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Abstract

Risk assessments often encounter extreme settings with very few or no occurrences

in reality. Inferences about risk indicators in such settings face the problem of insuf-

ficient data. Extreme value theory is particularly well suited for handling this type of

problems. This paper uses a multivariate extreme value theory approach to establish

thresholds for signaling levels of risk in the context of simultaneous monitoring of

multiple risk indicators. The proposed threshold system is well justified in terms of

extreme multivariate quantiles, and its sample estimator is shown to be consistent.

As an illustration, the proposed approach is applied to developing a threshold system

for monitoring airline performance measures. This threshold system assigns different

risk levels to observed airline performance measures. In particular, it divides the

sample space into regions with increasing levels of risk. Moreover, in the univariate

case, such a thresholding technique can be used to determine a suitable cut-off point

on a runway for holding short of landing aircrafts. This cut-off point is chosen to

ensure a certain required level of safety when allowing simultaneous operations on

two intersecting runways in order to ease air traffic congestion.
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1 Introduction

Many real life problems require identifying some threshold point such that the probability

of exceeding the threshold is no greater than a prescribed level, say p. The task here is

simply to locate the (1−p)-th quantile of the underlying distribution. If p is not too small,

then the usual quantile estimator based on the empirical distribution generally provides a

good solution. However, if p is very small, then there may not be sufficient observations

in the sample to provide such a useful quantile estimate. For example, given a sample of

100 observations, the (1 − p)-th quantile for p = 0.001 would not be well estimated by

the usual quantile estimator due to the no occurrence of such observations. When making

inferences for such extreme events with very few or no occurrences, extreme value theory

is particularly useful and it has been applied to many real life applications with much

success. A classical example is the calculation of the height of sea dikes in the Netherlands

in the context of flood prevention (e.g. for p = 10−4 per year). More applications can

be found in finance and insurance, such as estimating the so-called Value-at-Risk and the

related stress testing for equity portfolios or determining premiums for insurance contracts.

Other fields of application include sports statistics, meteorology, and seismology. There are

several excellent treatises on the subject and its applications, see, for example, Embrechts,

Klüppelberg and Mikosch (1997), Coles (2001), Beirlant et al. (2004), and de Haan and

Ferreira (2006).

The goal of this paper is to discuss extreme value theory, apply it to deriving extreme

quantiles, and develop inference for these quantiles. This project is motivated by the need

for a threshold system for flagging extreme risks in an aviation monitoring scheme which

can be useful to monitoring agencies such as the FAA (Federal Aviation Administration).

The notion of univariate quantiles is well defined, and the extreme quantile is well treated

in univariate extreme value theory. However, for different purposes, there may be differ-

ent notions of multivariate quantiles. In this paper, we propose to define a (1 − p)-th

quantile as a lower orthant (quadrant in the bivariate case) of the sample space for which

the exceedance probability of any component variate is no more than p. This proposed

multivariate extreme quantile is suitable for thresholding in risk assessment in the multi-

variate setting, since any observation falls beyond the proposed quantile would imply that
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at least one of its component variates exceeds a certain allowable threshold. We provide

an estimator for the proposed quantile, and show its consistency. Note that the definition

of consistency in this case also requires some modification from the usual definition of con-

sistency due to the extremely small value of p. Furthermore, to broaden the applicability

of our threshold system, we allow the multivariate extreme quantile to take into account

different weights assigned to different component variables. Different weights may arise in

different applications, and they can be used to reflect the perceived difference in impor-

tance of the exceedance in individual component variables. A such example is elaborated

in Section 4 in the application of aviation risk assessment.

Another aviation application, which we will not pursue in depth in this paper, is the task

of choosing for an airport runway a threshold point beyond which the runway crossing could

be allowed. Due to the recent explosive growth in air traffic, the shortage of runway capacity

remains the bottle neck for most airport operations and causes much delay and congestion

in air traffic. While the construction of additional runways is being sought in due process,

the FAA may consider implementing the so-called LAHSO (land and hold short operations)

on aircraft landings to help ease air traffic. LAHSO would require all aircraft landings to

be accomplished before a predetermined hold short point on the runway. The advantage of

implementing LAHSO is to free up the capacity of a certain portion of the runway to allow

for other usage, and, in turn, to reduce air traffic congestion. To establish an acceptable

land-and-hold-short point on the runway, public safety concerns generally require that the

portion of the runway from its touchdown to the hold short point constitute an available

safe landing distance. Specifically, this requires that the probability that the full-stop of a

landing aircraft occurs beyond the hold short point is no more than one-out-of-ten-million.

This amounts to determining the (1-0.0000001)-th quantile of the distribution of landing

distance for all aircrafts. Typically a data set consists of the landing distances of about

1000 aircrafts on a given airport runway. Since 1000× 0.0000001 = 0.0001 << 1, this is a

setting with no occurrence. The univariate extreme quantile estimator discussed in Section

2 would be ideally suited for this application.

The paper is organized as follows. In Section 2, we review briefly extreme value the-

ory in the univariate setting, and discuss estimators for extreme quantiles. In Section 3,

we review extreme value theory in the bivariate setting, propose a definition for bivariate
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extreme quantiles and provide corresponding estimators. We also show that these estima-

tors are consistent, in a well justified sense of consistency. Finally, in Section 4, we apply

the proposed notions of extreme quantiles to establish a threshold system for a monitoring

scheme for assigning different levels of risk to observed measurements. Specifically, two avi-

ation risk indicators for monitoring the performance of air carriers are used to demonstrate

our approach to constructing a threshold system. This threshold system divides the sample

space into regions with increasing levels of risk. These regions, for example, are referred

to as “informational”, “expected”, “advisory” and “concern” in aviation safety analysis.

We discuss in detail the construction of these thresholds, as well as the application of the

thresholds to a real data set.

2 Monitoring one risk indicator – Univariate extreme

quantile

Assume that X1, . . . , Xn is a random sample from an unknown, univariate, continuous

distribution function F . Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics of

X1, . . . , Xn. Our task is to obtain the (1 − p)-th quantile of F , or more specifically, to

obtain xp such that

xp = inf{x ∈ IR : P (X > x) ≤ p}.

The straightforward nonparametric estimator of xp is the usual quantile estimator based

on the empirical distribution, namely

x̃p = inf{x ∈ IR :
n∑

i=1

I{Xi>x}/n ≤ p}.

However, if p is small, there may not be sufficient observations in the sample to render this

estimate useful in practice. For example, with a sample of 1000 observations, the 0.0001-th

quantile would not be well estimated by the above formula. For the inference related to

such extreme quantiles of a probability distribution, extreme value theory is very useful,

as shown below.

Statistical inference generally involves the central limit theorem, which characterizes

the limiting distribution of the sum Sn := X1 + X2 + · · · + Xn. In extreme value theory,

our focus is mainly on the sample maximum rather than the sum. Specifically, we would
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search for a sequence of positive numbers {an; n ≥ 1} and another sequence of numbers

{bn; n ≥ 1}, such that

lim
n→∞P

(
Xn:n − bn

an

≤ x

)
= G(x) (2.1)

for all x ∈ IR at which the limiting distribution function G is continuous. Here G is a

non-degenerate distribution function. If such sequences an and bn exist, F is said to be in

the domain of attraction of G, denoted by F ∈ D(G). If F ∈ D(G), then much of the tail

behavior of F can be characterized by G. Fisher and Tippett (1928) and Gnedenko (1943)

have shown that G (apart from a location and scale constant) is of the form

G(x) = Gγ(x) = exp (− (1 + γx)−1/γ), 1 + γx > 0, γ ∈ IR (2.2)

(by convention, (1 + γx)−1/γ = e−x for γ = 0).

These distributions are referred to as extreme value distributions.

The parameter γ is called the extreme value index. It characterizes the tail behavior of

F in terms of its degree of heaviness. More specifically:

i) γ > 0 (G is referred to as a Fréchet distribution) =⇒ F has a heavy tail,

ii) γ < 0 (G is referred to as a reverse Weibull distribution) =⇒ F has a finite endpoint,

iii) γ = 0 (G is referred to as a Gumbel distribution) =⇒ F has a light tail.

For example, a Cauchy distribution is a heavy tailed distribution and its corresponding γ

is 1; a uniform distribution on the interval [0,1] has a finite endpoint and its correspond-

ing γ is −1; and a normal distribution is attracted by the Gumbel distribution with the

corresponding γ = 0.

Clearly, the parameter γ determines G. To estimate γ, we define

M (j)
n =

1

k

k−1∑

i=0

(log Xn−i:n − log Xn−k:n)j, 1 < k < n, j ∈ IN, (2.3)

γ̂+
n = M (1)

n ,

γ̂−n = 1− 1

2

(
1− (M (1)

n )2

M
(2)
n

)−1

. (2.4)

The estimator γ̂+
n was proposed in Hill (1975), and is generally referred to as the Hill

estimator. It has been shown that γ̂+
n is consistent and asymptotically normal, when
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γ > 0. Dekkers, Einmahl and de Haan (1989) have constructed the moment estimator

γ̂n = γ̂+
n + γ̂−n , (2.5)

and shown that this estimator is consistent and asymptotically normal for a general γ ∈ IR.

We now return to the task of using extreme value theory to estimate an extreme quantile.

We first observe that (2.1) implies (by taking logarithms)

lim
t→∞ t(1− F (atx + bt)) = − log Gγ(x) = (1 + γx)−1/γ, Gγ(x) > 0,

where t now runs through IR+, and at and bt are defined by interpolation. Setting y =

atx + bt, we obtain heuristically

1− F (y) ≈ 1

t

(
1 + γ

y − bt

at

)−1/γ

.

Since the p-th quantile of F , xp, satisfies 1 − F (xp) = p, the above approximation yields,

with t = n
k
,

xp ≈
( k

np
)γ − 1

γ
an/k + bn/k . (2.6)

The normalizing sequences an/k and bn/k can be estimated by

b̂n/k = Xn−k:n,

ân/k = Xn−k:nM
(1)
n (1− γ̂−n ). (2.7)

Plugging in (2.6) the above estimators as well as the estimator from (2.5), we obtain the

following estimator for xp

x̂p =
( k

np
)γ̂n − 1

γ̂n

ân/k + b̂n/k, (2.8)

see Dekkers, Einmahl and de Haan (1989).

2.1 The choice of k

Since the expressions (2.3) to (2.8) above all involve k, the properties of the estimators x̂p

obviously depend on the choice of k. The value k can be viewed as the effective sample

size for tail extrapolations. If k is too small, then the estimator tends to have a large

variance, whereas if k is too large, then the bias tends to dominate. This point can be
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easily illustrated using the LAHSO project as an example. Since larger aircrafts generally

require longer landing distances on the runway, the higher landing distance values observed

in the data set should be more relevant for the inference for the extreme landing pattern. If

too many landing distances observed from the small aircrafts are included in determining

the hold short point, which amounts to choosing too large a k, the outcome is likely to be

quite biased.

One commonly used heuristic approach for choosing k in practice is to plot the estimated

quantile x̂p versus k, and choose a k which corresponds to the first stable part of the plot.

This visual approach is simple but lacks precise statistical justification. Moreover, in many

situations, it can be difficult to identify the first stable part of the plot. To overcome this

problem, we may look for the theoretically optimal k by minimizing the mean squared error

of x̂p, which is defined as

MSE(n, k) = E(x̂p − xp)
2. (2.9)

Unfortunately, the optimal choice of k clearly depends on the unknown xp. This problem

can be circumvented by considering an analogue of this mean squared error, that contains

no unknown parameters and hence can be computed from the data only. This analogue

is obtained by replacing xp by an estimator different from the one in (2.8). Following this

idea, Ferreira, de Haan and Peng (2003) defined

γ̂n,1(k) = M (1)
n + 1− 1

2

(
1− (M (1)

n )2

M
(2)
n

)−1

(= γ̂n),

γ̂n,2(k) =

√√√√M
(2)
n

2
+ 1− 2

3

(
1− M (1)

n M (2)
n

M
(3)
n

)−1

,

ân/k,1 =
1

2
Xn−k:nM

(1)
n

(
1− (M (1)

n )2

M
(2)
n

)−1

(= ân/k),

ân/k,2 =
2

3
Xn−k:nM

(1)
n

(
1− M (1)

n M (2)
n

M
(3)
n

)−1

. (2.10)

Recall that

M (j)
n =

1

k

k−1∑

i=0

(log Xn−i:n − log Xn−k:n)j, 1 < k < n,

as defined in (2.3). The following two estimators for xp can then be obtained:

x̂n,1(k) = Xn−k:n + ân/k,1

( k
np

)γ̂n,1(k) − 1

γ̂n,1(k)
,
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x̂n,2(k) = Xn−k:n + ân/k,2

( k
np

)γ̂n,2(k) − 1

γ̂n,2(k)
. (2.11)

Note that x̂n,1(k) above is the same as x̂p in (2.8), and x̂n,2(k) is an alternative estimator

for xp. Ferreira, de Haan and Peng (2003) then considered replacing MSE(n, k) in (2.9)

with

E (x̂n,1(k)− x̂n,2(k))2 , (2.12)

and proceeded to develop a double bootstrap procedure for (2.12) as a way to determine

the optimal k in an asymptotic version of (2.9). The detailed algorithm can be outlined in

the following steps:

1) Randomly draw a bootstrap sample {X∗
i , 1 ≤ i ≤ n1} from {Xi, 1 ≤ i ≤ n} with

n1 < n;

2) Select {X∗
i , 1 ≤ i ≤ n2}, a subset of size n2 from the bootstrap sample in step 1,

where n2 = n2
1/n < n1;

3) Compute x̂n1,1(k), x̂n1,2(k), x̂n2,1(k) and x̂n2,2(k) in (2.11) based on the two bootstrap

samples obtained respectively in steps 1 and 2;

4) Repeat steps 1-3 independently, sufficiently many, say B, times.

Calculate, for i = 1, 2,

M̂SE
∗
(ni, k) =

1

B

B∑

j=1

(
x̂
∗(j)
ni,1(k)− x̂

∗(j)
ni,2(k)

)2
, (2.13)

where x̂
∗(j)
ni,1(k) and x̂

∗(j)
ni,2(k) are the x̂ni,1(k) and x̂ni,2(k) based on the j-th bootstrap

sample.

5) Find a k̂i which minimizes M̂SE
∗
(ni, k), i = 1, 2 (k̂i not too close to 1 or ni).

6) The optimal choice of k in the estimator x̂n,1(k) is then given by

k̂0 =
k̂2

1

k̂2

g(γ̂n, ρ̂), (2.14)

where, if γ̂n > 0,

g(γ̂n, ρ̂) =

(
ρ̂2

(1− ρ̂)2

)1/(1−2ρ̂)

.
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For γ̂n < 0 the expression for g can be obtained similarly. The details can be found

in Ferreira, de Haan and Peng (2003) for details. To proceed with the case of γ̂n > 0,

we consider

ρ̂ = 3 +
6

Tn − 3
, (2.15)

with

Tn =
ĝ1 − ĝ2

ĝ2 − ĝ3

, ĝj =
j + 1

j

(
1− M (j)

n M (1)
n

M
(j+1)
n

)
, j = 1, 2, 3 (see (2.3) for M (·)

n ).

The estimator ρ̂ was constructed in Fraga Alves, de Haan and Lin (2003). Clearly, ρ̂

also depends on k. Plot ρ̂ against k and choose the ρ̂-value of the first stable part of

the plot. Generally we require that the corresponding k-values are not too small.

Once k is chosen following the above procedure, the estimate for the extreme quantile x̂p

in (2.8) can be obtained immediately.

3 Monitoring two risk indicators – Multivariate ex-

treme quantiles

We now consider an application of extreme value theory in the bivariate case to establish a

threshold system for the simultaneous monitoring of two measurements, which are possibly

correlated. Although we present here only bivariate extreme quantiles, the extension to the

higher dimensional case is straightforward. Let (X1, Y1), . . . , (Xn, Yn) be a random sample

from an unknown, continuous distribution function F . Denote with F1(x) = F (x,∞)

and F2(y) = F (∞, y) the marginal distributions of F . Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n

and Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n denote the order statistics of X1, . . . , Xn and Y1, . . . , Yn,

respectively. Similar to the univariate extreme value theory, F is assumed to belong to the

domain of attraction of an extreme value distribution. In other words, there exist sequences

{a1n > 0; n ≥ 1}, {b1n; n ≥ 1}, {a2n > 0; n ≥ 1} and {b2n; n ≥ 1} such that

(
Xn:n − b1n

a1n

,
Yn:n − b2n

a2n

)
d−→ G(x, y) (3.1)
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where G has non-degenerate marginal distributions. Clearly, this implies that G(x,∞)

and G(∞, y) are univariate extreme value distributions. Therefore, with properly chosen

sequences, we can obtain that

G1(x): = G(x,∞) = exp(−(1 + γ1x)−1/γ1),

and

G2(x): = G(∞, y) = exp(−(1 + γ2x)−1/γ2),

for some γ1, γ2 ∈ IR, where 1 + γ1x > 0, and 1 + γ2x > 0.

For deriving extreme quantiles in the bivariate case, in addition to the quantiles from

the two marginal distributions, the tail dependence structure between the two component

variables is also an important feature. We briefly describe this tail dependence structure.

Denote with C the distribution function of the pair (1 − F1(X1), 1 − F2(Y1)). Note that

(3.1) implies that

lim
t↓0

1

t
C(tx, ty) = x + y − l(x, y), (3.2)

where

l(x, y) = − log G

(
x−γ1 − 1

γ1

,
y−γ2 − 1

γ2

)
.

A bivariate probability distribution function F is said to have a tail dependence function l

if (3.2) holds for x, y ≥ 0. We list below two key properties of l:

(i) l(tx, ty) = tl(x, y), for all t, x, y ≥ 0 (often referred to as the homogeneity property),

(ii) max(x, y) ≤ l(x, y) ≤ x+y, where the equality on the left hand side is attained when

X1 and Y1 are completely positive dependent in the tail, and the equality on the right

hand side is attained when X1 and Y1 are independent in the tail (often referred to

as asymptotic independence).

3.1 Defining multivariate extreme quantiles for simultaneous thresh-
olds

One of the main tasks in simultaneous monitoring of multiple measurements is to identify

proper threshold points for which the exceedance probabilities are within certain predeter-

mined values. For example, if we are to monitor a pair of measurements (X,Y ), from F ,
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our task would be to find threshold points x and y such that, for a predetermined value p,

P (X > x or Y > y) = p. (3.3)

Obviously, there exist infinitely many choices of (x, y) which satisfy the above condition.

Different applications may also force additional constraints on the condition (3.3). One

common constraint, which is also required in our applications in Section 4, is that

cP (X > x) = P (Y > y), (3.4)

where the positive constant c indicates the different weights assigned to the two marginal

tail probabilities. The value c can be chosen to reflect the different degrees of importance

attached to the marginal variables, and is generally chosen in advance to address some

particular practical concerns. For example, c = 1 implies that events of exceedance of

either variable are viewed with equal importance. If c is chosen to be greater than 1 (which

is the case in our application in Section 4), then the exceedance in Y is viewed as more

important or more critical.

For a very small p, (3.2) implies that

p = P (X > x or Y > y)

= 1− F (x, y)

= 1− F1(x) + 1− F2(y)− C(1− F1(x), 1− F2(y))

≈ l (1− F1(x), 1− F2(y))

= l(p1, p2) (3.5)

where p1 = 1− F1(x) = P (X > x), p2 = 1− F2(y) = P (Y > y). Since cp1 = p2, see (3.4),

p ≈ l(p1, cp1) = p1l(1, c) ,

so

p1 ≈ p

l(1, c)
, p2 ≈ cp

l(1, c)
. (3.6)

The discussion above shows that the estimation of a bivariate extreme quantile can be

essentially decomposed into two parts, namely i) the estimation of the marginal quantiles,

and ii) the estimation of l(1, c). Part i) can be addressed in a similar fashion as in the

univariate case discussed in Section 2, although we have to estimate p1 and p2 now. Part

ii) is the remaining task and is addressed in the next subsection.
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3.2 Estimating the Tail Dependence Function

Following the definition of l(x, y) in (3.2), the empirical tail dependence function of F based

on (Xi, Yi), i = 1, . . . , n, is proposed in Huang (1992), see also Einmahl, de Haan and Li

(2006), and is defined as

l̂n,k(x, y) = k−1
n∑

j=1

I[Xj≥Xn−[kx]+1:n or Yj≥Yn−[ky]+1:n] . (3.7)

Note that this estimator of l(x, y) again depends on the choice of k. It is shown to be con-

sistent and asymptotically normal. As seen in the univariate extreme quantile estimation

in Section 2, we shall find the optimal k by minimizing the mean squared error of l̂n,k(x, y),

i.e.,

MSE(n, k) = E
(
l̂n,k(x, y)− l(x, y)

)2
. (3.8)

Clearly, the optimal choice of k here depends on the unknown l(x, y). Mimicking the idea

in the univariate case, we may circumvent this difficulty by replacing (3.8) by an auxiliary

statistic.

In Section 5.4 of Peng (1998) the following alternative estimator of l(x, y) was introduced

l̃n,k(x, y) = l̂n,k(2x, 2y)− l̂n,k(x, y). (3.9)

Note that using the homogeneity property of l, it follows that l̃n,k(x, y) is a consistent

estimator of l(x, y). Now, replacing MSE(n, k) in (3.8) by

E
(
l̃n,k(x, y)− l̂n,k(x, y)

)2
,

Peng (1998) then derived a double bootstrap procedure to find the optimal k for estimating

l(x, y). This bootstrap procedure is similar to the one we have presented in Section 2 for

the estimation of extreme quantiles and is thus omitted here. We only mention that in step

6) we can obtain similarly

k̂0 =
k̂2

1

k̂2

g(ρ̂),

where

g(ρ̂) =

(
2(21+ρ̂ − 1)2

(21+ρ̂ − 2)2

)−1/(2ρ̂+1)

.
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We now take

ρ̂ = − log Ln,k

log 2
,

where

Ln,k =
2l̂n,k(

1
2
, 1

2
)− l̂n,k(1, 1)

l̂n,k(1, 1)− 1
2
l̂n,k(2, 2)

.

This estimator is derived following Fraga Alves, de Haan and Lin (2003), p. 156.

Finally, we are ready to describe the procedure for estimating the extreme quantile

(x, y), such that P (X > x, or Y > y) = p and cp1 = p2. The procedure is outlined as

follows:

Step a) Obtain the estimate l̃(1, c) (as given in (3.9)) for l(1, c) by using the optimal k obtained

from the above bootstrap procedure.

Step b) Following (3.6), estimate the marginal tail probabilities p1 and p2 by

p̂1 =
p

l̃(1, c)
, p̂2 =

cp

l̃(1, c)
.

Step c) Apply p̂1 and p̂2 to (2.8) to obtain the corresponding estimators for the marginal

quantiles x̂p̂1 and ŷp̂2 . Here the optimal k should be obtained from the bootstrap pro-

cedure given in Section 2. Finally, we propose the resulting (x̂p̂1 , ŷp̂2) as an estimator

for (x, y).

3.3 Consistency of the quantile estimators

Next, we show that the extreme quantile estimator (x̂p̂1 , ŷp̂2) achieves the desired probability

level and satisfies the constraint (3.4), asymptotically. Before we proceed with the bivariate

case, we first prove some asymptotic results in the univariate case. Let F̄ = 1 − F , and

qγ(x) =
∫ x
1 sγ−1 log s ds. Also, recall the definition of x̂p in (2.8). Observe that our p should

depend on n and tend to zero (if p would be fixed, many observations would exceed xp when

n is sufficiently large). Therefore the usual notion of consistency in terms of estimation

difference is not appropriate here. We consider using the ratio instead.

Theorem 3.1. Assume that
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(a) np = O(1),

(b) k
n
→ 0, k →∞,

(c) qγ(dn)/(dγ
n

√
k) → 0, with dn = k

np
(hence γ > −1

2
),

(d) F satisfies the following second order refinement of the domain of attraction condition:

there exists a function A with limt→∞ A(t) = 0 and constant sign near infinity, such

that

lim
t→∞

tF̄ (atx + bt)− (1 + γx)−1/γ

A(t)
= (1 + γx)−1−1/γHγ,ρ

(
(1 + γx)−1/γ

)
,

for all x with 1 + γx > 0 and some ρ < 0, where

Hγ,ρ(x) =
1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
,

(e) An =
√

k(
ân/k

an/k
− 1) = Op(1), Bn =

√
k(

Xn−k:n−bn/k

an/k
) = Op(1), and Γn =

√
k(γ̂n − γ) =

Op(1).

Then we have
F̄ (x̂p)

p

p−→ 1. (3.10)

The proof of Theorem 3.1 is given in the appendix.

Remark 3.1. In fact, Theorem 3.1 holds for any estimators of an/k, bn/k and γ as long as

the Op(1) requirements in (e) are fulfilled.

Remark 3.2. If x̂p̂ is calculated from (2.8) based on a random p̂, such that p̂/p
p−→ c0

holds for some c0 ∈ (0,∞), then under our assumptions on p it can also be shown easily

that
F̄ (x̂p̂)

p̂

p−→ 1.

To proceed with the bivariate case, we define Qp = (−∞, x] × (−∞, y] such that

F (x, y) = 1 − p and c (1− F1(x)) = 1 − F2(y) for some predetermined value c ∈ (0,∞).

Let Q̂p denote the estimator given by the aforementioned procedure, i.e.,

Q̂p = (−∞, x̂p̂1 ]× (−∞, ŷp̂2 ]

14



where x̂p̂1 and ŷp̂2 are the 1− p̂1-th and 1− p̂2-th quantile estimators of F1 and F2, respec-

tively, with p̂1 = p

l̃(1,c)
and p̂2 = cp̂1 = cp

l̃(1,c)
. Observe that for estimating l(1, c) we have to

choose a k, and that for estimating xp̂1 and yp̂2 we have to choose k1 and k2, say. Our main

theoretical result is stated in the theorem below. A related result can be found in de Haan

and Huang (1995).

Theorem 3.2. Assume np = O(1), k
n
, k1

n
, k2

n
→ 0, k, k1, k2 →∞. Also assume that F is in

the domain of attraction of a bivariate extreme distribution, and that both of the marginal

distributions, F1 and F2, satisfy the conditions (c)-(e) listed in Theorem 3.1. Then we have

P
(
Q̂p4Qp

)

p

p−→ 0,

where 4 denotes the symmetric difference.

The proof is also given in the appendix.

Remark 3.3. Theorem 3.2 immediately implies

1− F (x̂p̂1 , ŷp̂2)

p

p−→ 1.

4 Application: Simultaneous thresholding two risk in-

dicators

As an illustrative example for the utility of extreme quantiles, we now apply the threshold

system derived in Section 3 to assist the FAA project on simultaneous monitoring of multi-

ple aviation risk indicators. One of the main responsibilities of the FAA is to monitor and

regulate all air carriers in terms of aviation safety. The FAA regularly conducts surveil-

lance inspections on all air carriers and inspections findings are carefully analyzed and

monitored. To increase the efficiency of the monitoring scheme, the FAA hopes to embed

a threshold system in the monitoring scheme, which can assign inspections findings with

proper indications of their levels of risk. Specifically, the regions (or ranges) corresponding

to the different risk levels are termed

• informational (colored green)

• expected (colored blue)

15



• advisory (colored yellow)

• concern (colored red)

and they indicate increasing levels of risk. Following the procedure described in Section

3, we can determine thresholds that correspond to given exceedance probabilities for any

risk indicators of interest. This threshold system can provide a concrete measure of the

inspection results in terms of the severity of potential flaws and serve as a guideline for the

general rating of the safety performance of each carrier.

Our application concerns the monitoring of two risk indicators. Specifically, they are air

carrier performance measures: incident rate (IR) and operational unfavorable ratio (OU).

In the aviation industry, the OU is perceived as “twice as important” as the IR. The data

set is collected by the FAA from 10 air carriers of similar service type and fleet size over a

period of 57 months, from July 1993 to March 1998, see the scatter plot in Figure 1. Each

data point represents a monthly observation of (IR, OU) from a given carrier. Since both

IR and OU are measures of non-conformance, the higher the values the more severe the

potential flaws.

The purpose of the FAA project is to identify the region which contains the worst 0.15%

of all possible performances and label it as the region of concern. This implies that the

concern region corresponds to the sample space which is beyond the joint upper 0.0015-th

quantile. The region would be labeled as advisory if contains the worst 1% of all possible

performances which are not yet the worst 0.15%. Thus, the advisory region corresponds

to the sample space which is beyond the joint upper 0.01-th quantile, but below the joint

upper 0.0015-th quantile. The region would be labeled as informational if it contains the

best 5% of all possible performances. The remaining region on the sample space would then

be labeled as expected and it contains observations which are viewed as having met the FAA

expectation under normal circumstances. There are 570 data points in total. Note that

570× 0.0015 = 0.855, which implies that on average there is less than one observations in

the concern region. Also 570× 0.01 = 5.7 which is quite small. This setting of very few or

no occurrence is ideal for the application of multivariate statistics of extremes. We discuss

first the construction of the concern and advisory regions. The informational region (and

hence also the expected region) will be constructed at the end of this section using empirical
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Figure 1: Scatter plot for air carrier performance measures.

process theory, since on average relatively many (570 × 0.05 = 28.5) observations fall in

that region.

For different goals and interpretations for different applications, there can be different

definitions of multivariate quantiles. In the context of the FAA application, since higher

observed value implies worse performance, we interpret a multivariate observation as flawed

or at risk if any of its component measurements exceeds a certain threshold. This leads us

to consider in Section 3 the quantiles as regions of the form (−∞, x]× (−∞, y] (quadrants)

such that F (x, y) = 1 − p. The constraint that OU is “twice as important” as IR can be

translated into the expression

2 (1− F1(x)) = 1− F2(y) i.e. 2p1 = p2

if we denote IR as X and OU as Y . Altogether, our task now amounts to finding x and

y which can satisfy the conditions 1 − F (x, y) = p and 2 (1− F1(x)) = 1 − F2(y), for

p = 0.0015 and 0.01 (respectively for concern region and advisory region). This setting fits
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exactly the framework discussed in Section 3 with c = 2.

Before we proceed with the procedure given in Section 3 to solve the problem above,

we first need to verify from the data set that the assumption for bivariate extreme value

theory hold. In other words, we need to check if F is in the domain of attraction of an

extreme value distribution. To this end, we have applied the test proposed in Einmahl, de

Haan and Li (2006) to our data set and failed to reject the null hypothesis that F is in the

domain of attraction of an extreme value distribution. Therefore, we can safely move to the

next step to apply the procedure in Section 3 to our data set. For illustration purpose, we

show the step-by-step results only for p = 0.0015. The same procedure applies to p = 0.01

and is omitted. The final estimates of the quantile for p = 0.01 will be mentioned later.

We first begin with estimating the tail dependence function l(1, 2). To obtain the

optimal k for the estimation of l(1, 2), we carry out the bootstrap procedure listed in

Section 3 with n1 = n0.95 and B = 10000. In order to avoid the few non-convergence

situations, we choose to use a multi-stage bootstrap procedure for which we bootstrap

m = 200 times for each of r = 50 replications. With this multi-stage bootstrap, we obtain

50 sets of k1 and k2. It can be shown that the bootstrap works well only if k1 and k2 can

satisfy k2 ≤ k1 ≤ n1

n2
k2. As it turns out, there are only 37 pairs (out of 50 pairs) of such

(k1, k2). To obtain the optimal k0, we need to estimate ρ, and then examine the plot of ρ̂ vs.

k. This plot is given in Figure 2. In the plot, the horizontal line corresponds to ρ̂ = 1.635

Figure 2: ρ̂ vs. k.

which is our choice of the estimate of ρ. Using this ρ̂ and those 37 pairs of k1 and k2, we

can obtain 37 estimates of the optimal k0. Plugging these k0’s in (3.9) and (3.7) leads to

18



37 estimates for l̃(1, 2), which yield a mean 2.702. Figure 3 shows the plot of l̃(1, 2) vs. k

with the horizontal line at 2.702. The estimation based on these optimal k0’s (which are

derived from the bootstrap procedure) appears to be reasonably satisfactory.

Figure 3: l̃(1, 2) vs. k.

We can now plug the estimate l̃(1, 2) into (3.6) to obtain the estimates for the two

marginal tail probabilities, which turn out to be p̂1 = 0.00056(= 0.0015/2.702) and p̂2 =

0.00111(= 2p̂1). Once these two tail probabilities are determined, we can simply follow

the procedure described in Section 2 for estimating a univariate extreme quantile to obtain

the joint upper 0.0015-th quantile. To begin with, we need to check if the two marginal

distributions are in the univariate domain of attraction of an extreme value distribution.

Here we have used the tests devised in Dietrich, de Haan and Hüsler (2002) and Drees,

de Haan and Li (2006). The test results turn out to be affirmative. Figure 4 shows the

estimated γ plots for both X and Y . The plots in Figure 4 clearly show that both of the

marginal distributions have positive γ and thus have heavy tails.

For each marginal, we proceed using the (multi-stage) bootstrap procedure in Section 2

to determine the optimal k for the quantile estimate, with again n1 = n0.95 and B = 10000

(m = 200 and r = 50). In each replication, we essentially need to find ki which minimizes

M̂SE
∗
(ni, k) = 1

m

∑m
j=1

(
x̂
∗(j)
ni,1(k)− x̂

∗(j)
ni,2(k)

)2
, i = 1, 2. Figure 5 is the plot of M̂SE

∗
(ni, k)

vs. k from one replication based on OU for i = 1, 2. Both plots above show that M̂SE
∗

achieves its global minimum at either end of the range of k. This means ki is either very

small or very large (close to ni). Since neither could be a practical estimate, we add some

constraints to the range of the possible ki, i = 1, 2 by focusing only ki’s that yield a local
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Figure 4: γ̂ vs. k.

minimum instead. With this consideration, we observe that there exist local minimums in

the range (20 to 240) and (10 to 175) respectively in the upper and lower panels of Figure 5.

Thus, we may try to find the optimal ki’s, in those intervals to achieve the local minimum.

The same procedure will be applied to obtain the optimal ki, i = 1, 2, for IR. Among the

resulting 50 pairs of k1’s and k2’s, only 22 pairs for IR and 32 pairs for OU remain after

imposing the constraint k2 ≤ k1 ≤ n1

n2
k2. Those remaining pairs of k1 and k2 can then

be used in (2.14) to obtain the estimate for k0. To obtain the estimates for k0 from the

expression (2.14), we only need to find ρ̂. Based on (2.15), the plots of ρ̂ vs. k for both IR

and OU are given in Figure 6, The horizontal lines in those plots represent our ρ̂, which

are −0.356 for IR and −0.456 for OU respectively. Plugging these values along with the

remaining ki, i = 1, 2, into (2.14) and then (2.8), we can obtain the mean of the estimates

of the marginal quantiles, which are 0.064 for IR, 0.252 for OU. Therefore, our estimated

upper joint 0.0015-th quantile is (0.064, 0.252). Figure 7 shows the plot of the estimated

quantiles vs. k with the horizontal lines for the final estimation. From these plots, we can
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Figure 5: M̂SE
∗
(ni, k) vs. k. (The upper and lower plots respectively are with bootstrap

sample sizes n1 and n2.)

see that the optimal k0 obtained from the bootstrap procedure works well for both IR and

OU.

Following the same procedure, we also obtain the estimated upper joint 0.01-th quantile

(0.036, 0.150).

Finally, we discuss the informational region. Obviously, both components in this region

should assume low values, namely a region of the form (−∞, x]×(−∞, y], with F (x, y) = p̃.

Let Q1 and Q2 denote the left-continuous quantile functions corresponding to F1 and F2

respectively. The constraint that OU is “twice as important” as IR is then translated into

x = Q1(2t), y = Q2(t) for some t ∈ (0, 1). For a given p̃, let t0 be a t which satisfies the

above conditions. We can now define the estimated informational region by
(
−∞,

1

2
(X2nt̂:n + X2nt̂+1:n)

]
×

(
−∞,

1

2
(Ynt̂:n + Ynt̂+1:n)

]
,

where t̂ is the smallest t such that nt is an integer and
∑n

i=1 I[Xi≤X2nt:n;Yi≤Ynt:n] ≥ np̃.

Applying this with p̃ = 0.05 to our data, the values correspond to IR and OU are (0.0032,
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Figure 6: ρ̂ vs. k for IR and OU.

0.0238).

We briefly show the consistency of this procedure, i.e.

F
(

1

2
(X2nt̂:n + X2nt̂+1:n),

1

2
(Ynt̂:n + Ynt̂+1:n)

)
p−→ p̃.

Note that, contrary to the extreme value approach, we now assume that the given proba-

bility p̃ is fixed. For the consistency, it suffices to show that F (X2nt̂:n, Ynt̂:n)
p−→ p̃. Write

Ui = F1(Xi), Vi = F2(Yi), i = 1, . . . , n, and denote the order statistics of the Ui and Vi in

the usual way. Moreover, let C̃ denote the distribution function of the pairs (Ui, Vi), and

let Q1n and Q2n be the empirical quantile functions of the Ui and Vi, respectively. We have

then

|F (X2nt̂:n, Ynt̂:n)− p̃| = |C̃(U2nt̂:n, Vnt̂:n)− p̃|
= |C̃(U2nt̂:n, Vnt̂:n)− C̃(2t0, t0)| = |C̃(Q1n(2t̂), Q2n(t̂))− C̃(2t0, t0)|
≤ |C̃(Q1n(2t̂), Q2n(t̂))− C̃(2t̂, t̂)|+ |C̃(2t̂, t̂)− C̃(2t0, t0)|
≤ |Q1n(2t̂)− 2t̂|+ |Q2n(t̂)− t̂|+ |C̃(2t̂, t̂)− C̃(2t0, t0)|, (4.1)
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Figure 7: The extreme quantile estimates for IR and OU vs. k.

where the last inequality follows because C̃ has uniform-(0,1) marginals. The first two

terms tend to zero in probability because of the Glivenko-Cantelli theorem for the uniform

quantile process. Set C̃n(u, v) = Hn(Q̄1n(u), Q̄2n(v)), where Hn is the bivariate empirical

distribution function of the (Ui, Vi). Now from the uniform consistency of C̃n as an estimator

of C̃ and the definition of t̂, it can be shown that the third term in the right hand side of

(4.1) also tends to zero in probability, which renders the proof complete.

Finally, the estimated threshold regions are shown in Figure 8, where for better viewing

both coordinates are presented in the log scale. The upper right region corresponds to

concern and should be colored red, the next upper region corresponds to advisory and

should be yellow. The lower rectangle is the green informational region and the blue

expected region is between green and yellow.
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Figure 8: Threshold system: the four designated regions w.r.t. the scatter plot.

5 Appendix

Proof of Theorem 3.1. We briefly write â = ân/k, b̂ = b̂n/k, a = an/k, b = bn/k and γ̂ = γ̂n.

Observe that dn →∞. We first show that for −1
2

< γ < 0,

P

(
b̂− b

a
+

â

a

dγ̂
n − 1

γ̂
< −1

γ

)
→ 0 (n →∞). (5.2)

Note that, the condition (e) implies

1 +
γ̂

(
− 1

γ
− Bn√

k

)

1 + An√
k

= Op

(
1√
k

)
. (5.3)

24



Applying condition (c) twice and also (e), we obtain

dγ̂
n

√
k = dγ

n

√
ke

log dn√
k
·Γn , (5.4)

which tends to infinity in probability. Combination of (5.3) and (5.4) easily yields (5.2).

From Lemma 2.4.1 in Li (2004) in conjunction with (5.2), we obtain for all γ > −1
2

F̄ (x̂p)

p
= dn

(
1 + γ

(
b̂− b

a
+

â

a

dγ̂
n − 1

γ̂

))− 1
γ

(1 + op(1)) .

Therefore it remains to show that

dn

(
1 + γ

(
b̂− b

a
+

â

a

dγ̂
n − 1

γ̂

))− 1
γ

p−→ 1. (5.5)

Note that, as x →∞,

qγ(x) ∼




1
γ
xγ log x γ > 0

1
2
(log x)2 γ = 0

1
γ2 γ < 0

Observe that condition (c) is equivalent to





log dn√
k
→ 0, for γ > 0,

(log dn)2√
k

→ 0, for γ = 0,

dγ
n

√
k →∞, for γ < 0.

(5.6)

Next we prove (5.5); part of the proof is similar to that of Proposition 8.2.9 in de Haan

and Ferreira (2006). First, we take γ 6= 0:

dn

(
1 + γ

(
b̂− b

a
+

â

a

dγ̂
n − 1

γ̂

))− 1
γ

= dn

(
1 + γ

Bn√
k

+

(
1 +

An√
k

) (
1− Γn√

kγ̂

) (
dγ̂

n − 1
))− 1

γ

=: dn

((
1 +

Dn√
k

)
dγ̂

n +
En√

k

)− 1
γ

= d
1− γ̂

γ
n

(
1 +

Dn√
k

+
En

dγ̂
n

√
k

)− 1
γ

=: sn.
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Note that Dn and En are Op(1) due to (e), and also that dγ̂
n

√
k →∞ (for γ < 0 see (5.4)).

Hence, we have (
1 +

Dn√
k

+
En

dγ̂
n

√
k

)− 1
γ

p−→ 1.

We also have

d
1− γ̂

γ
n = e

− log dn√
k
·Γn

γ
p−→ 1.

Consequently, sn
p−→ 1, and thus (5.5) holds for γ 6= 0.

For γ = 0, the proof of (5.5) goes as follows. By definition (1 + γx)−1/γ = e−x in this

case. Note then

dn exp

(
− b̂− b

a
− â

a

dγ̂
n − 1

γ̂

)

= exp

(
−Bn√

k
−

(
1 +

An√
k

) (
dγ̂

n − 1

γ̂
− log dn

)
− An√

k
log dn

)
,

Clearly, if
dγ̂

n − 1

γ̂
− log dn

p−→ 0, (5.7)

holds, then (5.5) follows immediately from (e). To show (5.7), we observe that

∣∣∣∣∣
dγ̂

n − 1

γ̂
− log dn

∣∣∣∣∣ =

∣∣∣∣∣
∫ dn

1

sγ̂ − 1

s
ds

∣∣∣∣∣ =

∣∣∣∣∣γ̂
∫ dn

1

∫ s

1
uγ̂ 1

u
du

1

s
ds

∣∣∣∣∣

≤ |γ̂| d|γ̂|n log2 dn =
∣∣∣γ̂
√

k
∣∣∣ log2 dn√

k
e

log dn√
k
|γ̂√k|.

The last expression tends to zero in probability under the conditions (c) and (e). This

completes the proof.

Proof of Theorem 3.2. Note that

1

p
P

(
Q̂p4Qp

)
≤

∣∣∣F̄1(x̂p̂1)− F̄1(xp1)
∣∣∣

p
+

∣∣∣F̄2(ŷp̂2)− F̄2(yp2)
∣∣∣

p
.

We consider only the first term on the right, since the second can be handled similarly:

1

p

∣∣∣F̄1(x̂p̂1)− F̄1(xp1)
∣∣∣

≤ 1

p

∣∣∣F̄1(x̂p̂1)− F̄1(xp̂1)
∣∣∣ +

1

p

∣∣∣F̄1(xp̂1)− F̄1(xp1)
∣∣∣ . (5.8)
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Note that the second term of (5.8) can be dealt with as follows:

1

p

∣∣∣F̄1(xp̂1)− F̄1(xp1)
∣∣∣ =

1

p
|p̂1 − p1|

≤ 1

p

∣∣∣∣∣
p

l̃(1, c)
− p

l(1, c)

∣∣∣∣∣ +
1

p

∣∣∣∣∣
p

l(1, c)
− p1

∣∣∣∣∣

=

∣∣∣l̃(1, c)− l(1, c)
∣∣∣

l(1, c)l̃(1, c)
+

∣∣∣∣∣
1

l(1, c)
− p1

p

∣∣∣∣∣ . (5.9)

Following Theorem 1 of Chapter 2 (consistency of l̂(x, y)) in Huang (1992) and the homo-

geneity of l listed in Section 3, the first term of (5.9) tends to zero in probability. Since F

is in the bivariate domain of attraction, by the argument given in Section 3.1, the second

term in (5.9) also tends to zero in probability.

Thus, it remains to show that

1

p

∣∣∣F̄1(x̂p̂1)− F̄1(xp̂1)
∣∣∣ p−→ 0.

Note that since p = p̂1l̃(1, c) and l̃(1, c)
p−→ l(1, c), it suffices to show

1

p̂1

∣∣∣F̄1(x̂p̂1)− F̄1(xp̂1)
∣∣∣ p−→ 0.

This clearly follows from the result in univariate case and Remark 3.2, since

p̂1

p
=

1

l̃(1, c)

p−→ 1

l(1, c)
∈ (0,∞).

This completes the proof.
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