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ABSTRACT

In this paper we show that, contrary to the claim made in Longstaff, Santa-Clara,

and Schwartz (2001a) and Longstaff, Santa-Clara, and Schwartz (2001b), discrete string

models are not more parsimonious than market models. In fact, they are found to be

observationally equivalent. We derive that, for the estimation of both a K-factor discrete

string model and a K-factor Libor market model for N forward rates the number of

parameters that needs to be estimated equals NK−K (K − 1) /2 and not K (K + 1) /2

and NK, respectively.
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I. Introduction

In this paper we discuss the discrete string model as used by Longstaff, Santa-Clara, and

Schwartz (2001a) and Longstaff, Santa-Clara, and Schwartz (2001b) (LSS papers) and the

Libor market model (LMM) as introduced by Miltersen, Sandmann, and Sondermann (1997),

Brace, Gatarek, and Musiela (1997), and Jamshidian (1997). The LSS papers use a discrete

version of the string model of Santa-Clara and Sornette (2001) applied to forward Libor rates.

In their papers, LSS claim to blend the string model and the LMM. In this paper it is shown

that the discrete version of the string model that they use is observationally equivalent to

the LMM.

The structure of the paper is as follows. In Section II, the discrete version of the string

model as used in the LSS papers and the LMM are described. Section III gives observational

equivalence of the two models. Subsequently, in Section IV the number of parameters to be

estimated in both models is derived. Section V concludes.

II. Description of models

First, the discrete version of the string model as used in the LSS papers is described.

Second, a description of the Libor market model is given.

A. Discrete string model

Kennedy (1994) introduced the idea to model the evolution of the term structure of

forward rates as a stochastic string. His analysis has been generalized in Kennedy (1997),

Goldstein (2000), and Santa-Clara and Sornette (2001). By construction, the string model is

high-dimensional (infinite dimensional if we model a continuum of forward rates), since each

rate has its own perturbation. Here, we describe the string model based on a finite number

of forward Libor rates. First, we define a finite set of dates, the so-called tenor structure

T0 < T1 < T2 < . . . < TN+1. (1)

We denote the current time as T0 and T1, ..., TN+1 as the forward tenor dates. This gives

a spot Libor rate (for [T0, T ]) and N forward Libor rates from (for [Ti, Ti+1], i = 1, ..., N).

We define δi = Ti+1 − Ti as the so-called daycount fractions, which are determined by the

maturity of the Libor rate and are most often equal to 3 or 6 months. Let the forward Libor
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rate from Ti to Ti+1 at time T0 be denoted by F (T0, Ti, Ti+1) which is defined as

F (T0, Ti, Ti+1) ≡ 1

δi

µ
D (T0, Ti)−D (T0, Ti+1)

D (T0, Ti+1)

¶
, (2)

where D (T0, T ) denotes the value of a discount bond at time T0 with maturity T . For

notational convenience, we define Fi (T0) ≡ F (T0, Ti, Ti+1) . The string model specifies the

following dynamics for the N individual forward rates

dFi (t)

Fi (t)
= αM

i (t) dt+ σidZ
M
i (t) . (3)

for i = 1, ..., N where ZM
i (t) are (correlated) Wiener processes under probability measureM

with

d
£
ZM

i , Z
M
j

¤
(t) = ρijdt.

The drift term αM
i (t) is left unspecified and depends on the probability measure M used in

(3). Let Qi+1. denote the probability measure associated with the numeraire D (•, Ti+1)
1.

From the first fundamental theorem of asset pricing (see, for example, Delbaen and Schacher-

mayer (1994)) we know that to exclude arbitrage possibilities αM
i (t) equals 0 under Qi+1.

The volatility functions σi (and the correlation parameters ρij) do not depend on the prob-

ability measure M and are taken to be constant for ease of exposition, but can easily be

extended to be deterministic functions of time.

We can stack the individual Wiener processes in a vector ZM =
h
ZM

1 · · · ZM
N

i0
.

The correlation matrix Ψ of Z is given by

Ψ =


1 · · · ρ1N

...
. . .

...

ρN1 · · · 1

 . (4)

The volatility functions σi together with the correlations of the Wiener processes de-

termine the covariance matrix of the forward rate changes. Therefore, we have to esti-

mate N (N + 1) /2 parameters (N volatilities σi and N (N − 1) /2 correlation parameters
1Under Qi+1 the value of every tradable asset, say X, satisfies

X (t)

D (t, Ti+1)
= IEQi+1

·
X (T )

D (T, Ti+1)
|Ft

¸
for T ≤ Ti+1.
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ρij

¡
ρij = ρji

¢
). We can write the model in matrix notation as follows


dF1(t)
F1(t)

...
dFN (t)
FN (t)

 =

αM

1 (t)
...

αM
N (t)

dt+

σ1 ∅

. . .

∅ σN

dZM (t) (5)

The covariance matrix of the log forward rate changes is then given by

Σ =


σ2

1 · · · ρ1Nσ1σN

...
. . .

...

ρ1Nσ1σN · · · σ2
N

 . (6)

B. Libor market model

The Libor market model as introduced by Miltersen, Sandmann, and Sondermann

(1997), Brace, Gatarek, and Musiela (1997), and Jamshidian (1997) is usually specified in

the following form:
dFi (t)

Fi (t)
= µM

i (t) dt+ Γi · dWM (t) (7)

where WM denotes an K-dimensional standard Wiener process (K ≤ N) under probability
measureM ,WM =

h
WM

1 · · · WM
K

i0
and Γi is anK-dimensional volatility function Γi =h

Γi1 · · · ΓiK

i
. As in the discrete string model the drift term µM

i (t) is left unspecified

and depends on the probability measureM used in (7). Again the first fundamental theorem

of asset pricing gives that to exclude arbitrage possibilities µQi+1

i (t) equals 0. Therefore, we

have αQi+1

i (t) = µQi+1

i (t). To show that αM
i (t) = µM

i (t) for every M , we need to show that

a Γi exists such that L
¡
Γi ·WM (t)

¢
= L ¡σiZ

M
i (t)

¢
2 . In this case a change of measure has

the same change of drift in (3) and (7). This is done in Section III. Putting the LMM in

matrix notation gives


dF1(t)
F1(t)

...
dFN (t)
FN (t)

 =

µM

1 (t)
...

µM
N (t)

dt+

Γ11 · · · Γ1K

...
. . .

...

ΓN1 · · · ΓNK

dWM (t) . (8)

2L (X) denotes the law of X. For example, L (X) = N (0, 1) has the same meaning as X ∼ N (0, 1).
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The covariance matrix of the log forward rate changes is given by

ΓΓ0 =


kΓ1k2 · · · Γ1 · ΓN

...
. . .

...

ΓN · Γ1 · · · kΓNk2

 . (9)

III. Observational equivalence

To show observational equivalence3 of the discrete string model and the LMM we only have

to show that their covariance matrices of the log forward rate changes are the same. As

pointed out in the previous section this implies an equivalence of the drift terms.

We start by decomposing Ψ in (4) as Ψ = AA0. This can be done in the following way.

The spectral decomposition of Ψ is given by Ψ = UDU 0, where U is a matrix of orthonormal

eigenvectors and D an ordered diagonal matrix with the eigenvalues on the diagonal4. We

have

UD
1
2 =

hp
λ1u1 . . .

p
λNuN

i
where ui denotes the orthonormal eigenvector corresponding to λi. In case of a K-factor

model, λK+1 = ... = λN = 0. We take

A =
hp
λ1u1 . . .

p
λKuK

i
, (10)

which gives Ψ = AA0. Taking

Γ =


σ1 ∅

. . .

∅ σN

A (11)

gives Σ = ΓΓ0. Thus,

L (Z (t)) = L (AW (t)) (12)

and

L



σ1 ∅

. . .

∅ σN

Z (t)
 = L (ΓW (t)) . (13)

3Observational equivalence means that for every specification in the class of discrete string models one
can find a specification in the class of market models with the same properties and vice versa.

4Without loss of generality, we can take (λi, ui) to denote the ith largest (eigenvalue, eigenvector) pair.
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The discrete string model is therefore only a reformulation of the Libor market model.

Where the Libor market model decomposes the covariance matrix of log forward rate changes

as Σ = ΓΓ0 the discrete string model does this as

Σ =


σ1 ∅

. . .

∅ σN




1 · · · ρ1N

...
. . .

...

ρN1 · · · 1



σ1 ∅

. . .

∅ σN

 .

As shown above, this does not have any influence on the properties of the model. The

advantage of the discrete string model is that it has a neater economic interpretation.

The observational equivalence shown above is not restricted to the market model setting,

but also holds with regards to the (more) general HJM setting. In the HJM setting one

needs to specify the discrete string model for the instantaneous forward rates instead of the

forward Libor rates. The discrete string model is therefore always just a convenient way to

model term structure dynamics when the correlation structure is an input to the model.

IV. Parsimony of the model

In the LSS papers it is claimed that a K-factor Libor market models needs NK para-

meters, while the discrete string model only needs K (K + 1) /2 parameters. Note, however,

that as a consequence of the observational equivalence of the two models, it necessarily follows

that they must need the same number of parameters. Below we demonstrate that in fact both

models are specified by NK−K (K − 1) /2 parameters. As a simple example demonstrating
that the LSS claim is incorrect for the string model, note that the K = 1 dimensional discrete

string model requires N (> K (K + 1) /2 = 1) parameters to specify the volatility functions.

Further, we demonstrate below that there are some hidden restrictions that reduce the num-

ber of free parameters in the market model from NK to NK −K (K − 1) /2.
The LSS papers represent the correlation matrix Ψ of Z in its spectral decomposition5

Ψ = UDU 0 = AA0 =
KX

i=1

λiuiu
0
i (14)

where U is a matrix with orthonormal eigenvectors and D is an ordered diagonal matrix with
5The spectral decomposition can also be performed on the covariance matrix Σ. This would lead to

different eigenvalues and eigenvectors. The number of parameters that need to be estimated is the same (see
Basilevsky (1995)).
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Table I
Restrictions on the eigenvectors {ui}K

i=1 of the spectral decomposition in (14).

u1 u2 · · · uK

u1 ku1k2 = 1

u2 u1 · u2 = 0 ku2k2 = 1
...

...
...

. . .

uK u1 · uK = 0 u2 · uK = 0 · · · kuKk2
= 1

the eigenvalues of Ψ6. At first it seems that NK parameters are necessary. A is, however, not

unique. Consider aK×K orthonormal matrix T . Then using A∗ = AT andW ∗ = T 0W gives

the same dynamics as using A andW 7. The number of necessary parameters to be estimated

can be found using (14). We have K unknown eigenvalues {λi}K
i=1. Further, we have K N -

dimensional eigenvectors {ui}K
i=1 which gives an additional NK unknown parameters. These

eigenvectors {ui}K
i=1 need to be orthonormal which leads to K (K + 1) /2 restrictions as can

be seen from Table I. Using

number of parameters = degrees of freedom + number of restrictions (15)

we find that the degrees of freedom equals NK −K (K + 1) /2. Adding the K eigenvalues

{λi}K
i=1 we have NK−K (K − 1) /2 parameters to estimate. Therefore, by suitable rotation

of A we get a A∗ such that the first K rows and columns form a lower triangular matrix, i.e.,

A∗ =



A∗11 ∅
...

. . .

A∗K1 · · · A∗KK

...
. . .

...

A∗N1 · · · A∗NK


. (16)

V. Conclusion

In this paper, we show that contrary to the claim made in Longstaff, Santa-Clara, and

Schwartz (2001a) and Longstaff, Santa-Clara, and Schwartz (2001b), that discrete string

models are not more parsimonious than market models. In fact, they are found to be obser-

vationally equivalent. We derive that for the estimation of both a K-factor discrete string
6Note that λK+1 = ... = λN = 0.
7W∗ is also a standard Wiener process, since L (T 0W (t)) = N (0, T 0Tt) = N (0, It) .
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model and a K-factor Libor market model for N forward rates the number of parameters

needed to be estimated equals NK −K (K − 1) /2 and not K (K + 1) /2 and NK, respec-

tively.
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