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Behavioral economics provides several motivations for the common observation that

agents appear somewhat unwilling to deviate from recent choices. More recent choices
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Alternatively, agents may have formed habits, use rules of thumb, or lock in on certain

modes of behavior as a result of learning by doing. This paper provides discrete-time

adjustment processes for strategic games in which players display precisely such a bias

towards recent choices. In addition, players choose best replies to beliefs supported by

observed play in the recent past, in line with much of the literature on learning. These

processes eventually settle down in the minimal prep sets of Voorneveld [Games Econ.
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1. Introduction

The behavioral economics literature provides several motivations for the common ob-

servation that agents appear somewhat unwilling to deviate from their recent choices. For

instance, Tversky and Kahneman (1982, p. 11) mention the bias towards recent choices as

an example of the availability bias, the ease with which instances come to mind. Similarly,

Schelling (1960) has argued that players, when indifferent between strategies, choose the

most salient strategy. In combination with the so-called recency effect (Miller and Camp-

bell, 1959) this may explain why agents appear to have a preference for recent choices.

The recency effect refers to the cognitive bias that results from disproportionate salience

of recent stimuli or observations. Other motivations include models for agents displaying

defaulting behavior or inertia (cf. Vega-Redondo, 1993, 1995, Madrian and Shea, 2001),

the formation of habits (cf. Young, 1998), the use of rules of thumb (cf. Ellison and

Fudenberg, 1993), or the locking in on certain modes of behavior due to learning by doing

(cf. Grossman et al., 1977) or, as Joosten et al. (1995) express it: unlearning by not

doing.

This paper provides a class of discrete-time adjustment processes for mixed extensions

of finite strategic games in which players display precisely such a bias towards recent

choices. Apart from this behavioral assumption, the assumptions underlying the adaptive

processes in this paper are in conformance with much of the literature on learning (cf.

Hurkens, 1995, Fudenberg and Levine, 1998, and Young, 1998): players choose best replies

to beliefs that are supported by observed play in the recent past. The purpose of this

paper is to show that these behaviorally plausible models of adaptive play eventually

settle down in so-called minimal prep sets, thus providing a dynamic motivation for such

sets.

Minimal prep sets (‘prep’ is short for ‘preparation’) were introduced and studied in a

static framework in Voorneveld (2004, 2005). This set-valued solution concept for strategic

games combines a standard rationality condition, stating that the set of recommended

strategies to each player must contain at least one best reply to whatever belief he may

have that is consistent with the recommendations to the other players, with players’ aim

at simplicity, which encourages them to maintain a set of strategies that is as small as

possible. This discerns minimal prep sets from (a) minimal curb sets (Basu and Weibull,

1991), which are product sets of pure strategies containing not just some, but all best

responses against beliefs restricted to the recommendations to the remaining players, and

(b) persistent retracts (Kalai and Samet, 1984), which also require the recommendations

2



to each player to contain at least one best reply to beliefs in a small neighborhood of the

beliefs restricted to the recommendations to the other players. Voorneveld (2004, 2005)

contains a general existence proof and a detailed comparison of minimal prep sets with

Nash equilibria, rationalizability, minimal curb sets, and persistent retracts. Voorneveld et

al. (2005) provide axiomatizations of minimal prep sets and minimal curb sets. Tercieux

and Voorneveld (2005) show that minimal prep sets provide sharp predictions in many

economic applications, including potential games, congestion games, and supermodular

games, even in cases where curb sets have no cutting power whatsoever and simply consist

of the entire strategy space. The current paper complements this literature by providing

a dynamic motivation for minimal prep sets.

For play to settle down in a minimal prep set, players somehow need to coordinate

on actions from the same minimal prep set. Crawford and Haller (1990, p. 577) indicate

that an important coordination device is the fact that players “use asymmetric history to

“label” actions that cannot be distinguished at the start”. Modeling a behavioral bias,

like our bias towards recent best replies, does exactly that.

The work that is closest in spirit to our analysis is that of Hurkens (1995). In both his

work and in the current paper, convergence to a set-valued solution concept is established,

firstly, for discrete-time adjustment processes characterized by conditions on transition

probabilities (zero or positive), secondly, for all finite games, (in contrast with e.g. Young

(1998), who restricts attention to weakly acyclic games), and, thirdly, for all memory

lengths exceeding a certain lower bound. The main difference between this paper and

Hurkens (1995) is that in the latter paper, players choose arbitrary best replies to their

beliefs, whereas our players stick to recent best replies.

The outline of this paper is as follows. We recall definitions in Section 2. The evolution

of play is discussed in Section 3. Section 4 contains the convergence theorem and explains

the steps towards the proof. In Section 5, we discuss our assumptions. Section 6 contains

concluding remarks. All proofs are contained in the appendix.

2. Preliminaries

Weak set inclusion is denoted by ⊆, strict set inclusion by ⊂. The number of elements

in a finite set S is denoted by |S|. For k ∈ N, the k-fold cartesian product ×k
i=1S is

denoted by Sk.

A game is a tuple G = 〈N, (Ai)i∈N , (ui)i∈N〉, where N = {1, . . . , n} is a nonempty,

finite set of players, each player i ∈ N has a nonempty, finite set Ai of pure strate-
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gies/actions and a von Neumann-Morgenstern utility function ui : A → R on the set of

pure strategy profiles A = ×i∈N Ai. Let Xi be a nonempty subset of Ai. The set of mixed

strategies of player i ∈ N with support in Xi is denoted by ∆(Xi). Payoffs are extended

to mixed strategies in the usual way. Let i ∈ N and let α−i ∈ ×j∈N\{i} ∆(Aj) be a belief2

of player i. The set

BRi(α−i) = {ai ∈ Ai | ∀bi ∈ Ai : ui(ai, α−i) ≥ ui(bi, α−i)}

is the set of pure best responses of player i against α−i.

Fix a game G = 〈N, (Ai)i∈N , (ui)i∈N〉. A prep set (Voorneveld, 2004) is a nonempty

product set X = ×i∈N Xi ⊆ A of pure-strategy profiles such that for each i ∈ N and each

belief α−i of player i with support in X−i, the set Xi contains at least one best response

of player i against his belief:

∀i ∈ N, ∀α−i ∈ ×j∈N\{i} ∆(Xj) : BRi(α−i) ∩Xi 6= ∅.

A prep set X is minimal if no prep set is a proper subset of X. Establishing existence

of minimal prep sets in finite games is simple: the entire pure-strategy space A is a prep

set. Hence the collection of prep sets is nonempty, finite (since A is finite) and partially

ordered by set inclusion. Consequently, a minimal prep set exists. See Voorneveld (2004,

Thm. 3.2) for a general existence result.

In our adaptive processes, a game G = 〈N, (Ai)i∈N , (ui)i∈N〉 is played once every

period in discrete time. A history (of play) is a sequence h = (a1, . . . , aL) ∈ AL of

some arbitrary length L ∈ N, whose leftmost element

`(h) := a1 ∈ A

is interpreted as the action profile chosen in the previous period according to history h,

with `i(h) := a1
i ∈ Ai the action played by i ∈ N . Generally, the k-th element from the

left is the action profile ak ∈ A chosen k ∈ N periods ago.

A successor of history h = (a1, . . . , aL) is a history obtained after one more period

of play, a history h′ = (b1, b2, . . . , bL+1) obtained from h by appending a new leftmost

element: b1 ∈ A and bk = ak−1 for all k = 2, . . . , L + 1.

Fix a history h = (a1, . . . , aL) and a player i ∈ N . The set of actions chosen by i

during the previous k ∈ {1, . . . , L} rounds of history h is denoted by

pi(h, k) := {a1
i , . . . , a

k
i }.

2Beliefs are thus profiles of mixed strategies: correlation is not allowed.
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Assuming that all players’ actions were chosen at least once in history h, the order

oi,h : {1, . . . , |Ai|} → Ai of player i’s actions in history h is defined as follows: his most

recent action, i.e., the first encountered action is oi,h(1) := a1
i and for k = 2, . . . , |Ai|,

the k-th encountered action is oi,h(k) := am
i with m = min{q ∈ {1, . . . , L} | aq

i /∈
{oi,h(1), . . . , oi,h(k − 1)}}.

Example 2.1 Consider a two-player game with N = {1, 2} and action spaces A1 =

{T, B}, A2 = {L, R}. Consider the history

h = ((T, R), (B, R), (B, L))

of length three. Then `(h) = (T,R). The set of actions player 1 chose during the

most recent two periods is p1(h, 2) = {T, B}, whereas p2(h, 2) = {R}. As to orders,

player 1’s action T is encountered first, then B, so o1,h(1) = T, o1,h(2) = B. Similarly,

o2,h(1) = R, o2,h(2) = L. /

3. Adaptive play

3.1. State space

This section presents a class of Markov chains to model adaptive play with a bias

towards choices from the recent past. A game G = 〈N, (Ai)i∈N , (ui)i∈N〉 is played once

every period in discrete time. In line with much of the literature on learning models

(cf. Hurkens, 1995, Fudenberg and Levine, 1998, Young, 1998), players choose, at each

moment in time, best replies to beliefs supported by a limited horizon of observed past

play of fixed length T ∈ N.3

Consequently, we define the state space H to consist of all histories h = (a1, . . . , aL)

satisfying the following two conditions:

(i) their length is at least T , i.e., h ∈ ∪K∈N,K≥T AK , and

(ii) h is sufficiently “rich”, in the sense that all players’ actions were chosen at least

once before:

∀i ∈ N,∀ai ∈ Ai,∃k ∈ {1, . . . , L} : ak
i = ai. (1)

3Our adjustment processes are defined for a fixed game G and memory length T ; to simplify notation,
indices G and T are suppressed.
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The latter assures that our behavioral assumption — that players are biased towards

the ‘most recent’ best reply to a belief — is well-defined. Relaxations of this and other

conditions are discussed in Section 5.

3.2. Transition probabilities

Having defined the set H of states, we proceed to transition probability functions

P : H ×H → [0, 1], where P (h, h′) is the probability of moving from state h ∈ H to state

h′ ∈ H in one period and
∑

h′∈H P (h, h′) = 1 for all h ∈ H.

A player’s beliefs are based on observed play in the past T ∈ N periods. That is,

for each state h ∈ H, if the sequence of action profiles played in the past T periods is

(a1, . . . , aT ) ∈ AT , then player i’s beliefs are drawn from a probability measure P(i,(a1,...,aT ))

over the set of beliefs (with its standard topology and Borel σ-algebra)

×j∈N\{i}∆({a1
j , . . . , a

T
j }) = ×j∈N\{i}∆(pj(h, T ))

with support in the product set of actions chosen in the previous T periods.

Moreover, given such a belief α−i ∈ ×j∈N\{i}∆(pj(h, T )), we assume that player i

always chooses the most recent best reply to α−i. Players thus have a bias towards recent

choices.

Together, the probability distributions P(i,(a1,...,aT )) that fix for each player i ∈ N and

account of recent play (a1, . . . , aT ) ∈ AT the way beliefs are drawn, and the assump-

tion that players are biased towards recent choices, determine the transition probabilities

P (h, h′) ∈ [0, 1] for each pair of states (h, h′) ∈ H × H. If P (h, h′) > 0, then histories

h, h′ ∈ H satisfy conditions P1 and P2 in Fig. 1.

P1 h′ is a successor of h := (a1, . . . , aL);

P2 For each player i ∈ N, `i(h
′) is the most recent best reply to some

belief α−i ∈ ×j∈N\{i}∆(pj(h, T )). Formally:

`i(h
′) = ak

i , where k = min{m ∈ {1, . . . , L} | BRi(α−i) ∩ {a1
i , . . . , a

m
i } 6= ∅}.

Figure 1: For P ∈ P, P (h, h′) > 0 iff h, h′ ∈ H satisfy P1 and P2.

Condition P1 is standard for discrete-time processes, stating that between time periods

the game is played once: the process moves from a history h to one of its successors h′.

Condition P2 states, firstly, that the process P is a best-reply process: the action `i(h
′) ∈

Ai chosen by each player i ∈ N is a best reply to some belief α−i about the remaining
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players’ behavior based on recent experience, i.e., with support in ×j∈N\{i}∆(pj(h, T )).

Secondly, it models the bias towards recent choices: each player i ∈ N chooses his most

recent best reply to his belief α−i.

Let P be the class of transition probability functions P achieved in this way, i.e.,

from probability distributions {P(i,(a1,...,aT )) : i ∈ N, (a1, . . . , aT ) ∈ AT} and the behavioral

bias, and with P (h, h′) > 0 if and only if states h, h′ ∈ H satisfy conditions P1 and P2 in

Fig. 1.

Finally, for each k ∈ N, let P k : H × H → [0, 1] denote the k-step transition proba-

bilities of our Markov process with transition probability function P ∈ P: P 1 = P and

P k = P ◦ P k−1 for all k > 1.

4. Convergence and steps towards the proof

This section presents the main result of this paper. Theorem 4.1 states, for each game

G and adjustment process in the class P, that if beliefs are based on recent experience of

sufficient length T , then play will eventually settle down within a minimal prep set. The

steps of the proof are briefly explained in this section; the proof itself is contained in the

Appendix.

Given a game G and an adjustment process P ∈ P, we say that the process eventually

settles down in a minimal prep set X of G if the probability that the process after k steps

is in a state h ∈ H where

• the most recently played action profile lies in a minimal prep set:

`(h) ∈ X

• all future action profiles remain inside X:

`(h′) ∈ X whenever P k(h, h′) > 0 for some k ∈ N, h′ ∈ H,

converges to one as k goes to infinity.

Theorem 4.1 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a game. Let the horizon T ∈ N of recent

past play on which beliefs are based satisfy

T ≥ max

{∑
i∈N

|Ai| − |N |+ 1, 2|A1|, . . . , 2|An|

}
. (2)

If P ∈ P, then play eventually settles down in a minimal prep set of G.
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In his convergence result, Hurkens (1995, p. 314) uses as a lower bound on memory

length the number

K =
∑
i∈N

|Ai| − |N |+ 1 + max
i∈N

|Ai|,

which is strictly larger than our bound in (2) under the standard assumption that |Ai| ≥ 2

for all i ∈ N . He states, however, that his bound is not tight (ibid, p. 313, line 6).

The proof of Theorem 4.1 proceeds in four steps:

Step 1: Let h0 ∈ H. The process moves with positive probability in T − 1 steps to a

state h1 ∈ H where the product set ×i∈Npi(h1, T ) ⊆ A of actions played in the past T

periods is a prep set.

The intuition behind this result is as follows. If, for some state g ∈ H and some

k ≤ T , the product set ×i∈Npi(g, k) is a prep set, then players choose with positive

probability actions from this prep set for T − k periods in a row. If on the other hand,

×i∈Npi(g, k) is not a prep set, then there is a nonempty set of players i ∈ N with a

belief α∗
−i ∈ ×j∈N\{i} ∆(pj(g, k)) over play in the past k periods to which pi(g, k) does not

contain a best reply. In that case, one can construct a sequence of states g1, g2, . . . ∈ H

with g1 = g, P (gk, gk+1) > 0 for all k = 1, 2, . . . , such that the sequence of product sets

×i∈Npi(gk, k) is strictly increasing with respect to set inclusion (see Lemma A.1 in the

Appendix). All these sets are contained in the finite set A of action profiles which is a

prep set. Since there are only finitely many actions, the sequence reaches, after a finite

number of steps, a state gK ∈ H where ×i∈Npi(gK , K) is a prep set. From that state

onwards, players choose with positive probability actions from the prep set for T − K

periods in a row.

Step 2: From state h1, the process moves with positive probability in a finite number of

steps to a state h2 ∈ H where X := ×i∈Npi(h2, T ) is a minimal prep set.

Indeed, let X = ×i∈NXi ⊆ ×i∈Npi(h1, T ) be a minimal prep set. The proof of this step

relies on the fact that one can — under some conditions — perform so-called neighbor

switches: from a state h ∈ H, the process moves with positive probability in T steps

to a state h′ ∈ H whose horizon of recent past play is identical to the one in h, except

that two neighboring actions of some player have changed places (see Lemma A.6). As

all permutations of a finite set can be obtained by a chain of such neighbor switches, the

process moves with positive probability from state h1 to a state h′ where, for each player

i ∈ N , pi(h
′, |Xi|) = Xi, i.e. the |Xi| most recent actions of each player i are exactly those

in his component of the minimal prep set X. Then it is easy to show that the process

moves with positive probability to a state h2 within a finite number of steps such that
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×i∈Npi(h2, T ) = X is a minimal prep set.

Step 3: After reaching state h2, all action profiles that are played with positive probability

lie in X, i.e.

∀k ∈ N,∀h ∈ H : P k(h2, h) > 0 ⇒ `(h) ∈ X.

In state h2, ×i∈Npi(h2, T ) = X is a minimal prep set, which by definition contains

at least one best reply to whatever belief a player may have about other players’ choices

from X. Hence, by induction, the actions from minimal prep set X will always be fresher

in players’ recollection of past play than actions outside X, so that to any belief that each

player i may have on opponents’ play, there is an action in Xi that is the most recent

best reply. Hence, from state h2 onwards, players i ∈ N only choose actions from Xi.

Step 4: Starting from an arbitrary history h0, Step 1 and 2 show that there is a positive

probability of proceeding to a history h2 in a finite number of steps, after which play settles

down in a minimal prep set, i.e., a positive probability of proceeding to an absorbing set

of states in finitely many steps. Since the initial history was chosen arbitrarily, this

eventually happens with probability one, finishing the proof.

Condition P2 assures that play will not settle down in proper subsets of a minimal

prep set.

5. Discussion of assumptions

5.1. Modifying the assumption on prior play

To guarantee that the most recent best reply to a given belief is well-defined, states h ∈
H were assumed to be such that all players’ actions were chosen at least once before; see

condition (1). This assumption is the discrete-time analogon of the common assumption

in continuous-time dynamics that the process starts away from the boundary, i.e., in a

strategy profile having full support. Relaxing this assumption leads to similar results. We

discuss two ways to relax this assumption.

Firstly, actions in minimal prep sets are rationalizable (Voorneveld, 2004, Prop. 3.6),

so the proof of Theorem 4.1 continues to hold if (1) is replaced by the weaker assumption

that all players’ rationalizable actions have been chosen at least once before.

Secondly, suppose we allow for the possibility that best replies to some beliefs may

not have been played before. This implies that the ‘most recent best reply’ to a given

belief need not exist. To obtain a well-defined process that models a behavioral bias

towards recent ‘best’ actions, one may proceed as follows. Consider an arbitrary state
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h = (a1, . . . , aL) ∈ H ′, where H ′ = ∪K∈N,K≥T AK is the collection of histories with

length L greater than or equal to the lower bound T on memory length, i.e. we drop

condition (1) on the state space. As usual, let each player i ∈ N draw a belief α−i ∈
×j∈N\{i}∆(pj(h, T )) over recent past play from a probability distribution P(i,(a1,...,aT )) and

assume that i responds by playing the most recent utility maximizing action from the set

{a1
i , . . . , a

L
i } of actions chosen in the past, i.e., the action ak

i with

k = min

{
m ∈ {1, . . . , L} | ui(a

m
i , α−i) = max

ai∈{a1
i ,...,aL

i }
ui(ai, α−i)

}
. (3)

As in our initial class P of processes, the probability distributions P(i,(a1,...,aT )) and the

bias towards recent choices in (3), determine the transition probabilities P (h, h′) ∈ [0, 1]

for each pair of histories h, h′ ∈ H ′. If the transition probability P (h, h′) is positive,

then h, h′ ∈ H satisfy conditions P1 and P2’ in Fig. 2. Let P ′ denote the class of

transition probability functions P achieved in this way, with P (h, h′) > 0 if and only if

states h, h′ ∈ H ′ satisfy conditions P1 and P2’ in Fig. 2.

P1 h′ is a successor of h := (a1, . . . , aL);

P2’ For each player i ∈ N, `i(h
′) is the most recent utility maximizing

action among the past actions {a1
i , . . . , a

L
i } to some belief

α−i ∈ ×j∈N\{i}∆(pj(h, T )). Formally: `i(h
′) = ak

i , where

k = min
{

m ∈ {1, . . . , L} | ui(a
m
i , α−i) = maxai∈{a1

i ,...,aL
i } ui(ai, α−i)

}
.

Figure 2: For P ∈ P ′, P (h, h′) > 0 iff h, h′ ∈ H ′ satisfy P1 and P2’.

Since {a1
i , . . . , a

L
i } may be a proper subset of Ai, the utility maximizing action from

this subset could be a suboptimal reply to the belief α−i ∈ ×j∈N\{i}∆(Xj) or a best

reply that is not contained in a minimal prep set. Consequently, the process need not

convergence to a minimal prep set of the underlying game. It does, however, converge to

a minimal prep set of a subgame, as the next proposition establishes.

Proposition 5.1 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a game and let T ∈ N. Let P ∈ P ′

and let h0 = (b1, . . . , bL) ∈ H ′ be an initial state. If the horizon T ∈ N of recent past play is

sufficiently large, then play eventually settles down in a minimal prep set of the subgame

G′ = 〈N, ({b1
i , . . . , b

L
i })i∈N , (ui)i∈N〉, where ui is player i’s payoff function restricted to

×i∈N {b1
i , . . . , b

L
i }.
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5.2. Allowing for other behavioral biases

To show that processes from P eventually settle down in minimal prep sets, the proof

of Steps 1 and 2 of Theorem 4.1 (see Appendix) uses that certain transition probabilities

are positive to show that the process can move from any initial state h0 ∈ H in a finite

number of steps to a state h2 ∈ H where ×i∈Npi(h2, T ) is a minimal prep set. The proof

of Step 3 uses that certain transition probabilities are zero to show that each player —

once such a state h2 is reached — continues to play action profiles from the minimal

prep set. We motivated these conditions on the transition probabilities by assuming that

players always choose the most recent best reply to a certain belief. However, any class

of adjustment process that respects these conditions will converge to minimal prep sets.

Hence, one can easily extend the class of adjustment processes that converge to minimal

prep sets.

Consider the more general adjustment process in which, rather than choosing the

most recent best reply to beliefs drawn from recent past play, each player i ∈ N chooses

a response according to a probability distribution (mixed strategy)

Ri,h ∈ ∆(Ai)

depending on (1) the account (a1, . . . , aT ) of recent past play, and (2) the order in which

the players’ actions appear in h. That is, for each pair of states h = (a1, . . . , aL), g =

(b1, . . . , bK) ∈ H:

(a1, . . . , aT ) = (b1, . . . , bT )

oi,h = oi,g for all i ∈ N

}
⇒ Ri,h = Ri,g for all i ∈ N. (4)

Example 5.2 In processes from the class P, the probability that player i ∈ N in state

h = (a1, . . . , aL) ∈ H chooses action ai ∈ Ai equals the probability of drawing a belief α−i

to which ai is the most recent best reply:

Ri,h(ai) = P(i,(a1,...,aT ))

(
{α−i ∈ ×j∈N\{i}∆(pj(h, T )) | ai = ak

i }
)
,

where k = min{m ∈ {1, . . . , L} | BRi(α−i) ∩ {a1
i , . . . , a

m
i } 6= ∅}. /

The collection of functions R = (Ri,h)i∈N,h∈H determines, for each pair of states h, h′ ∈ H,

the transition probability PR(h, h′) ∈ [0, 1]. If PR(h, h′) > 0, then h′ is a successor of h

(property P1 in Fig. 1) and

PR(h, h′) =
∏
i∈N

Ri,h(`i(h)),

11



is the probability of the players choosing action profile `(h′). Let P̃ denote the collection

of such transition probability functions {PR : H × H → [0, 1] | R = (Ri,h)i∈N,h∈H} with

the following properties. For each pair of histories h, h′ ∈ H, it holds that

(α) If P1 and P2 hold, then PR(h, h′) > 0.

(β) If the product set of actions played during the most recent k ≥ T rounds of h is a

minimal prep set, play settles down within this set. Formally, if X := ×i∈Npi(h, k)

is a minimal prep set for some k ≥ T and PR(h, h′) > 0, then ×i∈Npi(h
′, k+1) = X,

i.e., `(h′) ∈ X.

Proposition 5.3 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a game and let T ∈ N. Then P ⊆ P̃.

Moreover, if PR ∈ P̃ and the horizon T ∈ N of recent past play is sufficiently large, then

play eventually settles down in a minimal prep set of G.

The set inclusion in Proposition 5.3 is strict. One easily finds processes in P̃ \ P by

letting players choose more freely among recent best replies, as the next example shows.

Example 5.4 For h = (a1, . . . , aL) ∈ H and i ∈ N , let Yi(h) ⊆ Ai denote the nonempty

set of actions which are the most recent best reply to some belief over recent past play:

ai ∈ Yi(h) ⇔ ∃α−i ∈ ×j∈N\{i}∆(pj(h, T )) : ai = ak
i , where

k = min{m ∈ {1, . . . , L} | BRi(α−i) ∩ {a1
i , . . . , a

m
i } 6= ∅}.

To make sure that condition (α) holds, Ri,h must assign positive probability to each action

in Yi(h). But player i can choose more freely among recent best replies, not just the most

recent ones. Let

Zi(h) = BRi(×j∈N\{i}∆(pj(h, T ))) ∩ pi(h, T )

be the set of all of i’s best replies to beliefs over ×j∈N\{i}pj(h, T ) during the horizon of

recent past play T . Fix a probability distribution Ri,h over Ai whose support is Yi(h) ∪
Zi(h). For the purpose of illustration, we take a simple uniform distribution:4

∀ai ∈ Ai : Ri,h(ai) =

{
1/|Yi(h) ∪ Zi(h)| if ai ∈ Yi(h) ∪ Zi(h),

0 otherwise.
(5)

4Alternatively, one could for instance assign higher probability to the most recent best replies in Yi(h)
than to less recent best replies in Zi(h) \ Yi(h).
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With R = (Ri,h)i∈N,h∈H as in (5), it follows easily that PR ∈ P̃. Condition (4) is satisfied

because Yi(h) = Yi(g) and Zi(h) = Zi(g) whenever states h, g ∈ H satisfy the conditions

in (4). Condition (α) is satisfied since each i ∈ N assigns positive probability to the

actions in Yi(h). Also condition (β) is satisfied: if X := ×i∈Npi(h, k) is a minimal prep

set for some k ≥ T , then Yi(h) ⊆ Xi and Zi(h) ⊆ pi(h, T ) ⊆ Xi for all i ∈ N . Hence,

using (5), `i(h
′) ∈ Yi(h) ∪ Zi(h) ⊆ Xi for all i ∈ N , i.e., `(h′) ∈ X. Finally, since the

process also assigns positive probability to possible other recent best replies over observed

past play during the last T rounds, PR /∈ P. /

6. Concluding remarks

The purpose of this paper was to study discrete-time best-response processes with an

intuitively appealing bias towards recent actions. Such processes were shown to settle

down in minimal prep sets. Several modifications of these processes were discussed in

the previous section. There remain, of course, interesting directions for future research,

including studying the effect of:

- random perturbations in the processes described above by introducing mistake prob-

abilities or experimentation as in Young (1998),

- introducing players with different levels of sophistication as in Milgrom and Roberts

(1991),

- other types of behavioral biases.

Hurkens (1995) already takes up the first two directions in variants of his model. To avoid

too much overlap of ideas, we therefore choose not to treat them here. One observation

might be useful. Following the discussion in Hurkens (1995, p. 326), one can show that the

introduction of perturbations adds little cutting power in two-player games. In contrast

with Young’s perturbed processes, for instance, this will not lead to a distinction between

payoff- or risk-dominant outcomes.

The third direction is the least traditional and therefore the most challenging, but it

lies outside the scope of the current paper. We cannot possibly do justice to the long list

of choice biases discussed in the behavioral economics literature. Whether other types of

biases than the type discussed here give rise to convergence to other solution concepts, is

a topic for further research.
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Appendix A Proof of Theorem 4.1

Fix a game G = 〈N, (Ai)i∈N , (ui)i∈N〉, length T ∈ N of recent past play with T ≥
max{

∑
i∈N |Ai| − |N | + 1, 2|A1|, . . . , 2|An|}, and an adjustment process with transition

probability function P ∈ P. We start with some additional notation. Fix an arbitrary

history h = (a1, . . . , aL) ∈ H and player i ∈ N . The action player i chose in h a number

of t ∈ {1, . . . , T} periods ago is denoted by

ai(h, t) := at
i

and the action player i chose in h exactly T periods ago is denoted by

τi(h) := aT
i = ai(h, T ).

Action ai ∈ pi(h, T ) is blocked in h if there is no belief α−i ∈ ×j∈N\{i}∆(pj(h, T )) against

which it is the most recent best reply. Finally, the frequency with which player i chose

action ai ∈ pi(h, T ) during the past T rounds of history h is

fi(h, ai) = |{t ∈ {1, . . . , T} : ai(h, t) = ai}|.

We now prove the four steps of Theorem 4.1.

A.1 Proof of Step 1

Step 1: Let h0 ∈ H. The process moves with positive probability in T − 1 steps to a

state h1 ∈ H where the product set ×i∈Npi(h1, T ) ⊆ A of actions played in the past T

periods is a prep set. The proof uses the following lemma.

Lemma A.1 Consider state h = (a1, . . . , aL) ∈ H and a number t ∈ {1, . . . , T − 1}.

(a) Suppose that ×i∈Npi(h, t) ⊆ A is not a prep set. Then the process moves with

positive probability to a successor h′ of h where

×i∈Npi(h, t) ⊂ ×i∈Npi(h
′, t + 1). (6)
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(b) Suppose that ×i∈Npi(h, t) ⊆ A is a prep set. Then the process moves with positive

probability to a successor h′ of h where

×i∈Npi(h, t) = ×i∈Npi(h
′, t + 1). (7)

Proof. (a): Since ×i∈Npi(h, t) ⊆ A is not a prep set, there is a nonempty set S ⊆ N of

players i ∈ N with a belief α∗
−i ∈ ×j∈N\{i} ∆(pj(h, t)) over the play in the past t periods

to which pi(h, t) does not contain a best reply: BRi(α
∗
−i) ∩ pi(h, t) = ∅. Fix such a belief

α∗
−i for each i ∈ S and let bi ∈ Ai be the most recently played best reply to α∗

−i in h:

bi = ak
i , where k = min{m ∈ {1, . . . , L} | BRi(α

∗
−i) ∩ {a1

i , . . . , a
m
i } 6= ∅}.

For each i ∈ N \ S, let bi ∈ pi(h, t) be the most recent best reply to an arbitrary belief

over play in the past t periods. Such a best reply exists by definition of S. By P1 and P2,

the process moves with positive probability from state h to successor h′ = (b, a1, . . . , aL).

Now (6) holds by construction: if i ∈ N \ S, then bi ∈ pi(h, t), so pi(h, t) = pi(h
′, t + 1),

and if i ∈ S, then bi /∈ pi(h, t), so pi(h, t) ⊂ pi(h, t) ∪ {bi} = pi(h
′, t + 1).

(b): Fix, for each i ∈ N , a belief α−i ∈ ×j∈N\{i} ∆(pj(h, t)) over the play in the past

t periods. Since ×i∈Npi(h, t) is a prep set, there is an action bi ∈ pi(h, t) which is the

most recent best reply to this belief. By P1 and P2, the process moves with positive

probability from h to h′ = (b, a1, . . . , aL). Since bi ∈ pi(h, t) for all i ∈ N , it follows that

pi(h
′, t + 1) = pi(h, t), so (7) holds. �

Applying Lemma A.1 T − 1 times, one can construct a sequence g1, . . . , gT in H with

g1 := h0 and for all k = 1, . . . , T − 1: P (gk, gk+1) > 0 and

×i∈Npi(gk, k) ⊆ ×i∈Npi(gk+1, k + 1),

with strict inclusion if ×i∈Npi(gk, k) is not a prep set and equality otherwise. The sequence

of product sets ×i∈Npi(gk, k) in A can increase strictly during at most
∑

i∈N |Ai|−n steps:

the action space A is a prep set containing
∑

i∈N |Ai| actions; ×i∈Npi(g1, 1) captures n of

them, and in each step at least one action is added until a prep set is reached. Hence,

the sequence has to reach, after K ≤
∑

i∈N |Ai| − n steps, a state gK+1 ∈ H where

×i∈Npi(gK+1, K + 1) is a prep set5. In the final T −K − 1 steps, we proceed to a state

5This motivates the lower bound L :=
∑

i∈N |Ai| − |N |+ 1 on T in (2): reaching a prep set can take
L − 1 steps; recalling the added actions and those in g1 can consequently take a memory length L + 1.
The same reasoning applies to other adjustment processes in the literature; cf. Hurkens (1995, p. 314).
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gT , where

×i∈Npi(gT , T ) = ×i∈Npi(gT−1, T − 1) = · · · = ×i∈Npi(gK+1, K + 1)

remains a prep set. Taking h1 := gT finishes the proof of Step 1.

A.2 States without blocked actions

In this section, we show that from a state h ∈ H such that ×i∈Npi(h, T ) is a prep

set, the process moves with positive probability within a finite number of steps to a state

h′ ∈ H where ×i∈Npi(h
′, T ) ⊆ ×i∈Npi(h, T ) is a prep set without blocked actions. This

is established in Lemma A.3, using Lemma A.2. Furthermore, in Lemma A.4 we show

that when considering a sequence g1, . . . , gK such that, for all k = 1, . . . , K, ×i∈Npi(gk, T )

is a prep set and ×i∈Npi(g1, T ) ⊇ · · · ⊇ ×i∈Npi(gK , T ), we can assume without loss of

generality that none of the states (gk)k=1,...,K contains a blocked action. We use this result

in the lemmata of the following subsections.

Lemma A.2 Let h ∈ H be such that ×i∈Npi(h, T ) is a prep set. For each player i ∈ N ,

define βi(h) ∈ pi(h, T ) as follows:

• if τi(h) is blocked, let βi(h) ∈ pi(h, T ) be an arbitrary non-blocked action;

• if τi(h) is not blocked, let βi(h) = τi(h).

Set h′ = (β(h); h), with β(h) = (βi(h))i∈N . Then:

P (h, h′) > 0 (8)

×i∈Npi(h
′, T ) ⊆ ×i∈Npi(h, T ) (9)

×i∈Npi(h
′, T ) is a prep set. (10)

Proof. For all i ∈ N , βi(h) ∈ pi(h, T ) is not blocked by definition: there is a belief

α−i ∈ ×j∈N\{i}∆(pj(h, T )) against which βi(h) is the most recent best reply. By P1 and

P2, (8) holds. Since βi(h) ∈ pi(h, T ) for all i ∈ N , (9) holds. To prove (10), let i ∈ N

and α−i ∈ ×j∈N\{i}∆(pj(h
′, T )). To show: BRi(α−i) ∩ pi(h

′, T ) 6= ∅. By construction,

pi(h
′, T ) equals either pi(h, T ) or, if τi(h) was blocked and chosen only once in the most

recent T periods of history h, pi(h, T ) \ {τi(h)}. Consequently, pi(h
′, T ) still contains a

best reply to every belief over ×j∈N\{i}∆(pj(h, T )), in particular to every belief over the

subset ×j∈N\{i}∆(pj(h
′, T )). �
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Claim (9) means that we weakly decrease the pool of feasible beliefs in going from h to

h′ = (β(h); h). This implies that if ai := τi(h) was blocked in h, but was chosen more

than once in the last T rounds of h, i.e., if ai ∈ pi(h
′, T ), then it remains blocked:

if ai := τi(h) was blocked in h and ai ∈ pi(h
′, T ), then it is blocked in h′. (11)

By definition, blocked actions are not chosen in going from h to h′. Thus, if an action

is blocked in h, it is either no longer contained in ×i∈Npi(h
′, T ), in which case (9) holds

with strict inclusion, or it remains blocked in h′ by (11), but lies further back in players’

memory. Hence, repeated application of Lemma A.2 to the sequence g1, g2, . . . in H with

g1 = h and gk+1 = (β(gk); gk) for all k ∈ N, yields that a blocked action disappears from

memory in at most T steps, in which case the product set of recent actions has become

strictly smaller in the weakly decreasing sequence

×i∈Npi(g1, T ) ⊇ ×i∈Npi(g2, T ) ⊇ · · ·

By (10), the product set remains a prep set. Since there are only finitely many prep sets,

it follows that we eventually reach a state gk without blocked actions. This proves:

Lemma A.3 Let h ∈ H be such that ×i∈Npi(h, T ) is a prep set. Either h contains no

blocked actions, or the process moves with positive probability in a finite number of steps

to a state h′ ∈ H where ×i∈Npi(h
′, T ) ⊂ ×i∈Npi(h, T ) is a prep set and h′ contains no

blocked actions.

The proof of Step 2 uses so-called drag-to-front operations (Section A.3) and neighbor

switches (Section A.4) to establish the following: Given a state g1 ∈ H where×i∈Npi(g1, T )

is a prep set, the process moves with positive probability in a finite number of steps

through a sequence of states g1, g2, . . . , gK such that

∀k = 1, . . . , K : ×i∈Npi(gk, T ) is a prep set, (12)

×i∈Npi(g1, T ) ⊇ ×i∈Npi(g2, T ) ⊇ · · · ⊇ ×i∈Npi(gK , T ), (13)

and gK has the property that for some minimal prep set X = ×i∈NXi and each i ∈ N :

pi(gK , |Xi|) = Xi,

i.e., for each player i ∈ N , the most recent |Xi| actions are exactly those in i’s component

of the minimal prep set X. If any of the states gk contains a blocked action, apply
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Lemma A.3 to move to a state g′ where ×i∈Npi(g
′, T ) ⊂ ×i∈Npi(gk, T ) is a prep set and

g′ contains no blocked actions. Then, we can start the repeated use of drag-to-front

operations and neighbor switches anew from g′. Since there are only finitely many prep

sets and the prep set ×i∈Npi(g
′, T ) is strictly contained in ×i∈Npi(gk, T ), we eventually

reach in a finite number of steps a state from which we can apply drag-to-front operations

and neighbor switches without ever encountering a state with a blocked action. Hence:

Lemma A.4 In a sequence of states (gk)k=1,...,K satisfying (12) and (13), obtained using

drag-to-front operations and neighbor switches, we may assume w.l.o.g. that none of the

states contains a blocked action.

A.3 Drag-to-front operations and frequency correction

Consider a state h ∈ H containing no blocked actions for which ×i∈Npi(h, T ) is a prep

set. Then, by definition, for each i ∈ N , βi(h) = τi(h), the action player i chose T periods

ago in state h (see Lemma A.2). Hence, in the successor (β(h); h) = (τ(h); h), this action

is dragged to the front of player i’s account of recent past play. For easy reference, call

the transition from h to (β(h); h) = (τ(h); h) a drag-to-front operation .

Suppose some player j ∈ N has an action aj ∈ pj(h, T ) with frequency fj(h, aj) = 1.

Since T ≥ 2|Aj| by (2), there must be an action bj ∈ pj(h, T ) with frequency fj(h, bj) ≥ 3.

By Lemma A.4, and using drag-to-front-operations if necessary, we can assume without

loss of generality that player j chose bj exactly T periods ago: τj(h) = bj. For each player

i ∈ N , define γi(h) ∈ pi(h
′, T ) as follows:

γi(h) =

{
τi(h) if i 6= j,

aj if i = j.

Set h′ = (γ(h); h) with γ(h) = (γi(h))i∈N . Recall: (1) γi(h) ∈ pi(h, T ) for all i ∈ N , (2)

×i∈Npi(h, T ) is a prep set, and (3) no actions in h are blocked; so each γi(h) is the most

recent best reply to a belief α−i ∈ ×k∈N\{i}∆(pk(h, T )). By P1 and P2, P (h, h′) > 0.

By construction, ×i∈Npi(h
′, T ) = ×i∈Npi(h, T ) remains a prep set. The frequency

of the actions of players i 6= j is unaffected: ∀i ∈ N \ {j},∀ci ∈ pi(h
′, T ) = pi(h, T ) :

fi(h
′, ci) = fi(h, ci). For player j and cj ∈ pj(h

′, T ) = pj(h, T ):

fj(h
′, cj) =


fj(h, cj) if cj /∈ {aj, bj},
fj(h, aj) + 1 = 2 if cj = aj,

fi(h, bj)− 1 ≥ 2 if cj = bj.
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By going from h to h′, the number of actions with frequency one has strictly decreased,

whereas there is no action with frequency larger than or equal to two whose frequency

becomes less than two.

Repeating this process, we eventually reach a state where all actions in the history of

recent past play have frequency greater than or equal to two. By Lemma A.3, we may

assume that none of its actions is blocked. This proves:

Lemma A.5 Let h ∈ H be such that ×i∈Npi(h, T ) is a prep set. Then the process moves

with positive probability in a finite number of steps to a state h′ ∈ H with ×i∈Npi(h
′, T ) ⊆

×i∈Npi(h, T ) such that

[C1] ×i∈Npi(h
′, T ) is a prep set,

[C2] all actions have frequency at least 2: ∀i ∈ N,∀ai ∈ pi(h
′, T ) : fi(h

′, ai) ≥ 2,

[C3] h′ contains no blocked actions.

A.4 Neighbor switches

Repeatedly applying drag-to-front operations starting in a state h ∈ H where no

actions are blocked and ×i∈Npi(h, T ) is a prep set, we get a sequence of states g0, g1, · · · ∈
H with g0 := h such that for all players i ∈ N and all t ∈ N: `i(gt) = τi(gt−1), i.e., we get

a periodic repetition of each player’s actions.

Instead, it is possible that some player i chooses his actions in such a way that the

process moves to a state in which the order6 in which player i plays two neighboring

actions — say those chosen t and t + 1 periods ago in state h — is changed, while the

others continue to play actions in their given order. For instance, the process may move

from Fig. 3.a to Fig. 3.e, where player i’s order of actions b and c, chosen 2 and 3 periods

ago in Fig 3.a, respectively, is reversed while the order of actions of players j 6= i is

unchanged. In Fig. 3, the length of recent past play T is 4; actions chosen during the

most recent four periods are contained in the boxed part of the table; actions outside the

boxes have disappeared from recent past play. For instance, in Fig. 3.c, player i chose c

five periods ago, d six periods ago. Since T = 4, these actions are no longer part of recent

past play.

6Although they may be related (for instance in the case of drag-to-front operations), the order in
which a player i ∈ N plays his actions is different from the way in which his actions are encountered in
a given history h, i.e., the order oi,h defined in Section 2.
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The idea is simple:7 use drag-to-front operations until the actions to be switched are

those chosen T − 1 and T periods ago (the transition from Fig. 3.a to Fig. 3.b); in the

next two periods, let players j 6= i continue with drag-to-front operations, while player i

chooses the actions that are to be switched in reverse order (in going from Fig. 3.b to Fig.

3.c, i chooses b instead of c, in going from the Fig. 3.c to Fig. 3.d, i chooses c instead of

b). Finally, use drag-to-front operations until the switched actions are back at time slots

t and t + 1 in the recent past play (the transition from Fig. 3.d to Fig. 3.e). Formally:

Fig. 3.a player i: a b c d

player j: α β γ δ

Fig. 3.b player i: d a b c d

player j: δ α β γ δ

Fig. 3.c player i: b d a b c d

player j: γ δ α β γ δ

Fig. 3.d player i: c b d a b c d

player j: β γ δ α β γ δ

Fig. 3.e player i: a c b d a b c d

player j: α β γ δ α β γ δ

Figure 3: Switch i’s actions b and c, keeping those of players j 6= i in the same order.

Lemma A.6 Let h ∈ H satisfy [C1] to [C3]. Let i ∈ N, t ∈ {1, . . . , T − 1}. Assum-

ing w.l.o.g. (Lemma A.4) that we encounter no blocked actions, the process moves with

positive probability in T steps to a state h′ ∈ H satisfying [C1] to [C3] and in which

aj(h
′, k) = aj(h, k) if j = i and k /∈ {t, t + 1}, or if j 6= i, whereas ai(h

′, t) = ai(h, t + 1)

and ai(h
′, t + 1) = ai(h, t).

Proof. For notational convenience, let ai and bi be the actions player i chose t + 1 and t

periods ago in h, respectively. Performing T − t− 1 drag-to-front operations, we reach a

state h1 satisfying [C1] to [C3] in which ai is the action i chose T periods ago and bi the

action he chose T − 1 periods ago.

7Fig. 3 is for illustration only; we assume there that all steps we describe are feasible.
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Construct a successor h2 of h1 as follows: for each j ∈ N \ {i}, set s1
j = τj(h1) and set

s1
i = bi. Define h2 = (s1; h1), where s1 = (s1

j)j∈N .

Construct a successor h3 of h2 as follows: for each j ∈ N \ {i}, set s2
j = τj(h2) and set

s2
i = ai. Define h2 = (s2; h2), where s2 = (s2

j)j∈N .

For players j 6= i, these two steps involve simple drag-to-front operations. For player

i it involves reversing the order: in going from h1 to h2, i chooses bi, in going from h2 to

h3, i chooses ai, rather than playing first ai, then bi.

As ×i∈Npi(h1, T ) is a prep set and no actions are blocked in h1, it follows from P1 and

P2 that P (h1, h2) > 0. Moreover, as all actions in h have frequency at least 2, we have that

pi(h1, T ) = pi(h2, T ) for all i ∈ N . Hence, also ×i∈Npi(h2, T ) is a prep set. By Lemma A.4

we may assume that h2 contains no blocked actions. Hence, also P (h2, h3) > 0. Moreover,

it is easy to see that frequencies in h3 are identical to frequencies in h1, i.e., at least equal

to 2. We can thus conclude that also h3 satisfies [C1] to [C3].

In h3, the two actions that are played most recently are ai and bi, respectively. Thus,

performing t− 1 drag-to-front operations leads to the desired state h′. �

A.5 Proof of Steps 2 to 4

Step 2: Let h1 ∈ H be such that ×i∈Npi(h1, T ) is a prep set. The process moves with

positive probability in a finite number of steps to a state h2 ∈ H where ×i∈Npi(h2, T ) is

a minimal prep set.

Proof. By Lemma A.5, the process moves with positive probability in a finite number of

steps from h1 to a state g ∈ H satisfying [C1] to [C3]. Let X = ×i∈NXi ⊆ ×i∈Npi(g, T )

be a minimal prep set. Assuming w.l.o.g. (Lemma A.4) that from g onward we do

not encounter blocked actions, Lemma A.6 allows us to perform neighbor switches. Every

permutation of a finite set can be obtained by a chain of neighbor switches; thus, repeated

application of Lemma A.6 yields that the process moves in a finite number of steps to a

state g0 ∈ H with the property that for each player i ∈ N , pi(g0, |Xi|) = Xi, i.e., for each

player i ∈ N , the most recent |Xi| actions in g0 are exactly those in i’s component of the

minimal prep set X.

For each k ∈ N, let gk := ((a(gk−1, |Xi|))i∈N ; gk−1) ∈ H, i.e., gk is the successor of gk−1

obtained by letting each player i ∈ N play the action he chose |Xi| periods ago in gk−1.

Recalling that X is a minimal prep set, a simple inductive proof establishes that for all

k ∈ N it holds that P (gk−1, gk) > 0 and for all players i ∈ N we have

pi(gk, min{|Xi|+ k, T}) = Xi.
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Set k = T to find that ×i∈Npi(gT , T ) = X. Taking h2 := gT finishes the proof of Step 2. �

Step 3: Let h2 ∈ H be such that X = ×i∈Npi(h2, T ) is a minimal prep set. After reaching

h2, all action profiles that are played with positive probability lie in X:

∀k ∈ N,∀h ∈ H : P k(h2, h) > 0 ⇒ `(h) ∈ X. (14)

Proof. By P1 and P2, players always base beliefs on the actions played in the last T

periods and choose the most recent best reply to such beliefs. In h2, their account of

recent play ×i∈Npi(h2, T ) equals the minimal prep set X, which by definition contains

at least one best reply to whatever belief a player may have about other players’ choices

from X. Hence, by induction, the actions from minimal prep set X will always be fresher

in players’ recollection of past play than actions outside X, i.e., beliefs and best replies to

these beliefs will, by P1 and P2, always have support in X. Formally, for all k ∈ N and

h ∈ H:

if P k(h2, h) > 0, then ×i∈N pi(h, T + k) = X,

and hence

×i∈Npi(h, T ) ⊆ X.

In particular, this means `(h) ∈ X, i.e., (14) holds. �

Step 4: For every state h0 ∈ H, the process eventually reaches a state h2 ∈ H satisfying

the conditions in Step 2, i.e., where according to Step 3 play settles down in a minimal

prep set.

Proof. Call two states h = (a1, . . . , aL) and g = (b1, . . . , bK) in H equivalent, denoted

h ∼ g, if they have the same account of recent past play and the same order in which

each player i’s actions are encountered:

h ∼ g ⇔

{
(a1, . . . , aT ) = (b1, . . . , bT ),

oi,h = oi,g for all i ∈ N.

Notice that ∼ is an equivalence relation on H; for each h ∈ H, let [h] = {h′ ∈ H : h ∼ h′}
be the equivalence class containing h. Recall from Section 3.2 that in each state h ∈ H, if

the sequence of action profiles from the past T periods is (a1, . . . , aT ) ∈ AT , then player

i’s beliefs are drawn from a probability distribution P(i,(a1,...,aT )). By P2, he chooses the

most recent best reply to every such belief. Thus, player i’s choice behavior is the same

in two equivalent states. Since there are only finitely many elements in AT and N , it

22



follows that the set of positive transition probabilities {P (h, h′) | h, h′ ∈ H, P (h, h′) > 0}
is a finite set. Let ε > 0 be its minimum.

By Steps 1 to 3, it is possible, from any history h0 ∈ H, to reach a state h2 ∈ H

in an absorbing set where play settles down in a minimal prep set in a finite number of

steps, say k(h0) ∈ N. By definition of equivalence, k(h) = k(h0) for all h ∈ [h0]: the set

{k(h0) | h0 ∈ H} is finite. Let κ ∈ N be its minimum.

By definition of ε and κ, the probability of entering an absorbing set where play settles

down in a minimal prep set in at most κ steps is at least εκ from any state. Hence, the

probability of not reaching an absorbing set in κ steps is at most 1−εκ, which is less than

1. So the probability of not reaching an absorbing set in kκ steps is less than or equal to

(1− εκ)k, which goes to zero as k goes to infinity. �

Appendix B Proofs of Prop. 5.1 and 5.3

Proof. [Prop. 5.1] By P2’, given an initial state h0 = (b1, . . . , bL) ∈ H ′, all chosen

action profiles in future states lie in ×i∈N {b1
i , . . . , b

L
i } ⊆ A. The adjustment process with

transition matrix P ∈ P ′ for the original game G then reduces to a best-reply process in

P of the subgame G′: the full-support condition (1) is satisfied by restricting the strategy

space to ×i∈N {b1
i , . . . , b

L
i } and choosing actions according to P2’ coincides with choosing

the most recent best reply to their beliefs in the subgame G′. Applying Theorem 4.1 to

the subgame G′, we find that the process with transition matrix P ∈ P ′ and initial state

h0 ∈ H ′ converges to a minimal prep set of the subgame G′. �

Proof. [Prop. 5.3] Let P ∈ P. By Example 5.2, there are functions R = (Ri,h)i∈N,h∈H

such that P = PR. Conditions (α) and (β) follow trivially from P1 and P2 in the definition

of P. Conclude that P ∈ P̃. The proof of Theorem 4.1 (see Appendix) applies with

minor changes to PR as well:

– condition (α) guarantees that Steps 1 and 2 hold without change,

– condition (β) guarantees that Step 3 holds without change,

– by (4), there are only finitely many different functions in R = (Ri,h)i∈N,h∈H , so the

equivalence relation in Step 4 is well-defined and there are again finitely many equiva-

lence classes; hence, also Step 4 holds. �
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