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Abstract

Whenever simulation requires much computer time, interpolation is needed. There are several

interpolation techniques in use (for example, linear regression), but this paper focuses on

Kriging. This technique was originally developed in geostatistics by D. G. Krige, and has

recently been widely applied in deterministic simulation. This paper, however, focuses on 

random or stochastic simulation. Essentially, Kriging gives more weight to ‘neighbouring’

observations. There are several types of Kriging; this paper discusses - besides Ordinary

Kriging - a novel type, which ‘detrends’ data through the use of linear regression. Results are

presented for two examples of input/output behaviour of the underlying random simulation

model: A perfectly specified detrending function gives the best predictions, but Ordinary

Kriging gives quite acceptable results; traditional linear regression gives the worst predictions.

Keywords

Simulation; statistics; stochastic; regression; methodology

Introduction

A primary goal of simulation is what if or sensitivity analysis: What happens if inputs of the

simulation model change? Therefore simulationists run a given simulation program - or

computer code - for (say) n different combinations of the k simulation inputs. We assume that
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these inputs are either parameters or quantitative input variables of the simulation model.

Typically, Kriging assumes that the number of values per input variable is quite ‘big’, certainly

exceeding two (two values are used in simulation experiments based on 2  designs).k - p

Given this set of n input combinations, the analysts run the simulation and observe the

outputs. (Most simulation models have multiple outputs, but in practice these outputs are

analysed per output type.)

The crucial question of this paper is: How to analyse this simulation input/output (I/O)

data? Classic analysis uses linear-regression (meta)models; see Kleijnen . A metamodel is an1

approximation of the I/O transformation implied by the  underlying simulation program.

(Many other terms are popular in certain disciplines: Response surface, compact model,

emulator, etc.) Such a metamodel treats the simulation model as a black box; that is, the

simulation model's I/O is observed, and the parameters of the metamodel are estimated. This

black-box approach has the following advantages and disadvantages.

An advantage is that the metamodel can be applied to all types of simulation models,

either deterministic or random, either in steady-state or in transient state. A disadvantage is

that it cannot take advantage of the specific structure of a given simulation model, so it may

take more computer time compared with techniques such as perturbation analysis and score

function.

Metamodeling can also help in optimization and validation of the simulation model. In this

paper, however, we do not discuss these two topics, but refer to the references of this paper.

Further, if the simulation model has hundreds of inputs, then special ‘screening’ designs are

needed, discussed in Campolongo, Kleijnen, and Andres . In our examples - but not in our2

methodological discussion - we limit the number of inputs to the minimum, namely a single
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input.

Whereas polynomial-regression metamodels have been applied extensively in discrete-

event simulation (such as queueing simulation), Kriging has never been applied to random

simulation - as far as we know. However, in deterministic simulation (applied in many

engineering disciplines; see our references), Kriging has been applied frequently, since the

pioneering article by Sacks et al.  In such simulation, Kriging is attractive because it can3

ensure that the metamodel’s prediction has exactly the same value as the observed simulation

output (as we shall see below)! In random simulation, however, this Kriging property may not

be so desirable, since the observed (average) value is only an estimate of the true, expected

simulation output. Unfortunately, Kriging requires extensive computation, so adequate

software is needed. We discovered that for random simulation no software is available, so we 

developed our own software, in Matlab.

Note that several types of  random simulation may be distinguished:

(i) Deterministic simulation with randomly sampled inputs. For example, in investment analysis

we can compute the cashflow development  over time through a spreadsheet such as Excel.

Next, we sample the random values of inputs - such as the cashflow growth rate - by means of

either Monte Carlo or Latin Hypercube Sampling (LHS) through an add-on such as @Risk or

Crystal Ball; see .4

(ii) Discrete-event simulation. For example, classic queueing simulation is applied in logistics

and telecommunications.

(iii) Combined continuous/discrete-event simulation. For example, simulation of nuclear waste

disposal represents the physical and chemical processes through deterministic non-linear

difference equations and models the human interventions as discrete events . 5
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Our research contribution consists in the development of a novel (namely, detrended)

Kriging type, and the exploration of how well this Kriging type performs compared with

Ordinary Kriging and traditional polynomial-regression modelling. The main conclusion of our

examples is: A perfectly specified detrending function gives best predictions; Ordinary Kriging

is acceptable; the usual linear regression gives the worst results.

We organize the remainder of this paper as follows. First we sketch the history of Kriging

and its application in geology, metereology, and deterministic simulation.Then we describe the

basics of Kriging, and give a formal Kriging model. Next we introduce our novel model for

detrending the I/O data through low-order polynomial regression, including a classic cross-

validation test. We illustrate this Kriging through two simple examples. In a separate section

we give a third random simulation example to study the so-called nugget effect in Kriging.

Finally, we present conclusions and mention possible future research topics.

Kriging

History of Kriging

Kriging is an interpolation technique originally developed by D. G. Krige, a South African

mining engineer. In the 1950s he devised this method to determine true ore-grades, based on

samples. Next, he improved the method in cooperation with G. Matheron, a French mathema-

tician at the ‘Ecole des Mines’. At the same time, in meteorology L. Gandin (in the former

Soviet Union) worked on similar ideas, under the name ‘optimum interpolation’ .6

Nowadays, Kriging is also applied to I/O data of deterministic simulation models; we
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refer again to Sacks et al.  's pioneering article. Many more publications followed; for3

example, Meckesheim et al.  give 35 references. Also see Koehler and Owen , and Jones,7 8

Schonlau, and Welch .9

Basics of Kriging

Kriging is an approximation method that can give predictions of unknown values of a random

function, random field, or random process. These predictions are best linear unbiased

estimators, under the Kriging assumptions presented in the next subsection. 

Actually, these predictions are weighted linear combinations of the observed values.

Kriging assumes that the closer the input data are, the more positively correlated the

prediction errors are. Mathematically, this assumption is modeled through a second-order

stationary covariance process: The expectations of the observations are constant and do not

depend on the location (the input values), and the covariances of the observations depend only

on the ‘distances’ between the corresponding inputs. In fact, these covariances decrease with

the distance between the observations. The prediction criterion is minimum mean squared

prediction errors. The result is an estimated metamodel such that observations closer to the

prediction point get more weight in the predictor. When predicting the output for a location

that has already been observed, then the prediction equals the observed value. (In deterministic

simulation this property is certainly attractive, as we said above.)

In Kriging, a crucial role is played by the variogram: A diagram of the variance of the

difference between the measurements at two input locations; also see Figure 1, which has

symbols explained in the next subsection. The assumption of a second-order stationary



Z(s) ' µ % *(s) with s 0 D, µ 0 R .

p(Z(s0)) ' jn
i ' 1 8iZ(s i) with jn

i ' 1 8i ' 1 .

F2
e / E [{Z(s0) & p(Z(s0))}

2 ] .

µ

*(s)

s0 p(Z(s0))

8i

F2
e

Kriging in Simulation

7

(1)

(2)

 (3)

covariance process implies that the variogram is a function of the distance (say) h between two

locations. Moreover, the further apart two inputs are, the smaller this dependence is - until the

effect is negligible.

Formal Model for Kriging

A random process Z(@) can be described by {Z(s) : s 0 D } where D is a fixed subset of R  andd 

Z(s) is a random function at location s 0 D; see Cressie , p. 52. 6

There are several types of Kriging, but we limit this subsection to Ordinary Kriging,

which makes the following two assumptions (already mentioned above, but not yet formal-

ized):

(i) The model assumption is that the random process consists of a constant  and an error

term :

(ii) The predictor assumption is that the predictor for the point  - denoted by  - 

is a weighted linear function of all the observed output data:

To select the weights  in (2), the criterion is minimal mean-squared prediction error (say)

 defined  as
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(4)

(5)

(6)

To minimize (3) given (2), let m be the Lagrangian multiplier ensuring  = 1. Then we

can write the prediction error as

To minimize (4), we utilize the variogram; also see Figure 1. By definition, the variogram is

, where  as explained by the stationary covariance

process assumption with  and  i, j = 1, ..., n. Obviously, we have

 =  = . The spacing h is also called the lag.

After some tedious manipulations, (4) gives

Differentiating (5) with respect to 8 , ..., 8  and m, gives the optimal , ..., :1 n 

where  denotes the vector   and   denotes the n×n matrix

whose (i, j)  element is ; also see Cressie  (p. 122).th 6

We emphasize that these optimal Kriging weights  depend on the specific point  that

is to be predicted, whereas linear-regression metamodels use fixed estimated parameters (say)

.

The optimal weights (6) give the minimal mean-squared prediction error: (3) becomes

(also see Cressie  p. 122)6
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(7)

(8)

(9)

 However, in (6) and (7) ((h) is unknown. Usually it is estimated by

where  denotes the number of distinct pairs in =

; see Matheron . The estimator in (8) is unbiased, if the process   is10

indeed second-order stationary; see Cressie  (p. 71). 6

Given (8) for different ||h|| values, the variogram is estimated by fitting a curve through

the estimated values . This curve displays the following important characteristics (see

Figure 1):

(i) For large values of ||h||, the variogram 2 approaches a constant , called the

sill: For these large ||h|| values, all variances of the differences  are invariant

with respect to h. 

To prove this property, we define the covariogram  = .

Obviously,  = . Then it is easy to derive

Because  9 0 as 2 h  2 8 4, the variogram has the upper limit .

(ii) The interval of ||h|| on which the curve does increase (to the sill), is called the range
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(10)

(11)

(say) r ; that is,  for . We shall give a specific model in (10).

(iii) Although (9) implies , the fitted curve does not always pass through zero: It

may have a positive intercept - called the nugget variance.  This variance estimates noise. For

example, in geostatistics this nugget effects means that when going back to the 'same' spot, a

completely different output (namely, a gold nugget) is observed.

We add that in random simulation, the same input (say, the same traffic rate in queueing

simulation) gives different outputs because different pseudo-random numbers are used. Below

we shall return to this issue 

To fit a variogram curve through the estimates resulting from (8), analysts usually apply

the exponential model

where obviously  is the nugget,  the sill, and  the range. However, other models

are also fitted; for example, the linear model

where again  is the nugget; see Cressie  (p. 61). Actually, we  shall apply (11) in our6

experiments.

In deterministic simulation, analysts use more general distance formulas than (8). For

example, Sacks et al.  (p. 413)  and Jones et al.  (p. 5) use the weighted distance formula 3 9
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(12)

(13)

(14)

where  (with ) measures the importance of the input , and  controls the

smoothness of the distance function. To estimate , maximum likelihood estimation (MLE) is

used. The  are fixed such that . (We shall briefly return to (12) in our section

Conclusions and Future Research.)

Detrended Kriging

Ordinary Kriging was defined by (1), where  was the constant mean of the random

process Z(@). This assumption, however,  limits the application of Ordinary Kriging to  rather

simple models of the process Z(@). A more general assumption is that  is not a constant, but

an unknown linear combination of known functions . This is called

Universal Kriging; see Huijbregts and Matheron  (p. 160) and also Cressie   (p. 151).11 6

Now we introduce a novel type of Kriging that we call Detrended Kriging. We assume

that the process mean satisfies the decomposition

where  is a known signal function (see, however, the text below (14)) and is a white

noise process that models the measurement error; that is,  is normally indentically and

independently distributed with zero mean (NIID). So, we replace (1) by
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In practice, the signal function  in (14) is unknown. Therefore we estimate 

through , from the set of observed (noisy) I/O data  . Because

of the assumed white noise, we use  ordinary least squares (OLS) to obtain the estimator .

Next we apply Ordinary Kriging to the detrended set .

Our predictor for the output of location  is the sum of this Ordinary Kriging prediction and

the estimator .

To test our new Detrended Kriging, we apply classic cross-validation; see Kleijnen and

van Groenendaal  (p. 156). Cross-validation eliminates one I/O combination, say ,12

from to the original data set , so the remaining data combina-

tions are . This new set gives a prediction .

This process of elimination  and prediction is repeated for (say)  different combinations

( ). Obviously,  if we sort the original set such that the first c observations are deleted

one at a time, then we get  k = 1, 2, ..., c.

To summarize the resulting prediction accuracy, we use the  norm of the difference

vector  (the  norm  is defined as ). In our experiments

we find that the  and   norms give simular conclusions.

Note that in Kriging, all prediction errors may be zero at the I/O points that are actually

used to estimate the Kriging model. Therefore we use cross-validation.

Two Monte Carlo Examples and Five Metamodels

We are interested in the application of Kriging to discrete-event simulation models, such as

simulated queueing systems. Unfortunately, such systems have unknown and uncontrolled I/O
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behavior. For example, even when simulating the simple M/M/1 system, it is unknown when

exactly the steady state is reached. Therefore, we now create a laboratory; that is, we represent

the simulation’s I/O behavior -  in (14) - by a fourth-order polynomial (example I) or by a

hyperbole (example II), both augmented with white noise. In this way, we control the

approximation error (bias) of our Kriging metamodel. Moreover, we control the so-called

intrinsic simulation noise; that is, we control the variance of the white noise. Finally, we assure

that the other white-noise assumptions hold: Normality, statistical independence, and constant

variance. Such perfect control is impossible in experiments with the M/M/1 system! (In future

research - see last section - we shall apply Kriging to discrete-event systems such as queueing

or inventory systems. Such applications, however, only illustrate the behavior of Kriging; they

do not permit truly controlled experimentation.)

Example I represents simulations with multiple local maxima, which are interesting when

optimizing simulation outputs. Example II represents queueing simulations that show 'explo-

sive' mean waiting times as the traffic rate approaches the value one. 

We sample the white noise-term  in (14) through the Matlab function called ‘randn’,

which gives standard NIID variates; that is,  has zero mean and unit variance. We also

experiment with a larger variance namely 25; this results in larger error terms, but not in other

conclusions.

To estimate possible values of the L  norm (defined above), we use 100 macro-replica-2

tions. From these macro-replications we estimate L 's median, 0.10 quantile Q , and 0.902 0.1

quantile Q .0.9

In both examples we take n = 21 equally spaced input values: s  with i = 1, ..., 21. Fori

cross-validation we select (rather arbitrarily) c = 5 inputs values: We eliminate i = 2, 8, 9, 15,
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16 respectively. We compared the following five metamodels.

i) Ordinary Kriging 

ii) second-degree detrending:  is a second-degree polynomial

iii) perfectly specified detrending function:  is a fourth degree polynomial in Example I,

and a   hyperbolic function in Example II

iv) fifth-degree detrending:  is a fifth-degree polynomial (overfitting)

v) linear regression model that is a second-degree polynomial estimated through OLS.

Example I: Fourth-degree Polynomial

We take the following specific polynomial: S(s) = -0.0579s  + 1.11s -6.845s  + 14.1071s + 24 3 2

on  . This  polynomial has two maxima: A  local one and a global one; see

Figure 2. We obtain output for the following 21 input locations ;  see

again Figure 2, which also displays an example of the noisy output Z(s). We cross-validate at

.

The estimated distribution of  is summarized in Table 1. This example suggests that

metamodel iii (perfectly specified detrending function) gives the best results. Model i (Ordinary

Kriging) is not too bad. Model v (OLS) is simply bad.

Example II: Hyperbole

Now we take  on .This hyperbolic function can

represent the mean steady-state waiting time for a traffic rate  in an M/M/1 queueing system;



si0{0.01, 0.05,0.1, ...,0.95, 0.99}
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0(s)
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see Kleijnen and Van Groenendaal  (pp. 100-116). This function gives Figure 3. The input12

locations are . The cross-validation is carried out at s = 0.05,

0.35, 0.40, 0.70, 0.75.

The estimated distribution of  is summarized in Table 2. Like example I, this example

suggests that metamodel iii (perfectly specified detrending function) gives the best results.

Model i (Ordinary Kriging) is not too bad. Model v (OLS) is simply bad.

Third Monte Carlo Example and Nugget Effect

We also wish to better understand the relationship between the nugget effect in (11) and the

variance of the noise  in (13). Therefore we perform a simple Monte Carlo example: We

take  where  is NIID with  and  = 1, 4, 9, 16, and 25

respectively. We sample two macro-replicates, setting the seed of Matlab's ‘randn’ -  rather

arbitrary -  to the values 10 and  20. In the various Kriging metamodels, we fit the linear

variogram of (11); see Figure 4 (we display results for the seed value of 10 only; note the

different scales for the y-axis in the four plots).

The intercept in (11) estimates the nugget effect; this intercept is presented for different

values in Table 3. Obviously, these results confirm our conjecture: The nugget effect is the

variance of the noise.

Conclusions and Future Research

We assume that in practice the mean  of  the Kriging metamodel (1) is not a constant, but is
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a composition of a signal function and white noise. We found that Kriging applied to detrended

data gives good predictions.

Further, we found that the nugget effect equals the noise variance.

We restricted our examples to a single input. Therefore we gave each weight  in the

more general distance formula (12), the fixed value of one. In design optimization, however,

these parameters are used to control the importance of the input variable ; see for example

Simpson et al.  (p. 8) and Jones et al.  (p. 5). In future work we shall investigate multiple13 9

inputs.

Further, we shall relax the assumption of white noise: We shall investigate the effects of

non-constant variances (which occur in queueing simulations), common random number usage

(which creates correlations among the simulation outputs), and non-normality (Kriging uses

maximum likelihood estimators of the weights , which assumes normality). Finally, we shall

apply Kriging to practical queueing and inventory simulations.
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Figure 1: An example variogram

Figure 2:  S(s) = -0.0579s  + 1.11s -6.845s  + 14.1071s + 2 and example sample output Z(s)4 3 2
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Figure 3:  and example sample output Z(s)

Figure 4: Variogram estimates for different variances
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Metamodel

L2 norm i ii iii iv v
1.5976 1.515 1.2094 1.2173 5.5965

Median 2.4713 2.41 1.8748 1.9117 6.0363

3.3226 3.246 2.6424 2.6959 6.5048

Table 1: Estimated quantiles of  distribution for example I

Metamodel

L2 norm i ii iii iv v
1.2429 1.3622 1.1972 2.7411 17.593

Median 1.8832 2.1522 1.8419 3.6678 18.17

2.5698 2.925 2.5829 4.4677 18.652

Table 2: Estimated quantiles of  distribution for example II

seed 10 seed 20

1 1.1 0.9

4 4 4 

9 9.6 8.5

16 17.1 15.5

25 26.5 24.1

Table 3: Estimated nugget effects for different white noise variances 
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Figure captions and table headings

Figure 1: An example variogram

Figure 2:  S(s) = -0.0579s  + 1.11s -6.845s  + 14.1071s + 2 and example sample output Z(s)4 3 2

Figure 3:  and example sample output Z(s)

Figure 4: Variogram estimates for different variances

Table 1: Estimated quantiles of  distribution for example I

Table 2: Estimated quantiles of  distribution for example II

Table 3: Estimated nugget effects for different white noise variances 


