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An axiomatization of minimal curb sets∗
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Abstract. Norde et al. [Games Econ. Behav. 12 (1996) 219] proved that none of the equilibrium

concepts in the literature on equilibrium selection in finite strategic games satisfying existence

is consistent. A transition to set-valued solution concepts overcomes the inconsistency problem:

there is a multiplicity of consistent set-valued solution concepts that satisfy nonemptiness and

recommend utility maximization in one-player games. The minimal curb sets of Basu and

Weibull [Econ. Letters 36 (1991) 141] constitute one such solution concept; this solution concept

is axiomatized in this article.
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1. Introduction

The notion of consistency for solutions of noncooperative games was introduced by Peleg and

Tijs (1996) and Peleg et al. (1996). Consistency essentially requires that if a nonempty set of

players commits to playing according to a certain solution, the remaining players in the reduced

game should not have an incentive to deviate from it either. This appears to be a minimal

requirement on a solution concept (see also Aumann, 1987, pp. 478-479): given that others play

the game according to a certain solution, the solution concept should recommend you to do the

same.

Yet, the axiom has a dramatic impact: Norde et al. (1996) proved that the unique point-
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valued2 solution concept for the set of strategic games satisfying consistency, in combination with

standard utility maximizing behavior in one-player games and nonemptiness, is the Nash equi-

librium concept. In particular, none of the concepts from the extensive equilibrium refinement

literature satisfying nonemptiness is consistent. As Aumann states in an interview (van Damme,

1998, p. 204), this is something to “chalk up against selection theory”. Also Barry O’Neill (2004,

p. 215) calls this a “surprising result” which “seems to challenge the whole project” of equilib-

rium refinement: “It seems hard for refinement advocates to dismiss consistency, since it is so

close to the basic rationale for the Nash equilibrium”.

Dufwenberg et al. (2001) show by means of examples that a transition to set-valued solution

concepts overcomes the inconsistency problem: there is a multiplicity of consistent set-valued

solution concepts that satisfy nonemptiness and recommend utility maximization in one-player

games. The minimal curb sets of Basu and Weibull (1991) constitute one such a solution

concept. Minimal curb sets are of central importance in the literature on strategic adjustment,

since many intuitively appealing adjustment processes eventually settle down in a minimal curb

set; cf. Hurkens (1995), Young (1998), and Fudenberg and Levine (1998).

Building on the papers cited earlier, which strive for characterizations of existing solution con-

cepts in terms of consistency and other properties or axioms, we provide a similar axiomatization

of minimal curb sets. Section 2 contains definitions and notation. Section 3 describes properties

of set-valued solution concepts. It is shown that the set-valued solution concept that assigns

to each game its collection of minimal curb sets satisfies these properties (Prop. 3.1); indeed,

it is the only one (Thm. 4.1). Moreover, the properties are logically independent (Prop. 4.2).

Section 5 contains variants and extensions of the main result.

2. Notation and definitions

Weak set inclusion is denoted by ⊆, proper set inclusion by ⊂. A game is a tuple G =

〈N, (Ai)i∈N , (ui)i∈N 〉, where N is a nonempty, finite set of players, each player i ∈ N has a

nonempty, finite set of pure strategies (or actions) Ai and a von Neumann-Morgenstern utility

function ui : A → R, where A = ×j∈N Aj . The set of all games is denoted by Γ. The subgame

obtained from G by restricting the action set of each player i ∈ N to a subset Xi ⊆ Ai is

denoted — with a minor abuse of notation from restricting the domain of the payoff functions ui

2A point-valued solution concept assigns to each game a collection of strategy profiles, i.e., a set of points in

the strategy space of the game. A set-valued solution concept assigns to each game a collection of product sets of

strategies, i.e., a set of product sets in the strategy space of the game. Set-valued solution concepts include: the

set of rationalizable strategies (Bernheim, 1984), persistent retracts (Kalai and Samet, 1984), minimal curb sets

(Basu and Weibull, 1991), and minimal prep sets (Voorneveld, 2004, 2005).
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to ×i∈NXi — by 〈N, (Xi)i∈N , (ui)i∈N 〉. The set of mixed strategies of player i ∈ N with support

in Xi ⊆ Ai is denoted by ∆(Xi). Payoffs are extended to mixed strategies in the usual way. As

usual, (ai, α−i) is the profile of strategies where player i ∈ N plays ai ∈ Ai and his opponents

play according to the mixed strategy profile α−i = (αj)j∈N\{i} ∈ ×j∈N\{i} ∆(Aj). For i ∈ N

and α−i ∈ ×j∈N\{i} ∆(Aj),

BRi(α−i) = arg max
ai∈Ai

ui(ai, α−i)

is the set of pure best responses of player i against α−i.

A set-valued solution concept ϕ on Γ is a correspondence that assigns to each game G =

〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ a collection ϕ(G) of product sets in A, i.e., each element of ϕ(G) (if

there is any) is a set X = ×i∈NXi with Xi ⊆ Ai for all i ∈ N . We call elements X ∈ ϕ(G)

solutions of G.

A curb set (Basu and Weibull, 1991; ‘curb’ is mnemonic for ‘closed under rational behavior’)

of a game G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ is a nonempty product set X = ×i∈NXi ⊆ A such that

for each i ∈ N and each belief α−i ∈ ×j∈N\{i}∆(Xj) of player i, the set Xi contains all best

responses of player i against his belief:

∀i ∈ N,∀α−i ∈ ×j∈N\{i} ∆(Xj) : BRi(α−i) ⊆ Xi.

A curb set X is minimal if no curb set is a proper subset of X. The set-valued solution concept

that assigns to each game its collection of minimal curb sets is denoted by min-curb. Hence, for

each game G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ:

min-curb(G) = {X ⊆ A : X is a minimal curb set of G}.

Similarly,

curb(G) = {X ⊆ A : X is a curb set of G}.

We occasionally refer to minimal prep sets (Voorneveld, 2004; ‘prep’ is short for ‘preparation’).

A prep set of G is a nonempty product set X = ×i∈NXi ⊆ A such that for each i ∈ N and each

belief α−i ∈ ×j∈N\{i}∆(Xj) of player i, the set Xi contains at least one best response of player

i against his belief:

∀i ∈ N,∀α−i ∈ ×j∈N\{i} ∆(Xj) : BRi(α−i) ∩Xi 6= ∅.

A prep set X is minimal if no prep set is a proper subset of X. The set-valued solution concept

that assigns to each game its collection of minimal prep sets is denoted by min-prep. Hence, for

each game G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ:

min-prep(G) = {X ⊆ A : X is a minimal prep set of G}.
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Similarly,

prep(G) = {X ⊆ A : X is a prep set of G}.

3. Properties of set-valued solution concepts

We provide properties of set-valued solution concepts and show that min-curb satisfies these

properties. Variants are discussed in Section 5. Throughout this section, ϕ is an arbitrary

set-valued solution concept on Γ. The first three properties are well-known from Peleg and

Tijs (1996), Peleg et al. (1996), and Norde et al. (1996) for point-valued solutions like the Nash

equilibrium concept and are simply restated for set-valued solution concepts. Nonemptiness

requires that the solution concept assigns to each game a nonempty collection of solutions. One-

person rationality requires that in one-player games, the solution simply consists of the set

of utility maximizers.

Nonemptiness: ϕ(G) 6= ∅ for each G ∈ Γ.

One-person rationality: for each one-player game G = 〈{i}, Ai, ui〉 ∈ Γ it holds

that ϕ(G) = {arg maxai∈Ai ui(ai)}.

The idea behind consistency is that if some players commit to playing according to a certain

solution, the remaining players should have an incentive to do so too. This requires appropriate

ways to model: (a) the reduced game that arises if some players commit to a certain behavior,

(b) the absence of incentives to deviate, i.e., the statement that the solution of the original game

gives rise to a solution of the reduced game.

Different models of these issues yield different forms of consistency . In this article we use

the notion of reduced games as defined by Peleg and Tijs (1996), Peleg et al. (1996), and Norde

et al. (1996): Given a game G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ with at least two players and a

mixed strategy profile α ∈ ×i∈N∆(Ai), fix a coalition S ⊂ N,S 6= ∅, and suppose that the

players in N \S commit to playing their part of α. The reduced game w.r.t. S and α is the game

GS,α = 〈S, (Ai)i∈S , (vi)i∈S〉 ∈ Γ where only players i ∈ S choose from their set of pure strategies

Ai, while their payoff functions reduce to vi : ×j∈SAj → R defined as vi(·) = ui(·, αN\S), i.e., the

payoff in the original game, given that members of N \ S play αN\S = (αj)j∈N\S in accordance

with α.

The next step models the statement that a solution of the original game gives rise to a

solution of the reduced game. Consider a solution X ∈ ϕ(G) of G ∈ Γ. Playing according to

X implies restricting attention to mixed strategy profiles α ∈ ×i∈N∆(Xi). Fix some coalition

S ⊆ N,S 6= ∅ of players and suppose that the members of N \S commit to such a strategy profile
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α, thus yielding the reduced game GS,α. Consistency now requires that the initial solution

X ∈ ϕ(G) yields a solution of the reduced game in the following sense: the reduced game GS,α

has a solution in ×j∈SXj , the relevant part of X ∈ ϕ(G).

Consistency: for each G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ, each X = ×i∈NXi ∈ ϕ(G),

each α ∈ ×i∈N∆(Xi), each S ⊂ N,S 6= ∅, there is a solution Y ∈ ϕ(GS,α) with

Y ⊆ ×j∈SXj .

The other properties are specific for set-valued solution concepts, but remain standard.

Nonnestedness: for each G ∈ Γ, there are no X, Y ∈ ϕ(G) with X ⊂ Y .

Many common set-valued solution concepts satisfy nonnestedness, including those defined by

product sets of actions which: (a) survive some iterated elimination process, for instance of

strictly/weakly dominated actions, or, in the case of rationalizability, of never-best replies, or

(b) are minimal or maximal sets with some desirable property, including persistent retracts (so-

called minimal absorbing retracts, see Kalai and Samet, 1984, pp. 134-135), minimal curb/prep

sets, the product set of all minimax/maximin actions in two-person zero-sum games, the product

set of all rationalizable actions (the so-called maximal tight curb set, see Basu and Weibull, 1991,

p. 145), or the largest consistent set3 of Chwe (1994, pp. 313-318).

The next property, satisfaction , is a simple revealed-preference property. A product set of

strategies is called satisfactory, given the solution concept ϕ, if players can credibly commit to

playing actions from that set if they believe that others do so: it always contains a solution of

the associated reduced game. Given such credible commitment, satisfaction4 states that a way

of finding solutions of the original game is to solve the subgame restricted to a satisfactory set.

Formally, consider a game G ∈ Γ with at least two players and a product set X = ×i∈NXi ⊆ A.

Such a set is called satisfactory under ϕ if for all α ∈ ×i∈N∆(Xi) and all S ⊂ N,S 6= ∅, there

exists a Y ∈ ϕ(GS,α) with Y ⊆ ×j∈SXj .

Satisfaction: for each G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ with |N | ≥ 2 and each X ⊆ A

which is satisfactory under ϕ, one has ϕ(〈N, (Xi)i∈N , (ui)i∈N 〉) ⊆ ϕ(G).

This property is reminiscent of the converse consistency axiom of Peleg and Tijs (1996) and Peleg

et al. (1996), which roughly states that if a solution candidate always yields a solution in the

associated reduced games, it is indeed a solution of the original game. Note that satisfaction

is much weaker: satisfactory sets need not be contained in the solution of the game.
3Chwe’s use of the word ‘consistent’ is unrelated to our notion of consistency .
4The adjective ‘satisfactory’ describes a property of product sets, the noun ‘satisfaction ’ describes a property

of a solution concept.

5



Proposition 3.1 The set-valued solution concept min-curb satisfies nonemptiness, one-per-

son rationality, consistency, nonnestedness, and satisfaction.

Proof. Nonemptiness: Let G ∈ Γ. As the entire strategy space A is a curb set, the collection

of curb sets is nonempty, finite and partially ordered by set inclusion. Consequently, a minimal

curb set of G exists.

One-person rationality : Let G = 〈{i}, Ai, ui〉 ∈ Γ be a one-player game. In a one-player

game, the set of best responses is simply the set of maximizers of the utility function. Hence,

Xi ⊆ Ai is a curb set of G if and only if arg maxai∈Ai ui(ai) ⊆ Xi; it is a minimal curb set of G

if and only if Xi = arg maxai∈Ai ui(ai). So min-curb(G) = {arg maxai∈Ai ui(ai)}.
Consistency : Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ, X = ×i∈NXi ∈ min-curb(G), α ∈ ×i∈N∆(Xi),

and S ⊂ N,S 6= ∅. To show: there is a Y ∈ min-curb(GS,α) with Y ⊆ ×j∈SXj . Since

X ∈ min-curb(G), it follows that ×j∈SXj ∈ curb(GS,α). Since ×j∈SXj ∈ curb(GS,α) and there

are only finitely many curb sets in GS,α, it contains a minimal one: there is a Y ∈ min-curb(GS,α)

with Y ⊆ ×j∈SXj .

Nonnestedness: Holds by minimality.

Satisfaction : Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ with |N | ≥ 2. Let X ⊆ A be a satisfactory

set under min-curb. To show:

min-curb(〈N, (Xi)i∈N , (ui)i∈N 〉) ⊆ min-curb(G). (1)

We first show that X ∈ curb(G). Let i ∈ N and α ∈ ×j∈N∆(Xj). Since X is a sat-

isfactory set under min-curb, there is a Y ∈ min-curb(G{i},α) with Y ⊆ Xi. But G{i},α

is the one-player game 〈{i}, Ai, vi〉 ∈ Γ with vi(ai) = ui(ai, α−i) for all ai ∈ Ai. Hence,

min-curb(G{i},α) = {arg maxai∈Ai ui(ai, α−i)}, so Y = arg maxai∈Ai ui(ai, α−i) ⊆ Xi, i.e., Xi

contains all best replies to the belief α−i ∈ ×j∈N\{i}∆(Xj). Since this holds for arbitrary i ∈ N

and α ∈ ×j∈N∆(Xj), it holds by definition that X ∈ curb(G). We now prove (1) by contradic-

tion: let Y ∈ min-curb(〈N, (Xi)i∈N , (ui)i∈N 〉). Since X ∈ curb(G), we also have Y ∈ curb(G).

If Y /∈ min-curb(G), there is a Z ∈ min-curb(G) with Z ⊂ Y . But since Z ∈ min-curb(G), it is

also a curb set of the subgame G′ = 〈N, (Xi)i∈N , (ui)i∈N 〉, contradicting that Y ∈ min-curb(G′).

Conclude that (1) holds. �

4. Axiomatization

In this section, we show that min-curb is the unique solution concept satisfying the properties

in Section 3 and that these properties are logically independent.
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Theorem 4.1 The unique set-valued solution concept on Γ satisfying nonemptiness, one-

person rationality, consistency, nonnestedness, and satisfaction is min-curb.

Proof. Proposition 3.1 shows that min-curb satisfies the properties. Let ϕ be a set-valued

solution concept on Γ that also satisfies them. To show: ϕ(G) = min-curb(G) for all G ∈ Γ.

We do so by induction on the number of players. In a one-player game G = 〈{i}, Ai, ui〉 ∈ Γ, it

follows from one-person rationality of ϕ and min-curb that

ϕ(G) = min-curb(G) = {arg max
ai∈Ai

ui(ai)}.

Next, let n ∈ N and assume that ϕ and min-curb coincide on all games in Γ with at most n

players. Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ have n + 1 players.

Step 1: ϕ(G) ⊆ curb(G).

Let X ∈ ϕ(G), i ∈ N , and α−i ∈ ×j∈N\{i}∆(Xj). To show: BRi(α−i) ⊆ Xi. Let β ∈
×j∈N∆(Xj) be a mixed strategy profile with β−i = α−i. By consistency of ϕ, there is a

solution Y ∈ ϕ(G{i},β) with Y ⊆ Xi. The game G{i},β is the one-player game 〈{i}, Ai, vi〉 ∈ Γ

with vi(ai) = ui(ai, β−i) = ui(ai, α−i) for all ai ∈ Ai. By one-person rationality of ϕ, it

follows that

ϕ(G{i},β) = {arg max
ai∈Ai

vi(ai)} = {arg max
ai∈Ai

ui(ai, α−i)},

i.e., the unique solution of the reduced game G{i},β is the set of best replies of i in the game G

against the belief α−i:

Y = arg max
ai∈Ai

ui(ai, α−i) ⊆ Xi,

as we had to show.

Step 2: If X ∈ min-curb(G), then X is a satisfactory set under ϕ.

Let X ∈ min-curb(G), α ∈ ×i∈N∆(Xi), and S ⊂ N,S 6= ∅. By induction, ϕ(GS,α) =

min-curb(GS,α). By consistency of min-curb, there is a Y ∈ min-curb(GS,α) with Y ⊆ ×i∈SXi.

Combining these two results, we find that there is a Y ∈ ϕ(GS,α) with Y ⊆ ×i∈SXi. Hence, X

is a satisfactory set under ϕ.

Step 3: If X ∈ min-curb(G), then there is a Y ∈ ϕ(G) with Y ⊆ X.

Let X ∈ min-curb(G). By step 2, X is a satisfactory set under ϕ. Since ϕ satisfies non-

emptiness and satisfaction , it follows that

∅ 6= ϕ(〈N, (Xi)i∈N , (ui)i∈N 〉) ⊆ ϕ(G). (2)

So let Y ∈ ϕ(〈N, (Xi)i∈N , (ui)i∈N 〉). Then Y ⊆ X, and by (2): Y ∈ ϕ(G).

Step 4: ϕ(G) ⊆ min-curb(G).
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Let X ∈ ϕ(G). By step 1, X ∈ curb(G). Suppose X /∈ min-curb(G): there is a Y ∈
min-curb(G) with Y ⊂ X. By step 3, there is a Z ∈ ϕ(G) with Z ⊆ Y . But since Z ⊆ Y ⊂ X

and X, Z ∈ ϕ(G), we have a contradiction with the assumption that ϕ is nonnested . Conclude

that X ∈ min-curb(G).

Step 5: min-curb(G) ⊆ ϕ(G).

Let X ∈ min-curb(G). By step 3, there is a Y ⊆ X with Y ∈ ϕ(G). By step 1, Y ∈ curb(G).

Since X ∈ min-curb(G) and Y ⊆ X is a curb set, it must be that Y = X, i.e., X = Y ∈ ϕ(G).

Combining steps 4 and 5, conclude that ϕ(G) = min-curb(G) also for the (n + 1)-player

game G. By induction: ϕ(G) = min-curb(G) for all G ∈ Γ. �

Proposition 4.2 The axioms in Theorem 4.1 are logically independent.

We show this by means of five set-valued solution concepts, each violating exactly one of the

five axioms in Theorem 4.1. Since the verification that these concepts satisfy given properties

proceeds along the same lines as the proof of Proposition 3.1, we only show explicitly which axiom

is violated. Solution concepts ϕ1 to ϕ5 are defined, for each game G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ,

as follows:

ϕ1(G) =

{
min-curb(G) if G is a one-player game,

∅ otherwise.

ϕ2(G) = min-prep(G).

ϕ3(G) =

{
min-curb(G) if G is a one-player game,

{×i∈N{ai} | ∀i ∈ N : ai ∈ Ai} otherwise.

ϕ4(G) =

{
min-curb(G) if G is a one-player game,

curb(G) otherwise.

ϕ5(G) =

{
min-curb(G) if G is a one-player game,

{A} otherwise.

The solution concept ϕ1 satisfies all properties in Theorem 4.1, except nonemptiness: ϕ1(G) =

∅ for each game G ∈ Γ with two or more players.

The solution concept ϕ2 satisfies all properties in Theorem 4.1, except one-person ratio-

nality : in the one-player game G = 〈{1}, {a, b}, u1〉 with u1(a) = u1(b), we have

ϕ2(G) = min-prep(G) = {{a}, {b}} 6= {{a, b}} = {arg max
c∈{a,b}

u1(c)}.

The solution concept ϕ3 satisfies all properties in Theorem 4.1, except consistency : in the

game G in Figure 1, we have X = {T} × {R} ∈ ϕ3(G). Consider the belief (T,R) in which

8



player 1 chooses T with probability one and player 2 chooses R with probability one. In the

reduced game G{1},(T,R) = 〈{1}, {T,B}, v1〉 with v1(T ) = v1(B) = 0, we have

ϕ3(G{1},(T,R)) = min-curb(G{1},(T,R)) = {{T,B}},

so X1 = {T} does not contain a solution of the reduced game G{1},(T,R).

L R

T 1, 1 0, 0

B 0, 0 0, 0

Figure 1: A simple two-player game G.

The solution concept ϕ4 satisfies all properties in Theorem 4.1, except nonnestedness:

in the game G in Figure 1, we have ϕ4(G) = curb(G) = {{T} × {L}, {T,B} × {L,R}} with

{T} × {L} ⊂ {T,B} × {L,R}.
The solution concept ϕ5 satisfies all properties in Theorem 4.1, except satisfaction : in the

two-player game G in Figure 1, {T}×{L} is a satisfactory set under ϕ5, but in the subgame G′

restricted to {T} × {L}, we have ϕ5(G′) = {{T} × {L}} 6⊆ {{T,B} × {L,R}} = ϕ5(G).

5. Variants and extensions

(a) In Theorem 4.1, nonnestedness can be replaced by the following property:

Decisiveness: for each G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ Γ and X ∈ ϕ(G):

ϕ(〈N, (Xi)i∈N , (ui)i∈N 〉) = {X}.

The intuition behind decisiveness is that the solution concept takes some argument to its

logical conclusion: given a solution X of a game, the solution of the subgame restricted to X is

not refined further. Note that min-curb satisfies decisiveness. Nonnestedness is used only in

step 4 of Theorem 4.1, the proof of which now becomes as follows: Let X ∈ ϕ(G). By step 1, X ∈
curb(G). Let Y ∈ min-curb(G) with Y ⊆ X. Then also Y ∈ min-curb(〈N, (Xi)i∈N , (ui)i∈N 〉).
By step 3 applied to the subgame 〈N, (Xi)i∈N , (ui)i∈N 〉, there is a Z ∈ ϕ(〈N, (Xi)i∈N , (ui)i∈N 〉)
with Z ⊆ Y . Decisiveness of ϕ implies that ϕ(〈N, (Xi)i∈N , (ui)i∈N 〉) = {X}. Conclude that

X = Z ⊆ Y ⊆ X, i.e., X = Y ∈ min-curb(G), proving step 4.

(b) Since most of the literature on minimal curb sets involves mixed extensions of finite strategic

games, we took this to be our domain Γ. This finiteness assumption is not necessary: we
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essentially need Γ to be closed w.r.t. certain subgames and reduced games, and that each game

in Γ has a nonempty collection of minimal curb sets. In particular, defining curb sets and the

properties in Section 3 in terms of product sets X = ×i∈NXi where each component Xi is a

nonempty compact set of pure strategies, our analysis carries through also on the domain of

games where each strategy space is assumed to be compact in some Euclidean space and utility

functions are continuous, the domain on which Basu and Weibull (1991) establish existence of

minimal curb sets.

(c) Rationality requires decision makers in one-player games to choose utility maximizing ac-

tions. That is the motivation behind the standard one-person rationality axiom in the

consistency literature. For set-valued solution concepts, it plays a role whether one pools the

utility maximizers within a single set or considers them separately. For instance, in the one-

player game G = 〈{1}, {a, b}, u1〉 with u1(a) = u1(b), we have min-curb(G) = {{a, b}}, whereas

min-prep(G) = {{a}, {b}}: curb sets require all ‘best replies’ to be present, prep sets require

the presence of at least one. An intuitive modification of the one-person rationality axiom

in Section 3 would therefore be:

For each one-player game G = 〈{i}, Ai, ui〉 ∈ Γ : ϕ(G) = {{bi} : bi ∈ arg max
ai∈Ai

ui(ai)}. (3)

Rewriting our earlier results yields an axiomatization of min-prep:

Theorem 5.1 The unique set-valued solution concept on Γ satisfying nonemptiness, one-

person rationality as in (3), consistency, nonnestedness, and satisfaction is min-prep.

These properties are logically independent.

The proof is virtually identical to that of Propositions 3.1, 4.2, and Theorem 4.1 by interchanging,

firstly, curb and prep and, secondly, min-curb and min-prep. It is therefore omitted.
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