nonresponse is not completely random, the full response sample is not representative for the

population of interest. The traditional approach until about 20 years ago was to avoid this

problem by assuming that nonresponse was completely random. This has changed since the

seminal work by Heckman (Heckman, 1979, for example). Since then, a huge literature on

parametric and semiparametric selection models has appeared. See Vella (1998) for a recent

overview. A classical example of how the selection bias can affect the results is found in Mroz

(1987). He analyzes various models for females’ hours of work. The results show that using

selection models to control for selectivity bias can lead to wage and income effects which are

substantially different from those obtained with models which do not account for selectivity.

In most applications of selection models, the assumption is made that some location

measure  m(Y|X)  of Y conditional on X is a linear combination X’$ of the covariates. Usually,

m(Y|X) is the conditional mean E[Y|X] or some conditional quantile. The slope coefficients in $

are then the parameters of interest. Mroz (1987) and most other applied studies use parametric

selection models, in which distributional assumptions are made on the error terms. If the

distributional assumptions are violated, estimates of $ will in general still be biased.

Semiparametric estimators have been developed to obtain consistent estimates of $ under less

stringent assumptions on the errors. Examples are Newey et al. (1990) and Ahn and Powell

(1993). Both assume that  E[Y|X] = X’$  and focus on estimating $. Both also need the exclusion

restriction assumption that at least one given variable affects the selection probability but not

E[Y|X]. Approaches to the sample selection problem, therefore, allow for weaker distributional



F(y) ' P(Y#y|*'1)P(*'1) % P(Y#y|*'0)P(*'0)

P(Y#y|*'1)P(*'1) # F(y) # P(Y#y|*'1)P(*'1)%P(*'0)
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(1)

(2)

assumptions than parametric models, but still retain various restrictive assumptions on the data

generating process.

Since the early 1990's, a new approach to deal with the selection problem has been

developed. It focuses on nonparametric identification without additional assumptions such as

those in parametric or semiparametric selection models. This approach is usually concerned with

the full conditional distribution function of Y given X. See Manski (1989, 1990, 1994, 1995,

1997), but also, for example, Heckman (1990). The idea is to use nonparametrics, imposing no

assumptions, or much weaker assumptions than in the parametric or semiparametric literature,

together with the concept of identification up to a bounding interval. Manski (1995) shows that,

without additional assumptions, the sampling process fails to fully identify most features of the

conditional distribution of Y given X, but that in many cases a lower bound and an upper bound

for the feature of interest can be derived. For example, suppose we are interested in F(y) =

P(Y#y) for some given y0ú (no conditioning variables). Let * be a binary random variable that

takes the value 1 if Y is observed, and 0 otherwise. Then we can write

The data can identify P(Y#y|*=1), P(*=1) and P(*=0)=1-P(*=1). These population parameters

can be estimated straightforwardly from the sub-sample with *=1 or from the complete sample,

respectively. But the data are not informative about P(Y#y|*=0), the distribution function of Y

for the non-respondents. If we assume completely random nonresponse, then

P(Y#y|*=1)=P(Y#y|*=0) and the identification problem is solved. If we are not prepared to make

this or other assumptions, however, all we know is that 0 # P(Y#y|*=0) # 1. This leads to the

following lower and upper bounds on F(y).

These are Manski’s ‘worst case’ bounds on the distribution function, which can easily be extended

for conditioning on covariates X (see below). Manski (1995) shows how these worst case bounds

can be improved upon by adding nonparametric assumptions of monotonicity or exclusion

restrictions. In Manski (1994), he also shows how the same ideas can be used to derive bounds

on (conditional) quantiles of Y, or on the (conditional) mode of Y.

The purpose of this paper is to apply the approach of Manski and to examine this

approach in an empirical application. We study the conditional distribution of gross personal



FY|x(y) / P(Y#y|x)

*'1 if Y is observed
*'0 if Y is missing

FY|x(y) ' FY|(x,*'1)(y)P(*'1|x) % FY|(x,*'0)(y)P(*'0|x)
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(4)

(5)

income using a survey of households in the Netherlands, drawn in 1993. Our sample consists of

2207 adult respondents - heads of households and their partners ; 8% of them do not declare their

personal income. We look at the conditional distribution function and at conditional quantiles. We

also derive two sets of bounds for the conditional mode. We do not only present point estimates

of the bounds, but also construct confidence bands, allowing us to compare the imprecision due

to the nonresponse problem and the imprecision due to finite sample error. We nonparametrically

estimate worst case bounds, bounds under a monotonicity assumption, and bounds under

exclusion restrictions. We focus particularly on the latter, since this has received little or no

attention in earlier applications. In particular, we find that in many cases, imposing exclusion

restrictions leads to lower and upper bounds which are not compatible with each other, implying

that the exclusion restrictions are not supported by the data. This leads to an informal way of

testing the exclusion restrictions.

The remainder of this paper is organized as follows. Section 2 reviews Manski’s

framework. Section 3 describes the estimation method. Section 4 describes the data. Section 5

presents the empirical results. Section 6 concludes the paper.

2  Theoretical framework
2.1   Bounds on the distribution function
In this section we review the theory of Manski (1994,1995) on bounds for a (conditional)

distribution function. The aim is to obtain the value of the conditional distribution function defined

by,

at  given  y 0 ú,  and  given X=x 0 ú . Introduce a dummy variable that models item nonresponsek

(or, in other words, sample selection):

The conditional distribution of Y can be expressed as follows.



0 # FY|x,*'0(y) # 1

FY|(x,*'1)(y)P(*'1|x) # FY|x(y) # FY|(x,*'1)(y)P(*'1|x)%P(*'0|x)
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(6)

(7)

where F (y) = P(Y#y|x,*=1) and F (y) = P(Y#y|x,*=0).We assume that itemY| (x, *=1) Y| (x, *=0)

nonresponse on Y is the only problem; there is no nonresponse in  X and no unit nonresponse, and

there are no measurement errors such as under or over reporting the value of Y. This means that

for all x in the support of X, F (y) is identified. If X is continuous, F (y) can beY| (x, *=1) Y| (x, *=1)

estimated using a  nonparametric regression estimator; see Section 3. Similarly, P(*=1|x) and

P(*=0|x) are identified and can be estimated consistently, since by our assumptions, there is

complete response on * and X.

If * is independent of Y conditional on X, then F (y) = F (y) and allY| (x, *=1) Y| (x, *=0)

expressions in the right hand side of (5) are identified. This is the case of conditional independence

of nonresponse and variable of interest, also referred to as exogenous sampling or  exogenous

nonresponse. It is the basis of the traditional approach to selection models and imputation

methods, but also for the matching literature (see, for example, Rosenbaum and Rubin 1984). In

general, however, * can be related to Y, and F (y) is not identified, so that F (y) is notY| (x, *=0) Y| x

identified either.

The method proposed here, aims at bounding F , using various types of priorY| x

assumptions: no additional assumptions (i.e., ‘worst case’), monotonicity, or exclusion

restrictions.

Worst case bounds
With no additional assumptions, all we know is 

With (5) this implies 

Manski shows that the lower and upper bound in (7) cannot be improved upon without making

additional assumptions which is why he named them worst case bounds. The width of the interval

between the bounds is P(*=0|x), the conditional percentage of nonresponse. Thus, as intuitively

expected, the larger the probability of nonresponse, the less information can be retrieved from the

data, and the wider the interval. The other bounds use additional information to reduce the

distance between the bounds.



P(Y#y|x,*'0) # P(Y#y|x,*'1)

0 # FY|(x,*'0)(y) # FY|(x,*'1)(y)

FY|(x,*'1)(y)P(*'1|x) # FY|x(y) # FY|(x,*'1)(y)

There might also be examples where the opposite is a reasonable assumption, of course.2

This can be treated analogously. We do not work this out here since it seems less relevant for our

empirical application.
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(8)

(9)

(10)

Bounds under a monotonicity assumption
In many cases, it may be reasonable to impose a priori that those with a high value of Y are more

likely to be non respondents than those with low values of the dependent variable.   For example,2

suppose Y is income. It is often claimed that item nonresponse on income is positively correlated

with income, since high income earners are less willing to disclose their income. This monotonicity

assumption implies that P(*=1|Y# y,x)$P(*=1|x) and P(*=0|Y# y,x)# P(*=0|x), and thus, using

Bayes’ rule

or

Applying (9) to (5) leads to the following upper and lower bounds under monotonicity

Compared to (7), the upper bound is reduced by P(*=0|x)[1-F (y)].The reduction of theY|(x, *=1)

width between upper and lower bound due to imposing this assumption of monotonicity on the

conditional distribution function is largest in the left tail of the income distribution.

Bounds with Exclusion Restrictions
In parametric and semiparametric selection models, it is usually assumed that the conditional

distribution of Y given X depends on a subset of the covariates only. Assume that the vector x can

be decomposed into two sets of variables, x=(m ,<). An exclusion restriction on <  means that

P(Y#y|(m ,<)) does not vary with < , so that it can be written as P(Y#y|m). Applying this to (7)

for given m and y but for all values of <  results in the following bounds under the exclusion

restrictions



sup<[FY|(m,<,*'1)(y)P(*'1|(m,<))]
# FY|(m)(y) #

inf<[FY|(m,<,*'1)(y)P(*'1|(m,<))%P(*'0|(m,<))]

sup<[FY|(m,<,*'1)(y)P(*'1|(m,<))]
# FY|(m)(y) #

inf<[FY|(m,<,*'1)(y)]

q(",x) / inf {y: FY|x(y)$" }
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(11)

(12)

(13)

Again, these bounds use prior assumptions, and, therefore, generally result in tighter

bounds than (7). Note that even if the probability of response P(*=1|(m,<)) does not depend on

< , the bounds in (11) may still be more informative than those in (7), as long as F (y) - andY|(m,<,*=1)

thus also F (y) - vary with < . This is in contrast with the situation in semiparametricY|(m,<,*=0)

selection models, where it is usually assumed that <  does play a role in the selection mechanism.

Nothing tells us whether the bounds in (11) are tighter or less tight than those in (10). This will

depend on the empirical application considered.

Combining exclusion restrictions and monotonicity
If both types of prior assumptions are imposed simultaneously, it is straightforward to derive the

following bounds

2.2   Bounds on conditional quantiles
Income distributions are often described in terms of quantiles. It is therefore interesting to apply

the same framework to identify conditional quantiles in case of item nonresponse. In what follows,

expressions (7), (10), (11) and (12) are used to obtain analogous expressions for the conditional

quantiles of the distribution. This draws on Manski (1994).

For " 0 [0,1], the " -quantile of the conditional distribution of Y given X=x, is the smallest

number q(", x) that satisfies F [q(", x)]$ ",:Y

For " > 1, q(", x) = 4 , and for " < 0, q(", x) = - 4 . The "-quantile of the conditional

distribution of Y given X = x and * = 1 will be denoted by q (", x).1

The bounds for the quantiles follow from those for the distribution functions by ‘inverting’



L(y,x) # FY|x(y) # U(y,x)

inf{y:L(y,x)$"} $ inf{y:FY|x(y)$"}$inf{y:U(y,x)$"}

q1 1& (1&")
P(*'1|x)

,x # q(",x) #q1
"

P(*'1|x)
,x

q1(",x) # q(",x) # q1
"

P(*'1|x)
,x

" > 1& 1&"
P(*'1|x)
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(14)

(15)

(16)

(17)

(7), (10), (11) and (12).These can all be written as

for different choices of  L(y, x)  and  U(y, x), all of them non-decreasing functions of y. Inverting

this gives:

Worst Case Bounds on Conditional Quantiles
Applying (15) for L(y, x) and U(y, x) given in (7) and using the quantiles of  F   gives theY|x,*=1

following worst case bounds.

The lower bound is informative only if (1-")#P(*=1|x) and it is -4 otherwise. Similarly, the upper

bound is informative only if "#P(*=1|x). The width of the bounding interval for the quantiles

varies with " and depends on the slope of F  It is no longer simply determined by theY|(x, *=1).

probability of nonresponse as was the case in (7).

Bounds for conditional quantiles under monotonicity
Applying (15) to (10) leads to

Note that the lower bound in (17) exceeds the lower bound in (16) since . Thus,

imposing monotonicity helps to tighten the bounds.



sup< q1 1& (1&")
P(*'1|m,<)

,(m,<) #

# q(",x) #

# inf< q1
"

P(*'1|m,<)
,(m,<)

sup< q1 ",(m,<) #q(",x)# inf< q1
"

P(*'1|m,<)
,(m,<)

E[h0(Y,b)|x]'P(|Y&b|>0|x)

b(0,x)'argminbE[h0(y,b)|x]

b(0,x)

b(0,x)
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(18)

(19)

(20)

(21)

Bounds for conditional quantiles under exclusion restrictions
Applying (15) to (11) gives

Combining exclusion restrictions and monotonicity
Finally, applying (15) to (12) gives

2.3  Bounds on the conditional mode
Drawing from Manski (1994, p.153-156) we derive bounds for the so called 0-mode of the

conditional distribution function F . Define the loss function  h (y, b)=I[ |y-b|>0 ], for b0ú andY|x 0

0>0. The conditional expectation of h (y, b) is given by0

The 0-mode of F , denoted by  , is the value of b for which this conditional expectationY|x

is minimized ( see also Lee, 1996)

If F  has a unimodal density f , and if 0 is sufficiently small, then will approximate theY|x Y|x

mode of the conditional distribution function.

To derive the bounds on the 0-mode in case of item nonresponse, rewrite the expected

loss function as



E[h0(Y,b)|x]'E[h0(Y,b)|x,*'1]P(*'1|x)%E[h0(Y,b)|x,*'0]P(*'0|x)

E[h0(Y,b)|x,*'1]P(*'1|x) #

# E[h0(Y,b)|x] #

# E[h0(Y,b)|x,*'1]P(*'1|x)%P(*'0|x)

E[h0(Y,b(0,x))|x,*'1] # infb E[h0(Y,b)|x,*'1]%
P(*'0|x)
P(*'1|x)

sup< E[h0(Y,b)|m,<,*'1]P(*'1|m,<) #

# E[h0(Y,b)|m] #

# inf< E[h0(Y,b)|m,<,*'1]P(*'1|m,<)%P(*'0|m,<)

b(0,x)

b(0,x)

b(0,x)'b(0,m)
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(22)

(23)

(24)

(25)

The data does not provide any information on E[h (Y,b)|x,*=0]. All we know is that it is between0

0 and 1. This implies 

Combining (21) and (23) shows that    has to satisfy

Condition (24) defines some subset of possible  . It can be called the worst case

subset for the 0-modes; it is not necessarily an interval.

The monotonicity assumption discussed in Sections 2.1 and 2.2 does not provide

additional information on the 0-modes since monotonicity says nothing about the slope of the

distribution function. On the other hand, the idea of using exclusion restrictions does lead to a new

subset of possible 0-modes. As in Sections 2.1 and 2.2, assume that x=(m,<), and that F  doesY|(m,<)

not depend on the vector <. From (23) we then get 

This implies that under the exclusion restriction on  < , has to satisfy



0.05F̂(y)n (&0.2) F̂(y)

sup< E[h0(Y,b(0,m))|m,<,*'1] #

# inf<,b E[h0(Y,b)|m,<,*'1]%
P(*'0|m,<)
P(*'1|m,<)

  We have replaced I[Y# y] by M[(y-Y)/h ] in the nonparametric regression determining3
y

E[I(Y# y)|x], where M is the standard normal cumulative distribution function and h  is ay

smoothness parameter set equal to , where  stands for the sample standard

deviation of the dependent variable. This replacement does not affect the estimation results but

leads to smoother curves in the figures.
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(26)

For a given  0  and  m, the subset of possible 0-modes defined by (26) is a subset of the set

defined by (24).

3  Estimation Methods
3.1 Estimating the bounds on the distribution function
The bounds on values of the distribution function in Section 2.1 are all in terms of characteristics

of the population. We need to estimate them using the available sample. In general, the bounds

are functions of conditional expectations of observed quantities, which can be estimated by

nonparametric regression estimators. For example, (7) contains three conditional expectations to

be estimated: F (y) = E[I(Y#y)| x, *=1], P(*=1|x) = E[*|x] and P(*=0|x) = E[1-*|x]. ForY|x, *=1

all cases, we use kernel estimators ( see Härdle and Linton, 1994, for example ), either based upon

the sub-sample with *=1 or upon the whole sample. The vector of covariates x typically contains

discrete variables with a finite number of possible outcomes, as well as continuous variables. This

implies that the kernel estimator is basically a nonparametric regression on the continuous

variables for each separate cell determined by the values of the discrete variables. The rate of

convergence only depends upon the number of continuous variables (see Bierens, 1987, for

example). We use kernels which are products of Gaussian kernels. The bandwidth is determined

by cross-validation following Härdle and Marron (1985).  Similar techniques are applied to obtain3

estimates of (10), (11) and (12). For the latter two expressions upper bounds are minimized and

lower bounds are maximized with respect to the variables chosen as exclusion restrictions.

The bounds in (7) and (10) can also be written directly as conditional expectations of



q̂1[$̂,x]'argminq j
n

i'1
*iKh(x&xi)[|yi&q|%(2$̂&1)(yi&q)]

L̂(y,x) Û(y,x)

inf {y: L̂(y,x)$"} inf {y: Û(y,x)$"}

q1($,x)

P(*'1|x)

$̂ q1($,x) $̂

 For example, the right hand side of (7) can also be written as E[I(*=1, Y#y)+I(*=0)|x].4
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(27)

appropriate functions of Y and *.  Therefore, it is straightforward to derive analytical expressions4

for their (pointwise) asymptotic distributions, and to construct explicit consistent estimators for

the asymptotic biases and asymptotic covariance matrices ( see Härdle and Linton, 1994, for

example). This is not the case for the bounds in Section 2.1, given in (11) and (12): these

expressions require taking the maximum and minimum over a collections of nonparametric

estimates and the sampling distribution of these estimates is not yet well understood. We therefore

use a naive bootstrap procedure to find sets of confidence bands. This particular bootstrap method

consists of re-sampling randomly 500 times from the original sample with replacement, to obtain

two sided 95% pointwise confidence intervals for each of the estimated upper and lower bounds.

Notice that these confidence bands are not measuring the error of estimating the unknown

distribution function but the error of estimating the upper bound and the lower bound. This means

that the vertical distance between upper confidence band of the upper bound and the lower

confidence band of the lower bound is an overestimation of the total measurement error for the

unknown distribution function. For (7) and (10), we have compared the bootstrapped confidence

intervals with confidence intervals based upon the analytical expressions. The results were virtually

identical and therefore we only present the bootstrapped intervals for all expressions in Section

2.

3.2  Estimating the bounds on conditional quantiles
The bounds on the conditional quantiles in (16), (17), (18) and (19) can be estimated in two ways.

One way is to use estimates and of the bounds on the distribution function in (14),

and determine and . These can be used to replace the

population quantiles in (15) and thus provide estimates of the upper and lower bounds on the

quantiles of the distribution. Another way is to use that (16)-(19) are based upon conditional

quantiles of the complete response sub-population, where $ is some function of the given

" and the response probability . Replacing the latter by its nonparametric estimate yields

a consistent estimate  for $ . Then  can be estimated  after  plugging  in    of  $  and

using an existing nonparametric quantile estimator ( see Härdle and Linton, 1994). For example,

the estimator based upon minimizing a weighted sum of absolute deviations can be used,

originating from Koenker and Bassett (1978) and developed further by Chaudhuri (1991). It is

given by



The differences are due to the fact that we smooth the distribution function in the first5

technique. Without this smoothing and using the same kernels, the results would be identical.

 For detailed information on the VSB panel, see Nyhus (1996).6
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For the kernel function K , we again use a Gaussian product kernel, and the bandwidth h ish

determined by cross-validation in an identical way as the choice of bandwidth for the product

kernel of the estimated bounds on the distribution function. Using Härdle (1984, Theorem 2.3)

it is possible to derive the asymptotic distribution of this quantile estimator for given $. Since $

is also estimated here, the limit distribution is considerably more complicated, and, therefore, we

use bootstrapped confidence bands applying the same bootstrap technique as described above. 

We estimated the quantiles using both techniques described above and found virtually

identical results.  We present the results based upon the first technique, based upon (14) and (15).5

3.3  Estimating bounds on the conditional mode
The conditions which determine possible values of the conditional mode, presented in Section 2.3,

are built upon conditional expectations E[h (Y,b)|x,*=1] and the conditional probabilities0

P(*=1|x) and P(*=0|x). These can be estimated using the same kernel regression estimators as

used for estimating the bounds on the distribution function. The results can be used to obtain

estimates for the subset of feasible conditional modes. Since we are not estimating points but sets,

we will not aim at estimating the precision with which these sets are determined.

4 The data
The data set used is taken from the 1993 wave of the VSB panel. This panel is a joint venture

between the VSB foundation and CentER for Economic Research at Tilburg University.  It aims6

at providing a better understanding of household savings and household financial decision making

in the Netherlands. The questions are classified in five categories, namely household

characteristics, income and wealth, accommodation and mortgages, assets and loans and finally,

a section on psychological questions on attitudes, personality, etc. The panel contains

approximately 3000 households with around 9000 respondents of ages 16 and over. It is divided

into two sub-panels. One sub-panel contains approximately 2000 households and is designed to

be representative of the Dutch population with respect to certain socio-economic variables. The

other sub-panel, with approximately 1000 households, should represent households in the top

decile of the income distribution. Households in this sub-panel are drawn from high income areas.

Since the second sub-panel is obviously not a random sample, we only use the first, representative,

sub-panel. The information in both sub-panels is collected by a computerized system. The



P̂(*'0)
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participants in the representative sub-panel supplied answers on a weekly basis.

The 2000 households in the representative sub-panel contain about 4500 individuals of

working age ( age 16 or older). We select only heads of households ( including singles) and their

permanent partners ( married or unmarried ). From this selection, we retain a total of 2207

individuals from 1415 households. The remaining 585 households were not included since neither

heads nor partners in these households answered the psychological section of the survey; this

section contains the conditioning variables used for exclusion restrictions. We include all

individuals of working age, i.e. part-time and full-time employees, self-employed, unemployed,

students, disabled, pensioners and housewives.

Our dependent variable of interest (Y) is gross personal income. It includes gross earnings

for employees, gross profits for self-employed, various government transfers and benefits, and

capital income. With this definition, 13.3% of the 2207 individuals have zero income; these are

treated as genuine zeros, and should not be confused with income nonresponse. A total of 171

individuals did not provide information on the level of one or more of their income components.

Thus the (unconditional) sample probability of item nonresponse    is 7.7%. Table 1 below

shows how the 171 nonresponse individuals  and the 293 who declare to have zero income are

categorized by labour market state.

Table 1: Non respondents and zero incomes by labour market state

Total % of Males % of Female % of Total % with Males Female %

nonresponse nonresponse nonresponse zero income %with zero with zero inc.

income

Employed 64.3 36.8 27.5 0 0 0

Self-empl. 5.9 3.5 2.3 1.4 0 1.4

Unemployed 4.1 2.3 1.8 0 0 0

Disabled 2.9 2.9 0 0.7 0 0.7

Pensioners 8.8 7.6 1.2 1.0 0 1.0

Housewives 4.7 2.3 2.3 88.7 0.7 88.1

Students 2.3 1.2 1.2 2.0 0.7 1.4

Volunteers 7.0 4.1 2.9 6.1 0 6.1

TOTAL 171 units 104 units 67 units 293 units 4 units 289 units
The table shows that the large majority of nonresponse individuals are males who are

either employed, self-employed or pensioner; on the other hand, zero income will be associated

with housewives. Table 1 shows that the nonresponse is associated with employed individuals.



 Appendix A explains how these variables are constructed and presents the exact wording7

of the underlying questions.
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This suggests that nonresponse is associated with the earnings of individuals rather than with any

other type of income such as capital income or net transfers.

The covariates (X) are age, education measured by an ordered categorical variable, and

family size. The psychological section of the questionnaire contains a variety of questions which

may affect the individuals’ response tendency, without directly determining income. Some of these

variables could be used as exclusion restrictions (< in Section 2). On the basis of some preliminary

probits, explaining item nonresponse, we selected the variables WORR, REFG, RISK and

DWRK.   WORR is based upon a variable which  measures the self-perception of how easily the7

respondent gets worried, in general. The variable REFG is based upon a question on someone’s

reference group for the household’s financial situation. The variable RISK is a measure of risk

aversion based upon information on how often the respondent buys lottery tickets. The fourth

(DWRK) is a dummy variable measuring whether the individual completely responds to the

section of the questionnaire called ‘work and pensions’ and stands as a general indicator of the

respondent’s carefulness in answering the questions.

Table 2 is a statistical summary of the conditioning variables and exclusion restriction

variables mentioned above for the selected sample of heads and partners. From this table we see

that, on average, non-respondents are younger than respondents and are more often male and

single. Non-respondents also have higher educational achievement than respondents. People that

do not easily get worried (WORR=1) have a larger tendency to respond. This suggests that

nonresponse might be related to worrying about privacy. People that do not identify their

reference group (REFG=0) and people who do not answer all the questions in the work and

pensions questionnaire (DWRK=0) also have a larger tendency not to respond to the income

questions. Finally, people who reveal risk aversion in the sense that they do not often play the

lottery (RISK=0) are relatively likely not to respond.

Table 2: Means (standard deviations) and percentages ( standard errors) for covariates and

exclusion restrictions variables.
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All Individuals Respondents Non respondents

Number of

observations

2207 2036 171

Age 47.3 (15.2) 47.8 (15.1) 41.8 (15.3)

Education 2.31 (0.77) 2.3 (0.78) 2.36 (0.73)

% single 19 (0.8) 18.4 (0.9) 26.3 (3.4)

Family size 2.50 (1.28) 2.52 (1.3) 2.3 (1.2)

%  male 52.5 (1.1) 51.8 (1.1) 60.8 (3.7)

% home owners 59.2 (1.0) 60 (1.1) 48.5 (3.8)

Gross income unknown 41,169 (36,621) unknown

% with zero income unknown 14.4 (0.8) unknown

WORR 54.9 (1.1) 55.1 (1.1) 52.0 (3.8)

REFG 47.7 (1.1) 48.6 (1.1) 37.4 (3.7)

RISK 61.8 (1.0) 62.5 (1.1) 53.2 (3.8)

DWRK 81.4 (0.83) 81.9 (0.9) 74.8 (3.3)

5  Results
5.1  Bounds on the distribution function
We present the estimates of the bounds on the income distribution, its quantiles and its mode as

discussed in Section 2. In estimating these expressions we use kernels which are products of

Gaussian kernels for the three conditioning variables, age, education and family size. The

bandwidth for each of these kernels is determined as where  is the sample

standard deviation of the variable and the base bandwidth is h = 1.5, determined by least squareso 

cross-validation; the resulting final bandwidth was h=0.502, where h is calculated as

. For any of the estimated sets of bounds, we have conditioned on the mean

value of the variables age, education and family size. Figure 1 and Figure 2 present the bounds for

the distribution function estimated using expressions (7) and (10), respectively.
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Figure 1 refers to the worst case bounds - estimated using expression (7) -. The figure

contains four curves. The solid curve and the dashed curve are the point estimates of the lower

and upper bounds of  respectively, at each income level y, where    represents the sample

mean of the conditioning set. The dotted curves show the estimated two sided 95% pointwise

confidence bands for the upper and lower bound; the figure only shows the upper confidence band

for the upper bound and the lower confidence band for the lower bound. The vertical distance

between upper and lower bounds  at each point of the income distribution is and

reflects the identification problem due to nonresponse. On the other hand the differences between

dotted curves and corresponding bounds reflect imprecision due to finite sampling error. The total

vertical distance between the two dotted curves reflects uncertainty due to item nonresponse as

well as finite sampling error. The results show that imprecision due to sampling error is certainly

as important as the imprecision due to nonresponse. This is different from the example in Manski

(1994), where sampling error is relatively unimportant. The difference is due to the limited size

of the sample and the three dimensional nonparametric regression, leading to substantial standard

errors of the estimates. The sample includes individuals that declare to have zero income; this

explains the upward shift of the curves at the zero income point.
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Figure 2 presents the

bounds on the distribution function under the assumption of monotonicity given in (10). The

interpretation of the four curves is similar to that of Figure 1. The lower bound is the same as in

Figure 1, only the upper bound differs. Comparison of Figure 1 and Figure 2 clearly shows that

the assumption of monotonicity helps to tighten the bounds at the lower end of the income

distribution.

Figure 3 shows the

bounds of the d i s t r i b u t i o n
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function according to (11), imposing the exclusion restriction that none of the four variables

WORR, RISK, REFG and DWRK affects the income distribution. Thus <  consists of four dummy

variables each of wich can take two different values. This implies that in (11) the minimum and

the maximum are taken from 16 upper bounds and 16 lower bounds. For each of these 16 cases

we have determined a base bandwidth h   by cross validation to get the smoothing parameter.o

The solid and dashed curves in Figure 3 show that maximizing and minimizing over the

potential exclusion restrictions leads to a set of bounds that cross at various points of the

distribution. For these values of income the estimated upper bound is below the estimated lower

bound and we do not obtain a useful interval for  the unknown value of the distribution function.

If we only look at the estimated upper and lower bounds, this result suggests that the exclusion

restrictions are not supported by the data. On the other hand, the dotted lines suggest that this

finding could very well be due to finite sampling error: the upper end points of the confidence

band for the upper bound are always above the lower end points of the confidence band for the

lower bound. Thus, taking into account the imprecision in the estimates, the conclusion that the

data rejects the exclusion restrictions cannot be drawn with sufficient confidence. In other words,

we have performed an informal test for the null hypothesis that the exclusion restrictions are valid.

The null hypothesis is not rejected. The size of the this test, however, is not clear, since we

combine pointwise confidence intervals at different values of income for the lower and the upper

bounds. That is why we call the test informal. Although it may be worthwhile to pursue the idea

behind this test and develop a formal test for exclusion restrictions in this framework, this is not

the aim of this paper.
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Figure 4 shows the estimated bounds according to (12) where we have imposed the

assumption of monotonicity together with the same exclusion restrictions as in Figure 3. The

conclusion is the same as in the previous figure. Point estimates of upper and lower bounds

suggest that the joint assumptions of exclusion restrictions and monotonicity are not supported

by the data. Taking account of sampling error, however, suggests that this result might not be

strong enough to reject the assumptions with large enough confidence.

5.2  Bounds on the quantiles
How informative the bounds in Figure 1 and Figure 2 are, is hard to judge from the figures

themselves. Since income distributions are often described in terms of quantiles, it may be easier

to interpret the bounds on the quantiles than to interpret the bounds on the distribution function.

Figures 5 and 6 present bounds on the quantiles given in (16) and (17) respectively.

As in previous figures the solid and dashed curves represent, respectively, the estimated

upper and lower bounds of the quantiles and the dotted curves are the estimated two sided 95%

confidence intervals. Again, these figures show that most of the distance between the top and the

bottom dotted curves is due to sampling error. The fact that the quantiles are zero for small " is

due to the presence of zero incomes in the sample.
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Table 3: Estimated bounds and confidence interval,( c.i), on income (in Dutch Guilders) based on (16)

and (17)

Worst case  c.i Worst case Monotonicity Monotonicity Upper bound Upper bound

lower bound c.i lower bound c.i

20  Quantileth 311 450 450 1,577 3,360 11,100

25  Quantileth 450 2,328 1,442 9,720 11,200 17,672

30  Quantileth 2,328 10,380 9,114 15,908 17,200 22,798

40  Quantileth 16,197 20,363 18,656 23,325 25,300 33,312

50  Quantileth 23,916 32,000 27,462 36,000 39,919 46,877

60  Quantileth 38,521 44,830 41,735 46,877 50,221 56,344

70  Quantileth 48,665 54,918 50,728 56,400 61,107 69,208

75  Quantileth 55,094 60,680 56,128 61,651 67,929 73,302

80  Quantileth 59,753 67,192 61,366 68,559 74,000 85,000

90  Quantileth 73,844 83,400 74,537 85,000 104,950 179,000

Table 3 shows a selection of estimated quantiles with their corresponding 95% pointwise

confidence intervals. For example, according to the worst case bounds, the median is between

fl.23,916 and fl.46,877 with 95% confidence. Imposing monotonicity reduces the distance

between these bounds on the median by approximately fl.3,500. Such an improvement due to

imposing monotonicity is visible at all the quantiles considered although the improvement  is

smaller at the higher income quantiles.
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Figure 7 and Figure 8 present the quantiles on the income distribution obtained from

estimates of expressions (18) and (19). Figure 7 is estimated imposing the four exclusion

restrictions WORR, RISK, REFG and DWRK whereas Figure 8 additionally imposes the

assumption of monotonicity. Since these estimates are based on the same estimates used to draw

Figure 3 and Figure 4, the conclusion we obtain here is the same as before. The lower bound is

above the upper bound at various quantiles of the distribution showing that the data does not

support the exclusion restrictions underlying expressions (18) and (19).
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5.3  Bounds on the Conditional Mode
The worst case bounds for the conditional mode are implicitly given by (24). In figures  9  and 10

 we   have  drawn  the  two curves  that  play  a  role  in  (24),  namely    and 

. The curves have been drawn for income values ranging from fl.0 to

fl.400,000 taking steps of fl.2,000; steps of smaller size only lead to less smoothness in the

estimated curves but not to different ranges of values for the conditional mode. The results depend

on the choice of 0. Estimating (24) for small values of 0 below fl.7,000 results in curves that are

not informative about a possible range of values for the conditional mode.

Figure 9 shows the estimates of (24) for 0 = fl.10,000; in this figure we see that the

infimum of the upper loss function identifies a range between fl.0,00 and fl.67,000 for the

conditional mode; nevertheless this range is too wide for any practical purpose. Below we

illustrate the results of estimating the same expression (24) but with 0 = fl.8,000. In this case there

are two regions for possible values of the conditional mode; from fl.0 to fl.32,000 and from

fl.35,700 to fl.69,000. 



E[h0(y|m,<,x,*'1)]

P(*'0|x)

24

The fact that the values between fl.32,000 and fl.35,700 are not feasible, however, seems largely

due to finite sampling error. Thus, as in Figure 9, it seems that Figure 10 basically tells us that the

mode is less than about fl.70,000. In both figures the results suggest very imprecise conclusions.

They show that even a limited nonresponse rate can have dramatic consequences for inference

about the conditional mode. Taking account of the finite sampling error would increase the

imprecision even further. In principle, this should be possible using some bootstrap procedure but

given the imprecise conclusions based on point estimates we did not consider it worthwhile to

work this out for our empirical example.

Imposing the four exclusion restrictions and using (26) leads to estimated upper and lower

loss functions illustrated in Figure 11. In this figure we see that between fl.0,00 and fl.150,000 the

upper loss function lies below the lower loss function so that the inequality in (26) is violated. For

values above fl.150,000 the estimated functions coincide: this happens because in that range

=1, while for some of the cells defined by the exclusion restriction variables,

the estimate of equals zero. 
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The results in Figure 11 are similar to those of figures 3-4 and 7-8, in that we find a crossing

between upper and lower bounds. In figures 3-4 and 7-8 we concluded that despite the crossings,

the confidence bands were so wide that the exclusion restrictions were not rejected. In Figure 11

we have no results for the precision of the estimated upper and lower loss function, and we can

only conclude that imposing the four exclusion restrictions simultaneously leads to an empty set

of possible conditional modes.

We investigate the possibility of identifying a set for the conditional mode imposing

weaker exclusion restrictions. Figures 12 to 15 show the result of estimating (26) when each of
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the four exclusion restrictions is imposed separately; the value of 0 is set to fl.10,000. Figures 12

and 13 show that estimated upper and lower bounds lead to no values of that satisfy the

conditions in (26): this suggests that the exclusion restrictions WORR and RISK are rejected by

the data. On the other hand, figures 14 and 15 show that estimates of (26) imposing the exclusion

restrictions REFG and DWRK respectively, lead to sets of upper and lower loss functions that

satisfy the conditions in expression (26) for a non-empty range of values. Imposing the exclusion

REFG identifies a range between fl.50,000 and fl.60,700 whereas if we impose the exclusion

DWRK the range becomes fl.42,900-fl.60,700. In either case, imposing these weaker form of

exclusion restrictions tightens the bounds on the conditional mode since the ranges in figures 14

and 15 are narrower than the estimated range in Figure 9. On the other hand, imprecision due to

sampling error may increase, since estimates will be based on cells with limited numbers of

observations.

6 Conclusions
In this paper we have applied the approach by Manski (1994,1995) to deal with item nonresponse

in survey data. Compared to existing parametric or semi-parametric models, this approach

imposes much weaker assumptions on the data generating process. We have focused on personal

incomes in a Dutch cross-section, for which the item nonresponse rate is 7.7%. We have

computed bounds for the conditional distribution function and the conditional quantiles of the

distribution of personal incomes. Furthermore, we have looked at bounds on the conditional

mode. We have considered bounds which do not impose any prior assumptions on the data (worst

case bounds), and bounds which add prior assumptions in the form of monotonicity or exclusion

restrictions. We have estimated these bounds nonparametrically, and have approximated their

small sample distribution using a bootstrap procedure.
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For worst case bounds on the distribution function, we find that imprecision due to item

nonresponse is substantial, although smaller than the imprecision due to sampling error. Imposing

monotonicity helps to tighten the bounds and to reduce the first type of imprecision substantially,

particularly at the lower end of the distribution. Imposing joint exclusion restrictions based upon

four psychological variables in the data set, leads to sets of point estimates of lower bounds which

exceed point estimates of upper bounds. These estimated bounds are not useful for determining

the unknown distribution function. We have shown how the upper and lower bounds can be used

to construct an informal test of the exclusion restrictions. This is interesting since in this case,

semiparametric selection model estimators typically do not yield a test of the exclusion

restrictions. In our example finite sampling error is so large that the exclusion restrictions cannot

be rejected.

Bounds for quantiles can easily be derived from bounds on the distribution function. We

find that both item nonresponse and sampling error lead to substantial imprecision in estimating

the conditional median or other quantiles. Imposing monotonicity helps to reduce the imprecision

due to item nonresponse for the quantiles at the middle and lower end of the distribution.

For the conditional mode, the worst case bounds are informative for estimated loss

functions when the smoothing parameter is greater than fl.8,000. Nevertheless, the range of

potential values of the mode is too wide to be useful. Imposing four exclusion restrictions jointly

leads to an estimated upper loss function that lies below the estimated lower loss function so that

no useful range for the conditional mode is found. When each of the exclusion restriction variables

is used separately, in two out of four cases we do find a feasible range for the conditional mode

that improves upon the range obtained with the worst case bounds.

Our overall conclusion is that Manski’s approach works reasonably well for the

distribution function and quantiles of the distribution, although a limited item nonresponse rate

of less than 8% already leads to substantial uncertainty on the income quantiles, even in large

samples. Moreover, this approach offers new ways of checking exclusion restrictions, and allows

for an informal test of a single exclusion restriction which cannot be tested in a standard semi-

parametric framework.
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Appendix A
Four variables are used as exclusion restrictions. DWRK is constructed using the response

behavior of each individual to the section in the panel called ‘work and pensions’. REFG is

constructed using only one question in the Psychological section of the panel named ‘Group1', and

the variables WORR and RISK are two ordered response variables that measure the psychological

characteristics of the individual; for these two latter variables the information used is in the form

as provided by the individual.

WORR is constructed from the answer to the following survey question,

“Now, we would like to know how would you describe your personality. Below we have

mentioned a number of personal qualities in pairs. The qualities are not in every case

opposites. Please indicate for each of the pairs of qualities which number would best

describe your personality”

            Quality: easily get worried-------------------Don’t easily get worried.

                        Easily get worried............................. 1

                        .......................................................... 2

                        .......................................................... 3

                        .......................................................... 4

                        .......................................................... 5

                        .......................................................... 6

                        Don’t easily get worried................... 7

                        Don’t know..................................... -9

We define WORR as 0 if the answer to this is below 4 - including ‘-9’ - and 1 otherwise.

The variable RISK is based upon the following question,

“The following questions concern your readiness to take risks. First, some questions

about games of chance”
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            How often do you buy lottery tickets, do you play the lottery, or something of the kind?

               Every week............................................................................ 1

               A few times per month.......................................................... 2

               Once a month........................................................................  3

               Six to ten times per year........................................................ 4

              One to six times per year....................................................... 5

              Rearly.................................................................................... 6

              Never/hardly ever.................................................................. 7

              Don’t know........................................................................... -9

The variable RISK is 1 if the answer is 1, 2 or 3, and 0 otherwise.

REFG is based upon the question,

          Which group is most important to you, with respect to the financial situation of your     

           household?

                  The neighbors.........................................................................1

                  Friends and acquaintances......................................................2

                  Colleagues at work..................................................................3

                  People with my level of education..........................................4

                  People about the same age as myself......................................5

                  People with a similar job as myself.........................................6

                 Brothers, sisters and other relatives..........................................7

                 People known from newspapers and TV..................................8

                 Others........................................................................................9

                 Don’t know..............................................................................-9

The variable REFG is 0 if the answer is -9 and 1 otherwise.

Finally, the variable DWRK is constructed using all the questions in the ‘works and

pensions’ section of the survey. These questions refer to conditions in the workplace, thoughts

about pension plans, etc. None of these questions are directly related to income. If the individual

answers all the questions in this section, DWRK is set equal to 1. Otherwise it is set to 0.


