
No. 2001-40

A PARTIAL RANKING ALGORITHM FOR
RESOURCE ALLOCATION PROBLEMS

By Anja De Waegenaere and Jacco L. Wielhouwer

June 2001

ISSN 0924-7815

A Partial Ranking Algorithm for

Resource Allocation Problems

Anja De Waegenaere¤ Jacco L. Wielhouwery

May 29, 2001

Abstract

We present an algorithm to solve resource allocation problems with a single

resource, a convex separable objective function, a convex separable resource-usage

constraint and bounded variables. Through evaluation of speci…c functions in the

lower and/or upper bounds, we obtain information on whether or not these bounds

are binding. Once this information is available for all variables, the optimum is

found through determination of the unique root of a strictly decreasing function.

A comparison is made with the currently known most e¢cient algorithms.

Keywords: Programming, non-linear: resource allocation. Programming, algorithms:

partial ranking.

¤Corresponding author: CentER for Economic Research and Department of Econometrics and Op-

erations Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands. Tel: ++31-

13-4662913. Fax: ++31-13-4663280. Email: a.m.b.DeWaegenaere@kub.nl.
yCentER for Economic Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Nether-

lands.

1

1 Introduction

We focus on the continuous variable resource allocation problem of the following form:

min(d1;::: ;dN)
PN

k=1 fk(dk)

s:t:
PN

k=1 gk(dk) 6 D;

lk 6 dk 6 uk; for k = 1; : : : ;N;

(1)

where the performance functions fk(:) and the resource-usage functions gk(:) are dif-

ferentiable and convex, lk 2 < [f¡1g and uk 2 < [f+1g: The applied operations

research literature provides numerous examples of optimization problems that can be

written as a resource allocation problem. For some practical applications see e.g. Hel-

gason et al. (1980), Nielsen and Zenios (1993) and De Waegenaere and Wielhouwer

(2001).

Apart from its practical applications, the above problem is also important in heuris-

tics and branch and bound algorithms for solving the integer valued resource allocation

problem (see e.g. Bretthauer and Shetty 1995, Ventura and Weng 1995).

For the case of quadratic objective functions, several e¢cient algorithms have been

developed, see e.g. Pardalos and Kovoor (1990) and Shetty and Muthukrishnan (1990).

On the solution of problem (1) with convex performance functions and a linear resource-

usage constraint, the most e¢cient methods described until now are due to Zipkin (1980)

(which is a generalization and extension of Luss and Gupta 1975), Bitran and Hax

(1981), and Nielsen and Zenios (1992). Kodialam and Luss (1998) extend the approaches

of Zipkin (1980) and Bitran and Hax (1981) to allow for a more general separable convex

resource-usage constraint in case of variables that are unbounded above. Bretthauer

and Shetty (1995) focus on the integer valued resource allocation problem and provide

a generalization of the approach of Nielsen and Zenios (1992) to solve the real valued

subproblems in a branch and bound algorithm.

When comparing these approaches, we see that Bitran and Hax (1981) obtain infor-

mation on lower or upper bounds that are binding through solving resource allocation

problems with unbounded variables, whereas Zipkin (1980) obtains that information

through a combination of ranking, speci…c function evaluations, and solving resource

allocation problems with unbounded variables. Once this information is available for all

variables, it remains to solve a resource allocation problem with unbounded variables,

which is equivalent to solving one equation in one unknown. When the variables are

2

bounded both below and above, both algorithms in general require several iterations,

each of which involves solving an equation. When the variables are unbounded above,

Zipkin’s algorithm requires only one equation to be solved. However, the variables need

to be ranked. Kodialam and Luss (1998) numerically compare these two approaches for

variables that are unbounded above and conclude that in cases where there is a closed

form solution to the problem with unbounded variables, the algorithm of Bitran and

Hax (1981) is more e¢cient. The opposite holds when no such closed form solution is

available. In addition, their numerical examples show that in case of Zipkin’s approach,

the ranking of the variables on average takes 20%-25% of the total time needed to solve

the problem, so that important improvements can be achieved if the ordering time is

reduced. Nielsen and Zenios (1992) express all the decision variables as a function of the

Lagrange multiplier of the resource-usage constraint, so that only one equation needs to

be solved even in the presence of both upper and lower bounds. In order to reduce the

numerical complexity of root searching, however, a sequence of length 2N is ranked.

We present an algorithm where information on whether or not bounds are binding

is obtained exclusively through evaluation of given functions in the lower and/or upper

bounds. During these function evaluations, the variables are implicitely ranked partially.

Our algorithm therefore does not require the variables to be ranked completely, and a

resource allocation problem with unbounded variables has to be solved only once. This

is a bene…t compared to the above described approaches, since each of these approaches

requires full ranking and/or solving multiple equations.

The paper is organized as follows. In section 2 we provide a characterization of the

optimal allocation scheme. In section 3 we present an e¢cient algorithm to calculate

it. In section 4, we discuss the computational e¢ciency of the algorithm, and provide a

detailed comparison with the approaches of Zipkin (1980), Bitran and Hax (1981) and

Nielsen and Zenios (1992). The paper is concluded in section 5.

2 Characterization of the optimal solution

Given the structure of problem (1), its optimal solution can be found by solving the set

of Karush-Kuhn-Tucker (KKT) conditions. The main idea that leads to our algorithm

is as follows. Once it is known, for each variable, whether or not a corresponding lower

3

or upper bound is binding, the optimum can be found by simply determining the unique

root of a particular strictly decreasing function. Our algorithm therefore provides an

e¢cient way to determine whether or not lower or upper bounds are binding.

We …rst introduce the following notation:

- Klb is the set of variables for which it is known that the corresponding lower bound

is binding,

- Kub is the set of variables for which it is known that the corresponding upper

bound is binding,

- Klnb is the set of variables for which it is known that the corresponding lower

bound is not binding,

- Kunb is the set of variables for which it is known that the corresponding upper

bound is not binding,

- Kbnb is the set of variables for which it is known that both bounds are not binding,

i.e. Kbnb = Klnb \ Kunb,

- K is the set of variables for which it is known, for both bounds, whether or not

they are binding, i.e. K = Klb [Kub [Kbnb.

In Theorem 1, we show how the optimal solution can be determined given the infor-

mation that is available. In Theorem 2, we show how additional information can be

obtained. We introduce the following notation:

Fk(:) =
f 0k(:)

g0k(:)
; for all k = 1; :::; N:

We assume that, for all k; fk(:) and gk(:) are di¤erentiable and convex, g0k(:) 6= 0; and

Fk(:) is continuous and invertible. Moreover, the functions gk(F¡1k (:)) are either all

strictly increasing or all strictly decreasing. (Notice that this allows e.g. for gk(x) = akx

with ak > 0 for some k, and ak < 0 for the other k’s, as in Nielsen and Zenios 1992).

For notational convenience, we will focus on the case where, for all k, it holds that gk(:)

and Fk(:) are strictly increasing and Fk(:) < 0: This is satis…ed for example when, for

all k; fk(:) is strictly convex and decreasing, and gk(:) is convex and strictly increasing.

4

In order to avoid extensive notation to take into account that some of the bounds can

be equal to ¡1 or +1, we will implicitly assume the following: for any function h(:),

h(lk) denotes limx!¡1 h(x) in case lk = ¡1. Similarly, [lk; uk] denotes (¡1; uk] in case

lk = ¡1. Similar notations will be used in case uk = +1.

First notice that, similarly to Bretthauer and Shetty (1995), one can verify whether or

not the inequality constraint is binding in the following way. Consider the following

inequality
NX

k=1

gk(uk) 6 D: (2)

If (2) is satis…ed, the inequality constraint is not binding and the optimum is given by

dk = uk; in case uk < +1 for all k. If (2) is satis…ed with uk = +1 for some k, an

optimum does not exist. In the sequel we will therefore always assume that (2) is not

satis…ed, so that the inequality constraint can be replaced by an equality constraint.

Theorem 1 Take any J, and de…ne the function ªJ(:) as follows:

ªJ (d) := D ¡ gJ (d)¡
NX

k=1
k 6=J

gk(»k(J; d)); (3)

where

»k(J; d) = min
©
max

©
F¡1k (FJ(d)); lk

ª
; uk

ª
; if k =2 (K [Klnb [Kunb);

= minfF¡1k (FJ (d)); ukg; if k 2 Klnb n Kbnb;

= maxfF¡1k (FJ(d)); lkg; if k 2 Kunb n Kbnb;

= F¡1k (FJ(d)); if k 2 Kbnb;

= lk; if k 2 Klb;

= uk; if k 2 Kub:

(4)

Then, the following holds:

i) The function ªJ (:) is continuous and strictly decreasing, so that it has at most

one root.

ii) Let us denote

P :=

8
>><
>>:
J :

ªJ(uJ) < 0 < ªJ (lJ)

or ªJ(lJ) = 0 and lJ > ¡1
or ªJ(uJ) = 0 and uJ < +1

9
>>=
>>;

5

The optimum exists i¤ P 6= ;: The optimal solution satis…es:
8
<
:
dk = »k(J; dJ); for all k 6= J;
dJ = ª

¡1
J (0);

(5)

for any J 2 P:

Proof:

i) The fact that ªJ(:) is continuous and strictly decreasing follows immediately from

the fact that the functions Fk(:) and gk(:) are continuous and strictly increasing.

ii) Given that (2) is not satis…ed and that it is known that for all variables in Klnb

(Kunb) the lower (upper) bound is not binding, and that for all variables in Klb (Kub)

the lower (upper) bound is binding, the optimal value for all variables dk; k 2 S :=

f1; : : : ;Ng n (Klb [Kub) can be found by solving the following optimization problem:

min(d1;::: ;dN)
P

k2S fk(dk)

s:t:
P

k2S gk(dk) = D ¡ P
k2Klb gk(lk)¡

P
k2Kub gk(uk);

lk 6 dk 6 uk; for k 2 S n (Klnb [Kunb)

dk > lk; for k 2 S \ (Kunb n Klnb)

dk 6 uk; for k 2 S \ (Klnb n Kunb)

(6)

with fk : lk = ¡1g ½ Klnb and fk : uk = +1g ½ Kunb:

The Lagrangian of problem (6) is given by:

L(d; ¸; ¹) =
X

k2S
fk(dk)¡

X

k2SnKlnb

¹k(dk ¡ lk) +
X

k2SnKunb

¿ k(dk ¡ uk)

+¸

ÃX

k2S
gk(dk) +

X

k2Klb
gk(lk) +

X

k2Kub
gk(uk)¡D

!
: (7)

Given that g0k(:) > 0, the necessary and su¢cient conditions for an optimum are as

6

follows: there exist ¹k > 0, ¿ k > 0, and ¸ > 0, such that
8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

Fk(dk) + ¸ = 0; k 2 Kbnb;

Fk(dk) + ¸¡ ¹k = 0; k 2 S \ (Kunb n Klnb) ;

Fk(dk) + ¸ + ¿k = 0; k 2 S \ (Klnb n Kunb) ;

Fk(dk) + ¸¡ ¹k + ¿ k = 0; k 2 S n (Klnb [Kunb);

¹k(dk ¡ lk) = 0; k 2 S n Klnb;

¿k(dk ¡ uk) = 0; k 2 S n Kunb;
PN

k=1 gk(dk) = D;

lk 6 dk 6 uk; k 2 S n (Klnb [Kunb);

dk > lk; k 2 S \ (Kunb n Klnb);

dk 6 uk; k 2 S \ (Klnb n Kunb):

(8)

Let (d1; :::; dN) be the unique allocation scheme that satis…es (5) for a given J 2 P . We

will show that there exist ¹k, ¿k, and ¸ such that the conditions in (8) are satis…ed.

First notice that i) and J 2 P imply that dJ := ª¡1J (0) 2 [lJ ; uJ]. Moreover, ªJ(dJ) = 0

implies that
PN

k=1 gk(dk) = D.

Finally, it is seen immediately that with

¹k := maxfFk(lk); FJ(dJ)g ¡ FJ (dJ) > 0; k 2 S n Klnb;

¿ k := FJ (dJ)¡minfFk(uk); FJ(dJ)g > 0; k 2 S n Kunb;

¸ := ¡FJ (dJ) > 0;

(9)

all the necessary and su¢cient conditions for optimality are satis…ed.

Now suppose that dk; ¹k; ¿ k and ¸ satisfy conditions (8). It is clear that Kbnb [fk :
¹k = ¿ k = 0g ½ P : Indeed, take J 2 Kbnb [fk : ¿ k = ¹k = 0g and set dJ : = F¡1J (¡¸):
Then (8) implies that dk = »k(J; dJ) and

NP
k=1

gk(dk) = D implies that ªJ(dJ) = 0, so

that J 2 P . Now suppose that Kbnb [fk : ¹k = ¿ k = 0g = ;: Then, if there exists

a ¿ k > 0; let J be such that ¿ J = minf¿kjk : ¿ k > 0g: Otherwise, let J be such that

¹J = minf¹kjk : ¹k > 0g: It can then be veri…ed that J 2 P: We can therefore conclude

that P 6= ;; and that (d1; :::; dN) satis…es (5) for any J 2 P.

This concludes the proof. ¤

The above theorem implies that the optimal solution can be found by determining the

root of ªJ(:) for any J 2 P . It is clear that in case ªJ (uJ) < 0 < ªJ(lJ); the root

searching procedure will become more e¢cient as more information becomes available

7

on whether or not bounds are binding, i.e. K becomes larger. In order to increase the set

K, we will use the following fundamental result, where the optimal solution is denoted

(d¤1; : : : ; d
¤
N).

Theorem 2 For any J 2 f1; : : : ; Ng, the following holds:

i) If ªJ (lJ) < 0, then

8
<
:

d¤k = lk, for all k for which Fk(lk) > FJ(lJ),

d¤k < uk, for all k for which Fk(uk) > FJ (lJ).

ii) If ªJ (lJ) > 0, then

8
<
:

d¤k > lk, for all k for which Fk(lk) 6 FJ(lJ),

d¤k = uk, for all k for which Fk(uk) 6 FJ (lJ).

iii) If ªJ (uJ) > 0, then

8
<
:

d¤k = uk, for all k for which Fk(uk) 6 FJ(uJ),

d¤k > lk, for all k for which Fk(lk) 6 FJ (uJ).

iv) If ªJ (uJ) < 0, then

8
<
:

d¤k < uk, for all k for which Fk(uk) > FJ(uJ),

d¤k = lk, for all k for which Fk(lk) > FJ (uJ).

v) If ªJ (lJ) = 0 (ªJ(uJ) = 0), then d¤k = »k(J; lJ) (d¤k = »k(J; uJ)) for all k.

Proof: i) Suppose that ¹J = 0 in the optimal solution i.e. the lower bound for variable

J is not binding. Then there exists a ¿ J > 0 such that the conditions in (8) are satis…ed

with

¸ = ¡FJ(d¤J)¡ ¿ J : (10)

Now let us denote eªJ (¢) for the function that equals ªJ(¢) but with FJ(d) replaced by

FJ (d) + ¿J . It can now be seen from the proof of Theorem 1 that the optimum satis…es

eªJ(d¤J) = 0. Since eªJ(¢) is clearly decreasing and d¤J > lJ , it follows that eªJ(lJ) > 0.

Now ¿J > 0 implies that ªJ(lJ) > eªJ(lJ) > 0.

Therefore, by contradiction, ªJ(lJ) < 0 implies that ¹J > 0, which implies d¤J = lJ .

Combined with conditions (8), this yields the proof of i).

ii) Using similar arguments as in the proof of i) one can show that ªJ(lJ) > 0 implies

that ¹J = 0: Now since ¹J = 0 and d¤J = lJ implies that ªJ(lJ) = 0, we can conclude

that d¤J > lJ : Combined with conditions (8), this yields the proof of ii):

iii), iv) The proof is similar.

8

v) Follows immediately from ii) in Theorem 1.

This concludes the proof. ¤

The above theorem states that, with each evaluation of ªJ (lJ) or ªJ (uJ) for some J,

additional information can be obtained on whether or not certain bounds are binding.

This information is extremely useful since it follows immediately from Theorem 1 that

when it is known that the lower bound for the kth variable is binding (resp. not binding),

then the term max
©
lk ; F

¡1
k (FJ(d))

ª
in ªJ(:) can be replaced by its …rst (resp. second)

argument. A similar argument holds for the upper bounds. This clearly simpli…es the

procedure in any following step.

3 The Algorithm

Theorem 2 implies that evaluation of ªJ (lJ) and/or ªJ (uJ) for di¤erent values of J

yields information on whether or not bounds are binding, i.e. it increases the set K. In

particular, one can infer from Theorem 2 that

Kbnb ¾ fJ : ªJ (uJ) < 0 < ªJ (lJ)g;
Klb ¾ fJ : ªJ (lJ) < 0g;
Kub ¾ fJ : ªJ (uJ) > 0g:

Notice that Theorem 2 implies that evaluation of a ªJ(lJ) or ªJ (uJ) can yield informa-

tion on whether or not bounds are binding for several other variables. For example, if

ªJ(lJ) < 0 so that J 2 Klb; then k 2 Klb for all k with Fk(lk) > FJ(lJ):

Theorem 1 implies that, as soon as at least one element J 2 Kbnb[
n
J : ªJ (lJ)=0 and lJ>¡1

or ªJ(uJ)=0 and uJ<+1

o

is known, the optimum can be found by determining the root of the function ªJ(:). One

can therefore distinguish the following two extreme approaches for solving the resource

allocation problem:

1. Evaluation of ªJ(lJ) and/orªJ (uJ) is continued until ªJ(lJ) = 0 orªJ(uJ) = 0 or

K = f1; : : : ; Ng. In the latter case the root of ªJ(:) is determined for a J 2 Kbnb.

2. Root searching is started as soon as an element in Kbnb is found (unless ªJ (lJ) = 0

or ªJ (uJ) = 0 before that):

It is intuitively clear that approach 2 on average would be computationally less e¢cient,

since the function ªJ(:) in general will still contain a number of maximum and minimum

9

terms when its root has to be determined. This is not the case for approach 1. It can be

shown that the e¢ciency of approach 2 can be improved through a result that allows to

combine root searching with additional information gathering. However, the e¢ciency

will then largely depend on the choice of the root searching algorithm. Therefore we

present the algorithm based on approach 1. Remember that K = Klb [Kub [Kbnb and

S = f1; : : : ; Ng n (Klb [Kub).

Algorithm DW-W

Step 0: Set Klb = Kub = ;, and Klnb = fk : lk = ¡1g, Kunb = fk : uk = +1g.

Step 1: Pick any J =2 K. If J 2 Klnb, go to Step 3.

Step 2: If ªJ (lJ) = 0: STOP the optimum is d¤k = »k(J; lJ).

If ªJ (lJ) < 0 then:

– Klb = Klb [fk 2 S n Klnb : Fk(lk) > FJ(lJ)g

– Kunb = Kunb [fk 2 S n Kunb : Fk(uk) > FJ(lJ)g

– Go to Step 4.

If ªJ (lJ) > 0, then:

– Klnb = Klnb [fk 2 S n Klnb : Fk(lk) 6 FJ(lJ)g

– Kub = Kub [fk 2 S n Kunb : Fk(uk) 6 FJ(lJ)g

– If J 2 Kunb, go to Step 4.

Step 3: If ªJ (uJ) = 0: STOP the optimum is d¤k = »k(J; uJ).

If ªJ (uJ) > 0 then:

– Kub = Kub [fk 2 S n Kunb : Fk(uk) 6 FJ(uJ)g

– Klnb = Klnb [fk 2 S n Klnb : Fk(lk) 6 FJ(uJ)g

If ªJ (uJ) < 0 then:

– Kunb = Kunb [fk 2 S n Kunb : Fk(uk) > FJ(uJ)g

10

– Klb = Klb [fk 2 S n Klnb : Fk(lk) > FJ(uJ)g

Step 4: If K 6= f1; : : : ;Ng, go to Step 1.

Else, go to Step 5.

Step 5: Determine the root d¤J 2 [lJ ; uJ] of ªJ (:) for any J 2 Kbnb, and; d¤k = »k(J; d
¤
J).

Theorem 3 Algoritm DW-W stops after a …nite number of iterations, and yields the

optimum if it exists.

Proof: It is clear that either Step 5 of the algorithm is reached, or there is a J such

that ªJ(lJ) = 0 or ªJ (uJ) = 0. The latter implies that the optimum is found before

Step 5 is reached and the algorithm indeed stops. Notice that when the optimum is

such that each of the variables is either at its upper or at its lower bound, then it will be

the case that Step 5 is not reached. Indeed, it can be seen from the proof of Theorem 1

that, at the latest when K contains all but one elements, it will be the case that ªJ(:)

equals zero either in an upper or in a lower bound. Therefore, when Step 5 is reached,

an optimum exists i¤ P = Kbnb 6= ; and ªJ(:) has a root in [lJ ; uJ] for all J 2 Kbnb: It

follows from Theorem 1 that root searching in Step 5 for one arbitrary J 2 Kbnb yields

either the optimal solution or the knowledge that an optimal solution does not exist.¤

4 Computational E¢ciency

In this section we …rst determine the computational complexity of our algorithm. Then

we compare it to the algorithms of Zipkin (1980), Bitran and Hax (1981) and Nielsen

and Zenios (1992).

The computations involved in algorithm DW-W are as follows.

- A number of evaluations of ªJ(lJ), each of which requires a number of comparisons

between FJ (lJ) and Fk(lk), and/or Fk(uk).

- A number of evaluations ofªJ (uJ), each of which requires a number of comparisons

between FJ (uJ) and Fk(uk), and/or Fk(lk).

11

- Solving one equation of the form ªJ(d) = 0; where

ªJ (d) = D ¡
X

k2Kbnb
k 6=J

gk(F
¡1
k (FJ (d)))¡ gJ(d)¡

X

k2Klb
gk(lk)¡

X

k2Kub
gk(uk):

(11)

Regarding the e¢ciency of root searching, notice that when root searching is started,

it holds that K = f1; :::; Ng; so that Klb(Kub); contains all the variables for which the

lower bound is binding. Therefore, F¡1k (:) only has to be determined for those variables

for which both bounds are unbinding. Moreover, a particular choice of J 2 Kbnb implies

that:

- The root of ªJ(:) is in [lJ ; uJ] if it exists:

- F¡1J (d) need not be evaluated.

Therefore, e¢ciency can be gained through careful choice of J:

The following proposition determines the order of complexity of the function evaluations

and the comparisons.

Proposition 1 When J =2 K is chosen randomly in Step 1 of algorithm DW-W, the

following holds:

i) The average number of evaluations of ªJ(lJ) and of ªJ(uJ) is O(lnN). More

precisely the average is less than 4 lnN .

ii) The average number of minima (maxima) to be determined is O(N). More pre-

cisely the average is less than 4N .

Proof: Let Ul(n) denote the set of variables for which it is unknown whether or not

the corresponding lower bound is binding after n evaluations of ªJ(lJ), and let Ulb(n)
(resp. Ulnb(n)) denote the subset of variables for which the lower bound is binding

(resp. not binding).

Finally, denote Il(n + 1) for the random variable that yields the number of variables

for which evaluation of the n + 1th ªJ (lJ) provides information on whether or not the

corresponding lower bound is binding.

12

We …rst show that, in expectation, the number of maximum terms reduces with at least

25%, and at most 50% with each evaluation of ªJ(lJ), i.e.

Ul(n)

4
6 E[Il(n+ 1)] 6

Ul(n)

2
: (12)

where Ul(n) := #Ul(n).
It is clear that with J 2 Ul(n) randomly chosen, the following holds:

P (J 2 Ulb(n)) =
Ulb(n)

Ulb(n) + Ulnb(n)
;

P (J 2 Ulnb(n)) =
Ulnb(n)

Ulb(n) + Ulnb(n)
;

where Ulb(n) := #Ulb(n), and Ulnb(n) := #Ulnb(n).
It then follows from Theorem 2 i) and ii), and the fact that J is randomly chosen, that:

E[Il(n+ 1)jJ 2 Ulb(n)] = Ulb(n)=2
E[Il(n+ 1)jJ 2 Ulnb(n)] = Ulnb(n)=2:

This yields:

E[Il(n + 1)] = E[Il(n + 1)jJ 2 Ub(n)]P (J 2 Ub(n))
+E[Il(n + 1)jJ 2 Unb(n)]P (J 2 Unb(n))

=
U2lb(n)+U

2
lnb(n)

2(Ulb(n)+Ulnb(n))

Since Ulb(n) + Ulnb(n) = Ul(n), this implies that

Ul(n)

4
6 E[Il(n+ 1)] 6

Ul(n)

2
: (13)

Now since

Ul(n+ 1) = Ul(n)¡ Il(n+ 1); (14)

(13) implies that

E[Ul(n+ 1)] 6
3

4
E[Ul(n)] 6

µ
3

4

¶n+1

Ul(0) =

µ
3

4

¶n+1

N: (15)

It is clear that the above argument can be repeated for the upper bounds, so that

E[Uu(n+ 1)] 6
µ
3

4

¶n+1

N; (16)

13

where Uu(n + 1) denotes the number of variables for which it is unknown whether or

not the corresponding upper bound is binding after n+ 1 evaluations of ªJ (uJ).

i) It follows from (15) and (16) that the expected total number of evaluations of ªJ (lJ)

and of ªJ(uJ) needed to eliminate all maximum and minimum terms is less than or

equal to the minimal n that satis…es:
µ
3

4

¶n

N 6 1: (17)

It is clear that (17) is satis…ed for

n = ln(N)= ln

µ
4

3

¶
< 4 lnN: (18)

ii) (15) and (16) imply that the expected total number of maxima (minima) to be

determined in all evaluations of ªJ(lJ) is less than

1X

n=0

µ
3

4

¶n

N = 4N: (19)

Similarly, the expected total number of maxima (minima) to be determined in all eval-

uations of ªJ(uJ) is less than 4N . This concludes the proof. ¤

In the worst case, the number of evaluations of ªJ(¢) in a lower or upper bound is

O(N), and the number of minima/maxima to be computed is O(N2).

In the following three sections we compare algorithm DW-W with those of Zipkin

(1980), Bitran and Hax (1981) and Nielsen and Zenios (1992).

4.1 Comparison with Zipkin (Z)

For a speci…c set of objective functions and a linear equality constraint, Luss and Gupta

(1975) derived an algorithm that starts by solving optimization problem (1) without

the upper bounds. Then, all the variables that exceed their upper bound are …xed at

their upper bound, and the procedure is repeated with a smaller problem until no upper

bounds are violated. Each iteration therefore requires solving a problem with only lower

bounds. In order to solve these problems with only lower bounds, the variables are

ranked such that Fk(lk) 6 Fk+1(lk+1) for all k 6 N ¡1. This ranking implies that in the

optimal solution there exists a J such that the lower bounds for k = 1; : : : ; J are not

14

binding, and the lower bounds for k = J+1; : : : ; N are binding. This J is found through

solving resource allocation problems with dk unbounded for k 6 J; and dk = lk for k > J:

The objective functions considered by Luss and Gupta (1975) are such that the problem

with unbounded variables has a closed form solution. Zipkin (1980) generalized and

extended the algorithm to the more general case of performance functions fk(:) that are

di¤erentiable and strictly convex. Moreover, J is obtained through function evaluations

rather than through solving problems with unbounded variables. Kodialam and Luss

(1998) extend this approach to allow for a separable convex resource-usage function in

the case where the variables are unbounded above. A generalization of this approach to

allow for upper bounds leads to the following algorithm.

Algorithm Z

Step 0: Set Kub = ;, and rank the variables such that:

Fk(lk) 6 Fk+1(lk+1); for all k 6 N ¡ 1: (20)

Step 1: Find J¤ := maxfJ =2 Kub : eªJ(¡FJ (lJ)) > 0g, where

eªJ (¸) := D ¡
JX

k=1
k=2Kub

gk
¡
F¡1k (¡¸)

¢
¡

NX

k=J+1
k=2Kub

gk(lk)¡
X

k2Kub
gk(uk): (21)

Step 2: Determine the unique root ¸¤ of eªJ¤(:), and set

d¤k = F¡1k (¡¸¤); for k = 1; : : : ; J¤; k =2 Kub

d¤k = lk; for k = J¤ + 1; : : : ; N ; k =2 Kub:

Step 3: If d¤k 6 uk, for all k, then STOP, else, set Kub := Kub [fk : d¤k > ukg, and go to

Step 1.

As is shown in Bitran and Hax (1981), the above algorithm in general requires several

iterations, each of which involves …nding the root of a function eªJ¤(:). Algorithm DW-W

only requires one equation to be solved. Moreover, regarding root searching:

- In all iterations in algorithm Z, equation eªJ¤(¸) = 0 has to be solved for ¸ 2 <+;

whereas equation ªJ (d) = 0 has to be solved only once for d 2 [lJ ; uJ].

15

- In the last iteration in algorithm Z, the function eªJ¤(:) is identical to the function

ªJ (:) in Step 5 of algorithm DW-W, except for the fact that the former requires

evaluation of F¡1J (¡¸) whereas the latter requires evaluation of FJ(d): This is

a bene…t of algorithm DW-W in cases where the inverse has to be determined

numerically.

Algorithm Z on average requires O(lnN) di¤erent evaluations of eªJ (¡FJ (lJ)) per itera-

tion step. Indeed the most e¢cient algorithms for determining J¤ in Step 1 of algorithm

Z are O(lnN). As can be seen from Proposition 1, algorithm DW-W on average re-

quires O(lnN) di¤erent evaluations of ªJ(lJ) and of ªJ (uJ): Finally, a disadvantage

of algorithm Z is that the variables have to be ranked …rst. In algorithm DW-W, the

variables are implicitely ranked partially during the evaluation of ªJ(lJ) and ªJ(uJ).

As is shown in Proposition 1, the average number of maxima and minima to be deter-

mined in algorithm DW-W is O(N), whereas the most e¢cient ranking algorithms are

O(N lnN) (see e.g. Harel 1989).

The following table summarizes the average number of computations involved in

algorithm Z and in algorithm DW-W, where i denotes the number of iterations required

in algorithm Z. The …rst row gives the average number of maxima and minima that

must be determined, and the second row presents the average number of evaluations of

ªJ(¢) (eªJ (¢)) before root searching starts. The last row indicates how often a root has

to be found.

DW-W Z

#max(min) O(N) O(N lnN)
#ª(¢); eª(¢) O(lnN) i ¤ O(lnN)
roots 1 N > i > 1

In the case where the variables are unbounded above, it is clear that algorithm Z only

requires one iteration, so that the above comparison holds for i = 1: Algorithm DW-W

in that case reduces to:

Step 0: Set Klb = Klnb = ;.

Step 1: Pick any J =2 (Klb [Klnb).

16

Step 2: If ªJ (lJ) = 0: STOP the optimum is found.

If ªJ (lJ) < 0 then: Klb = Klb [fk : Fk(lk) > FJ(lJ)g
If ªJ (lJ) > 0, then: Klnb = Klnb [fk : Fk(lk) 6 FJ (lJ)g

Step 3: If Klb [Klnb 6= f1; : : : ; Ng, go to Step 1.

Else, go to Step 4.

Step 4: Determine the root of ªJ(:) for any J 2 Klnb.

Since Zipkin’s approach requires full ranking and computationally more intensive root

searching, we see that e¢ciency is gained also in this case.

4.2 Comparison with Bitran and Hax (B-H)

The main idea of the algorithm of Bitran and Hax (1981) is to gather information

on whether or not certain lower or upper bounds are binding by solving optimization

problem (1) without the lower and upper bound constraints. If the total excess with

respect to the upper bounds is higher (lower) than the total shortage with respect to

the lower bounds, the all variables that exceed their upper bound (are lower than their

lower bound) are …xed at their upper (lower) bound. Subsequently, D is reduced with

the appropriate amount and the procedure is repeated with a smaller unconstrained

problem until no bounds are violated. Kodialam and Luss (1998) extend this approach to

allow for a convex resource-usage function in the case where the variables are unbounded

above. A generalization of this approach to allow for upper bounds leads to the following

algorithm.

Algorithm B-H

Step 0: Set Klb = Kub = ;.

Step 1: Determine the unique root ¸¤ of ª(:); where

ª(¸) := D ¡
X

k=2(Klb[Kub)
gk(F

¡1
k (¡¸))¡

X

k2Klb
gk(lk)¡

X

k2Kub
gk(uk): (22)

Step 2: Set Tl :=
P

k =2(Klb[Kub)max
©
lk ¡ F¡1k (¡¸¤); 0

ª
, and

Tu :=
P

k=2(Klb[Kub)max
©
F¡1k (¡¸¤)¡ uk; 0

ª
.

17

Step 3: If Tl = Tu = 0, then STOP.

If Tl > Tu, then Klb := Klb [fk : F¡1k (¡¸¤) < lkg.

If Tl 6 Tu, then Kub := Kub [fk : F¡1k (¡¸¤) > ukg.

If Tl > 0 or Tu > 0, go to Step 1.

In comparison with algorithm DW-W, we see that algorithm B-H …nds information

on lower or upper bounds that are binding by solving an equation of the form ª(¸) = 0,

whereas algorithm DW-W …nds information on bounds that can either be binding or

not binding by evaluating ªJ (lJ) and/or ªJ(uJ) for some values of J. The bene…t of

algorithm DW-W therefore is that a root has to be determined only once, whereas in

general this has to be done multiple times in algorithm B-H. Moreover,

- In all iterations, the equation ª(¸) = 0 has to be solved for ¸ 2 <+.

- In all but the last iteration in algorithm B-H it holds that Kub(Klb) does not yet

contain all the variables for which the upper bound (lower bound) is binding.

Therefore, in all iterations in algorithm B-H, the number of terms of the form

F¡1k (:) in (22) is strictly larger than in (11) in algorithm DW-W.

- When at least one bound is binding, at least two iterations are needed.

The above makes clear that algorithm DW-W is more e¢cient than algorithm B-H

in cases where there is no closed form solution to the equation ª(¸) = 0.

4.3 Comparison with Nielsen and Zenios (N-Z)

In the algorithm of Nielsen and Zenios (1992), the optimal values are expressed as a

function of the Lagrange multiplier ¸ of the constraint
PN

k=1 akdk = D. Then the

optimum is found by solving an equation in ¸. Bretthauer and Shetty (1995) extend

this approach to allow for a convex resource-usage function and use it in a branch and

bound algorithm to solve the integer valued problem. In order to solve the equation in

Nielsen and Zenios (1992), the set fFk(lk); Fk(uk) : k = 1; : : : ; Ng is ranked.

This leads to the following algorithm.

18

Algorithm N-Z

De…ne the function

bª(¸) := D ¡
NX

k=1

gk(maxfminfF¡1k (¡¸); ukg; lkg): (23)

Step 1: Rank the set f¡Fk(lk);¡Fk(uk) : k = 1; : : : ; Ng in decreasing order, and denote

xi for the ith element in this set.

Step 2: Find i such that bª(xi) > 0 and bª(xi+1) 6 0.

Step 3: Find ¸¤ in [xi; xi+1] such that bª(¸¤) = 0. The optimum is given by d¤k =

maxfminfF¡1k (¡¸¤); ukg; lkg.

The following table summarizes the average number of computations involved in

algorithm N-Z and algorithm DW-W. The …rst row gives the average number of maxima

and minima that must be determined, and the second row presents the average number

of evaluations of ªJ(¢) (bª(¢)) before root searching starts. The last row indicates how

often a root has to be found.

DW-W N-Z

#max(min) O(N) O(N lnN)
#ª(¢); bª(¢) O(lnN) O(lnN)
roots 1 1

We see that both approaches require only one equation to be solved. However, in

algorithm N-Z

- A set of 2N elements has to be ranked. The most e¢cient ranking algorithms for

N elements are on average O(N lnN). In algorithm DW-W the average number

of maxima/minima to be computed is only O(N) due to partial ranking.

- The number of terms of the form F¡1k (:) in (23) is strictly larger than in (11) in

algorithm DW-W. Furthermore, e¢ciency in root searching in algorithm DW-W

can be positively a¤ected by choosing a particular J 2 Kbnb, since this implies that

F¡1J (:) need not be evaluated.

19

5 Conclusion

In this paper we present a new algorithm for solving resource allocation problems

with bounded variables, a separable convex objective function and a separable convex

resource-usage constraint. We provide a thorough comparison with the most e¢cient

existing approaches which are due to Zipkin (1980), Bitran and Hax (1981) and Nielsen

and Zenios (1992). We reformulate these algorithms in order to make them mutually

comparable.

These three algorithms require complete ranking of a sequence of minimal length N

and/or several iterations in which a root of a monotone function has to be determined.

More precisely, the algorithms of Zipkin (1980) and Bitran and Hax (1981) require

several roots to be found. In addition to that, the algorithm of Zipkin (1980) requires

complete ranking of a sequence of length N . The algorithm of Nielsen and Zenios (1992)

requires only one root to be found, but complete ranking of a sequence of length 2N .

In contrast, our algorithm requires partial ranking instead of full ranking, which

reduces the complexity of ordering from O(N lnN) to O(N):A root has to be determined

only once. In addition, the function for which the root has to be found is computationally

less complex.

Finally, as a side e¤ect, our paper contributes to the literature in the sense that

algorithms for the approaches of Zipkin (1980) and Bitran and Hax (1981) are formulated

for problems with a convex resource-usage constraint and variables that are bounded

from below and above.

References

[1] Bitran G.R., and A.C. Hax (1981), Disaggregation and Resource Allocation

Using Convex Knapsack Problems with Bounded Variables, Management Science

27, 431-441.

[2] Bretthauer K.M., and B. Shetty (1995), The Nonlinear Resource Allocation

Problem, Operations Research 43, 670-683.

20

[3] De Waegenaere A., and J.L. Wielhouwer (2001), Optimal Tax Depreciation

Lives and Charges under Regulatory Constraints, CentER Discussion Paper 2001-

23.

[4] Harel D. (1989) The Science of Computing: exploring the nature and power of

algorithms, Addison-Wesley, Reading, MA.

[5] Helgason R., J. Kennington, and H. Lall (1980), A Polynomial Bounded Al-

gorithm for a Single Constrained Quadratic Program, Mathematical Programming

18, 338-343.

[6] Kodialam M.S., and H. Luss (1998), Algorithms for Separable Nonlinear Re-

source Allocation Problems, Operations Research 46, 272-284.

[7] Luss H., and S.K. Gupta (1975), Allocation of E¤ort Resources Among Com-

peting Activities, Operations Research 23, 360-366.

[8] Nielsen S.S., and S.A. Zenios (1992), Massively Parallel Algorithms for Singly

Constrained Convex Problems, ORSA Journal on Computing 4,no. 2, 166-181.

[9] Nielsen S.S., and S.A. Zenios (1993), A Massively Parallel Algorithm for Non-

linear Stochastic Network Problems, Operations Research 41, 319-337.

[10] Pardalos P.M., and N. Kovoor (1990), An Algorithm for a Single Constrained

Class of Quadratic Programs Subject to Upper and Lower Bounds, Mathematical

Programming 46, 321-328.

[11] Shetty B., and R. Muthukrishnan (1990), A Parallel Projection for the Mul-

ticommodity Network Model, Journal of the Operational Research Society 41, 837-

842.

[12] Ventura J.A., and M.X. Weng (1995), Minimizing Single-Machine

Completion-Time Variance, Management Science 41, 1448-1455.

[13] Zipkin P.H. (1980), Simple Ranking Methods for Allocation of One Resource,

Management Science 26, 34-43.

21

