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Abstract

Classical extreme-value theory for stationary sequences of random variables can

up to a large extent be paraphrased as the study of exceedances over a high

threshold. A special role within the description of the temporal dependence

between such exceedances is played by the extremal index. Parts of this theory

can be generalized not only to random variables on an arbitrary state space

hitting certain failure sets but even to a triangular array of rare events on

an abstract probability space. In the case of M4 processes, or maxima of

multivariate moving maxima, the arguments take a simple and direct form.
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Keywords: block maximum; exceedance; extremal index; failure set; mixing

condition; M4 process; rare event; stationary sequence
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1. Introduction

Many applied sciences require handling events with low probability but large, often

disastrous impact. Of particular interest is the way in which such rare events interact:

an unusually stormy day at a particular site may well be followed by another one at the

same or a neighboring site; a large drop in a stock index may trigger similar negative

movements in the next time period for the same or other financial time series. Which,

then, are the principles governing these dependencies?

The theory developed in this paper is inspired by a concept from classical extreme-

value theory. A stationary sequence of random variables {Xn} is said to have extremal
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2 J. SEGERS

index θ ∈ [0, 1] if for every 0 < τ < ∞ there exists a sequence of thresholds {un}

such that n Pr (X1 > un) → τ and Pr (maxi=1,...,n Xi ≤ un) → exp(−τθ) as n →

∞ (Leadbetter, 1983). The extremal index θ quantifies the strength of dependence

between threshold exceedances {Xi > un}, with θ = 1 corresponding to asymptotic

independence and θ ↓ 0 to an increasing propensity of large observations to occur

in clusters. In the context of multivariate time series, the extremal index makes its

appearance in the asymptotic distribution of the vector of component-wise maxima

(Nandagopalan, 1994; Smith and Weissman, 1996; Perfekt, 1997; Beirlant et al., 2004,

chapter 10).

As hinted at already in Nandagopalan (1994), one can in fact start from a stationary

process on an arbitrary state space in which a sequence of failure sets represents ever

more extreme states for the process. The extremal index, which now also depends on

the sequence of failure sets, describes the strength of temporal dependence between

failure-set hits. Even a further abstraction is possible to a triangular array of events

every row of which satisfies a certain stationarity condition.

For a single row of events, the following quantities are of interest: the probability

that none of the events occurs; the probability that the occurrence of an event is not

followed in the near future by another one; the mean number of events that occur

given there occurs at least one; conditionally on the occurrence of an event, the time

until the occurrence of the next one. The relations between these quantities can be

described in terms of various inequalities. These complement the assessment of the

accuracy of the compound Poisson approximation for the empirical point process of

exceedances in Barbour, Xia and Novak (2002). Further, these inequalities lead to

asymptotic results, which serve on the one hand to formulate in the framework of rare

events known characterizations of the extremal index (Leadbetter, 1983; O’Brien, 1987;

Ferro and Segers, 2003), and on the other hand to complement various Poisson limit

results for triangular arrays (Hüsler, 1993; Hüsler and Schmidt, 1996). Point process

results will not be pursued in this paper as the dependence restrictions in force will be

weaker than in the aforementioned papers.

The exposition starts in Section 2 with an essay on the multivariate extremal index

of M4 processes. In this relatively simple example, short and direct arguments suffice to

illustrate the more general theory. By way of intermediate step, results for a stationary
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sequence in an arbitrary state space are formulated in Section 3. The highest level of

abstraction is achieved in Sections 4–6. The set-up and the notations in force are

detailed in Section 4. The core of the paper is Section 5, containing asymptotic theory

for dependence within a triangular array of rare events. The theory is based on a

meticulous analysis leading to sharp inequalities in Section 6. The appendices, finally,

contain some technical arguments.

2. Maxima of multivariate moving maxima

M4 processes, or maxima of multivariate moving maxima, provide an instructive

example of how phenomena in the context of extremes of univariate stationary processes

carry over to a more general setting. For such processes, direct arguments suffice to

reveal the connection between the extremal index and temporal dependence between

exceedances over high multivariate thresholds.

2.1. M4 processes

A d-variate random sequence Xi = (Xi,1, . . . , Xi,d), where i ∈ Z, the set of integers,

is called an M4 process if it admits the representation

Xi,j = max
l≥1

max
p∈Z

al,i−p,jZl,p, for i ∈ Z; j = 1, . . . , d; (2.1)

the variables Zl,p, where l = 1, 2, . . . and p ∈ Z, are independent standard Fréchet

random variables, that is, Pr(Zl,p ≤ x) = exp(−1/x) for 0 < x < ∞, while the al,k,j

are non-negative numbers such that∑
l≥1

∑
k∈Z

al,k,j = 1, for j = 1, . . . , d. (2.2)

Note that the process {Xi : i ∈ Z} is constructed as the maximum of a sequence of

multivariate moving maximum processes, whence the acronym ‘M4’.

The M4 process (2.1) is strictly stationary, its marginal distributions being standard

Fréchet. The distribution function Gm of the md-variate vector (X1, . . . , Xm) is given

by

Gm(x1, . . . , xm) = exp{−Vm(x1, . . . , xm)},

Vm(x1, . . . , xm) =
∑
l≥1

∑
p∈Z

max
i=1,...,m

max
j=1,...,d

al,i−p,j

xi,j
,
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for x1, . . . , xm ∈ (0,∞]d. In particular, all finite-dimensional distributions of the

process are simple max-stable, that is, {Gm(tx1, . . . , txm)}t = Gm(x1, . . . , xm) for

every 0 < t < ∞. Such a process is called max-stable in de Haan (1984).

M4 processes were introduced in Smith and Weissman (1996) in order to provide

examples for the multivariate extremal index, to be defined below. See Zhang (2002)

for applications of M4 processes to the modelling of financial time series.

2.2. Temporal dependence between high-threshold exceedances

An observation Xi is said to exceed the threshold x if Xi 6≤ x, that is, if Xi,j > xj

for some j = 1, . . . , d. For M4 processes, we will analyse the temporal dependence

between exceedances over threshold sequences of the form nx with xj > 0 for every

j = 1, . . . , d.

For positive integer n and for x ∈ (0,∞]d, put

Vn(x) := Vn(x, . . . , x) =
∑
l≥1

∑
p∈Z

max
i=1,...,n

max
j=1,...,d

al,i−p,j

xj
; (2.3)

also put V0 ≡ 0. The following lemma is of great use in the study of the temporal

dependence between extremes of an M4 process.

Lemma 2.1. For x ∈ (0,∞]d, the functions Vn in (2.3) satisfy

lim
n→∞

{Vn(x)− Vn−1(x)} = lim
n→∞

Vn(nx) =
∑
l≥1

max
k∈Z

max
j=1,...,d

al,k,j

xj
=: W (x).

Proof. For l ≥ 1 and k ∈ Z, put bl,k = maxj=1,...,d al,k,j/xj . We have

Vn(x)− Vn−1(x) =
∑
l≥1

∑
p∈Z

(
max

i=1,...,n
bl,i−p − max

i=1,...,n−1
bl,i−p

)
.

Writing λ+ = max(λ, 0) for λ ∈ R, we get

Vn(x)− Vn−1(x) =
∑
l≥1

∑
p∈Z

(
bl,n−p − max

i=1,...,n−1
bl,i−p

)
+

=
∑
l≥1

∑
k∈Z

(
bl,k − max

i=1,...,n−1
bl,i+k−n

)
+

=
∑
l≥1

∑
k∈Z

(
bl,k − max

i=1,...,n−1
bl,k−i

)
+

.

By the dominated convergence theorem,

lim
n→∞

{Vn(x)− Vn−1(x)} =
∑
l≥1

∑
k∈Z

(
bl,k −max

r<k
bl,r

)
+

.
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The identity ∑
k∈Z

(
bl,k −max

r<k
bl,r

)
+

= max
k∈Z

bl,k

yields limn→∞{Vn(x)− Vn−1(x)} = W (x). Further,

Vn(nx) =
1
n

Vn(x) =
1
n

n∑
k=1

{Vk(x)− Vk−1(x)}.

Since the Cesàro transform of a converging sequence converges to the same limit as the

original sequence, also lim Vn(nx) = W (x). This concludes the proof of Lemma 2.1.

For x ∈ (0,∞]d \ {(∞, . . . ,∞)}, put

θ(x) =
W (x)
V1(x)

=

∑
l≥1 maxk∈Z maxj=1,...,d al,k,j/xj∑
l≥1

∑
k∈Z maxj=1,...,d al,k,j/xj

. (2.4)

This θ is called the (multivariate) extremal index (function) of the M4 process (2.1).

It inherits all the familiar properties of the extremal index of a univariate stationary

process.

Theorem 2.1. Let {Xn} be the M4 process of (2.1). For x ∈ (0,∞]d \ {(∞, . . . ,∞)},

Pr(∀i = 1, . . . , n : Xi ≤ nx) = {Pr(X1 ≤ nx)}nθ(x) + o(1)

→ exp{−W (x)}. (2.5)

If mn is a positive integer sequence such that mn →∞ and mn = o(n), then

E

[
mn∑
i=1

1(Xi 6≤ nx)

∣∣∣∣∣ ∃i = 1, . . . ,mn : Xi 6≤ nx

]
→ 1

θ(x)
. (2.6)

If sn is a positive integer sequence such that sn →∞ and sn/n → λ ∈ [0,∞], then

Pr(∀i = 2, . . . , sn : Xi ≤ nx | X1 6≤ nx) → θ(x) exp{−λV1(x)θ(x)}. (2.7)

Proof. The proof relies on Lemma 2.1. First, Pr(∀i = 1, . . . , n : Xi ≤ nx) =

exp{−Vn(nx)} → exp{−W (x)}, as well as {Pr(X1 ≤ nx)}n = exp{−nV1(nx)} =

exp{−V1(x)}. Secondly,

E[
∑mn

i=1 1(Xi 6≤ nx) | ∃i = 1, . . . ,mn : Xi 6≤ nx]

=
mn Pr(X1 6≤ nx)

Pr(∃i = 1, . . . ,mn : Xi 6≤ nx)

=
mn[1− exp{−V1(nx)}]
1− exp{−Vmn

(nx)}

=
n[1− exp{−(1/n)V1(x)}]

(n/mn)[1− exp{−(mn/n)Vmn
(mnx)}]

→ V1(x)
W (x)

.
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Finally,

Pr(∀i = 2, . . . , sn : Xi ≤ nx | X1 6≤ nx)

=
Pr(∀i = 2, . . . , sn : Xi ≤ nx)− Pr(∀i = 1, . . . , sn : Xi ≤ nx)

1− Pr(X1 ≤ nx)

=
exp{−Vsn−1(nx)} − exp{−Vsn

(nx)}
1− exp{−V1(nx)}

= exp{−Vsn
(nx)}n[exp{Vsn(nx)− Vsn−1(nx)} − 1]

n[1− exp{−V1(nx)}]

= exp
(
−sn

n
Vsn(snx)

) n[exp{(1/n)(Vsn
(x)− Vsn−1(x))} − 1]

n[1− exp{−(1/n)V1(x)}]

→ exp{−λW (x)}W (x)
V1(x)

.

This concludes the proof of Theorem 2.1.

Equation (2.5), due to Smith and Weissman (1996), states that the role played by the

extremal index in the asymptotic distribution of the component-wise sample maximum

is exactly similar as in the original definition for univariate sequences in Leadbetter

(1983). Take x such that all but its jth coordinate are equal to infinity to arrive at the

result that the extremal index of the jth coordinate process {Xn,j : n ∈ Z} is equal to

θj =
∑

l≥1 maxk∈Z al,k,j .

By equation (2.6), the expected number of exceedances over a high threshold in a

block with at least one exceedance converges to the reciprocal of the extremal index.

For univariate stationary processes, this characterization is due to Leadbetter (1983).

Finally, equation (2.7) admits two interpretations. The case sn/n → 0 states that

the probability that the exceedance X1 6≤ nx is followed by run of sn non-exceedances

converges to θ(x), a property originally discovered in O’Brien (1987). The case sn/n →

λ > 0 can be reformulated as follows: denoting Tx = min{i ≥ 1 : Xi+1 6≤ x},

lim
n→∞

Pr[{V1(x)/n}Tnx ≥ λ | X1 6≤ nx] = θ(x) exp{−λθ(x)}, λ > 0.

In words, the normalized inter-arrival time {V1(x)/n}Tnx converges to the mixture

distribution {1−θ(x)}ε0 +θ(x)Exp(θ(x)), where ε0 is a point mass at zero and Exp(ν)

is an exponential distribution with mean 1/ν. For univariate sequences, a similar

property was exploited in Ferro and Segers (2003) to construct an estimator for the

extremal index; see also chapter 10 of Beirlant et al. (2004).
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3. Variables in general state space

3.1. Setting

Let {Xn : n ≥ 1} be a stationary sequence of random elements of a measurable

space (S,S) and let B ∈ S. Think of the random elements Xn as representing the

evolution of some system or process over time and of the set B as a failure set for

which the events {Xi ∈ B} have small probability but large repercussions if occurring.

The archetypical situation is the one where the state space S is the real line and the

failure set B is the open half-line (u,∞), the event {Xi ∈ B} corresponding to the

threshold exceedance {Xi > u}. In the example of M4 processes in Section 2, the state

space is Rd and the failure set is of the form {y ∈ Rd : y 6≤ x}.

For B ∈ S and integer m ≥ 1, consider the following probabilities related to the

occurrence of the events {Xi ∈ B}:

p(B) = Pr (X1 ∈ B) ,

pm(B) = Pr (∃i = 1, . . . ,m : Xi ∈ B) ,

qm(B) = 1− pm(B) = Pr (∀i = 1, . . . ,m : Xi 6∈ B) .

To avoid trivialities, assume 0 < p(B) < 1. We will be interested in asymptotics arising

from a sequence of failure sets Bn ∈ S such that the probability of a hit tends to zero,

p(Bn) → 0.

3.2. Quantities of interest

From the above probabilities we can derive a number of quantities all of which

describe in a different way the dependence between failure-set hits {Xi ∈ B}. If

these events are independent, then simply qm(B) = {q1(B)}m. In general however,

qm(B) = {q1(B)}mθ for some θ = θM
m(B) ≥ 0, or explicitly

θM
m(B) =

log qm(B)
m log q1(B)

.

If pm(B) is small, then θM
m(B) is approximately equal to

θB
m(B) =

pm(B)
mp(B)

.

Note that θB
m(B) is equal to the reciprocal of the expected number of hits in the block
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X1, . . . , Xm given that there is at least one hit, E[
∑m

i=1 1(Xi ∈ B) |
⋃m

i=1{Xi ∈ B}] =

mp(B)/pm(B) = 1/θB
m.

The conditional probability that a hit {X1 ∈ B} is followed by a run of non-hits is

θR
m(B) = Pr (∀i = 2, . . . ,m : Xi 6∈ B | X1 ∈ B) =

pm(B)− pm−1(B)
p(B)

.

Conditionally on the process starting with a hit, {X1 ∈ B}, the waiting time until the

next one is

TB = min{i ≥ 1 : Xi+1 ∈ B}.

Its distribution is determined by

Pr(TB ≥ m | X1 ∈ B) = θR
m(B).

3.3. Long-range dependence

As our notation suggests, the quantities above turn out to be related – that is,

provided the amount of long-range dependence is not too strong. To control the latter,

we impose conditions on a kind of mixing coefficients measuring the force of dependence

in a sample of size n between blocks of variables of size at least l and separated by a

gap of precisely s,

αn,s,l(B) = max
u,v,w

∣∣∣∣∣∣Pr

 ⋂
u<i≤v

{Xi 6∈ B} ∩
⋂

v<j≤w

{Xj+s 6∈ B}

− qv−u(B)qw−v(B)

∣∣∣∣∣∣ ,

(3.1)

the maximum ranging over all integer u, v, w such that u ≥ 0, v ≥ u + l, w ≥ v + l

and w + s ≤ n; here l and s are positive integers such that 2l + s ≤ n. Abbreviate

αn,l(B) = αn,l,l(B) and ᾱn,l(B) = sup{αn,s,l(B) : l ≤ s ≤ n− 2l}.

3.4. Characterization theorem

Let Bn ∈ S be such that 0 < p(Bn) < 1. Theorem 3.1 states the relations between

the quantities θM
m(Bn), θB

m(Bn), and θR
m(Bn). It is an immediate corollary to the

theorems in Section 5 applied to the events Ai,n = {Xi ∈ Bn}.

Theorem 3.1. Assume there exists an integer sequence 1 ≤ ln ≤ n such that ln = o(n)

and αn,ln(Bn) → 0.
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(i) If ln ≤ mn ≤ n is an integer sequence such that ln = o(mn) and αn,ln =

o[max{mn/n, pmn(Bn)}], then

qn(Bn) = {qmn(Bn)}n/mn + o(1).

In particular, lim inf qn(Bn) ≥ exp{− lim supnp(Bn)}.

(ii) If additionally 0 < lim inf np(Bn) ≤ lim sup np(Bn) < ∞, then lim sup θM
n (Bn) ≤

1 and

lim
n→∞

sup
mn≤i≤j≤n

∣∣θM
i (Bn)− θM

j (Bn)
∣∣ = 0.

(iii) If additionally mn = o(n), then

θM
n (Bn) = θB

mn
(Bn) + o(1) = θR

mn
(Bn) + o(1).

(iv) If additionally ᾱλn,ln(Bn) = o(1) for every λ > 0, then for any sequence θn

such that θn = θM
n (Bn) + o(1),

θR
dx/p(Bn)e(Bn) = Pr{p(Bn)TBn

≥ x | X1 ∈ Bn} = θn exp(−xθn) + o(1)

locally uniformly in 0 < x < ∞.

Remark 3.1. The condition that the process {Xn} is stationary can be slightly weak-

ened. It is sufficient that for all positive integers m and n the probabilities Pr(∀i =

1, . . . ,m : Xi+j ∈ Bn) do not depend on j; see also Definition 4.1 below.

Example 3.1. Without additional assumptions, M4 processes (2.1) satisfy a kind of

mixing condition for rare events making Theorem 3.1 available for many other failure

sets than those of the form {y ∈ Rd : y 6≤ x}. For x ∈ Rd and λ ∈ R, put, in obvious

notation, max(x, λ) = (max(x1, λ), . . . ,max(xd, λ)). For −∞ < r ≤ s < ∞ and λ ∈ R,

let σ(r, s;λ) be the σ-field generated by the random vectors {max(Xi, λ) : i ∈ Z∩[r, s]}.

With these notations, every M4 process satisfies

max
s=1,...,νn−ln

sup
A∈σ(1,s;nε)

B∈σ(s+ln,νn;nε)

|Pr(A ∩B)− Pr(A) Pr(B)| → 0 (3.2)

for every 0 < ν < ∞, every positive integer sequence ln = 1, . . . , νn tending to infinity

and every 0 < ε < ∞. The proof of (3.2) is given in Appendix B. It is even possible

to replace ε by a positive sequence εn tending to zero sufficiently slowly.
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Note that for a finite set I of integers and for u ∈ Rd, the event
⋂

i∈I{Xi ≤ u}

is contained in the σ-field σ(r, s;λ) as soon as I ⊂ Z ∩ [r, s] and uj ≥ λ for every

j = 1, . . . , d. In particular, by (3.2) all M4 processes satisfy the multivariate version of

Leadbetter’s D(un) condition for every multivariate threshold sequence un such that

lim inf un,j/n > 0 for every j = 1, . . . , d.

4. Rare events: assumptions and notations

Theorem 3.1 can be formulated completely in terms of the events Ai,n = {Xi ∈ Bn};

no reference needs to be made to the state space, the failure sets, or the random process.

All we need is a triangular array {Ai,n : n ≥ 1, 1 ≤ i ≤ n} of events together with a

notion of stationarity and restrictions on the amount of long-range dependence. The

principal aim of this paper is to develop a theory of temporal dependence between rare

events on this abstract level. In this section, we gather the ingredients that will appear

in such a theory. The main results are stated in Section 5.

4.1. Block-stationarity

Throughout, we will work with the following notion of stationarity for a vector of

events A1, . . . , Ar.

Definition 4.1. Events A1, . . . , Ar on a common probability space are called block-

stationary if Pr(
⋃m

i=1 Ai+j) = Pr(
⋃m

i=1 Ai) for m = 1, . . . , r − 1 and j = 1, . . . , r −m.

The probability that at least one of m consecutive events occurs is equal to

pm = Pr (
⋃m

i=1 Ai+j) , m = 1, . . . , r, j = 0, . . . , r −m. (4.1)

The probability, then, that none of m consecutive events occurs is

qm = 1− pm = Pr
(⋂m

i=1 Ac
i+j

)
, m = 1, . . . , r, j = 0, . . . , r −m. (4.2)

For simplicity, write p = p1. To avoid trivialities, we assume henceforth 0 < p < 1.

For positive integers i and j with i + j ≤ r,

pi ≤ pi+j ≤ pi + pj and qi+j ≤ qi ≤ qi+j + pj .
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Remark 4.1. If r ≥ 4, then the property that events A1, . . . , Ar are block-stationary

does not imply that the vector of indicator variables 1(A1), . . . ,1(Ar) is stationary.

See Examples 4.1 and 4.2 for some counterexamples. For the special case of r = 3

events, block-stationarity is the same as stationarity of the indicator variables, as

kindly pointed out by a referee.

Example 4.1. Consider the discrete probability space Ω = {1, 2, . . . , 16} with uniform

probabilities, and put

A1 = {1, . . . , 8},

A2 = {1, . . . , 4} ∪ {9, . . . , 12},

A3 = {1, 2} ∪ {5, 6} ∪ {9, 10} ∪ {13, 14},

A4 = {1, 2} ∪ {9, 10} ∪ {3, 7, 11, 15}.

Then Pr(Ai) = 1/2 for i = 1, . . . , 4, Pr(Ai ∪ Ai+1) = 3/4 for i = 1, 2, 3 and Pr(Ai ∪

Ai+1 ∪ Ai+2) = 7/8 for i = 1, 2. Hence the events A1, . . . , A4 are block-stationary.

However, Pr(A1 ∪A3) = 3/4 while Pr(A2 ∪A4) = 5/8, so the vector of corresponding

indicator variables is not stationary.

Example 4.2. Let Yn, where n ∈ Z, be independent standard Fréchet random vari-

ables, Pr(Yn ≤ y) = exp(−1/y) for 0 < y < ∞. Further, let ai, where i ≥ 0, be

non-negative numbers such that ai ≥ ai+1 for i ≥ 0 and
∑

i≥0 ai = 1. For positive

integer n, put ξn = max{aiYn−i : i ≥ 0}. The moving-maximum process {ξn} is

stationary and Pr (maxi=1,...,n ξi ≤ x) = exp[−{(n− 1)a0 + 1}/x] for 0 < x < ∞.

Now let {ξ′n} be another such moving-maximum process, independent of {ξn}, and

with parameters a′i, i ≥ 0, where again a′i ≥ a′i+1 ≥ 0, i ≥ 0, and
∑

i≥0 a′i = 1.

Define a new process by intercalating {ξn} and {ξ′n} through (X1, X2, X3, X4, . . .) =

(ξ1, ξ
′
1, ξ2, ξ

′
2, . . .). If a0 = a′0 but ai 6= a′i for some i ≥ 1, then the process {Xn} is

non-stationary. Nevertheless, the distribution of max{Xi+j : i = 1, . . . ,m} does not

depend on j: for each real x, the events Ai = {Xi > x} are block-stationary.

4.2. Quantities of interest

Let A1, . . . , Ar be a row of block-stationary events (Definition 4.1). Recall pm and

qm in (4.1) and (4.2). If the events are independent, then simply qm = qm
1 for all
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integer 1 ≤ m ≤ r. In general, however, qm = qmθ
1 for some θ = θM

m ≥ 0, or explicitly,

θM
m =

log(qm)
m log(q1)

, m = 1, . . . , r. (4.3)

If pm is small, then − log(qm) and − log(q1) are approximately equal to pm and p,

respectively. Substituting these approximations into (4.3) yields

θB
m =

pm

mp
, m = 1, . . . , r. (4.4)

Note that 0 < θB
m ≤ 1. The interpretation is that 1/θB

m = mp/pm is equal to the

expected number of events that occur in a block of size m given there occurs at least

one, E[
∑m

i=1 1(Ai) |
⋃m

i=1 Ai] = 1/θB
m.

Conditionally on an event occurring, the probability that it is followed by a run of

non-occurring events is equal to

θR
m = Pr

(⋂m
i=2 Ac

i | A1

)
=

pm − pm−1

p
, m = 1, . . . , r. (4.5)

where p0 := 0. By symmetry, θR
m is also equal to the probability that an extreme event

is not preceded by another one for a certain time, θR
m = Pr(

⋂m−1
i=1 Ac

i | Am).

Finally, if the first event actually occurs, ω ∈ A1, then the time to wait until the

next occurring event is equal to

T (ω) = min{j ≥ 1 : ω ∈ Aj+1};

the minimum of the empty set is set to infinity by convention. The distribution of the

inter-arrival time T can be expressed as

Pr(T ≥ t | A1) = θR
t , t = 1, . . . , r. (4.6)

The quantities θM
m , θB

m, and θR
m are ordered in the following way.

Lemma 4.1. For integer 1 ≤ m ≤ r,

θR
m ≤ θB

m ≤ θM
m ≤ θB

m/qm.

Proof. Since θR
i is decreasing in i,

pm =
m∑

i=1

(pi − pi−1) =
m∑

i=1

pθR
i ≥ mpθR

m,
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whence θR
m ≤ θB

m.

Next, the function x 7→ −x−1 log(1 − x) =
∫ 1

0
(1 − xy)−1dy is increasing in x < 1.

Since pm ≥ p, we get −p−1
m log(qm) ≥ −p−1 log(q1) and thus log(qm)/ log(q1) ≥ pm/p,

whence θM
m ≥ θB

m.

Finally, as x ≤ − log(1− x) ≤ x/(1− x) for 0 ≤ x < 1, we have − log(qm) ≤ pm/qm

and − log(q1) ≥ p, whence θM
m ≤ (pm/qm)/(mp) = θB

m/qm, completing the proof.

4.3. Weak long-range dependence

The amount of long-range dependence will be controlled by putting bounds on the

coefficients

αs,l := max
v=l,...,r−s−l

max
u=0,...,v−l

w=v+l,...,r−s

∣∣∣∣∣∣Pr

 ⋂
u<i≤v

Ac
i ∩

⋂
v<j≤w

Ac
j+s

− qv−uqw−v

∣∣∣∣∣∣ (4.7)

where s = 0, . . . , r − 2 and l = 1, . . . , b(r − s)/2c. The coefficient αs,l describes the

force of dependence between two blocks of length at least l and separated by a gap of

size precisely s. Abbreviate αl = αl,l and ᾱl = max{αs,l : s = l, . . . , r − 2l}.

The coefficients αs,l were introduced by O’Brien (1987) in the classical setting of

threshold exceedances Ai,n = {Xi > un} in a stationary sequence {Xn}. More popular

in this situation is Leadbetter’s (1974) condition D(un), which, in our notation, is based

on the coefficients

αD
s := max

j=1,...,r−s−1
max
I,J

∣∣Pr
(⋂

i∈I∪J Ac
i

)
− Pr

(⋂
i∈I Ac

i

)
Pr

(⋂
i∈J Ac

i

)∣∣
(s = 0, . . . , r − 2), the maximum being over all non-empty subsets I ⊂ {1, . . . , j} and

J ⊂ {j + s + 1, . . . , r}. Clearly max{αt,l : t = s, . . . , r − 2l} ≤ αD
s , s = 0, . . . , r − 2,

so that dependence restrictions based on αs,l are milder than the corresponding ones

based on αD
s . This improvement is useful for example for certain periodic Markov

chains (O’Brien, 1987, p. 287).

Observe that αD
s is in turn smaller than

α∆
s = max

j=1,...,r−s−1
max
E,F

|Pr(E ∩ F )− Pr(E) Pr(F )|, s = 0, . . . , r − 2,

the maximum being over all E ∈ σ(A1, . . . , Aj) and F ∈ σ(Aj+s+1, . . . , Ar). Bounds

on α∆
s are typically needed to establish convergence of empirical point processes of

exceedances to a compound Poisson process (Hsing, Hüsler and Leadbetter, 1988;

Barbour, Novak and Xia, 2002; Novak, 2002).
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4.4. Triangular array of rare events

The set-up for asymptotic results will be a triangular array Ai,n, n = 1, 2, . . . and

i = 1, . . . , rn, for which every row A1,n, . . . , Arn,n consists of block-stationary events

on a common probability space, which may vary with n. The probabilities of interest

are pm,n = Pr(
⋃m

i=1 Ai+j,n), m = 1, . . . , rn and j = 0, . . . , rn − m, together with

qm,n = 1 − pm,n and pn = p1,n. The mixing coefficient (4.7) for the nth row is

αs,l,n, and we write αl,n = αl,l,n and ᾱl,n = max{αs,l,n : s = l, . . . , rn − 2l}. Assume

0 < pn < 1 for all n, and for m = 1, . . . , rn, put

θM
m,n =

log(qm,n)
m log(q1,n)

, θB
m,n =

pm,n

mpn
and θR

m,n =
pm,n − pm−1,n

pn
, (4.8)

where p0,n := 0. The distribution of the inter-arrival time between the first event and

the next one is

Pr(Tn ≥ t | A1,n) = θR
t,n, t = 1, . . . , rn. (4.9)

Finally, all asymptotic statements are to be understood as n →∞.

5. Main results

The case of M4 processes in Section 2 suggests that properties of the extremal index

of a univariate stationary sequence carry over to more general contexts. In this section,

proper reformulations will be shown to remain true in the general setting of a triangular

array A1,n, . . . , Arn,n, n ≥ 1, of row-wise block-stationary events as in Section 4.4. The

proofs of the results in this section depend on the results in section 6 and are deferred

to Appendix A.

5.1. Big and small blocks

For independent and identically distributed random variables {Xn}, the distribu-

tion of the sample maximum Mn = max(X1, . . . , Xn) is given by Pr (Mn ≤ x) =

{Pr (X1 ≤ x)}n. In case the sequence is stationary, certain mixing conditions still

guarantee that Pr (Mr ≤ x) is close to {Pr (Ms ≤ x)}r/s provided r and s are large

enough. As a consequence, for such sequences, the only non-degenerate weak limits

of affinely normalized sample maxima are the extreme-value distributions (Leadbetter,

1974). The argument can be extended to the multivariate case (Hsing, 1989; Hüsler,
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1990). In the general setting, then, a natural question is how closely the probability

qrn,n of no extreme event in a row is approximated by the probability q
rn/sn
sn,n of no

extreme event in rn/sn independent smaller blocks of size sn.

Theorem 5.1. Assume there exists an integer sequence 1 ≤ ln ≤ rn such that ln =

o(rn) and αln,n = o(1). For every integer sequence ln ≤ sn ≤ rn such that ln = o(sn)

and αln,n = o{max(sn/rn, psn,n)},

qrn,n = qrn/sn
sn,n + o(1).

Theorem 5.1 applies to any integer sequence sn such that ln ≤ sn ≤ rn and

lim inf sn/rn > 0, and even to some integer sequences sn such that sn = o(rn): let

for instance sn be the integer part of max{(lnrn)1/2, α
1/2
ln,nrn}.

5.2. Extremal index

For univariate stationary sequences, the extremal index, whenever it exists, is de-

fined through the relation Pr(Mn ≤ un) = {Pr(X1 ≤ un)}nθ + o(1) for threshold

sequences un such that 0 < lim inf n Pr(X1 > un) ≤ lim sup n Pr(X1 > un) < ∞. The

extremal index typically arises as the reciprocal of the limit of the expected number

of exceedances in a cluster of exceedances (Leadbetter, 1983) and also as the limit

probability that an exceedance is followed by a run of non-exceedances (O’Brien, 1987).

These characterizations carry over to the general set-up of a triangular array of rare

events. Recall the quantities θM
m,n, θB

m,n and θR
m,n in (4.8).

Theorem 5.2. Assume there exists an integer sequence 1 ≤ ln ≤ rn such that ln =

o(rn) and αln,n = o(1).

(i) If τ = lim sup rnpn < ∞, then lim inf qrn,n ≥ exp(−τ) and lim sup θM
rn,n ≤ 1.

(ii) If moreover lim inf rnpn > 0, then for every integer sequence ln ≤ mn ≤ rn such

that ln = o(mn) and αln,n = o(mn/rn),

lim
n→∞

sup
mn≤i≤j≤rn

∣∣θM
i,n − θM

j,n

∣∣ = 0.

If pmn,n = o(1), then θM
mn,n ∼ θB

mn,n by Lemma 4.1. The following theorem relates

these to θR
mn,n.
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Theorem 5.3. Assume there exists an integer sequence 1 ≤ ln ≤ rn such that ln =

o(rn) and αln,n = o(1).

(i) For every integer sequence ln ≤ mn ≤ (rn− ln)/2 such that ln = o(mn), pmn,n =

o(1) and αln,n = o(mnpn),

θR
mn,n = θB

mn,n + o(1) = θM
mn,n + o(1).

(ii) If also αln,n = o(pmn,n), then

θR
mn,n ∼ θB

mn,n ∼ θM
mn,n.

By definition, qrn,n = qrnθn
1,n with θn = θM

rn,n. The following theorem states condi-

tions guaranteeing qrn,n = qrnθn
1,n + o(1) for other choices of θn.

Theorem 5.4. Assume there exists an integer sequence 1 ≤ ln ≤ rn such that ln =

o(rn) and αln,n = o(1).

(i) For every integer sequence ln ≤ mn ≤ rn such that ln = o(mn), mn = o(rn),

and αln,n = o{max(mn/rn, pmn,n)},

qrn,n = qrnθn
1,n + o(1) = exp(−rnpnθn) + o(1) (5.1)

for θn ∈ {θM
mn,n, θB

mn,n}.

(ii) If additionally pmn,n → 0, then the above equation remains true with θn = θR
mn,n.

Remark 5.1. Without the extra condition pmn,n → 0, part (ii) of Theorem 5.4 is not

true. Consider for example independent events with pn → 0, rn ∼ p−3
n , and mn ∼ p−2

n :

on the one hand qrn,n = (1− pn)rn → 0, while on the other hand

rnθR
mn,n = p−3

n (1− pn)mn−1 = p−3
n exp[−p−1

n {1 + o(1)}] → 0.

The condition pmn,n → 0 is implied by each of the following ones: (i) mnpn → 0, (ii)

lim supn→∞ rnpn < ∞, and (iii) lim infn→∞ qrn,n > 0. Regarding (i), just observe that

pmn,n ≤ mnpn. Since mn = o(rn), (ii) implies (i). And since qrn,n = (1−pmn,n)rn/mn +

o(1) by Theorem 5.1, also condition (iii) is sufficient.

5.3. Inter-arrival times

Next, we focus on the inter-arrival time Tn between the occurrence of the event A1,n

and the occurrence of the first subsequent event, conditionally on A1,n, see (4.9). Since
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the probability of a single event is pn, the average inter-arrival time should be 1/pn,

regardless of the dependence structure. Under certain conditions, the standardized

inter-arrival time pnTn converges weakly to a non-degenerate limit. Recall ᾱl,n =

max{αs,l,n : s = l, . . . , rn − 2l}, with αs,l,n as in (4.7) for the row A1,n, . . . , Arn,n.

Theorem 5.5. If 0 < lim inf rnpn ≤ lim sup rnpn < ∞ and if there exists an integer

sequence 1 ≤ ln ≤ rn such that ln = o(rn) and ᾱln,n = o(1), then for every sequence

θn such that θn = θM
rn,n + o(1),

Pr(pnTn ≥ x | A1,n) = θn exp(−xθn) + o(1) (5.2)

locally uniformly in 0 < x < lim inf rnpn.

By (5.2), the normalized inter-arrival time pnTn is approximately distributed accord-

ing to the mixture distribution (1−θn)ε0+θnExp(θn), where ε0 is the point mass at zero

and Exp(θn) is the exponential distribution with mean 1/θn. The point mass at zero

describes the inter-arrival times between events within a cluster, while the exponential

part describes the inter-arrival times between different clusters. This interpretation

is in accordance with the compound Poisson limit (established under stronger mixing

conditions) for the empirical point process of occurrence times of exceedances over

a high threshold in a univariate stationary sequence (Hsing, Hüsler and Leadbetter,

1988). It is exploited in Ferro and Segers (2003) in the construction of an estimator

for the extremal index.

6. Finite-sample inequalities

The key to the asymptotic results of Section 5 is a collection of sharp inequalities

in the setting of a single row A1, . . . , Ar of block-stationary events as in Definition 4.1.

Throughout this section, employ the notations of Sections 4.1, 4.2 and 4.3.

6.1. Big and small blocks

The first lemma exploits an idea by Loynes (1965): a large block can be broken into

approximately independent smaller blocks by clipping out an asymptotically negligible

number of events between the smaller blocks and invoking the appropriate mixing

coefficients. By convention the sum over the empty set is equal to zero and the product
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over the empty set is equal to one.

Lemma 6.1. For integer a1, b1, . . . , ak, bk ∈ {0, . . . , r} such that there exists a positive

integer l such that bi−ai ≥ l for all i = 1, . . . , k and ai+1−bi = l for all i = 1, . . . , k−1,

−(αl + pl)
k∑

i=2

k∏
j=i+1

qbj−aj ≤ qbk−a1 −
k∏

i=1

qbi−ai ≤ αl

k∑
i=2

k∏
j=i+1

qbj−aj .

Proof. We proceed by induction on k. For k = 1, there is nothing to prove. Let

k ≥ 2. We have

qbk−a1 = Pr
(⋂bk

i=a1+1 Ac
i

)


≤ Pr
(⋂bk−1

i=a1+1 Ac
i ∩

⋂bk

i=ak+1 Ac
i

)
,

≥ Pr
(⋂bk−1

i=a1+1 Ac
i ∩

⋂bk

i=ak+1 Ac
i

)
− Pr

(⋃ak

i=bk−1+1 Ai

)
.

Moreover, ∣∣∣Pr
(⋂bk−1

i=a1+1 Ac
i ∩

⋂bk

i=ak+1 Ac
i

)
− qbk−1−a1qbk−ak

∣∣∣ ≤ αl.

Together, we find

qbk−1−a1qbk−ak
− αl − pl ≤ qbk−a1 ≤ qbk−1−a1qbk−ak

+ αl.

Apply the induction hypothesis on qbk−1−a1 to conclude the proof.

A useful special case of Lemma 6.1 is when the sizes bi−ai of the smaller blocks are

all the same. For a real number x, denote by bxc the largest integer not larger than x

and by dxe the smallest integer not smaller than x.

Lemma 6.2. For integer 1 ≤ l ≤ m ≤ r and 1 ≤ k ≤ b(r + l)/(m + l)c,

qr ≤ qk
m +

αl

max(m/r, pm)
. (6.1)

If also 2l + m ≤ r, then for k = d(r + l)/(m + l)e,

qr ≥ qk
m − αl + pl

max(m/r, pm)
. (6.2)

Proof. Let k = 1, . . . , b(r + l)/(m + l)c and set ai = (i− 1)(m + l) and bi = ai + m

for i = 1, . . . , k. The integers a1, b1, . . . , ak, bk satisfy the conditions of Lemma 6.1; in

particular bk = km + (k − 1)l ≤ r. Hence

−(αl + pl)
k∑

i=2

qk−i
m ≤ qkm+(k−1)l − qk

m ≤ αl

k∑
i=2

qk−i
m .



Rare Events 19

Now
∑k

i=2 qk−i
m = (1− qk−1

m )/(1− qm). Further, for 0 < x < 1 and a ≥ 1 or a = 0, we

have 1−xa ≤ min{a(1−x), 1} by the mean value theorem, and thus (1−xa)/(1−x) ≤

min{a, 1/(1− x)}. Hence, for k = 1, . . . , b(r + l)/(m + l)c,

−(αl + pl) min(k − 1, 1/pm) ≤ qkm+(k−1)l − qk
m ≤ αl min(k − 1, 1/pm). (6.3)

Since qr ≤ qkm+(k−1)l, we get (6.1).

Next, suppose that 2l + m ≤ r. Apply Lemma 6.1 on a1 = 0, b1 = m, a2 = m + l,

and b2 = r to find

qr ≥ qmqr−m−l − (αl + pl).

Let k = d(r + l)/(m + l)e. Since r −m− l ≤ (k − 1)(m + l)− l ≤ r, by the left-hand

inequality of (6.3),

qr−m−l ≥ q(k−1)(m+l)−l ≥ qk−1
m − (αl + pl) min(k − 2, 1/pm).

Combine the previous two displays to get

qr ≥ qk
m − (αl + pl){qm min(k − 2, 1/pm) + 1} ≥ qk

m − (αl + pl) min(k − 1, 1/pm),

whence (6.2). This completes the proof of the lemma.

Lemma 6.2 leads to inequalities for qr − q
r/m
m in case m is small compared to r.

Lemma 6.3. For positive integer l ≤ m ≤ r,

qr ≤ qr/m
m +

αl

max(m/r, pm)
+

l

m
+

m

r
. (6.4)

If also 2l + m ≤ r, then

qr ≥ qr/m
m − αl + pl

max(m/r, pm)
− l

m
− m

r
. (6.5)

Proof. By the mean value theorem,

|xa − xb| ≤ max(1− a/b, 1− b/a), 0 ≤ x ≤ 1; a > 0; b > 0. (6.6)

Let k = b(r + l)/(m + l)c. Since (r −m)/(m + l) ≤ k ≤ r/m,

qk
m − qr/m

m ≤ 1−mk/r ≤ l/m + m/r.

Combine this with Lemma 6.2, eq. (6.1), to arrive at (6.4).



20 J. SEGERS

Next, suppose 2l + m ≤ r. Put k = d(r + l)/(m + l)e. By (6.6),

|qk
m − qr/m

m | ≤ max{1−mk/r, 1− r/(mk)}.

Since r/(m + l) ≤ k < r/m + 1, we have 1 − mk/r ≤ l/m and 1 − r/(mk) ≤ m/r,

whence max{1 − mk/r, 1 − r/(mk)} ≤ l/m + m/r. Combine this with Lemma 6.2,

eq. (6.2), to arrive at (6.5). This completes the proof of the lemma.

6.2. The extremal index

The quantities θM
m = log(qm)/{m log(q1)} of (4.3) are approximately constant over

a wide range of m.

Lemma 6.4. For integer 1 ≤ l ≤ m ≤ r such that 2l + m ≤ r, denoting τ = rp and

ε = (r/m)αl + (1 + τ)l/m + m/r,

∣∣θM
r − θM

m

∣∣ ≤ ε

τ{exp(−τ)− (τ/2)(m/r)− ε}+
.

Proof. By Lemma 6.3, |qr − q
r/m
m | ≤ ε. Now qr = exp{r log(q1)θM

r } and q
r/m
m =

exp{r log(q1)θM
m}. By the mean value theorem,

r| log(q1)|
∣∣θM

r − θM
m

∣∣ min(qr, q
r/m
m ) ≤ ε.

Since qr ≥ q
r/m
m − ε and | log(q1)| ≥ p,

∣∣θM
r − θM

m

∣∣ ≤ ε

τ(qr/m
m − ε)+

.

As exp(−ax)− (1−x)a ≤ x/2 for 0 ≤ x ≤ 1 and a ≥ 1, we have q
r/m
m = (1−pm)r/m ≥

exp{−(r/m)pm} − pm/2. Apply the inequality pm ≤ mp to conclude the proof.

In Lemma 4.1 we already saw that θR
m ≤ θB

m. Here is a converse inequality.

Lemma 6.5. For integer 1 ≤ l ≤ m ≤ r such that 2m + l ≤ r,

θR
m ≥ θB

m − p2
m

mp
− αl + pl

mp
. (6.7)

Proof. We have

pm = Pr
(⋃m

i=1 Ai ∩
⋂2m+l

i=m+1 Ac
i

)
+ Pr

(⋃m
i=1 Ai ∩

⋃2m+l
i=m+1 Ai

)
.
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On the one hand,

Pr
(⋃m

i=1 Ai ∩
⋂2m+l

i=m+1 Ac
i

)
=

m∑
i=1

Pr
(
Ai ∩

⋂2m+l
j=i+1 Ac

j

)
=

m∑
i=1

pθR
2m+l−i+1 ≤ mpθR

m,

while on the other hand,

Pr
(⋃m

i=1 Ai ∩
⋃2m+l

i=m+1 Ai

)
≤ Pr

(⋃m
i=1 Ai ∩

⋃2m+l
i=m+l+1 Ai

)
+ pl ≤ p2

m + αl + pl.

Combine the previous three displays to get

mpθR
m ≥ pm − p2

m − αl − pl.

Dividing by mp yields (6.7). This completes the proof of the lemma.

By definition, qr = qrθ
1 with θ = θM

r . The following lemma gives bounds on the error

induced by choosing θ equal to θB
m or θR

m. Note that qrθ
1 ≤ exp(−rpθ) for θ ≥ 0.

Lemma 6.6. For integer 1 ≤ l ≤ m ≤ r and for θm ∈ {θB
m, θR

m},

qr ≤ qrθm
1 +

αl

max(m/r, pm)
+

l

m
+

m

r
. (6.8)

If additionally 2l + m ≤ r, then

qr ≥ exp(−rpθB
m)− αl + pl

max(m/r, pm)
− l

m
− 2

m

r
. (6.9)

If additionally 2m + l ≤ r, then

qr ≥ exp(−rpθR
m)− 3

αl + pl

max(m/r, pm)
− l

m
− 2

m

r
− 2pm. (6.10)

Proof. Note that 1− ax ≤ (1− x)a for 0 ≤ x ≤ 1 and a ≥ 1. As mθB
m = pm/p ≥ 1,

qr/m
m = (1− pm)r/m = (1−mθB

mp)r/m ≤ (1− p)rθB
m .

Since θB
m ≥ θR

m by Lemma 4.1, also q
r/m
m ≤ (1−p)rθR

m . In combination with Lemma 6.3,

eq. (6.4), this leads to (6.8).

For the proof of (6.9), we start from Lemma 6.3, eq. (6.5). We need to find suitable

lower bounds for q
r/m
m . For 0 ≤ x ≤ 1 and a ≥ 1,

0 ≤ exp(−ax)− (1− x)a ≤ {exp(−x)− (1− x)}a exp{−(a− 1)x}

≤ x2

2
a exp(1− ax) =

1
a

exp(1)
2

(ax)2 exp(−ax) ≤ 1
a
,
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since supy≥0 y2 exp(−y) = 4 exp(−2). Hence

qr/m
m = (1− pm)r/m ≥ exp{−(r/m)pm} −

m

r
= exp(−rpθB

m)− m

r
, (6.11)

which, in combination with Lemma 6.3, eq. (6.5), yields (6.9).

Finally, we will use Lemma 6.5 on the difference between θB
m and θR

m to convert

the lower bound for qr in terms of θB
m into a lower bound in terms of θR

m. Since

exp(z) = {exp(z/2)}2 ≥ (1 + z/2)2 for z ≥ 0, we have for 0 ≤ x ≤ y,

0 ≤ exp(−x)− exp(−y) =
∫ y

x

exp(−z)dz

≤
∫ y

x

(1 + z/2)−2dz ≤ y − x

1 + y/2
.

Hence, by Lemma 6.5, eq. (6.7),

exp(−rpθR
m)− exp(−rpθB

m) ≤ rp(θB
m − θR

m)
1 + rpθB

m/2

≤ rp{p2
m/(mp) + (αl + pl)/(mp)}

1 + (r/m)pm/2

=
(r/m)p2

m + (αl + pl)/(m/r)
1 + (r/m)pm/2

.

If, on the one hand, m/r ≥ pm, then

exp(−rpθR
m)− exp(−rpθB

m) ≤ pm +
αl + pl

m/r
,

while if, on the other hand, m/r < pm, then

exp(−rpθR
m)− exp(−rpθB

m) ≤ 2
(

pm +
αl + pl

pm

)
.

All in all,

exp(−rpθR
m)− exp(−rpθB

m) ≤ 2
(

pm +
αl + pl

max(m/r, pm)

)
.

Combine this with (6.11) to get

qr/m
m ≥ exp(−rpθR

m)− m

r
− 2pm − 2

αl + pl

max(m/r, pm)
.

This inequality, in combination with Lemma 6.3, eq. (6.5), yields (6.10). The proof of

the lemma is complete.
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6.3. Inter-arrival times

Conditionally on A1, the distribution of the time T until the next event is

Pr(T ≥ s | A1) = Pr (
⋂s

i=2 Ac
i |A1) = θR

s , s = 1, . . . , r,

see (4.6). We break up the block
⋂s

i=2 Ac
i into an initial smaller block

⋂m
i=2 Ac

i and

a subsequent larger block
⋂s

i=m+1 Ac
i . The next lemma demonstrates how to control

the dependence between A1 and the initial block on the one hand and the subsequent

block on the other hand. Recall ᾱl = max{αs,l : s = l, . . . , r−2l}, with αs,l as in (4.7).

Lemma 6.7. For integer 1 ≤ l ≤ m ≤ r such that 2m + l ≤ r and for integer

m + l ≤ s ≤ r −m,

−αl + pl

mp
≤ θR

s − θB
mqs ≤ 2

ᾱl

mp
+ pm + pl.

Proof. For integer m + 1 ≤ t ≤ r,

Pr
(⋃m

i=1 Ai ∩
⋂t

i=m+1 Ac
i

)
=

m∑
k=1

Pr
(
Ak ∩

⋂t
i=k+1 Ac

i

)
=

m∑
k=1

pθR
t−k+1,

so that

mpθR
t ≤ Pr

(⋃m
i=1 Ai ∩

⋂t
i=m+1 Ac

i

)
≤ mpθR

t−m.

Hence for integer m + 1 ≤ s ≤ r −m,

Pr
(⋃m

i=1 Ai ∩
⋂s+m

i=m+1 Ac
i

)
≤ mpθR

s ≤ Pr
(⋃m

i=1 Ai ∩
⋂s

i=m+1 Ac
i

)
.

Now

0 ≤ Pr
(⋃m

i=1 Ai ∩
⋂s

i=m+1 Ac
i

)
− Pr

(⋃m
i=1 Ai ∩

⋂s+m
i=m+1 Ac

i

)
≤ Pr

(⋃m
i=1 Ai ∩

⋃s+m
i=s+1 Ai

)
≤ p2

m + αs−m,l.

Moreover,

0 ≤ Pr
(⋃m

i=1 Ai ∩
⋂s+m

i=m+l+1 Ac
i

)
− Pr

(⋃m
i=1 Ai ∩

⋂s+m
i=m+1 Ac

i

)
≤ Pr

(⋃m+l
i=m+1 Ai

)
= pl

and, if s ≥ m + l, ∣∣∣Pr
(⋃m

i=1 Ai ∩
⋂s+m

i=m+l+1 Ac
i

)
− pmqs−l

∣∣∣ ≤ αl.
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Combine the four previous displays to get

pmqs−l − αl − pl ≤ mpθR
s ≤ pmqs−l + αl + p2

m + αs−m,l,

or, dividing by mp, as pm ≤ mp,

θB
mqs−l −

αl + pl

mp
≤ θR

s ≤ θB
mqs−l +

αl + αs−m,l

mp
+ pm.

Use qs ≤ qs−l ≤ qs + pl to conclude the proof.

Appendix A. Proofs for Section 5

Recall the setting of a triangular array of events as in Section 4.4. The probability

pln,n of the blocks that are clipped away is dealt with in the next lemma.

Lemma A.1. Let 1 ≤ ln ≤ mn ≤ rn be integers with ln = o(mn).

(i) Let 0 < λn → 0. If pmn,n = O(λn) and αln,n = o(λn), then pln,n = o(λn).

(ii) If 0 < pmn,n → 0 and αln,n = o(pmn,n), then pln,n = o(pmn,n).

Proof of Lemma A.1. (i) Let k be a positive integer. If n is large enough so that

(2k + 1)ln ≤ mn, then by Lemma 6.2, eq. (6.1), with the choices l = ln, m = ln, and

r = (2k + 1)ln,

1− pmn,n ≤ 1− p(2k+1)ln,n

≤ (1− pln,n)k + (2k + 1)αln,n ≤ exp(−pln,nk) + (2k + 1)αln,n.

If n is also large enough so that pmn,n + (2k + 1)αln,n < 1, then, as − log(1 − x) ≤

x/(1− x) for x < 1,

pln,n ≤ −1
k

log{1− pmn,n − (2k + 1)αln,n}

≤ 1
k

pmn,n + (2k + 1)αln,n

1− pmn,n − (2k + 1)αln,n
.

Hence lim sup pln,n/λn ≤ k−1 lim sup pmn,n/λn. Let k →∞ to see that pln,n/λn → 0.

(ii) Take λn = pmn,n in (i).
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Proof of Theorem 5.1. Without loss of generality, we can restrict n to a subsequence

along which sn/rn converges to some limit λ ∈ [0, 1].

Suppose first λ = 0. By the first inequality of Lemma 6.3, qrn,n ≤ q
rn/sn
sn,n + o(1).

Now consider a further subsequence along which µn := (rn/sn)psn,n converges to some

limit µ ∈ [0,∞]. If µ = ∞, then q
rn/sn
sn,n = {1 − (sn/rn)µn}rn/sn → 0 and hence

also qrn,n → 0 along this subsequence. If µ < ∞, then, again along the subsequence,

psn,n = O(sn/rn) and thus, by assumption, αln,n = o(psn,n), whence, by the second

inequality of Lemma 6.3 and by Lemma A.1(ii), also qrn,n ≥ q
rn/sn
sn,n + o(1).

On the other hand, if λ > 0, then choose a positive integer sequence ln ≤ mn ≤ sn

such that ln = o(mn), mn = o(sn) and αln,n = o(mn/sn); take for instance mn

equal to the integer part of max{(lnsn)1/2, α
1/2
ln,nsn}. By the case λ = 0, we have

qrn,n = q
rn/mn
mn,n + o(1) and qsn,n = q

sn/mn
mn,n + o(1). As rn/sn ∼ 1/λ, also q

rn/sn
sn,n =

q
1/λ
sn,n + o(1) = q

(sn/mn)(1/λ)
mn,n + o(1) = q

rn/mn
mn,n + o(1).

Proof of Theorem 5.2. (i) Let ln ≤ mn ≤ rn be an integer sequence such that

ln = o(mn), mn = o(rn) and αln,n = o(mn/rn); for instance, let mn be the integer

part of max{(lnrn)1/2, α
1/2
ln,nrn}. By Theorem 5.1, qrn,n = q

rn/mn
mn,n + o(1). Since

rnpn = O(1) and mn = o(rn), we have pmn,n ≤ mnpn = o(1). Hence q
rn/mn
mn,n =

exp{−(rn/mn)pmn,n}+ o(1) ≥ exp(−rnpn) + o(1).

Without loss of generality, suppose that rnpn → τ ∈ [0,∞). If τ = 0, then θM
rn,n ≤

1/qrn,n → 1 by Lemma 4.1. If τ > 0, then θM
rn,n = θM

mn,n + o(1) by Lemma 6.4 and

θM
mn,n ≤ 1/qmn,n → 1 by Lemma 4.1.

(ii) Without loss of generality, suppose that mn = o(rn); otherwise, apply a con-

struction as in (i). We have to show that θM
in,n = θM

jn,n + o(1) for all positive integer

sequences in and jn such that mn ≤ in ≤ jn ≤ rn. By restricting to a subsequence if

necessary, we can assume that in/rn → λ and jn/rn → µ for some 0 ≤ λ ≤ µ ≤ 1. If

λ = 0, then by Lemma 6.4, θM
in,n = θM

rn,n + o(1); similarly if µ = 0. On the other hand,

if λ > 0, then by Lemma 6.4, θM
in,n = θM

mn,n + o(1); similarly if µ > 0. As moreover

θM
mn,n = θM

rn,n + o(1), we get θM
in,n = θM

jn,n + o(1) in all cases. The proof of the theorem

is complete.
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Proof of Theorem 5.3. (i) By Lemmas 4.1 and 6.5,

θB
mn,n −

p2
mn,n

mnpn
− αln,n + pln,n

mnpn
≤ θR

mn,n ≤ θB
mn,n.

Since pmn,n ≤ mnpn and pln,n ≤ lnpn, the conditions imply θR
mn,n = θB

mn,n + o(1).

(ii) By the above display,

θB
mn,n

(
1− pmn,n −

αln,n + pln,n

pmn,n

)
≤ θR

mn,n ≤ θB
mn,n.

As pln,n = o(pmn,n) by Lemma A.1(ii), θR
mn,n ∼ θB

mn,n. Moreover, by Lemma 4.1,

θB
mn,n ≤ θM

mn,n ≤ θB
mn,n/qmn,n ∼ θB

mn,n.

Proof of Theorem 5.4. By Lemma 6.6, eq. (6.8),

qrn,n ≤ qrnθn
1,n + o(1) ≤ exp(−rnpnθn) + o(1),

for θn ∈ {θB
mn,n, θR

mn,n}. Without loss of generality, fix a subsequence along which

pmn,n converges to some p ∈ [0, 1].

In case p > 0, since θB
mn,n ≤ θM

mn,n (see Lemma 4.1),

exp(−rnpnθM
mn,n) ≤ exp(−rnpnθB

mn,n) = exp{−(rn/mn)pmn,n} = o(1),

so that qrn,n, qrnθn
1,n and exp(−rnpnθn) are all o(1) for θn ∈ {θB

mn,n, θM
mn,n}.

In case p = 0, then pln,n = o{max(mn/rn, pmn,n)} by Lemma A.1(i); hence, by

Lemma 6.6, eqs. (6.9) and (6.10),

qrn,n ≥ exp(−rnpnθn) + o(1) ≥ qrnθn
1,n + o(1)

for θn ∈ {θB
mn,n, θR

mn,n}. In combination with the first display of this proof, this yields

qrn,n = exp(−rnpnθn) + o(1) ≥ qrnθn
1,n + o(1)

for θn ∈ {θB
mn,n, θR

mn,n}. As pmn,n → 0 implies θM
mn,n ∼ θB

mn,n by Lemma 4.1, the

above display remains valid for θn = θM
mn,n by the fact that a1+εn

n = an + o(1) for any

real sequences 0 ≤ an ≤ 1 and εn → 0.
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Proof of Theorem 5.5. Let ln ≤ mn ≤ rn be an integer sequence such that ln = o(mn),

mn = o(rn) and ᾱln,n = o(mn/rn). By Lemma 6.7,

max{|θR
s,n − θB

mn,nqs,n| : s = mn + ln, . . . , rn −mn} → 0.

Hence for any integer sequence mn + ln ≤ sn ≤ rn−mn, we have θR
sn,n = θB

mn,nqsn,n +

o(1). By Theorem 5.4, also qsn,n = exp(−snpnθB
mn,n) + o(1). For 0 < x < lim inf rnpn,

the sequence sn = dx/pne falls in the required range, whence

θR
dx/pne,n = θB

mn,n exp(−xθB
mn,n) + o(1),

locally uniformly in 0 < x < lim inf rnpn.

Observe that θB
mn,n = θM

mn,n + o(1) = θM
rn,n + o(1) [Theorems 5.3(i) and 5.2(ii)] and,

for nonnegative θ, θ′ and x, that |θ exp(−xθ)− θ′ exp(−xθ′)| ≤ |θ− θ′| to complete the

proof.

Appendix B. Proof of equation (3.2)

Fix a positive integer m. For i ∈ Z and j = 1, . . . , d, put

X
(m)
i,j = max

l≥1
max
|k|<m

al,k,jZl,i−k,

R
(m)
i,j = max

l≥1
max
|k|≥m

al,k,jZl,i−k.

Observe that Xi,j = max(X(m)
i,j , R

(m)
i,j ).

Put bl,k = maxj=1,...,d al,k,j . For 0 < ε < ∞,

Pr(∃i = 1, . . . , νn, j = 1, . . . , d : R
(m)
i,j > nε)

= Pr(∃i = 1, . . . , νn, j = 1, . . . , d, l ≥ 1, |k| ≥ m : al,k,jZl,i−k > nε)

= Pr(∃i = 1, . . . , νn, l ≥ 1, |k| ≥ m : bl,kZl,i−k > nε)

= Pr
(
∃l ≥ 1, p ∈ Z : max

|k|≥m,1≤k+p≤νn
bl,kZl,p > nε

)
≤ 1

nε

∑
l≥1

∑
p∈Z

max
|k|≥m,1≤k+p≤νn

bl,k.

Replacing the last maximum by a summation and interchanging the summation over

p with the resulting summation over k gives

Pr(∃i = 1, . . . , νn, j = 1, . . . , d : R
(m)
i,j > nε) ≤ ν

ε

∑
l≥1

∑
|k|≥m

bl,k. (B.1)
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Put X
(m)
i = (X(m)

i,1 , . . . , X
(m)
i,d ). We have

Pr{∀i = 1, . . . , νn : max(X(m)
i , nε) = max(Xi, nε)}

≥ 1− Pr(∃i = 1, . . . , νn, j = 1, . . . , d : R
(m)
i,j > nε),

so that by (B.1),

Pr{∀i = 1, . . . , νn : max(X(mn)
i , nε) = max(Xi, nε)} → 1

for every positive integer sequence mn tending to infinity. Equation (3.2) now follows

from the fact that the process {X(m)
i : i ∈ Z} is 2m-dependent in the sense that

{X(m)
i : i ≤ r −m} and {X(m)

i : i ≥ r + m} are independent for every integer r.
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