CONVEXITY AND MARGINAL VECTORS

By Bas van Velzen, Herbert Hamers, Henk Norde

May 2002

Convexity and marginal vectors

Bas van Velzen, Herbert Hamers, Henk Norde
CentER and Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
E-mail: S.vanVelzen@kub.nl,H.J.M.Hamers@kub.nl,H.Norde@kub.nl

Abstract

In this paper we construct sets of marginal vectors of a TU game with the property that if the marginal vectors from these sets are core elements, then the game is convex. This approach leads to new upperbounds on the number of marginal vectors needed to characterize convexity. Another result is that the relative number of marginals needed to characterize convexity converges to zero.

Keywords: convexity, marginal vectors, TU game

1 Introduction

This paper shows that if specific sets of marginal vectors of some TU game are core elements, then the game is convex. Convexity is an appealing property in cooperative game theory. For convex games it is established that the Shapley value is the barycentre of the core (Shapley (1971)), the bargaining set and the core coincide, the kernel coincides with the nucleolus (Maschler et al. (1972)) and the τ-value can easily be calculated (Tijs (1981)).

It is well-known that a game is convex if and only if all marginal vectors are core elements (Shapley (1971), Ichiishi (1981)). This result is strengthened in Rafels, Ybern (1995). They showed that if all even marginal vectors are core elements, then all odd marginal vectors are core elements as well, and vice versa. Hence, if all even or all odd marginal vectors are core elements, then the game is convex.

In this paper we establish new bounds for the number of marginal vectors needed to characterize convexity and we present a convergence theorem which states that the relative number of marginal vectors needed to characterize convexity converges to zero.

2 Preliminaries

In this section we recall some notions from cooperative game theory and introduce some notation.
A cooperative TU game is a pair (N, v) where $N=\{1, \ldots, n\}$ is a finite (player) set and v, the characteristic function, is a map $v: 2^{N} \rightarrow \mathbb{R}$ with $v(\emptyset)=0$. The map v assigns to each subset $S \subset N$, called a coalition, a real number $v(S)$, called the worth of S. The core of a game (N, v) is the set

$$
C(v)=\left\{x \in \mathbb{R}^{N} \mid \sum_{j \in S} x_{j} \geq v(S) \text { for every } S \subset N, \sum_{j \in N} x_{j}=v(N)\right\} .
$$

Intuitively, the core of a game can be interpreted as the set of payoff vectors for which no coalition has an incentive to leave the grand coalition N. Note that the core of a game can be empty. A game (N, v) is called convex if for all $i, j \in N$ and $S \subset N \backslash\{i, j\}$ it holds that

$$
\begin{equation*}
v(S \cup\{i\})-v(S) \leq v(S \cup\{i\} \cup\{j\})-v(S \cup\{j\}) . \tag{1}
\end{equation*}
$$

Hence, for convex games the marginal contribution of a player to any coalition is less than his marginal contribution to a larger coalition.

Before we introduce marginal vectors, we first introduce orders. For any $T \subset N$, an order σ of T is a bijection $\sigma:\{1, \ldots,|T|\} \rightarrow T$. This order is denoted by $\sigma(1) \cdots \sigma(|T|)$, where $\sigma(i)=j$ means that with respect to σ, player j is in the i-th position. The i-th neighbour of σ is the order σ^{i} which is obtained by switching the players at the i-th and $(i+1)$-th position of σ, i.e. $\sigma^{i}=\sigma(1) \cdots \sigma(i-1) \sigma(i+1) \sigma(i) \sigma(i+2) \cdots \sigma(|T|)$. An order is called even if it can be turned into the identity order e_{T} by an even number of neighbourswitches, where e_{T} is such that for every $i, j \in\{1, \ldots,|T|\}$ with $i<j$, it holds that $e_{T}(i)<e_{T}(j)$. An order which is not even is called odd. Note that every neighbour of an even order is odd and vice versa and that the set of all orders S_{T} contains as many even orders as odd orders.

Let (N, v) be a game. For any $\sigma \in S_{N}$, the marginal vector $m^{\sigma}(v)$ is defined by

$$
m_{i}^{\sigma}(v):=v([\sigma, i])-v((\sigma, i)) \text { for all } i \in N
$$

where $[\sigma, i]=\left\{j \in N: \sigma^{-1}(j) \leq \sigma^{-1}(i)\right\}$ is the set of predecessors of i with respect to σ including i, and $(\sigma, i)=\left\{j \in N: \sigma^{-1}(j)<\sigma^{-1}(i)\right\}$ is the set of predecessors of i excluding i. A marginal vector is called even (odd) if the corresponding order is even (odd). Furthermore, if τ is the i-th neighbour of σ, then $m^{\tau}(v)$ is called the i-th neighbour of $m^{\sigma}(v)$.

Let $\left\{A_{1}, \ldots, A_{k}\right\}$ be a partition of N and let $\sigma_{i} \in S_{A_{i}}$ for each $i \in\{1, \ldots, k\}$. Then the combined order $\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ of N is that order which begins with the players in A_{1} ordered according to σ_{1}, followed by the players in A_{2} ordered according to σ_{2}, etcetera, i.e.

$$
\sigma_{1} \sigma_{2} \cdots \sigma_{k}:=\sigma_{1}(1) \cdots \sigma_{1}\left(\left|A_{1}\right|\right) \sigma_{2}(1) \cdots \sigma_{2}\left(\left|A_{2}\right|\right) \cdots \sigma_{k}(1) \cdots \sigma_{k}\left(\left|A_{k}\right|\right)
$$

The set $A_{1}\left|A_{2}\right| \ldots \mid A_{k}$ contains those orders which begin with the players in A_{1}, followed by the players in A_{2}, etcetera, i.e. $A_{1}\left|A_{2}\right| \ldots \mid A_{k}:=\left\{\sigma_{1} \cdots \sigma_{k}: \sigma_{i} \in S_{A_{i}}\right.$ for every $\left.i \in\{1, \ldots, k\}\right\}$.

Example 1 Let $N=\{1,2,3,4,5\}, A_{1}=\{1,5\}, A_{2}=\{3\}$ and $A_{3}=\{2,4\}$. If $\sigma_{1}=51, \sigma_{2}=3$ and $\sigma_{3}=24$, then $\sigma_{1} \sigma_{2} \sigma_{3}=51324$, and $15|3| 24=\{15324,15342,51324,51342\}$.

3 Characterizing convexity using core marginals

In this section we present our main results. First we recall the theorem of Shapley (1971) and Ichiishi (1981) which states that a game is convex if and only if all marginal vectors are core elements. We recall a strengthening of this theorem by Rafels, Ybern (1995) and we prove this strengthening in an alternative way. We obtain sharper bounds for the number of marginal vectors needed to characterize convexity and we prove a convergence theorem.

Theorem 1 (Shapley (1971),Ichiishi (1981)) Let (N, v) be a game. Then v is convex if and only if $m^{\sigma}(v) \in C(v)$ for all $\sigma \in S_{N}$.

The strengthening posed in Rafels, Ybern (1995) states that if all even marginal vectors are core elements, then all odd marginal vectors are core elements as well, and vice versa. Hence, Theorem 2 states that if $\frac{n!}{2}$ specific marginal vectors are core elements, then the game is convex. Therefore, Theorem 2 provides an upperbound of $\frac{n!}{2}$ for the number of marginal vectors needed to characterize convexity.

Theorem 2 (Rafels, Ybern (1995)) Let (N, v) be a game. Then the following statements are equivalent:

1. (N, v) is convex
2. $m^{\sigma}(v) \in C(v)$ for all even $\sigma \in S_{N}$
3. $m^{\sigma}(v) \in C(v)$ for all odd $\sigma \in S_{N}$.

Rafels, Ybern (1995) proved this theorem by showing that if all even or all odd marginal vectors are core elements, then (1) is satisfied for every $i, j \in N$ and every $S \subset N \backslash\{i, j\}$. The following lemma states that if for a marginal vector two consecutive neighbours are core elements, then this marginal vector is a core element as well.

Lemma $1 \operatorname{Let}(N, v)$ be a game with $|N| \geq 3$, and let $\sigma \in S_{N}$. Suppose there is an $h \in\{1, \ldots, n-2\}$ such that $m^{\sigma^{h}}(v), m^{\sigma^{h+1}}(v) \in C(v)$. Then $m^{\sigma}(v) \in C(v)$.

Proof: Without loss of generality we assume that $\sigma=12 \cdots n$. Then
$\sigma^{h}=1 \cdots h-1 h+1 h h+2 \cdots n$, and $\sigma^{h+1}=1 \cdots h h+2 h+1 h+3 \cdots n$. To show that $m^{\sigma}(v) \in C(v)$, we need to show that $\sum_{i \in S} m_{i}^{\sigma}(v) \geq v(S)$ for every $S \subset N$. So let $S \subset N$, we distinguish between four cases.

Case 1: $h, h+1 \notin S$.
Then it follows that $\sum_{j \in S} m_{j}^{\sigma}(v)=\sum_{j \in S} m_{j}^{\sigma^{h}}(v) \geq v(S)$, where the inequality holds because $m^{\sigma^{h}}(v) \in C(v)$.

Case 2: $h \notin S$ and $h+1 \in S$.
Let $T=\{1, \ldots, h\}=[\sigma, h]$. It follows that

$$
\begin{equation*}
\sum_{j \in T} m_{j}^{\sigma^{h}}(v)=v([\sigma, h+1])-v([\sigma, h-1] \cup\{h+1\})+v([\sigma, h-1]) \geq v(T)=v([\sigma, h]) \tag{2}
\end{equation*}
$$

where the inequality holds because $m^{\sigma^{h}}(v) \in C(v)$. Therefore

$$
\begin{aligned}
& \sum_{j \in S} m_{j}^{\sigma}(v)=\sum_{j \in S} m_{j}^{\sigma^{h}}(v)-m_{h+1}^{\sigma^{h}}(v)+m_{h+1}^{\sigma}(v) \\
& =\sum_{j \in S} m_{j}^{\sigma^{h}}(v)-(v([\sigma, h-1] \cup\{h+1\})-v([\sigma, h-1])) \\
& +(v([\sigma, h+1])-v([\sigma, h])) \geq v(S)
\end{aligned}
$$

where the inequality follows from $m^{\sigma^{h}}(v) \in C(v)$ and (2).
Case 3: $h \in S$ and $h+1 \notin S$. We distinguish between two subcases.
Subcase 3a: $h+2 \notin S$.
Then it follows that $\sum_{j \in S} m_{j}^{\sigma}(v)=\sum_{j \in S} m_{j}^{\sigma^{h+1}}(v) \geq v(S)$.
Subcase 3b: $h+2 \in S$.
By taking $T=\{1, \ldots, h+1\}$ and using that $m^{\sigma^{h+1}}(v) \in C(v)$, it follows similar to case 2 that $\sum_{j \in S} m_{j}^{\sigma}(v) \geq v(S)$.

Case 4: $h, h+1 \in S$.
Then it follows that $\sum_{j \in S} m_{j}^{\sigma}(v)=\sum_{j \in S} m_{j}^{\sigma^{h}}(v) \geq v(S)$.

Example 2 Consider a game (N, v) with $N=\{1,2,3\}$. Then 213 and 132 are the first and second neighbour of 123 . From Lemma 1 it follows that if $m^{213}(v), m^{132}(v) \in C(v)$, then $m^{123}(v) \in C(v)$.

By applying Lemma 1 we have, for $n \geq 3$, an alternative proof of Theorem 2 by using that each neighbour of an even marginal vector is odd and vice versa. In fact, using Lemma 1 , even sharper bounds than $\frac{n!}{2}$ can be obtained. To obtain these bounds we introduce the operator $b: 2^{S_{T}} \rightarrow 2^{S_{T}}$ for every $T \subset N$. For $|T|=1,2$, we define $b(A):=A$ for all $A \subset S_{T}$. For $|T| \geq 3$, we define

$$
b(A):=A \cup\left\{\sigma \in S_{T}: \text { there is an } i \in\{1, \ldots,|T|-2\} \text { such that } \sigma^{i}, \sigma^{i+1} \in A\right\}
$$

By applying Lemma 1 it follows that if $m^{\sigma}(v) \in C(v)$ for all $\sigma \in A \subset S_{N}$, then $m^{\tau}(v) \in C(v)$ for all $\tau \in b(A)$. Hence b can be used to generate larger sets of core marginals.

Example 3 Let $A=\{213,132\}$, and let $\sigma=123$. Then $\sigma^{1}=213 \in A$ and $\sigma^{2}=132 \in A$. Therefore, $123 \in b(A)$.

The following example shows that by repetetive appliance of b larger sets of core marginals can be obtained.

Example 4 Let $A=\{2134,1324,1423\}, \sigma=1234$ and $\tau=1243$. It follows that $\sigma^{1}=2134 \in A$, and $\sigma^{2}=1324 \in A$. Therefore it follows that $\sigma \in b(A)$. Note that because $\tau \notin A, \tau^{1}=2143 \notin A$ and $\tau^{3}=1234 \notin A$ it follows that $\tau \notin b(A)$. However $\tau^{2}=1423 \in b(A)$ and $\tau^{3}=1234 \in b(A)$. Therefore, $\tau \in b(b(A))=b^{2}(A)$.

Let $T \subset N$. Define the closure of $A \subset S_{T}$, denoted by $b^{*}(A)$, to be the largest set of orders that can be obtained by repetetive appliance of b, i.e. $b^{*}(A)=b^{k}(A)$ for $k \in \mathbb{N}$ such that $b^{k}(A)=b^{k+1}(A)$. Let $C \subset S_{T}$. If $A \subset C$ is such that $C \subset b^{*}(A)$, then A is called complete in C. If $A \subset S_{T}$ is complete in S_{T}, then A is called complete. From Lemma 1 it follows that if $A \subset S_{N}$ and $m^{\sigma}(v) \in C(v)$ for every $\sigma \in A$, then $m^{\tau}(v) \in C(v)$ for every $\tau \in b^{*}(A)$. Hence, if A is complete, then $m^{\sigma}(v) \in C(v)$ for every $\sigma \in A$ implies that v is convex. The following lemma provides a set of orders which is complete in $T_{1}|\ldots| T_{k}$.

Lemma 2 Let $\left\{T_{1}, \ldots, T_{k}\right\}$ be a partition of N and let $A_{i} \subset S_{T_{i}}$. If A_{i} is complete in $S_{T_{i}}$ for each $i \in\{1, \ldots, k\}$, then $A=\left\{\tau_{1} \cdots \tau_{k}: \tau_{i} \in A_{i}\right.$ for each $\left.i \in\{1, \ldots, k\}\right\}$ is complete in $T_{1}|\ldots| T_{k}$.

Proof: Let $\sigma_{1} \cdots \sigma_{k} \in T_{1}|\cdots| T_{k}$. We use induction to show that $\sigma_{1} \cdots \sigma_{k} \in b^{*}(A)$.
Let $j \in\{1, \ldots, k+1\}$ be such that $\sigma_{1} \cdots \sigma_{j-1} \tau_{j} \cdots \tau_{k} \in b^{*}(A)$ for all $\left(\tau_{j}, \ldots, \tau_{k}\right) \in A_{j} \times \ldots \times A_{k}$. Note that $j=1$ satisfies this property.

Now let $\left(\tau_{j+1}, \ldots, \tau_{k}\right) \in A_{j+1} \times \ldots \times A_{k}$ and let $C=\left\{\sigma_{1} \cdots \sigma_{j-1} \tau \tau_{j+1} \cdots \tau_{k} \mid \tau \in A_{j}\right\}$. By assumption we have $C \subset b^{*}(A)$. Because $\sigma_{j} \in b^{*}\left(A_{j}\right)$ it follows that $\sigma_{1} \cdots \sigma_{j-1} \sigma_{j} \tau_{j+1} \cdots \tau_{k} \in$ $b^{*}(C) \subset b^{*}(A)$. We conclude that $\sigma_{1} \cdots \sigma_{k} \in b^{*}(A)$.

Example 5 Let $N=\{1, \ldots, 6\}, T_{1}=\{124\}$ and $T_{2}=\{3,5,6\}$. Let $A_{1}=\{124,241,412\}$ and $A_{2}=\{356,563,635\}$. Note that A_{1} and A_{2} are complete sets. It follows from Lemma 2 that $A=\left\{\sigma \tau: \sigma \in A_{1}, \tau \in A_{2}\right\}$ is complete in $124 \mid 356$.

We now focus on the cardinality of complete sets. A set of orders $A \subset S_{T}$ is called minimum complete if A is a complete set and for every other complete set B it holds that $|B| \geq|A|$, i.e. there exists no complete set with smaller cardinality. Because of symmetry, the cardinality of a minimum complete set only depends on the cardinality $t=|T|$, and not on T. Therefore, let the neighbour number Q_{t} denote the cardinality of a minimum complete set in S_{T}, i.e. $Q_{t}:=$
$\min _{A \subset S_{T}: A}$ is complete $|A|$. By definition it holds that $Q_{1}=1$ and $Q_{2}=2$. From Theorem 2 it follows that $Q_{n} \leq \frac{n!}{2}$ for each $n \geq 3$.

In the final part of this section we establish upperbounds and lowerbounds for Q_{n}. Moreover, it is shown that the relative neighbour number $F_{n}:=\frac{Q_{n}}{n!} \rightarrow 0$ if $n \rightarrow \infty$. The following theorem, which is a direct consequence of Lemma 2, gives a strengthening of the bound obtained from Theorem 2.

Theorem 3 Let $n_{1}, \ldots, n_{k}, n \in \mathbb{N}$, be such that $\sum_{i=1}^{k} n_{i}=n$. Then $Q_{n} \leq \frac{n!}{n_{1}!\cdots n_{k}!} \prod_{i=1}^{k} Q_{n_{i}}$.
Proof: The set S_{N} can be partitioned into $\frac{n!}{n_{1}!\cdots n_{k}!}$ sets of the form $T_{1}|\ldots| T_{k}$ with $\left|T_{i}\right|=n_{i}$ for each $i \in\{1, \ldots, k\}$. Now let $\left\{T_{1}, \ldots, T_{k}\right\}$ be a partition of N for which $\left|T_{i}\right|=n_{i}$ for each $i \in\{1, \ldots, k\}$. According to Lemma 2 there is a set A containing $\prod_{i=1}^{k} Q_{n_{i}}$ elements such that A is complete in $T_{1}|\ldots| T_{k}$. Therefore $Q_{n} \leq \frac{n!}{n_{1}!\cdots n_{k}!} \prod_{i=1}^{k} Q_{n_{i}}$.

From Theorem 3 it follows that $Q_{n+1} \leq \frac{(n+1)!}{n!1!} Q_{n} Q_{1}=(n+1) Q_{n}$. Hence it follows that $F_{n+1} \leq F_{n}$ for each n, i.e. the relative neighbour number F_{n} is nonincreasing. The following lemma gives a lowerbound on the neighbour number.

Lemma 3 If n is even then $Q_{n} \geq n!\frac{1}{2^{\frac{n-2}{2}}}$, and if n is odd then $Q_{n} \geq n!\frac{1}{2^{\frac{n-1}{2}}}$.
Proof: Let n be even, and let $k=\frac{n+2}{2}$.
The set S_{N} can be partitioned into $\frac{n!}{1!2!\cdots 2!1!}=\frac{n!}{2^{k-2}}$ sets of the form $T_{1}|\ldots| T_{k}$ with $\left|T_{1}\right|=\left|T_{k}\right|=1$ and $\left|T_{i}\right|=2$ for every $i \in\{2, \ldots, k-1\}$. Let $C \subset S_{N}$ be one of those sets, i.e. there exists a partition $\left\{T_{1}, \ldots, T_{k}\right\}$ of N with $\left|T_{1}\right|=\left|T_{k}\right|=1$ and $\left|T_{i}\right|=2$ for every $i \in\{2, \ldots, k-1\}$ such that $C=T_{1}|\ldots| T_{k}$.

It follows that for every $\sigma \in C$ it holds that $C=\sigma(1)|\sigma(2) \sigma(3)| \ldots \mid \sigma(n)$. For every even $i \in\{1, \ldots, n-1\}$ it holds that $\sigma^{i} \in C$. Now let $A \subset S_{N}$ such that $A \cap C=\emptyset$. Because for every $\sigma \in C$ there is no $h \in\{1, \ldots, n-2\}$ with $\sigma^{h}, \sigma^{h+1} \in A$, it follows that $\sigma \notin b(A)$. This holds for every $\sigma \in C$, hence $b(A) \cap C=\emptyset$. By repetition it follows that $b^{*}(A) \cap C=\emptyset$.

We conclude that if $A \subset S_{N}$ is complete, then $|A \cap C| \geq 1$. This holds for every C such that $C=T_{1}|\ldots| T_{k}$ with $\left|T_{1}\right|=\left|T_{k}\right|=1,\left|T_{i}\right|=2$ for every $i \in\{2, \ldots, k-1\}$. It follows that $|A| \geq n!\frac{1}{2^{\frac{n-2}{2}}}$.
Now let n be odd, and let $k=\frac{n+1}{2}$. The set S_{N} can be partitioned into $\frac{n!}{1!2!\cdots 2!2!}=\frac{n!}{2^{k-1}}$ sets of the form $T_{1}|\ldots| T_{k}$ with $\left|T_{1}\right|=1$ and $\left|T_{i}\right|=2$ for every $i \in\{2, \ldots, k\}$. Now let $C \subset S_{N}$ be such that $C=T_{1}|\ldots| T_{k}$ with $\left|T_{1}\right|=1$ and $\left|T_{i}\right|=2$ for every $i \in\{2, \ldots, k\}$. Similar to the case where n is even it follows that if $A \subset S_{N}$ is complete, then $A \cap C \neq \emptyset$. This holds for every C such that $C=T_{1}|\ldots| T_{k}$ with $\left|T_{1}\right|=1,\left|T_{i}\right|=2$ for every $i \in\{2, \ldots, k\}$. It follows that $|A| \geq n!\frac{1}{2^{\frac{n-1}{2}}}$. Hence, $|A| \geq n!\frac{1}{2^{\frac{n-1}{2}}}$.

From Theorem 2 and Lemma 3 it follows that $Q_{3}=3$ and $Q_{4}=12$. We also obtain from Theorem 2 that $Q_{5} \leq 60$ and from Lemma 3 we obtain that $Q_{5} \geq 30$. Therefore $Q_{5} \in[30,60]$. However, using ad hoc methods, we established that $Q_{5}=30$. The proof of this lemma is given in the appendix.

Lemma 4 The neighbour number $Q_{5}=30$.
Now, taking $n_{1}=n_{2}=3$ and using Theorem 3, it follows that $Q_{6} \leq \frac{6!}{3!} 3!\cdot Q_{3} \cdot Q_{3}=180$. From Lemma 3 we derive that $Q_{6} \geq 6!\frac{1}{2^{2}}=180$, and hence $Q_{6}=180$. Similar, by taking $n_{1}=3$ and $n_{2}=4$, it follows that $Q_{7} \leq 1260$. From Lemma 3 it follows that $Q_{7} \geq 630$, and therefore $Q_{7} \in[630,1260]$. Hence for Q_{7} we do not have a sharp bound. However, for Q_{8} we have a sharp bound. By taking $n_{1}=3$ and $n_{2}=5$ we obtain that $Q_{8} \leq 5040$. From Lemma 3 it follows that

n	3	4	5	6	7	8	9	10	11
$n!$	6	24	120	720	5040	40320	362880	3628800	39916800
$\frac{n!}{2}$	3	12	60	360	2520	20160	181440	1814400	19958400
Q_{n}	3	12	30	180	$[630,1260]$	5040	$[22680,45360]$	22680	$[1247400,2494800]$
F_{n}	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\left[\frac{1}{8}, \frac{1}{4}\right]$	$\frac{1}{8}$	$\left[\frac{1}{16}, \frac{1}{8}\right]$	$\frac{1}{16}$	$\left[\frac{1}{32}, \frac{1}{16}\right]$

Table 1: New bounds
$Q_{8} \geq 5040$, and hence $Q_{8}=5040$. Some other new bounds are given in Table 1.

The following theorem states that the relative neighbour number F_{n} converges to 0 .
Theorem 4 The relative neighbour number $F_{n} \rightarrow 0$ if $n \rightarrow \infty$.
Proof: Let $k \in \mathbb{N}$, let $n=3 k$ and let $n_{i}=3$ for every $i \in\{1, \ldots, k\}$. From Theorem 3 we deduce that

$$
Q_{3 k} \leq \frac{(3 k)!}{(3!)^{k}} 3^{k}
$$

by using that $Q_{3} \leq 3$. Therefore $F_{3 k} \leq\left(\frac{1}{2}\right)^{k}$ for every $k \in \mathbb{N}$. It follows that $F_{3 k} \rightarrow 0$ if $k \rightarrow \infty$. It follows from Theorem 3 that $F_{n+1} \leq F_{n}$ for all $n \in \mathbb{N}$. Hence, $F_{n} \rightarrow 0$ as $n \rightarrow \infty$.

4 Appendix

Proof of Lemma 4: Let $N=\{1, \ldots, 5\}$ and let

$$
\begin{aligned}
A= & \{13245,21345,31452,41523,52134 \\
& 14235,21453,31524,42135,53124 \\
& 14352,21534,32145,42513,53241 \\
& 15234,24351,32451,43125,54123 \\
& 15342,25341,32514,43251,54231 \\
& 15423,25413,35412,43512,54312\}
\end{aligned}
$$

We will show that A is a complete set. Consider the sets

$$
\begin{aligned}
B= & \{13452,24513,31245,41235,52341 \\
& 14523,25134,35124,42351,53412\}
\end{aligned}
$$

and

$$
C=\{15324,21435,32541,43152,54213\}
$$

Let $\sigma \in B$. Then $\sigma^{1}, \sigma^{2} \in A$. Hence $\sigma \in b(A)$. Let $\tau \in C$. Then $\tau^{3}, \tau^{4} \in A$. Hence $\tau \in b(A)$. It follows that $(A \cup B \cup C) \subset b(A)$.

Now let

$$
D=\{13524,24135,35241,41352,52413\}
$$

Let $\sigma \in D$. Then $\sigma^{1} \in A \subset b(A)$ and $\sigma^{2} \in C \subset b(A)$. It follows that $\sigma \in b(b(A))$. Hence $(A \cup B \cup C \cup D) \subset b^{2}(A)$.

Now let

$$
E=13|245 \cup 14| 235 \cup 24|135 \cup 25| 134 \cup 35|124 \cup 1| 5|234 \cup 2| 1|345 \cup 3| 2|145 \cup 4| 3|125 \cup 5| 4 \mid 123
$$

For each $\sigma \in E$, it holds that either that $\sigma \in A \cup B \cup C \cup D$ or that $\sigma^{3}, \sigma^{4} \in A \cup B \cup C \cup D$. Hence $\sigma \in b(A \cup B \cup C \cup D) \subset b\left(b^{2}(A)\right)$. Now let

$$
F=S_{N} \backslash E=1|2| 345 \cup 2|3| 145 \cup 3|4| 125 \cup 4|5| 123 \cup 5|1| 234
$$

Then for all $\sigma \in F$ it holds that $\sigma^{1}, \sigma^{2} \in E$. Hence it follows that E is a complete set. From this we conclude that A is a complete set. Because $|A|=30$ it follows that $Q_{5} \leq 30$.

5 References

Ichiishi T. (1981): "Super-Modularity: Applications to Convex Games and the Greedy Algorithm for LP", Journal of Economic Theory 25, 283-286.
Maschler M., Peleg B., Shapley L. (1972): "The kernel and bargaining set of convex games", International Journal of Game Theory 2, 73-93.
Rafels C., Ybern N. (1995): "Even and Odd Marginal Worth Vectors, Owen's Multilinear Extension and Convex Games", International Journal of Game Theory 24, 113-126.
Shapley L. (1971): "Cores of Convex Games", International Journal of Game Theory 1, 11-26.
Tijs S. (1981): "Bounds for the core and the τ-value", In: Theory and Mathematical Economics (Eds. Moeschlin O. and Pallaschke P.), North Holland Publishing Company, 123-132.

