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Approximations of the generalized Wilks’
distribution

V.M. Raats∗

Abstract

Wilks’ lambda and the corresponding Wilks’ distribution are well known
concepts in testing in multivariate regression models. The topic of this paper
is a generalization of the Wilks’ distribution. This generalized Wilks’ distri-
bution is relevant for testing in multivariate regression models with mono-
tone missing data. Just as the (usual) Wilks’ distribution can be approxi-
mated by theχ2-distribution of Bartlett (1947), the generalized Wilks’ dis-
tribution can be approximated byχ2-distributions in more or less the same
way. We use Box transformations to derive theχ

2-approximations and com-
pare them by simulation.

Keywords: approximating distributions, Box transformations, generalized
Wilks’ distribution, monotone missing data

JEL code: C16

1 Introduction and definition

A well known test statistic for (likelihood ratio) tests in multivariate regression
models is Wilks’ lambda,Λ. In case of simultaneously normally distributed errors,
Λ has a Wilks’ distribution under the null hypothesis. For this distribution we use
the same notation as Rencher (1998)e.g.:

Λ ∼ Λd,t,s ,

whereΛd,t,s denotes the Wilks’ distribution with parametersd (dimension),t (de-
grees of freedom of the null hypothesis) ands (degrees of freedom of the errors).

∗V.M.Raats@uvt.nl
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This distribution is analytically rather complex and therefore it is usually approx-
imated. Two well known approximations are theχ2-approximation of Bartlett
(1947) and theF -approximation of Rao (1952).

In this paper we study severalχ2-approximations of a generalization of the
Wilks’ distribution. We define the generalized Wilks’ distribution ΛA,D,T,S with
parameter vectorsA, D, T andS ∈ IR1×r as follows: letΛi ∼ Λdi,ti,si

be inde-
pendent andai ∈ [0, 1] with a1 = 1. Then, by definition,

r
∏

i=1

Λai

i ∼ ΛA,D,T,S. (1.1)

The vectorA contains the exponentsai of the separate factors as elements,D the
di, T theti andS thesi (i = 1, . . . , r).

The generalized Wilks’ distribution is relevant for testing in missing data prob-
lems; we will elaborate on this in Section 2. In Section 3 severalχ2-approximations
of the generalized Wilks’ distribution are derived by meansof Box transforma-
tions. The different approximations are compared by means of a simulation study
in Section 4. The final Section 5 contains our conclusions.

2 Motivation

The generalized Wilks’ distribution is relevant for the likelihood ratio test in mul-
tivariate linear regression with monotone missing observations of the dependent
variables, or equivalently, with consecutively added dependent variables. This re-
gression model is an important generalization of the model with the constant term
as the sole explanatory variable. The latter model is used very frequently in miss-
ing data problems and it has been discussed extensively in literature (see Fujisawa
(1995)e.g.).

Since the likelihood ratio test in the model for multivariate regression with
monotone missing observations of the dependent variables is an important appli-
cation of the generalized Wilks’ distribution, we will describe it in more detail.

Consider the multivariate linear regression model withM dependent variables
andk (deterministic) explanatory variables; observations aregathered forN cases.
Let Xtj ∈ IR be the observed value of thejth explanatory variable (j = 1, . . . , k)
for the tth case; complete data are available for the explanatory variables, sot =
1, . . . , N for all j.

The observations of the dependent variables are incomplete; the dependent
variables are ordered such that later added variables come last. So their data are
divided into r ordered groups according to the pattern of increasingly missing
data. Groupi containsmi variables for which exactly the firstNi observations are

2



available:

N = N1 ≥ N2 ≥ . . . ≥ Nr; Mi =
i

∑

j=1

mj (i = 1, . . . , r, Mr = M).

The vectorYti ∈ IRmi contains the values of thesemi dependent variables for case
t. SoYti is observable fort = 1, . . . , Ni and missing fort = Ni + 1, . . . , N . The
special caseN = N1 = . . . = Nr gives the usual complete model.

Ther (multivariate) regression equations can be written as

Yti = µti + εti, µti =
k

∑

j=1

Xtjβji, i = 1, . . . , r, t = 1, . . . , Ni, (2.1)

whereβji ∈ IRmi denotes a vector of unknown regression coefficients. For the
errors we assume

E{εti} = 0, Cov(εti, εsj) = δtsσij, (2.2)

with (completely unknown) non-singularΣ = (σij) ∈ IRM×M not depending on
theβji. We writeΣ > 0 for positive definiteness.

In Raatset al. (2002) we showed that the likelihood ratio (to the power2

N
)

for testing homogeneous linear restrictions on the regression coefficients in the
described model has a generalized Wilks’ distribution under the null hypothesis.

3 Box transformations

The approximations of the generalized Wilks’ distributionin (1.1) can be derived
by means of transformations which were introduced in Box (1949); we have used
the main result of the transformations as presented in Muirhead (1982) Section
8.2.4.

Theorem 3.1. A second order approximation of the distribution of

Q = −2log(
r

∏

i=1

Λai

i )

is

P (Q ≤ q) = (1 − ω2)P (χ2

f ≤ ρq) + ω2P (χ2

f+4 ≤ ρq) + O(N−3) (3.1)
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with

f =
r

∑

i=1

di
∑

j=1

ti,

ρ =
1

4f

r
∑

i=1

di
∑

j=1

ti
ai

(2si − 2j + ti)

ω2 = −
1

4f
+

1

48ρ2

r
∑

i=1

di
∑

j=1

ti
a2

i

(3(si + j + 1)(si + j + ti − 1) + (ti − 2)(ti − 1))

Proof. According to Muirhead (1982) Theorem 10.5.3 the Wilks’ distribution can
be rewritten as the following product of independent beta distributions:

Λd,t,s =
d

∏

j=1

Beta(
1

2
(s − j + 1),

1

2
t).

Accordingly, the moments of the generalized Wilks’ distribution follow from the
independence and the moments ofΛi:

E{

r
∏

i=1

Λaih
i } = K

r
∏

i=1

di
∏

j=1

Γ
[

1

2
ai(1 + h) − 1

2
(si − j + 1 − 2ai)

]

Γ
[

1

2
ai(1 + h) − 1

2
(si + ti − j + 1 − 2ai)

] , (3.2)

Box transformations lead, after algebraic manipulations, to the approximating dis-
tribution (3.1) with parametersf , ρ andω2 (see the Appendix).

We call (3.1) the Box approximation. From (3.1) the first orderapproximation
follows

P (Q ≤ q) = P (χ2

f ≤ ρq) + O(N−2). (3.3)

Since (3.3) coincides with Bartlett’s approximation in caseof complete data, we
will call (3.3) Bartlett’s approximation even in this more general situation.

In the context of the model of Section 2, in case of only the constant as ex-
planatory variable, our parameters in (3.1) reduce to the ones derived in Bhargava
(1962).

4 A simulation study

In this section we compare approximations (3.1), (3.3) and in addition the standard
approximationi.e. −Nlog(

∏r

i=1
Λai

i ) ∼ χ2
f . This standard approximation is de-

rived from the equivalence of the likelihood ratioLR0 with
∏r

i=1
Λ

Nai
2

i in the mul-
tivariate regression model with monotone missing observations (see Section 2),
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and the standard asymptotic distribution of the likelihoodratio : −2log(LR0) ∼
χ2

f .
In order to compare the approximations, we first simulate (runsize 1,000,000)

the critical value of
∏r

i=1
Λai

i (with significance levelα). Then the probability that
∏r

i=1
Λai

i exceeds this critical value is determined according to the three different
approximations.

In the context of the model of Section 2, the simulations havebeen performed
for four explanatory variables, three groups (r = 3), t linear constraints per group
(ti = t for i = 1, . . . , 3). We study different values of the significance levelα,
number of cases (N ), number of constraintst, fractions of (missing) data (A =
[a1 a2 a3] with ai = Ni/N ) and different number of variables per group (D =
[d1 d2 d3]). For the model of Section 2 the degrees of freedom of the errors can be
shown to besi = N(1 − ai) − di−1 − 4 (with d0 = 0).

Table 4.1 contains the results forD = [1 2 1].

D = [1 2 1] A = [1 0.9 0.8] A = [1 0.8 0.6]

α = 0.05 Standard Bartlett Box Standard Bartlett Box
t = 1 .009 .047 .050 .004 .040 .048

N = 20 t = 2 .012 .047 .050 .007 .042 .049
t = 4 .037 .047 .050 .032 .045 .049
t = 1 .044 .050 .050 .044 .050 .050

N = 200 t = 2 .045 .050 .050 .044 .050 .050
t = 4 .049 .050 .050 .048 .050 .050
t = 1 .049 .050 .050 .049 .050 .050

N = 2000 t = 2 .049 .050 .050 .049 .050 .050
t = 4 .050 .050 .050 .050 .050 .050

α = 0.10
t = 1 .026 .096 .100 .015 .085 .098

N = 20 t = 2 .031 .095 .100 .020 .087 .098
t = 4 .078 .095 .100 .070 .092 .099
t = 1 .091 .100 .100 .090 .100 .100

N = 200 t = 2 .092 .100 .100 .090 .100 .100
t = 4 .098 .100 .100 .097 .100 .100
t = 1 .099 .100 .100 .099 .100 .100

N = 2000 t = 2 .099 .100 .100 .099 .100 .100
t = 4 .100 .100 .100 .100 .100 .100

Table 4.1: Simulated approximations forD = [1 2 1]
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As can be expected, the accuracy of the approximations increases with the
sample sizes. Approximation (3.1) outperforms the other ones. The standard
approximation is quite bad for small sample sizes. Only forN = 2000, this
approximation gives good results. Approximation (3.3) performs well for big
sample sizes (N = 200(0)), but is not as accurate as approximation (3.1) for small
sample sizes (N = 20). All the approximations seem to improve with the degrees
of freedom of the null hypothesis (t). As the fraction of missing observations
increases (i.e. ai decreases), the approximations become less accurate.

To study the effect of the number of variables per group (di) on the quality of
the approximations, we also did a simulation forD = [1 3 2]. Table 4.2 contains
the results.

D = [1 3 2] A = [1 0.9 0.8] A = [1 0.8 0.6]

α = 0.05 Standard Bartlett Box Standard Bartlett Box
t = 1 .003 .040 .049 .000 .022 .040

N = 20 t = 2 .003 .041 .049 .001 .027 .043
t = 4 .017 .042 .049 .001 .035 .046
t = 1 .042 .050 .050 .040 .050 .050

N = 200 t = 2 .046 .050 .050 .041 .050 .050
t = 4 .049 .050 .050 .045 .050 .050
t = 1 .049 .050 .050 .049 .050 .050

N = 2000 t = 2 .049 .050 .050 .049 .050 .050
t = 4 .049 .050 .050 .050 .050 .050

α = 0.10
t = 1 .009 .085 .098 .002 .054 .086

N = 20 t = 2 .011 .086 .099 .003 .063 .091
t = 4 .041 .087 .099 .026 .077 .096
t = 1 .088 .100 .100 .085 .100 .100

N = 200 t = 2 .087 .100 .100 .085 .100 .100
t = 4 .094 .100 .100 .092 .100 .100
t = 1 .098 .100 .100 .098 .100 .100

N = 2000 t = 2 .098 .100 .100 .099 .100 .100
t = 4 .100 .100 .100 .099 .100 .100

Table 4.2: Simulated approximations forD = [1 3 2]

The previous conclusions about the effect of the different parameters still re-
main valid. However, in comparison to Table 4.1, the qualityof the approxima-
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tions is worse if there is only a small number of observations(N = 20) available.

5 Summary and conclusions

The generalized Wilks’ distribution occurs in the likelihood ratio test for multi-
variate regression with monotone missing observations. Incase of complete data,
this distribution coincides with the (usual) Wilks distribution.

We derived severalχ2-approximations for the generalized Wilks’ distribution.
As was to be expected, the highest (second) order approximation outperforms
the other ones. In case of complete data the first order approximation coincides
with the well knownχ2-approximation of Bartlett (1947). Hence the latter can be
improved by taking the second order approximation in (3.1).

In this paper we have solely focussed onχ2-approximations for the general-
ized Wilks’ distribution; it would also be interesting to look atF -approximations
similar to the one of Rao (1952) for the usual Wilks’ distribution.
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Appendix

To approximate the generalized Wilks’ distribution, we have used the main result
of Box transformations as presented in Muirhead (1982) Section 8.2.4:

Consider a random variableZ (0 ≤ Z ≤ 1) with moments:

E{Zh} = K









p
∏

j=1

y
yj

j

q
∏

k=1

xxk

k









h q
∏

k=1

Γ [xk(1 + h) + ξk]

p
∏

j=1

Γ [yj(1 + h) + ηj]

,

where
p

∑

j=1

yj =

q
∑

k=1

xk

and K is a constant such that E{Z0}=1. Then

P (−2ρlog(Z) ≤ x) =

P (χ2
f ≤ x) + ω2

[

P (χ2
f+4

≤ x) − P (χ2
f ≤ x)

]

+ O(N−3),
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where

f = −2

[

q
∑

k=1

ξk −

p
∑

j=1

ηj −
1

2
(q − p)

]

and

ρ = 1 −
1

f

[

q
∑

k=1

x−1

k

(

ξ2

k − ξk +
1

6

)

−

p
∑

j=1

y−1

j

(

η2

j − ηj +
1

6

)

]

and

ω2 = −
1

6ρ2

{

q
∑

k=1

x−2

k

[

(βk + ξk)
3 −

3

2
(βk + ξk)

2 +
1

2
(βk + ξk)

]

−

p
∑

j=1

y−2

j

[

(ǫj + ηj)
3 −

3

2
(ǫj + ηj)

2 +
1

2
(ǫj + ηj)

]

}

,

with
βk = (1 − ρ)xk, ǫj = (1 − ρ)yj.

Using the specific shape of (3.2) the parameters can be written as

f =
r

∑

i=1

di
∑

j=1

ti =
r

∑

i=1

diti

and

ρ = 1 −
1

f

r
∑

i=1

di
∑

j=1

a−1

i

[

1

2
ti −

1

4
t2i −

1

2
(si − j + 1 − 2ai)ti

]

=
1

4f

r
∑

i=1

di
∑

j=1

ti
ai

(2si − 2j + ti)
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and

ω2 = −
1

6ρ2

r
∑

i=1

di
∑

j=1

1

a2
i

[

−
3

4
t2i (

1

2
(si − j + 1) − ρai) −

3

2
ti(

1

2
(si − j + 1) − ρai)

2

−
1

8
t3i +

3

2
ti(

1

2
(si − j + 1) − ρai) +

3

8
t2i −

1

4
ti

]

=
1

4
f −

1

6ρ

r
∑

i=1

di
∑

j=1

1

ai

(
3

4
t2i +

3

2
(si − j + 1)ti −

3

2
ti)

−
1

48ρ2

r
∑

i=1

di
∑

j=1

ti
a2

i

(−3(si − j + 1)(−ti − (si − j + 1) + 2) − t2i + 3ti − 2)

=
f

4
−

1

8ρ

r
∑

i=1

di
∑

j=1

ti
ai

(2si − 2j + ti)

+
1

48ρ2

r
∑

i=1

di
∑

j=1

ti
a2

i

(3(si − j + 1)(si − j + ti − 1) + (ti − 2)(ti − 1))

= −
1

4
f +

1

48ρ2

r
∑

i=1

di
∑

j=1

ti
a2

i

(3(si − j + 1)(si − j + ti − 1) + (ti − 2)(ti − 1))
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