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Abstract

Wilks’ lambda and the corresponding Wilks’ distribution are well known
concepts in testing in multivariate regression models. The topic of this paper
is a generalization of the Wilks’ distribution. This generalized Wilks’ distri-
bution is relevant for testing in multivariate regression models with mono-
tone missing data. Just as the (usual) Wilks’ distribution can be approxi-
mated by they?-distribution of Bartlett (1947), the generalized Wilks’ dis-
tribution can be approximated by?-distributions in more or less the same
way. We use Box transformations to derive fffeapproximations and com-
pare them by simulation.

Keywords: approximating distributions, Box transformations, generalized
Wilks’ distribution, monotone missing data

JEL code: C16

1 Introduction and definition

A well known test statistic for (likelihood ratio) tests inuftivariate regression
models is Wilks’ lambdal. In case of simultaneously normally distributed errors,
A has a Wilks’ distribution under the null hypothesis. Fostdistribution we use
the same notation as Rencher (1968):

A~ Ad,t,s )

whereA, . ; denotes the Wilks’ distribution with parametetrédimension)¢ (de-
grees of freedom of the null hypothesis) an@legrees of freedom of the errors).
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This distribution is analytically rather complex and tifere it is usually approx-
imated. Two well known approximations are tlyé-approximation of Bartlett
(1947) and thé-approximation of Rao (1952).

In this paper we study severgf-approximations of a generalization of the
Wilks’ distribution. We define the generalized Wilks’ disttion A 4 p ¢ With
parameter vectord, D, T andS € R'*" as follows: letA; ~ Ay, 4, s, be inde-
pendent and; € [0, 1] with a; = 1. Then, by definition,

[T2¢ ~ Aaprs. (1.1)
=1

The vectorA contains the exponenis of the separate factors as elemeiiighe
d;, T thet; andS thes; (i = 1,...,7).

The generalized Wilks’ distribution is relevant for tegtin missing data prob-
lems; we will elaborate on this in Section 2. In Section 3 sa&lg’-approximations
of the generalized Wilks’ distribution are derived by meah®8ox transforma-
tions. The different approximations are compared by mefasonulation study
in Section 4. The final Section 5 contains our conclusions.

2 Motivation

The generalized Wilks’ distribution is relevant for thedlihood ratio test in mul-
tivariate linear regression with monotone missing obgema of the dependent
variables, or equivalently, with consecutively added delesmt variables. This re-
gression model is an important generalization of the modkdl thhe constant term
as the sole explanatory variable. The latter model is usedfiequently in miss-
ing data problems and it has been discussed extensivetgiatlire (see Fujisawa
(1995)e.q.).

Since the likelihood ratio test in the model for multivaeiategression with
monotone missing observations of the dependent variablas important appli-
cation of the generalized Wilks’ distribution, we will dedae it in more detail.

Consider the multivariate linear regression model wifldependent variables
andk (deterministic) explanatory variables; observationgateered forV cases.
Let X;; € IR be the observed value of th& explanatory variablej(= 1, ..., k)
for thet'” case; complete data are available for the explanatoryhlasaso: =
1,..., N forall 5.

The observations of the dependent variables are incompletedependent
variables are ordered such that later added variables casheSo their data are
divided intor ordered groups according to the pattern of increasinglysimgs
data. Group containsn; variables for which exactly the first; observations are



available:

N=N>Ny>...>N; My=>» m; (i=1,....r, M,=M).

j=1

The vectory;; € IR™ contains the values of these dependent variables for case
t. SoY;; is observable fot = 1,..., N; and missing fot = N; + 1,...,N. The
special cas&v = N; = ... = N, gives the usual complete model.

Ther (multivariate) regression equations can be written as

k
Yi =i + ey i =, XeiBy, i=1,...,r, t=1,...,N; (2.1)
j=1

where3;, € IR™ denotes a vector of unknown regression coefficiets the
errors we assume

E{&z’} =0, COU(&i,éTsj) = 5ts‘7ija (2-2)

with (completely unknown) non-singulat = (¢;;) € IRM*M not depending on
the 3;;. We writeX > 0 for positive definiteness.

In Raatset al. (2002) we showed that the likelihood ratio (to the powgr
for testing homogeneous linear restrictions on the regresoefficients in the
described model has a generalized Wilks’ distribution unkle null hypothesis.

3 Box transformations

The approximations of the generalized Wilks’ distributiar(1.1) can be derived
by means of transformations which were introduced in Box §)9e have used
the main result of the transformations as presented in Manlh(1982) Section
8.2.4.

Theorem 3.1. A second order approximation of the distribution of

T

Q = —2log( [ A¥)

i=1

P(Q<q)=(1—-w)P(x} < pg) +w2P(xFs <pg) +ONT?)  (3.)



with

T dl
f= 22t
i=1 j=1
1 T d; "
p = “(2s; — 27 + t;
fZZ |
Wy = Blsi+j+1)(si+j+t;i—1)+(t;—2)(t; — 1))

48/)

i=1 j=1 a;
Proof. According to Muirhead (1982) Theorem 10.5.3 the Wilks’ dizition can
be rewritten as the following product of independent besaritiutions:

d
1 . 1
Ad,t,s = H B@ta(§(3 — ] + 1), §t)

j=1

Accordingly, the moments of the generalized Wilks’ distitibn follow from the
independence and the moments\gf

E{H Aa‘h} _ KHH al 1 + h) ( _j + 1- ZCLZH 7 (32)

[1a;(1+h) ——(Sl+ti—j+1—2aiﬂ

Box transformations lead, after algebraic manipulatiomté approximating dis-
tribution (3.1) with parameters, p andw, (see the Appendix). O

We call (3.1) the Box approximation. From (3.1) the first ordpproximation
follows

P(Q < q) = P(x} < pg) + O(N?). (3.3)
Since (3.3) coincides with Bartlett’s approximation in ca$eomplete data, we
will call (3.3) Bartlett's approximation even in this morergal situation.
In the context of the model of Section 2, in case of only thestamt as ex-

planatory variable, our parameters in (3.1) reduce to tles derived in Bhargava
(1962).

4 A simulation study

In this section we compare approximations (3.1), (3.3) aratidition the standard
approximationi.e. —Nlog(]];_, Aj") ~ x3. This standard approximation is de-

Na;
rived from the equivalence of the likelihood rafid?, with [T_, A, ? in the mul-
tivariate regression model with monotone missing obsemat(see Section 2),
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and the standard asymptotic distribution of the likeliheatio : —2log(LRy) ~
X}

! In order to compare the approximations, we first simulatagize 1,000,000)
the critical value of [;_, A} (with significance levet). Then the probability that
[1;_, A" exceeds this critical value is determined according tohhest different
approximations.

In the context of the model of Section 2, the simulations Heaen performed
for four explanatory variables, three groups< 3), ¢ linear constraints per group
(t; =tfori = 1,...,3). We study different values of the significance leuel
number of cases\), number of constraints fractions of (missing) dataA =
[ay ay a3] with a; = N;/N) and different number of variables per group &
[dy dy d3]). For the model of Section 2 the degrees of freedom of thesoan be
shown to bes; = N(1 — a;) — d;—1 — 4 (with dy = 0).

Table 4.1 contains the results for=[1 2 1].

D=[1 2 1] A= 09 0.8 A= 08 0.6
a =0.05 Standard Bartlett Box Standard Bartlett Bpx
t=1 .009 .047 .050 .004 .040 .048
N =20 t=2 .012 .047 .050 .007 .042 .049
t=4 .037 .047 .050 .032 .045 .049
t=1 .044 .050 .050 .044 .050 .050
N =200 |[t=2 .045 .050  .050 .044 .050  .050
t=4 .049 .050 .050 .048 .050 .050
t=1 .049 .050 .050 .049 .050 .050
N =2000 |t=2 .049 .050 .050 .049 .050 .050
t=4 .050 .050 .050 .050 .050 .050
a=0.10
t=1 .026 .096 .100 .015 .085 .098
N =20 t=2 .031 095  .100 .020 087  .098
t=4 .078 .095  .100 .070 092  .099
t=1 .091 .100 .100 .090 .100 .100
N=200 [t=2 .092 .100 .100 .090 .100 .100
t=4 .098 .100 .100 .097 .100 .100
t=1 .099 .100 .100 .099 .100 .100
N =2000|t=2 .099 100 .100 .099 100 .100
t=4 .100 .100 .100 .100 .100 .100

Table 4.1: Simulated approximations for=[1 2 1]
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As can be expected, the accuracy of the approximationsasesewith the
sample sizes. Approximation (3.1) outperforms the othexsonThe standard
approximation is quite bad for small sample sizes. Only for= 2000, this
approximation gives good results. Approximation (3.3)f@ens well for big
sample sizesX = 200(0)), but is not as accurate as approximation (3.1) for small
sample sizesN = 20). All the approximations seem to improve with the degrees
of freedom of the null hypothesig)( As the fraction of missing observations
increasesi(e. a; decreases), the approximations become less accurate.

To study the effect of the number of variables per grajp@n the quality of
the approximations, we also did a simulation for= [1 3 2]. Table 4.2 contains

the results.
D=[1 3 2 A=[1 09 0.§] A= 08 0.6]

a = 0.05 Standard Bartlett Box Standard Bartlett B
t=1 .003 .040 .049 .000 .022 .040

N =20 t=2 .003 .041 .049 .001 027 .043
t=4 017 .042 .049 .001 .035 .046

t=1 .042 .050 .050 .040 .050 .050

N=200 |[t=2 .046 .050 .050 .041 .050 .050
t=4 .049 .050 .050 .045 .050 .050

t=1 .049 .050  .050 .049 .050  .050

N =2000|t=2 .049 .050 .050 .049 .050 .050
t=4 .049 .050 .050 .050 .050 .050

a=0.10

t=1 .009 .085 .098 .002 .054 .086

N =20 t=2 011 .086 .099 .003 .063 .091
t=4 .041 .087 .099 .026 077 .096

t=1 .088 .100 .100 .085 .100 .100

N=200 |t=2 087 .100 .100 .085 .100 .100
t=4 .094 .100 .100 .092 .100 .100

t=1 .098 .100 .100 .098 .100 .100

N =2000 |t=2 .098 .100 .100 .099 .100 .100
t=4 .100 .100 .100 .099 .100 .100

Table 4.2: Simulated approximations for=[1 3 2]

The previous conclusions about the effect of the differemameters still re-
main valid. However, in comparison to Table 4.1, the qualitghe approxima-



tions is worse if there is only a small number of observatigvis= 20) available.

5 Summary and conclusions

The generalized Wilks’ distribution occurs in the likeldubratio test for multi-
variate regression with monotone missing observationsase of complete data,
this distribution coincides with the (usual) Wilks disuitinn.

We derived severa}*-approximations for the generalized Wilks’ distribution.
As was to be expected, the highest (second) order apprarimatitperforms
the other ones. In case of complete data the first order appation coincides
with the well knowny?-approximation of Bartlett (1947). Hence the latter can be
improved by taking the second order approximation in (3.1).

In this paper we have solely focussed phapproximations for the general-
ized Wilks’ distribution; it would also be interesting todk at F-approximations
similar to the one of Rao (1952) for the usual Wilks’ distriont
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Appendix

To approximate the generalized Wilks’ distribution, we éaged the main result
of Box transformations as presented in Muirhead (1982) Se&i2.4:

Consider a random variable (0 < Z < 1) with moments:

>

v | 110+ h) + 6
E{Z"} =K |~ i :
1;[ x| TL D[y (1 +R) +nyl

k=1 j

<
Il
-

where

P q
2 U= o
j=1

k=1
and K is a constant such thaf E°}=1. Then

P(=2plog(Z) < z) =
P(x3 < a) +wy [P(x3,, <) — P(x3 < )] + O(N?),
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where

k=1 j=1
and
: -1 2 1 -1 1
p=1—— Zxk (k_€k+6)_zyj (77 _77]+6>
k=1 Jj=1
and
{Zaz [ Gk + &) —;(ﬂk+§k)2+%(ﬁk+€k):|
3 1
—Zyj {614‘77] _§(€j+77j>2+§<€j+nj)}}’
with

Be=1—p)zr, € =(1~-py;.

Using the specific shape of (3.2) the parameters can be wate

and
r d;
1 : 1 1 1
= 1—— ~_1 —ti——tz—— i_. 1—21151
p 722 {2 pli—gsi—J+ a;)
=1 j=1
r d;
1 ~t
= — —(2s; — 29 + t;
4f. ai(s j+)



and

1 1[ 3,1 , 3.1 . 2
Wy = _6—p2;;a_12{_Zti(§<5i_]+1)_pai)_éti(§<3i_]+1)_pai)
1 3 1 3 1
——t7 + ~ti(5(si —j + 1) — pag) + <t; — =t
gti T 5ti5(si =7+ 1) = pag) + oti — o
1, 113, 3 3
= —f—— —(St2 4 (s, —j 4+ Dt — =t;
1 Lt
i . : 2
4 Splz:;;ai
1 -t
+48p2Zza—;@(si—jﬂ)(si—jm—1)+<ti—2>(ti—1>>
i=1 j=1 ¢
1 1 Gty
= ——f+—> > SBsi— i+ D(si—j+ti— 1)+ (L —2)(t; — 1))
4 48p* = g
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