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Abstract

In this paper we construct sets of marginal vectors of a TU game with the property that if the

marginal vectors from these sets are core elements, then the game is convex. This approach

leads to new upperbounds on the number of marginal vectors needed to characterize convexity.

Another result is that the relative number of marginals needed to characterize convexity con-

verges to zero.
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1 Introduction

This paper shows that if specific sets of marginal vectors of some TU game are core elements, then

the game is convex. Convexity is an appealing property in cooperative game theory. For convex

games it is established that the Shapley value is the barycentre of the core (Shapley (1971)), the

bargaining set and the core coincide, the kernel coincides with the nucleolus (Maschler et al. (1972))
and the τ -value can easily be calculated (Tijs (1981)).

It is well-known that a game is convex if and only if all marginal vectors are core elements

(Shapley (1971), Ichiishi (1981)). This result is strengthened in Rafels, Ybern (1995). They

showed that if all even marginal vectors are core elements, then all odd marginal vectors are core

elements as well, and vice versa. Hence, if all even or all odd marginal vectors are core elements,

then the game is convex.

In this paper we establish new bounds for the number of marginal vectors needed to characterize

convexity and we present a convergence theorem which states that the relative number of marginal

vectors needed to characterize convexity converges to zero.

2 Preliminaries

In this section we recall some notions from cooperative game theory and introduce some notation.

A cooperative TU game is a pair (N, v) where N = {1, . . . , n} is a finite (player) set and v, the

characteristic function, is a map v : 2N → R with v(∅) = 0. The map v assigns to each subset

S ⊂ N , called a coalition, a real number v(S), called the worth of S. The core of a game (N,v) is

the set

C(v) = {x ∈ RN |
∑

j∈S

xj ≥ v(S) for every S ⊂ N,

∑

j∈N

xj = v(N)}.
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Intuitively, the core of a game can be interpreted as the set of payoff vectors for which no coalition

has an incentive to leave the grand coalition N . Note that the core of a game can be empty. A

game (N,v) is called convex if for all i, j ∈ N and S ⊂ N\{i, j} it holds that

v(S ∪ {i})− v(S) ≤ v(S ∪ {i} ∪ {j})− v(S ∪ {j}). (1)

Hence, for convex games the marginal contribution of a player to any coalition is less than his

marginal contribution to a larger coalition.

Before we introduce marginal vectors, we first introduce orders. For any T ⊂ N , an order σ

of T is a bijection σ : {1, . . . , |T |} → T . This order is denoted by σ(1) · · ·σ(|T |), where σ(i) = j

means that with respect to σ, player j is in the i-th position. The i-th neighbour of σ is the

order σi which is obtained by switching the players at the i-th and (i + 1)-th position of σ, i.e.

σi = σ(1) · · ·σ(i− 1)σ(i+ 1)σ(i)σ(i+ 2) · · ·σ(|T |). An order is called even if it can be turned into

the identity order eT by an even number of neighbourswitches, where eT is such that for every

i, j ∈ {1, . . . , |T |} with i < j, it holds that eT (i) < eT (j). An order which is not even is called odd.

Note that every neighbour of an even order is odd and vice versa and that the set of all orders ST
contains as many even orders as odd orders.

Let (N, v) be a game. For any σ ∈ SN , the marginal vector mσ(v) is defined by

m
σ
i (v) := v([σ, i])− v((σ, i)) for all i ∈ N

where [σ, i] = {j ∈ N : σ−1(j) ≤ σ−1(i)} is the set of predecessors of i with respect to σ including

i, and (σ, i) = {j ∈ N : σ−1(j) < σ−1(i)} is the set of predecessors of i excluding i. A marginal

vector is called even (odd) if the corresponding order is even (odd). Furthermore, if τ is the i-th

neighbour of σ, then mτ (v) is called the i-th neighbour of mσ(v).

Let {A1, . . . ,Ak} be a partition of N and let σi ∈ SAi
for each i ∈ {1, . . . , k}. Then the combined

order σ1σ2 · · ·σk of N is that order which begins with the players in A1 ordered according to σ1,

followed by the players in A2 ordered according to σ2, etcetera, i.e.

σ1σ2 · · ·σk := σ1(1) · · ·σ1(|A1|)σ2(1) · · ·σ2(|A2|) · · ·σk(1) · · ·σk(|Ak|).

The set A1|A2| . . . |Ak contains those orders which begin with the players in A1, followed by the

players in A2, etcetera, i.e. A1|A2| . . . |Ak := {σ1 · · ·σk : σi ∈ SAi
for every i ∈ {1, . . . , k}}.

Example 1 Let N = {1, 2, 3, 4, 5}, A1 = {1, 5}, A2 = {3} and A3 = {2, 4}. If σ1 = 51, σ2 = 3 and

σ3 = 24, then σ1σ2σ3 = 51324, and 15|3|24 = {15324, 15342, 51324, 51342}.

3 Characterizing convexity using core marginals

In this section we present our main results. First we recall the theorem of Shapley (1971) and

Ichiishi (1981) which states that a game is convex if and only if all marginal vectors are core

elements. We recall a strengthening of this theorem by Rafels, Ybern (1995) and we prove this

strengthening in an alternative way. We obtain sharper bounds for the number of marginal vectors

needed to characterize convexity and we prove a convergence theorem.

Theorem 1 (Shapley (1971),Ichiishi (1981)) Let (N,v) be a game. Then v is convex if and

only if mσ(v) ∈ C(v) for all σ ∈ SN .

The strengthening posed in Rafels, Ybern (1995) states that if all even marginal vectors are core

elements, then all odd marginal vectors are core elements as well, and vice versa. Hence, Theorem

2 states that if n!

2
specific marginal vectors are core elements, then the game is convex. Therefore,

Theorem 2 provides an upperbound of n!

2
for the number of marginal vectors needed to characterize

convexity.
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Theorem 2 (Rafels,Ybern (1995)) Let (N, v) be a game. Then the following statements are

equivalent:

1. (N, v) is convex

2. mσ(v) ∈ C(v) for all even σ ∈ SN

3. mσ(v) ∈ C(v) for all odd σ ∈ SN .

Rafels, Ybern (1995) proved this theorem by showing that if all even or all odd marginal vectors

are core elements, then (1) is satisfied for every i, j ∈ N and every S ⊂ N\{i, j}. The following

lemma states that if for a marginal vector two consecutive neighbours are core elements, then this

marginal vector is a core element as well.

Lemma 1 Let (N, v) be a game with |N | ≥ 3, and let σ ∈ SN . Suppose there is an h ∈ {1, . . . , n−2}

such that mσh(v),mσh+1(v) ∈ C(v). Then mσ(v) ∈ C(v).

Proof: Without loss of generality we assume that σ = 12 · · ·n. Then

σh = 1 · · ·h − 1 h + 1 h h + 2 · · ·n, and σh+1 = 1 · · ·h h + 2 h + 1 h + 3 · · ·n. To show that

mσ(v) ∈ C(v), we need to show that
∑

i∈S
mσ
i
(v) ≥ v(S) for every S ⊂ N . So let S ⊂ N , we

distinguish between four cases.

Case 1: h, h+ 1 �∈ S.

Then it follows that
∑

j∈S
mσ
j
(v) =

∑
j∈S

mσh

j
(v) ≥ v(S), where the inequality holds because

mσh(v) ∈ C(v).

Case 2: h �∈ S and h+ 1 ∈ S.

Let T = {1, . . . , h} = [σ, h]. It follows that
∑

j∈T

m
σh

j (v) = v([σ, h+ 1])− v([σ, h− 1] ∪ {h+ 1}) + v([σ, h− 1]) ≥ v(T ) = v([σ, h]), (2)

where the inequality holds because mσh(v) ∈ C(v). Therefore
∑

j∈S

m
σ
j (v) =

∑

j∈S

m
σh

j (v)−m
σh

h+1(v) +m
σ

h+1(v)

=
∑

j∈S

m
σh

j (v)− (v([σ, h− 1] ∪ {h+ 1})− v([σ, h− 1]))

+(v([σ, h+ 1])− v([σ, h])) ≥ v(S),

where the inequality follows from mσh(v) ∈ C(v) and (2).

Case 3: h ∈ S and h+ 1 �∈ S. We distinguish between two subcases.

Subcase 3a: h+ 2 �∈ S.

Then it follows that
∑

j∈S
mσ
j
(v) =

∑
j∈S

mσh+1

j
(v) ≥ v(S).

Subcase 3b: h+ 2 ∈ S.

By taking T = {1, . . . , h+ 1} and using that mσh+1(v) ∈ C(v), it follows similar to case 2 that∑
j∈S

mσ
j
(v) ≥ v(S).

Case 4: h, h+ 1 ∈ S.

Then it follows that
∑

j∈S
mσ
j
(v) =

∑
j∈S

mσh

j
(v) ≥ v(S). �
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Example 2 Consider a game (N,v) with N = {1, 2, 3}. Then 213 and 132 are the first and second

neighbour of 123. From Lemma 1 it follows that if m213(v),m132(v) ∈ C(v), then m123(v) ∈ C(v).

By applying Lemma 1 we have, for n ≥ 3, an alternative proof of Theorem 2 by using that each

neighbour of an even marginal vector is odd and vice versa. In fact, using Lemma 1, even sharper

bounds than
n!

2
can be obtained. To obtain these bounds we introduce the operator b : 2ST → 2ST

for every T ⊂ N . For |T | = 1, 2, we define b(A) := A for all A ⊂ ST . For |T | ≥ 3, we define

b(A) := A ∪ {σ ∈ ST : there is an i ∈ {1, . . . , |T | − 2} such that σ
i
, σ

i+1 ∈ A}.

By applying Lemma 1 it follows that if mσ(v) ∈ C(v) for all σ ∈ A ⊂ SN , then mτ (v) ∈ C(v) for

all τ ∈ b(A). Hence b can be used to generate larger sets of core marginals.

Example 3 Let A = {213, 132}, and let σ = 123. Then σ1 = 213 ∈ A and σ2 = 132 ∈ A.

Therefore, 123 ∈ b(A).

The following example shows that by repetetive appliance of b larger sets of core marginals can be

obtained.

Example 4 Let A = {2134, 1324, 1423}, σ = 1234 and τ = 1243. It follows that σ1 = 2134 ∈ A,

and σ2 = 1324 ∈ A. Therefore it follows that σ ∈ b(A). Note that because τ �∈ A, τ1 = 2143 �∈ A

and τ 3 = 1234 �∈ A it follows that τ �∈ b(A). However τ2 = 1423 ∈ b(A) and τ3 = 1234 ∈ b(A).

Therefore, τ ∈ b(b(A)) = b2(A).

Let T ⊂ N . Define the closure of A ⊂ ST , denoted by b∗(A), to be the largest set of orders that can

be obtained by repetetive appliance of b, i.e. b∗(A) = bk(A) for k ∈ N such that bk(A) = bk+1(A).

Let C ⊂ ST . If A ⊂ C is such that C ⊂ b∗(A), then A is called complete in C. If A ⊂ ST is complete

in ST , then A is called complete. From Lemma 1 it follows that if A ⊂ SN and mσ(v) ∈ C(v) for

every σ ∈ A, then mτ (v) ∈ C(v) for every τ ∈ b∗(A). Hence, if A is complete, then mσ(v) ∈ C(v)

for every σ ∈ A implies that v is convex. The following lemma provides a set of orders which is

complete in T1| . . . |Tk.

Lemma 2 Let {T1, . . . , Tk} be a partition of N and let Ai ⊂ STi. If Ai is complete in STi for each

i ∈ {1, . . . , k}, then A = {τ1 · · · τk : τi ∈ Ai for each i ∈ {1, . . . , k}} is complete in T1| . . . |Tk.

Proof: Let σ1 · · ·σk ∈ T1| · · · |Tk. We use induction to show that σ1 · · ·σk ∈ b∗(A).

Let j ∈ {1, . . . , k+1} be such that σ1 · · ·σj−1τj · · · τk ∈ b∗(A) for all (τj , . . . , τk) ∈ Aj× . . .×Ak.

Note that j = 1 satisfies this property.

Now let (τj+1, . . . , τk) ∈ Aj+1 × . . . × Ak and let C = {σ1 · · ·σj−1ττj+1 · · · τk| τ ∈ Aj}. By

assumption we have C ⊂ b∗(A). Because σj ∈ b∗(Aj) it follows that σ1 · · ·σj−1σjτj+1 · · · τk ∈
b∗(C) ⊂ b∗(A). We conclude that σ1 · · ·σk ∈ b∗(A). �

Example 5 Let N = {1, . . . , 6}, T1 = {124} and T2 = {3, 5, 6}. Let A1 = {124, 241, 412} and

A2 = {356, 563, 635}. Note that A1 and A2 are complete sets. It follows from Lemma 2 that

A = {στ : σ ∈ A1, τ ∈ A2} is complete in 124|356.

We now focus on the cardinality of complete sets. A set of orders A ⊂ ST is called minimum

complete if A is a complete set and for every other complete set B it holds that |B| ≥ |A|, i.e.
there exists no complete set with smaller cardinality. Because of symmetry, the cardinality of a

minimum complete set only depends on the cardinality t = |T |, and not on T . Therefore, let

the neighbour number Qt denote the cardinality of a minimum complete set in ST , i.e. Qt :=
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minA⊂ST :A is complete |A|. By definition it holds that Q1 = 1 and Q2 = 2. From Theorem 2 it

follows that Qn ≤
n!

2
for each n ≥ 3.

In the final part of this section we establish upperbounds and lowerbounds for Qn. Moreover, it

is shown that the relative neighbour number Fn :=
Qn

n!
→ 0 if n→∞. The following theorem, which

is a direct consequence of Lemma 2, gives a strengthening of the bound obtained from Theorem 2.

Theorem 3 Let n1, . . . , nk, n ∈ N, be such that
∑

k

i=1
ni = n. Then Qn ≤

n!

n1!···nk!

∏
k

i=1
Qni .

Proof: The set SN can be partitioned into
n!

n1!···nk!
sets of the form T1| . . . |Tk with |Ti| = ni for each

i ∈ {1, . . . , k}. Now let {T1, . . . , Tk} be a partition of N for which |Ti| = ni for each i ∈ {1, . . . , k}.
According to Lemma 2 there is a set A containing

∏
k

i=1
Qni elements such that A is complete in

T1| . . . |Tk. Therefore Qn ≤
n!

n1!···nk!

∏
k

i=1
Qni . �

From Theorem 3 it follows that Qn+1 ≤
(n+1)!

n!1!
QnQ1 = (n+1)Qn. Hence it follows that Fn+1 ≤ Fn

for each n, i.e. the relative neighbour number Fn is nonincreasing. The following lemma gives a

lowerbound on the neighbour number.

Lemma 3 If n is even then Qn ≥ n!
1

2
n−2

2

, and if n is odd then Qn ≥ n!
1

2
n−1

2

.

Proof: Let n be even, and let k =
n+2

2
.

The set SN can be partitioned into
n!

1!2!···2!1!
=

n!

2k−2 sets of the form T1| . . . |Tk with |T1| = |Tk| = 1

and |Ti| = 2 for every i ∈ {2, . . . , k − 1}. Let C ⊂ SN be one of those sets, i.e. there exists a

partition {T1, . . . , Tk} of N with |T1| = |Tk| = 1 and |Ti| = 2 for every i ∈ {2, . . . , k − 1} such that

C = T1| . . . |Tk.
It follows that for every σ ∈ C it holds that C = σ(1)|σ(2)σ(3)| . . . |σ(n). For every even

i ∈ {1, . . . , n− 1} it holds that σi ∈ C. Now let A ⊂ SN such that A ∩ C = ∅. Because for every
σ ∈ C there is no h ∈ {1, . . . , n − 2} with σh, σh+1 ∈ A, it follows that σ �∈ b(A). This holds for

every σ ∈ C, hence b(A) ∩ C = ∅. By repetition it follows that b∗(A) ∩ C = ∅.
We conclude that if A ⊂ SN is complete, then |A ∩ C| ≥ 1. This holds for every C such

that C = T1| . . . |Tk with |T1| = |Tk| = 1, |Ti| = 2 for every i ∈ {2, . . . , k − 1}. It follows that

|A| ≥ n!
1

2
n−2

2

.

Now let n be odd, and let k = n+1

2
. The set SN can be partitioned into n!

1!2!···2!2!
= n!

2k−1 sets of

the form T1| . . . |Tk with |T1| = 1 and |Ti| = 2 for every i ∈ {2, . . . , k}. Now let C ⊂ SN be such

that C = T1| . . . |Tk with |T1| = 1 and |Ti| = 2 for every i ∈ {2, . . . , k}. Similar to the case where

n is even it follows that if A ⊂ SN is complete, then A ∩ C �= ∅. This holds for every C such that

C = T1| . . . |Tk with |T1| = 1, |Ti| = 2 for every i ∈ {2, . . . , k}. It follows that |A| ≥ n!
1

2
n−1

2

. Hence,

|A| ≥ n!
1

2
n−1

2

. �

From Theorem 2 and Lemma 3 it follows that Q3 = 3 and Q4 = 12. We also obtain from Theorem 2

that Q5 ≤ 60 and from Lemma 3 we obtain that Q5 ≥ 30. Therefore Q5 ∈ [30, 60]. However, using

ad hoc methods, we established that Q5 = 30. The proof of this lemma is given in the appendix.

Lemma 4 The neighbour number Q5 = 30.

Now, taking n1 = n2 = 3 and using Theorem 3, it follows that Q6 ≤
6!

3!
3! · Q3 · Q3 = 180. From

Lemma 3 we derive that Q6 ≥ 6!
1

22
= 180, and hence Q6 = 180. Similar, by taking n1 = 3

and n2 = 4, it follows that Q7 ≤ 1260. From Lemma 3 it follows that Q7 ≥ 630, and therefore

Q7 ∈ [630, 1260]. Hence for Q7 we do not have a sharp bound. However, for Q8 we have a sharp

bound. By taking n1 = 3 and n2 = 5 we obtain that Q8 ≤ 5040. From Lemma 3 it follows that
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n 3 4 5 6 7 8 9 10 11 12

n! 6 24 120 720 5040 40320 362880 3628800 39916800 479001600

n!

2
3 12 60 360 2520 20160 181440 1814400 19958400 239500800

Qn 3 12 30 180 [630,1260] 5040 [22680,45360] 22680 [1247400,2494800] [14968800,29937600]

Fn
1

2

1

2

1

4

1

4
[ 1
8
,
1

4
] 1

8
[ 1

16
,
1

8
] 1

16
[ 1

32
,
1

16
] [ 1

32
,
1

16
]

Table 1: New bounds

Q8 ≥ 5040, and hence Q8 = 5040. Some other new bounds are given in Table 1.

The following theorem states that the relative neighbour number Fn converges to 0.

Theorem 4 The relative neighbour number Fn → 0 if n→∞.

Proof: Let k ∈ N, let n = 3k and let ni = 3 for every i ∈ {1, . . . , k}. From Theorem 3 we deduce

that

Q3k ≤
(3k)!

(3!)k
3
k,

by using that Q3 ≤ 3. Therefore F3k ≤ (
1

2
)k for every k ∈ N. It follows that F3k → 0 if k →∞. It

follows from Theorem 3 that Fn+1 ≤ Fn for all n ∈ N. Hence, Fn → 0 as n→∞. �

4 Appendix

Proof of Lemma 4: Let N = {1, . . . , 5} and let

A = {13245, 21345, 31452, 41523, 52134,

14235, 21453, 31524, 42135, 53124,

14352, 21534, 32145, 42513, 53241,

15234, 24351, 32451, 43125, 54123,

15342, 25341, 32514, 43251, 54231,

15423, 25413, 35412, 43512, 54312}.

We will show that A is a complete set. Consider the sets

B = {13452, 24513, 31245, 41235, 52341,

14523, 25134, 35124, 42351, 53412}

and

C = {15324, 21435, 32541, 43152, 54213}.

Let σ ∈ B. Then σ1, σ2 ∈ A. Hence σ ∈ b(A). Let τ ∈ C. Then τ3, τ4 ∈ A. Hence τ ∈ b(A). It

follows that (A ∪B ∪C) ⊂ b(A).

Now let

D = {13524, 24135, 35241, 41352, 52413}.

Let σ ∈ D. Then σ1 ∈ A ⊂ b(A) and σ2 ∈ C ⊂ b(A). It follows that σ ∈ b(b(A)). Hence

(A ∪B ∪ C ∪D) ⊂ b2(A).
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Now let

E = 13|245 ∪ 14|235 ∪ 24|135 ∪ 25|134 ∪ 35|124 ∪ 1|5|234 ∪ 2|1|345 ∪ 3|2|145 ∪ 4|3|125 ∪ 5|4|123.

For each σ ∈ E, it holds that either that σ ∈ A∪B ∪C ∪D or that σ3, σ4 ∈ A∪B ∪C ∪D. Hence

σ ∈ b(A ∪B ∪ C ∪D) ⊂ b(b2(A)). Now let

F = SN\E = 1|2|345 ∪ 2|3|145 ∪ 3|4|125 ∪ 4|5|123 ∪ 5|1|234.

Then for all σ ∈ F it holds that σ1, σ2 ∈ E. Hence it follows that E is a complete set. From this

we conclude that A is a complete set. Because |A| = 30 it follows that Q5 ≤ 30. �
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