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Abstract

We establish the following generalization of Ky Fan’s coincidence theorem. Let X be a

non-empty compact and convex set in the n-dimensional Euclidean space IRn, let c be an

arbitrary non-zero vector in IRn, and let φ and ψ be two upper semi-continuous mappings

fromX to the collection of non-empty, compact, convex subsets of IRn. Suppose that for ev-

ery x ∈ X and every d ∈ IRn satisfying both c�d = 0 and d�x = max{d�y | y ∈ X, c�y =

c�x }, there exist v ∈ φ(x) and w ∈ ψ(x) such that c�v = c�w and d�v ≥ d�w. Then

there exists a connected set C of coincidences in X, i.e., φ(x) ∩ ψ(x) �= ∅ for every x ∈ C,

such that both C ∩X− �= ∅ and C ∩X+ �= ∅, where X− = {x ∈ X | c�x ≤ c�y, ∀y ∈ X }

and X+ = {x ∈ X | c�x ≥ c�y, ∀y ∈ X }. Several similar results on the existence of a

continuum of fixed and zero points and of optima and of solutions to non-linear variational

inequality problems are also established. We develop a simplicial algorithm to compute the

connected set of solutions. This leads to a constructive proof for our existence theorems.

Keywords: coincidence, fixed point, zero point, continuum, optimum, variational in-

equality, upper semi-continuity
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1 Introduction

Several recent studies on equilibrium and fair allocation problems have indicated that there

is a growing demand for stronger fixed point theorems beyond Brouwer’s and Kakutani’s,

which guarantee the existence of a continuum of fixed points, stationary points, coinci-

dences or zero points of mappings on arbitrary non-empty compact and convex sets in the

n-dimensional Euclidean space IRn; see Herings (1998), Herings, van der Laan and Talman

(2001), Herings, Talman and Yang (1996, 2001), Sun and Yang (2001), Talman and Ya-

mamoto (2001), and Yang (1999, 2003). In this paper we introduce a general existence

theorem, Theorem 2.1, for a continuum of zero points of a convex-valued, compact-valued

upper-semicontinuous mapping on a non-empty compact and convex set X. The contin-

uum is a connected set containing two different points in the boundary of X. At one of

these points a linear function, c�x for some given non-zero vector c, is minimized on X

and at the other point this function is maximized. We show that the theorem extends and

unifies existing existence theorems such as Browder’s fixed point theorem, see Browder

(1960). Browder’s theorem is a continuum version of Brouwer’s theorem and states that

for any continuous function from X × [0, 1] to X there exists a continuum of fixed points

connecting the zero-level with the one-level. Here, the variable lying in [0, 1] can be seen

as a homotopy parameter and at each value of this homotopy parameter there exists a so-

lution of the homotopy mapping. As another special case of Theorem 2.1, we establish the

existence of a continuum of coincidences of two mappings, thereby generalizing Ky Fan’s

coincidence theorem (see Fan, 1972) to a connected set of such points. A coincidence is a

point at which two images of two different mappings have a non-empty intersection. It is

well known from Ky Fan’s theorem under which conditions a coincidence exists. However,

in the literature there have been no results for the existence of a continuum of such points.

Furthermore, we establish several results on the existence of a continuum of fixed points,

zero points, optima, and solutions to non-linear variational inequality problems.

In contrast to various approaches used in the literature such as Browder’s and Ky

Fan’s, one prominent feature of our approach is its constructive nature and simplicity in

its arguments. To be precise, we demonstrate our main result Theorem 2.1 by means of a

simplicial algorithm. This type of algorithm has its root in the work of Scarf (1973). The

interested reader could refer to Allgower and Georg (1990), Todd (1976), and Yang (1999)

for a comprehensive treatment on the subject. In our approach we first embed the set X of

interest into an elaborately-designed full-dimensional rectangular P and then we develop

a simplicial algorithm on P . The set P has two distinct facets P− and P+ which contain

the faces X− and X+ of the set X, respectively, that are designated to contain a solution.

Given a simplicial subdivision for the set P , the algorithm generates a finite of sequence

of adjacent simplices, starting at an arbitrarily chosen point in P− and ending with a
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simplex on P+. It is shown that when the mesh size of the triangulation is small enough,

the sequence of simplices induces a path of approximate zero points of the point-to-set

mapping of interest linking the facets P− and P+. By a limit argument, we will show that

there exists a connected set of zero points of the mapping linking the two distinct facets

X− and X+ of X.

This paper is organized as follows. In Section 2 we present the main existence theorem

on an arbitrary non-empty convex and compact set. In Section 3 we propose the simplicial

algorithm which will be used to approximate a continuum of solutions and we prove its

convergence. In Section 4 we give the constructive proof of the main existence theorem.

In Section 5 we show how the main theorem implies the continuum coincidence theorem

and several existence theorems of a continuum of zero points, optima, stationary points,

and fixed points, including Browder’s fixed point theorem.

2 The Main Existence Theorem

Consider an arbitrary non-empty, convex and compact set X in the n-dimensional Eu-

clidean space IRn. Let c be an arbitrary non-zero vector in IRn. Define

X+ = { x ∈ X | c�x ≥ c�y for all y ∈ X },

X− = { x ∈ X | c�x ≤ c�y for all y ∈ X },

t+ = c�x for any x ∈ X+,

t− = c�x for any x ∈ X−.

Throughout the paper we assume that t+ > t− and thus X− ∩X+ = ∅. For t, t− ≤ t ≤ t+,

we define X(t) = {x ∈ X | c�x = t }. Notice that for every t, t− ≤ t ≤ t+, the set X(t)

is a non-empty, convex, compact set in IRn, X(t−) = X−, and X(t+) = X+.

Let Y be an arbitrary non-empty set in IRn. For x ∈ Y, the set

N(Y, x) = {y ∈ IRn | (x− x′)�y ≥ 0 for all x′ ∈ Y }

denotes the normal cone of Y at x and its polar cone

T (Y, x) = {z ∈ IRn | z�y ≤ 0 for all y ∈ N(Y, x)}

denotes the tangent cone of Y at x. If Y is compact and convex, N(Y, ·) is an upper

semi-continuous, convex-valued and closed-valued mapping on Y and T (Y, ·) is a convex-

valued and closed-valued mapping on Y and, for every y ∈ Y , both N(Y, y) and T (Y, y)

are non-empty.

The notion IN denotes the set of all positive integers and Ik denotes the set of the first

k positive integers. The notions 0n, 1n and E(n) stand for the vector of zeros and ones of
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dimension n and the n × n identity matrix, respectively. Given a set D, bdD and intD

represent the sets of (relative) boundary and interior points of D, respectively, and co(D)

represents the convex hull of D. For an n × n matrix R and a subset Y of IRn we define

RY = {z ∈ IRn | z = Ry, y ∈ Y }. Furthermore, define B = {x ∈ IRn | ||x||2 ≤ 1, c�x =

0 } and C(v) = {y ∈ IRn | y = µv + βc, µ ≥ 0, β ∈ IR} for every v ∈ B.

A topological space W is said to be connected if the only subsets of W both open and

closed are ∅ and W . A subset of W is called a connected set if it is connected as a subspace

of W . Given an element y ∈ W , the union of all connected subsets of W containing y is

called the component of y in W . See Dugundji (1970).

Let φ be an upper semi-continuous mapping from X to the collection of non-empty

convex and compact subsets of IRn. A point x∗ ∈ X is called a zero point of φ if 0n ∈ φ(x∗),

a fixed point of φ if x∗ ∈ φ(x∗), a coincidence of φ and some other mapping ψ on X if

φ(x∗) ∩ ψ(x∗) �= ∅, and a stationary point of φ or a solution to the non-linear variational

inequality problem for φ on X if there exists f ∗ ∈ φ(x∗) satisfying (x∗ − x)�f ∗ ≥ 0 for

all x ∈ X. Notice that x∗ is a stationary point of φ if and only if φ(x∗) ∩ N(X, x∗) �= ∅.

Without any further conditions on φ there may not exist any solution at all on X for some

of the solution concepts, not to mention a continuum of solutions.

In this paper we are interested in conditions on the mapping φ, under which there exists

a connected set of solutions of φ in X having a non-empty intersection with both X− and

X+. Since the intersection of X− and X+ is empty this implies that the connected set of

solutions contains a continuum of points. A solution could be a zero point, fixed point,

stationary point, or coincidence with some other mapping on X.

Now we may state the main continuum zero point existence theorem of this paper.

Theorem 2.1 Let φ be an upper semi-continuous mapping from X to the collection of

non-empty convex and compact subsets of IRn. Suppose that there exists an upper semi-

continuous mapping π from B to the collection of non-empty convex and closed subsets of

IRn, and that for every x ∈ X there exists a non-singular n × n matrix A(x) being con-

tinuous in x, such that for every x ∈ X and every v ∈ N(X(t), x) ∩ B with t = c�x, the

following two conditions hold:

1. The set A(x)φ(x) ∩ π(v) ∩C(v) is either empty or contains 0n;

2. The set A(x)φ(x) ∩ π(v) �= ∅.

Then there exists a connected set C of zero points of φ in X such that X− ∩ C �= ∅

and X+ ∩ C �= ∅.
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The theorem says that the mapping φ has a continuum of zero points on X connecting

X− and X+, if there exists a continuous regular matrix mapping A and an upper semi-

continuous, convex-valued and closed-valued mapping π on B satisfying that, for every

element v in B of the normal cone of X(c�x) at any point x of X with length at most one,

the set A(x)φ(x) and π(v) intersect, but this intersection may have no points in common

with the two-dimensional cone C(v) determined by the vectors v, c and −c, unless the

origin is contained in this intersection.

The matrix A(x) translates the image φ(x) in a linear way, so that A(x)φ(x) has the

same convexity properties as φ(x) has. Due to the regularity of the matrix A(x) at any

x in X, a point x∗ is a zero point of φ if and only if x∗ is a zero point of A(x)φ(x). The

use of the linear mapping A(·) expands the cases to which our result applies. For example,

consider X = Bn, c = 1n and the function f : Bn → IRn defined by f(x) = x− (c�x)c/n,

where Bn is the n-dimensional unit ball. Then there is no mapping π that satisfies both

conditions 1 and 2 with A(x) = E(n), although f(β1n) = 0n for any feasible β, connecting

X− and X+. However, when we take A(x) = −E(n) for all x ∈ Bn, conditions 1 and 2 are

satisfied for π(v) = IRn for any v ∈ B.

3 A Simplicial Algorithm

In this section we propose a simplicial algorithm which will lead to a constructive proof

of Theorem 2.1. For t ∈ IR, let H(t) = {y ∈ IRn | c�y = t}, and let H be the union of

H(t) over t, t− ≤ t ≤ t+. Let H− = H(t−) and H+ = H(t+). For x ∈ H, let p(x) be

the orthogonal projection of x on X(t), where t = c�x. Since X is a non-empty, compact,

convex set, p is a continuous function on H. Moreover, x − p(x) ∈ N(X(t), p(x)) for

x ∈ H(t), t− ≤ t ≤ t+. For t, t− ≤ t ≤ t+, the set Q(t) is defined by

Q(t) = {q ∈ H(t) | ‖ q − p(q) ‖2≤ 1}.

The union of Q(t) over t, t− ≤ t ≤ t+, is denoted by Q.

Lemma 3.1 The set Q is a full-dimensional, compact, convex subset of H.

Proof: Clearly, Q is a full-dimensional set in IRn and a subset of H. Since X is compact,

Q is also compact. To prove convexity of Q, take any q1, q2 ∈ Q and 0 ≤ λ ≤ 1 and let

q(λ) = λq1 + (1− λ)q2

and

p(λ) = λp(q1) + (1− λ)p(q2).
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Since X is convex, we have that p(λ) ∈ X. Let t = c�p(λ), i.e. p(λ) ∈ H(t). Note that

c�q1 = c�p(q1) and c�q2 = c�p(q2). Then we have c�q(λ) = t, i.e. q(λ) ∈ H(t). Moreover,

‖ q(λ)− p(λ) ‖2 ≤ λ ‖ q1 − p(q1) ‖2 +(1− λ) ‖ q2 − p(q2) ‖2 ≤ 1.

Therefore, q(λ) ∈ Q, i.e., Q is a convex set. �

For q ∈ Q, let v(q) = q− p(q). By construction, v(q) ∈ B for every q ∈ Q, ‖ v(q) ‖2= 1

if and only if q ∈ bdQ, and v(q) = 0n if and only if q ∈ X.

Lemma 3.2 For every q ∈ Q it holds that N(Q(t), q) = C(v(q)) and N(Q(t), q) ⊆

N(X(t), p(q)), where t = c�q.

Proof: Since Q is full-dimensional, for q ∈ intQ(t) it holds that N(Q(t), q) = C(0n) and,

hence, also N(Q(t), q) ⊆ N(X(t), p(q)). Take any point q ∈ bdQ(t). Since p(q) is the

projection of q on X(t), we must have that N(Q(t), q) contains C(v(q)). Let B(p(q)) =

{x ∈ H(t) | ‖ x− p(q) ‖2≤ 1}. Clearly, B(p(q)) ⊆ Q(t) and q ∈ bdB(p(q)), and therefore

N(Q(t), q) ⊆ N(B(p(q)), q). However, q ∈ bdB(p(q)) implies N(B(p(q)), q) = C(q−p(q)).

Since v(q) = q−p(q), we obtain N(Q(t), q) ⊆ C(v(q)). Hence, N(Q(t), q) = C(v(q)). Since

q − p(q) ∈ N(X(t), p(q)), it follows that C(v(q)) ⊆ N(X(t), p(q)). �

Let a1, . . . , an−1 be an orthogonal basis for the (n−1)-dimensional subspace H0 = {y ∈

IRn | c�y = 0}, i.e.,

• H0 = {y ∈ IRn | y =
∑

n−1
i=1 λia

i, λi ∈ IR for all i};

• c�ai = 0 for all i;

• ai�ai = 1 for all i;

• ai�aj = 0 for all j �= i.

Without loss of generality we also assume that c�c = 1. Take any x0 in X− and M > 0.

Then the (n− 1)-dimensional cube P− in H− is defined by

P− = {x ∈ H− | −M ≤ ai�(x− x0) ≤ M, i = 1, . . . , n− 1}.

and the rectangular P in H is defined by

P = {x ∈ H | x = x− + λc, 0 ≤ λ ≤ t+ − t−, x− ∈ P−}.

For t, t− ≤ t ≤ t+, let P (t) = P ∩ H(t). We can choose M so large that for every t,

t− ≤ t ≤ t+, the cube P (t) contains Q(t) in its relative interior. For i = 1, . . . , n−1, define

a−i = −ai and let I = {−(n− 1), . . . ,−1, 1, . . . , n− 1}. Then P can be reformulated as

P = {x ∈ IRn | ai�x ≤ M − ai�x0 for all i ∈ I, c�x ≤ t+,−c�x ≤ t−}.
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Let Ī = I ∪ {−n, n}, an = c, a−n = −c, bi = M − ai�x0 for every i ∈ I, bn = t+, and

b−n = t−. Then P− = P (t−) and P can be further rewritten as

P− = {x ∈ IRn | ai�x ≤ bi for all i ∈ I and c�x = t−}

and

P = {x ∈ IRn | ai�x ≤ bi for all i ∈ Ī}.

Similarly, we may write P+ = P (t+) as

P+ = {x ∈ IRn | ai�x ≤ bi for all i ∈ I and c�x = t+}.

Notice that P is a simple full-dimensional polytope, and no constraints are redundant. Let

I be the collection of subsets J of I such that |J | ≤ n − 1 and j /∈ J whenever −j ∈ J .

For each J ∈ I, define

F (J) = {x ∈ P− | ai�x = bi, for all i ∈ J}.

Clearly, F (J) is a face of P− and F (∅) = P−.

Let v be any point in P−. The point v will be the starting point of the algorithm

to be described below. Let vF (J) be the convex hull of the point v and a face F (J) not

containing v. Now we first describe a simplicial subdivision or triangulation of the polytope

P which underlies the algorithm.

For a nonnegative integer t, a t-dimensional simplex or t-simplex, denoted by σ, is de-

fined by the convex hull of t + 1 affinely independent points x1, · · ·, xt+1 in IRn. We

often write σ = σ(x1, · · · , xt+1) and call x1, · · ·, xt+1 the vertices of σ. A (t − 1)-

simplex being the convex hull of t vertices of σ is said to be a facet of σ. The facet

τ(x1, · · · , xi−1, xi+1, · · · , xt+1) is called the facet of σ(x1, · · · , xt+1) opposite to the vertex

xi. For k, 0 ≤ k ≤ t, a k-simplex being the convex hull of k + 1 vertices of σ is said to be

a k-face or face of σ. A finite collection T of n-simplices is a triangulation of the polytope

P if

(i) P is the union of all simplices in T ;

(ii) The intersection of any two simplices of T is either the empty set or a common face

of both.

The diameter of a simplex σ(x1, · · · , xn+1) is the maximum Euclidean distance between

any two points in σ and is denoted by diam(σ). The mesh size of a triangulation T is

defined as

mesh(T ) = max
σ∈T

{diam(σ)}.

6



Let T be a triangulation of P such that every subset vF (J) of P− is subdivided into t-

simplices, where t = n − |J |. For example, we may take the V -triangulation introduced

by Talman and Yamamoto (1989) for triangulating a polytope. Since T is finite and P

is compact, every facet τ of an n-simplex σ on P either lies on the boundary of P and is

only a facet of σ or does not lie on the boundary of P and is a facet of exactly one other

n-simplex in T . Similarly, a facet of a t-simplex σ on vF (J), where t = n − |J |, either

lies on the boundary of vF (J) and is only a facet of σ or does not lie on the boundary of

vF (J) and is a facet of exactly one other t-simplex on vF (J).

Now we consider the point-to-set mapping φ̄ : P �→ IRn defined by

φ̄(x) =






{p(x)− x}, if x ∈ P \Q,

co({p(x)− x} ∪ [A(p(x))φ(p(x)) ∩ π(x− p(x))]), if x ∈ bdQ,

A(p(x))φ(p(x)) ∩ π(x− p(x)), if x ∈ intQ.

Recall that for x ∈ Q the vector x−p(x) is an element of N(X(t), p(x))∩B, where t = c�x,

so that according to condition 2 of Theorem 2.1 φ̄(x) �= ∅ for all x ∈ P . One can easily

verify that φ̄ is an upper semi-continuous mapping with convex and compact values. Let x

be a vertex of a simplex of T , then we assign to x the vector label f(x), where f(x) is an

arbitrarily chosen element in φ̄(x). Now we extend f piecewise linearly on each simplex of

T , i.e., f is affine on each simplex of T . We call f the piecewise linear approximation of φ̄

with respect to T .

A row vector is lexicopositive if it is a non-zero vector and its first non-zero entry is

positive. A matrix is said to be lexicopositive if all its rows are lexicopositive. A matrix is

said to be semi-lexicopositive if each row except possibly the last row is lexicopositive.

Definition 3.3 Let τ(x1, · · · , xt) be a facet of a t-simplex on vF (J), where J ∈ I with

J = {jt+1, · · · , jn}, t = n− |J |. The (n + 1)× (n+ 1) matrix

Aτ,J =




1 · · · 1 0 · · · 0 0

−f(x1) · · · −f(xt) ajt+1 · · · ajn c





is the label matrix of τ with respect to J. The simplex τ is J-complete if A−1
τ,J

exists and is

semi-lexicopositive.

Definition 3.4 Let τ(x1, · · · , xn) be a facet of an n-simplex on P . The (n+1)×(n+1)

matrix

Aτ =




1 1 · · · 1 0

−f(x1) −f(x2) · · · −f(xn) c





is the label matrix of τ . The simplex τ is complete if A−1
τ

exists and is semi-lexicopositive.
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Notice that if for a J-complete (complete) simplex τ we change the ordering of the first n

columns of the matrix Aτ,J (Aτ ), the inverse of the resulting matrix still exists and is semi-

lexicopositive. Clearly, if, for some J ∈ I, a (t − 1)-simplex τ (x1, . . . , xt) is a J-complete

facet of a simplex σ(x1, . . . , xt+1) on vF (J), then the system of n+1 linear equations with

n+ 2 variables

t+1∑

i=1

λi




1

−f(xi)



+
∑

j∈J

µj




0

aj



+ β




0

c



 =




1

0n



 (∗)

has a solution (λ, µ, β) = (λ1, . . . , λt+1, (µj)j∈J , β) satisfying λi ≥ 0 for all i ∈ It+1 and

µj ≥ 0 for all j ∈ J , with λt+1 = 0. Let x be defined by x =
∑

t+1
i=1 λix

i at a solution

(λ, µ, β) of (∗). Then x lies in σ and f(x) =
∑

j∈J µja
j+βc. Similarly, if an (n−1)-simplex

τ(x1, . . . , xn) is a complete facet of a simplex σ(x1, . . . , xn+1) on P , then the system of n+1

linear equations with n+ 2 variables

n+1∑

i=1

λi




1

−f(xi)



+ β




0

c



 =




1

0n



 (∗∗)

has a solution (λ, β) = (λ1, . . . , λn+1, β) satisfying λi ≥ 0 for all i ∈ In+1 , with λt+1 = 0.

Let x be defined by x =
∑

n+1
i=1 λix

i at a solution (λ, β) of (∗∗). Then x lies in σ and

f(x) = βc lies in C(0n).

Here we recall the following result from Fujishige and Yang (1998) which will be used

below.

Lemma 3.5 Consider any polytope V given by V = {x ∈ IRn | ci�x ≤ di, i ∈

In and c0�x = d0 }. Suppose that V is an (n − 1)-dimensional simple polytope with no

redundant constraints. For any g ∈ IRn, there exists a unique subset {j1, · · · , jn−1} of In

such that the inverse of the matrix



1 0 0 · · · 0 0

g cj1 cj2 · · · cjn−1 c0





exists and is semi-lexicopositive.

We now show that {v} is a J-complete 0-simplex for a unique index set J ∈ I containing

n− 1 indices.

Lemma 3.6 There exists a unique subset J = {j1, · · · , jn−1} of I such that {v} is a

J-complete 0-simplex.

Proof: Note that the set

P− = {x ∈ IRn | ai�x ≤ bi for all i ∈ I and c�x = t−}
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is an (n − 1)-dimensional simple polytope with no redundant constraints. It follows im-

mediately from Lemma 3.5 that there exists a unique subset J = {j1, · · · , jn−1} of I such

that the inverse of the matrix



1 0 0 · · · 0 0

−f(v) aj1 aj2 · · · ajn−1 c





exists and is semi-lexicopositive. This means that the 0-simplex {v} is J-complete. By

definition, {v} lies on vF (J). �

The following lemma is well-known in linear programming theory and can easily be

proved. Let R be a matrix. We denote its i-th row by Ri. and its j-th column by R.j.

Lemma 3.7 Let R = (R.1, · · · , R.n+1) be any non-singular (n+1)× (n+1) matrix and

let x be any vector in IRn+1. Let k ∈ In+1 and R̄ = (R.1, · · · , R.k−1, x, R.k+1, · · · , R.n+1).

Then either (R−1x)k = 0 and R̄ is singular, or (R−1x)k �= 0, R̄ is non-singular and R̄−1 is

given by

R̄−1 =





















(R−1)1. −
(R−1x)1

(R−1x)k
(R−1)k.

...

(R−1)k−1. −
(R−1x)k−1
(R−1x)k

(R−1)k.
1

(R−1x)k
(R−1)k.

(R−1)k+1. −
(R−1x)k+1
(R−1x)k

(R−1)k.
...

(R−1)n+1. −
(R−1

x)n+1

(R−1x)k
(R−1)k.





















.

Using this lemma, the following lemmas will be proved.

Lemma 3.8 Let σ be a t-simplex on vF (J) where J ∈ I, t = n − |J | and J =

{jt+1, · · · , jn}. If σ has a J-complete facet τ , then exactly one of the following three cases

occurs:

(1) The simplex σ is a complete simplex on P−;

(2) The simplex σ is a J̄-complete simplex on vF (J̄) where J̄ = J \ {j} for precisely one

index j ∈ J;

(3) The simplex σ has exactly one other J-complete facet τ̄ .

Proof: Let xt+1 be the vertex of σ opposite to τ , and let y = A−1
τ,J

(1,−f(xt+1)�)�. Notice

that y �= 0n+1. Let K = {i ∈ In | yi > 0}. We first prove |K| > 0. Since Aτ,Jy =

(1,−f(xt+1)�)�, we have
∑

t

i=1 yi = 1. This implies that there exists at least one index

i ∈ It such that yi > 0. Hence K is non-empty.
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Consider the ratio vectors (1/yj)(A
−1
τ,J

)j. for all j ∈ K. Choose k ∈ K such that the k-th

ratio vector is the minimum in the lexicographic order over all such ratio vectors. Since

A−1
τ,J

is regular, k is uniquely determined. Now we consider the following two cases (i) and

(ii).

(i) If k ∈ In \ It, then let l = ik and J̄ = J \ {l}. If J̄ = ∅, then σ is a complete simplex

on P−. Otherwise, J̄ ∈ I and σ is on vF (J̄). Let R be the matrix obtained from Aτ,J by

replacing its k-th column by (1,−f(xt+1)�)�. It follows from Lemma 3.7 that R−1 exists

and is semi-lexicopositive. By reordering the columns of R we get Aσ,J̄ whose inverse exists

and is semi-lexicopositive. So, σ is J̄-complete.

(ii) If k ∈ It, then let τ̄ be the facet of σ opposite to the vertex xk. Using Lemma 3.7,

it follows from the choice of k that A−1
τ̄ ,J

exists and is semi-lexicopositive. Hence τ̄ is a

J-complete (t− 1)-simplex on vF (J).

It follows immediately from Lemma 3.7 that if any column other than the k-th column

is replaced, then the inverse of the resulting matrix is not semi-lexicopositive. �

Lemma 3.9 Let σ be a J-complete (t− 1)-simplex on vF (J) where J ∈ I, t = n− |J |

and J = {jt+1, · · · , jn}. If σ is on vF (J̄) where J̄ = J ∪ {l} ∈ I for some l ∈ Im \ J, then

exactly one of the following two cases occurs:

(1) There exists a unique set J ′ ∈ I with |J ′| = |J | and J ′ �= J so that σ is on vF (J ′)

and is J ′-complete.

(2) There exists exactly one facet τ of σ which is on vF (J̄) and is J̄-complete.

Proof: Let x = (0, al�)� and y = A−1
σ,J

x. Note that y �= 0n+1. Let K = {i ∈ In | yi > 0}.

Note that Aσ,Jy = (0, al�)�. We first show that K is non-empty. Suppose that yi = 0

for all i ∈ It. Then there must exist some parameters yi for i = t + 1, t + 2, · · ·, n, such

that al =
∑

n

i=t+1 yia
ji−t + yn+1c, and yi must be non-zero for some i. This implies that the

vectors c, al, aj for all j ∈ J are linearly dependent. This is impossible by assumption.

Hence there exists at least one index i ∈ It such that yi �= 0. If there exists an index j ∈ It

such that yj < 0, then there must exist an index i ∈ It such that yi > 0 since
∑

t

k=1 yi = 0.

Hence K is non-empty.

Consider the ratio vectors (1/yj)(A
−1
σ,J

)j. for all j ∈ K. Choose k ∈ K such that the

k-th ratio vector is the minimum in the lexicographic order over all such ratio vectors.

Since A−1
τ,J

is regular, k is uniquely determined. Now we consider the following two cases

(1) and (2).

(1) If k ∈ In \ It, then let p = ik and J ′ = J ∪ {l} \ {p}. Clearly, J ′ ∈ I, J ′ �= J ,

|J ′| = |J | and σ is on vF (J ′). Let R be the matrix obtained from Aσ,J by replacing its

10



k-th column by x. It follows from Lemma 3.7 that R−1 exists and is semi-lexicopositive.

It is clear that Aσ,J′ = R. So, σ is a J ′-complete (t− 1)-simplex on vF (J ′).

(2) If k ∈ It, then let τ be the facet of σ opposite to the vertex xk. Clearly, τ is a

(t − 2)-simplex on vF (J̄). Let R be the matrix obtained from Aσ,J by replacing its k-th

column by x. It follows from Lemma 3.7 that R−1 exists and is semi-lexicopositive. By

reordering the columns of R we get Aτ,J̄ whose inverse also exists and is semi-lexicopositive.

So, τ is a J̄-complete (t− 2)-simplex on vF (J̄).

Again it follows from Lemma 3.7 that if any other column is replaced, then the new

matrix is no longer semi-lexicopositive. �

Lemma 3.10 Let τ (x1, · · · , xn) be a complete (n − 1)-simplex on vF ({i}) for some

i ∈ I. Then there exists exactly one n-simplex σ(x1, · · · , xn+1) on P which has τ as one

of its facets and σ has exactly one other complete facet τ̄ . Furthermore, τ has exactly one

facet τ ∗ which is {i}-complete.

Proof: Let xt+1 be the vertex of σ opposite to τ , and let y = A−1
τ
(1,−f(xt+1)�)�. Notice

that y �= 0n+1. Let K = {i ∈ In | yi > 0}. We first prove |K| > 0. Since Aτy =

(1,−f(xt+1)�)�, we have
∑

t

i=1 yi = 1. This implies that there exists at least one index

i ∈ It such that yi > 0. Hence K is non-empty.

Consider the ratio vectors (1/yj)(A
−1
τ
)j. for all j ∈ K. Choose k ∈ K such that the k-th

ratio vector is the minimum in the lexicographic order over all such ratio vectors. Since

A−1
τ

is regular, k is uniquely determined. Note that J = ∅. Let τ̄ be the facet of σ opposite

to the vertex xk. Using Lemma 3.7, it follows from the choice of k that A−1
τ̄

exists and is

semi-lexicopositive. Hence τ̄ is a complete facet of σ.

It follows immediately from Lemma 3.7 that if any column other than the k-th column

is replaced, then the inverse of the resulting matrix is not semi-lexicopositive.

To prove the second part of the lemma, let x = (0, ai�)� and y = A−1
τ
x. Note that

y �= 0n+1. Let K = {i ∈ In | yi > 0}. Note that Aτy = (0, ai�)�. We will show that K is

non-empty. Suppose that yi = 0 for all i ∈ In. Then there must exist some parameter β

such that βc = ai. This implies that the vectors c and ai are linearly dependent. This is

impossible by assumption. Hence there exists at least one index i ∈ In such that yi �= 0.

If there exists an index j ∈ In such that yj < 0, then there must exist an index i ∈ In such

that yi > 0 since
∑

n

i=1 yi = 0. Hence K is non-empty.

Consider the ratio vectors (1/yj)(A
−1
τ
)j. for all j ∈ K. Choose k ∈ K such that the

k-th ratio vector is the minimum in the lexicographic order over all such ratio vectors.

Since A−1
τ

is regular, k is uniquely determined. Now let τ ∗ be the facet of τ opposite to

the vertex xk. Let R be the matrix obtained from Aτ by replacing its k-th column by x.

It follows from Lemma 3.7 that R−1 exists and is semi-lexicopositive. By reordering the
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columns of R we get Aτ∗,{i} whose inverse also exists and is semi-lexicopositive. So, τ ∗ is

an {i}-complete (n− 2)-simplex on vF ({i}).

Again it follows from Lemma 3.7 that if any other column is replaced, then the new

matrix is no longer semi-lexicopositive. �

By repeating the first part of the proof of Lemma 3.10, one can show the following

lemma.

Lemma 3.11 If an n-simplex σ(x1, · · · , xn+1) on P has a complete facet τ (x1, · · · , xn),

then σ has exactly one other complete facet τ̄ .

In the following we will show that starting at v there exists a finite sequence of adjacent

J-complete or complete simplices for varying J , J ∈ I, which leads to a complete (n− 1)-

simplex σ+ on P+. First we show that a J-complete facet can not lie on the boundary of

P−.

Lemma 3.12 If τ (x1, · · · , xt) is a J-complete (t−1)-simplex on vF (J) where t = n−|J |,

then τ does not lie on the boundary of P−.

Proof: Suppose to the contrary that τ lies on the boundary of P−. Then τ must be a

subset of F (J), so f(xi) = p(xi)− xi for all i = 1, · · ·, t, and aj�xi = bj for all j ∈ J and

i = 1, · · ·, t. Since aj�p(xi) < bj we obtain that aj�f(xi) < 0 for all j ∈ J and all i = 1,

· · ·, t. Because τ is J-complete, we have

t∑

i=1

λif(x
i) =

∑

j∈J

µja
j + βc (3.1)

for some λi ≥ 0, i = 1, · · ·, t, µj ≥ 0 for all j ∈ J , and β ∈ IR, with
∑

t

i=1 λi = 1. By

premultiplying equation (3.1) with any vector ai, i ∈ J , we obtain

0 >
∑

t

h=1 λha
i�f(xh)

=
∑

j∈J µja
i�aj + βai�c

= µi

≥ 0,

yielding a contradiction. The assumptions imposed on the ais and c imply the above

equalities. �

The next lemma shows that every complete simplex not on P− or P+ can not lie on

the boundary of P .

Lemma 3.13 If τ(x1, · · · , xn) is a complete (n− 1)-simplex on bdP , then either τ lies

on P− or τ lies on P+.

12



Proof: Suppose to the contrary that τ is a subset of the set P \ (intP−∪ intP+), namely,

there exists some i ∈ I such that ai�xh = bi for all h = 1, · · ·, n. Then we have f(xh) =

p(xh) − xh for all h = 1, · · ·, n, and so ai�f(xh) < 0 for all h = 1, · · ·, n. Because τ is

complete, we have

n∑

h=1

λhf(x
h) = βc (3.2)

for some λh ≥ 0, h = 1, · · ·, n, and some β, with
∑

n

h=1 λh = 1. Premultiplying equa-

tion (3.2) by the vector ai yields a contradiction, namely,

0 >
∑

n

h=1 λha
i�f(xh)

= βai�c

= 0.

�

We construct a graph G = (N,E) where N denotes a set of nodes and E denotes a set

of edges. A simplex σ is called a node if it is an J-complete (n− |J | − 1)-simplex for some

J ∈ I or it is a complete (n− 1)-simplex. Two nodes σ1 and σ2 are said to be adjacent if

both σ1 and σ2 are facets of an n-simplex, or if σ1 and σ2 are J -complete and are facets

of an (n − |J |)-simplex on vF (J), or if σ1 is J -complete and σ2 is J ′-complete and σ1 is

a facet of σ2 and σ2 is an (n − |J |)-simplex on vF (J), or if σ1 is {j}-complete and σ2 is

a complete (n − 1)-simplex on vF ({j}) and σ1 is a facet of σ2. The notion e = {σ1, σ2}

is called an edge if the two nodes σ1 and σ2 are adjacent. The degree of a node σ in G is

defined to be the number of nodes connected with it, denoted by deg(σ). A finite sequence

of adjacent simplices in G from σ0 to σl is defined as (σ0, σ1, · · · , σl), where σ0, σ1, · · ·, σl

are nodes in G and ei = {σi−1, σi} are edges in G for all i ∈ Il.

Theorem 3.14 Let T be a triangulation of P . Then there exists a finite sequence

of adjacent J-complete or complete simplices for varying J ∈ I from {v} to a complete

(n− 1)-simplex σ+ on P+.

Proof: From Lemma 3.6 it follows that {v} is a J-complete 0-simplex on vF (J) for some

unique set J ∈ I with |J | = n− 1. Since {v} lies on the boundary of vF (J), there exists

a unique 1-simplex σ on vF (J) having {v} as its facet. By Lemma 3.8, either σ is a J̄-

complete simplex on vF (J̄) where J̄ = J \ {j} for some unique j ∈ J , or σ has exactly

one other J-complete facet τ . Hence there exists a unique node connecting {v}. That is,

deg({v}) = 1.

Let τ be any node on P+. Then we know that τ is a complete (n− 1)-simplex on the

boundary of P . This implies that there is a unique n-simplex σ in T having τ as its facet.

13



By Lemma 3.11 we know that σ has exactly one other complete facet τ̄ which is a node by

definition. Hence we have deg(τ ) = 1.

In all other cases, we will show that deg(τ) = 2 if τ is a node. We need to address

several cases. (1) If τ is a complete (n − 1)-simplex and does not lie on P− or on P+,

then according to Lemma 3.13 τ does not lie on the boundary of P . Hence, there exist

exactly two n-simplices σ1 and σ2 on P sharing τ as their common facet. It follows from

Lemma 3.11 that there are two nodes adjacent to τ . Thus, deg(τ) = 2. (2) If τ is a

complete (n−1)-simplex and lies on P−, then it follows from Lemma 3.10 that deg(τ ) = 2.

(3) If τ is a J-complete (n− |J | − 1)-simplex on vF (J) for some J ∈ I, either τ does not

lie on the boundary of vF (J) or τ lies on the boundary of vF (J). If τ does not lie on

the boundary of vF (J), then τ is a facet of precisely two (n− |J |)-simplices on vF (J). It

follows from Lemma 3.8 that τ is adjacent to exactly two nodes. If τ lies on the boundary

of vF (J), then there exists exactly one (n− |J |)-simplex σ on vF (J) having τ as its facet.

By Lemma 3.8 either σ is a J̄-complete (n − |J̄ | − 1)-simplex on F (J̄) for some unique

J̄ ∈ I with |J̄ | = |J | − 1 and has no other J-complete facets, or σ has exactly one other

J-complete facet. This yields one adjacent node to τ . On the other hand, since τ lies on

the boundary of vF (J), it follows from Lemma 3.12 that τ does not lie on the boundary of

P−. Hence, τ lies on vF (J̃) for some unique set J̃ ∈ I with |J̃ | = |J |+ 1. By Lemma 3.9

either τ is J ′-complete for some unique set J ′ ∈ I with |J ′| = |J | and J ′ �= J , or τ has

exactly one J̃-complete facet. It follows again that in both these cases there exists exactly

one node adjacent to τ . This concludes that τ has exactly two adjacent nodes. That is,

we have deg(τ) = 2.

As shown above, the degree of each node in the graph G = (N,E) is at most two.

Since the number of simplices on P is finite, the number of nodes in G is finite. Since

deg({v}) = 1, there exists a finite sequence of adjacent nodes starting from {v}. The

end node of this sequence must be a node of degree 1 and different from {v}. The only

possibility is that this node is a complete simplex on P+. �

The algorithm is such that it generates the sequence of adjacent simplices described

in the theorem. From the theorem it follows that starting at the point v, the algorithm

generates a finite sequence of adjacent J-complete or complete simplices for varying J ∈ I,

which leads to a complete (n−1)-simplex σ+ on P+. After leaving the set P−, the algorithm

may return to P− to generate again J-complete simplices on P− for varying J ∈ I. In

this way, the algorithm may generate an (odd) number of complete (n − 1)-simplices on

P− before it leaves P− forever and terminates with a complete (n− 1)-simplex σ+ on P+.

Let σ− be the last complete (n − 1)-simplex generated by the algorithm on P−. Then it

is clear that from σ− on, the algorithm generates a finite sequence of adjacent complete

(n−1)-simplices from σ− on P− to σ+ on P+. We summarize this in the following corollary.
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Corollary 3.15 Let T be a triangulation of P . Then there exists a finite sequence of

adjacent complete (n−1)-simplices from a complete (n−1)-simplex σ− on P− to a complete

(n− 1)-simplex σ+ on P+.

Given a function g : P �→ IRn, a point x ∈ P is called a stationary point with respect to c if

g(x) is an element of N(P (t), x) with t = c�x. Such a solution is also called a parametrized

stationary point of g. From Corollary 3.15 and the system of equations (∗∗) we see that

every simplex generated by the algorithm from σ− to σ+ contains a stationary point of

the piecewise linear approximation function f with respect to the vector c. By taking

the straight line segments between the parametrized stationary points of any two adjacent

complete simplices, we obtain in P a piecewise linear path of parametrized stationary

points of f connecting the simplices σ− and σ+.

Corollary 3.16 Let T be a triangulation of P . Then with respect to the vector c there

exists a piecewise linear path ρ([0, 1]) in P of parametrized stationary points of the piecewise

linear approximation f of φ̄ with respect to T and this path connects the point ρ(0) ∈ σ−

in P− and ρ(1) ∈ σ+ in P+. No point of this path lies on the boundary of P (t) for some

t, t− ≤ t ≤ t+.

Proof: The first part is obvious. The second part follows from the proof of Lemma 3.13.

�

From the last corollary it follows that for every q ∈ ρ([0, 1]) it holds that f(q) = βc

for some β ∈ IR, i.e., f(q) ∈ C(0n). In the next section we show, by taking a sequence of

triangulations of P with mesh size going to zero, that there exists a connected set of zero

points of φ in X having a non-empty intersection with both X− and X+.

4 A Constructive Existence Proof

By making use of the results obtained in Section 3 we will give a constructive proof for

Theorem 2.1. To achieve this, a sequence of triangulations T r, r ∈ IN, with mesh size

converging to zero is taken. According to Corollary 3.16, for every r ∈ IN, there exists a

piecewise linear function ρr : [0, 1] �→ P with image set ρr([0, 1]) connecting P− and P+

and satisfying that any qr ∈ ρr([0, 1]) is a parametrized stationary point of the piecewise

linear approximation f r of φ̄ with respect to T r. In the next lemma we show by a limit

argument that if the sequence (qr)r∈IN converges to some q∗, then p(q∗) is a zero point of

φ. Recall that p(·) is a continuous function.

Lemma 4.1 Let φ : X �→ IRn be a point-to-set mapping satisfying the conditions in

Theorem 2.1. For r ∈ IN, let T r be a triangulation of P with mesh size smaller than 1

r
and
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let ρr([0, 1]) be the piecewise linear path as constructed in Corollary 3.16. Then, for every

convergent sequence (qr)r∈IN with limit q∗ satisfying qr ∈ ρr([0, 1]) for all r ∈ IN, it holds

that x∗ = p(q∗) is a zero point of φ in X.

Proof: Since qr ∈ P for all r ∈ IN and P is a closed set, we have q∗ ∈ P . Moreover,

since the mesh size of the sequence of triangulations of P converges to zero and φ̄ is upper

semi-continuous and both compact-valued and convex-valued, the system of equations (∗∗)

at qr will reduce in the limit for r going to infinity, after taking subsequences if necessary,

to

f ∗ = β∗c

for some β∗ ∈ IR and some f ∗ ∈ φ̄(q∗). Let t∗ = c�q∗ and v∗ = q∗ − p(q∗). Clearly,

v∗ ∈ N(X(t∗), p(q∗)) ∩B whenever q∗ ∈ P . We have to consider the following cases.

i) In case q∗ ∈ P \ Q, we have f ∗ = p(q∗) − q∗ = β∗c. Since c�p(q∗) = c�q∗ = t∗ and

so c�f ∗ = 0, we obtain β∗ = 0 and therefore p(q∗) = q∗. Since q∗ is not in X, we obtain a

contradiction.

ii) In case q∗ ∈ bdQ, we have f∗ = µ∗(p(q∗)− q∗)+(1−µ∗)f = β∗c for some 0 ≤ µ∗ ≤ 1

and some f ∈ A(p(q∗))φ(p(q∗))∩π(v∗). For µ∗ = 1 this case reduces to case i). For µ∗ < 1,

we obtain f ∈ C(v∗). According to condition 1 of Theorem 2.1 x∗ = p(q∗) is a zero point

of φ.

iii) In case q∗ ∈ Q \ X and q∗ �∈ bdQ, we have f∗ ∈ A(p(q∗))φ(p(q∗)) ∩ π(v∗) and

f ∗ = β∗c ∈ C(v∗). According to condition 1 of Theorem 2.1 x∗ = p(q∗) is a zero point of

φ.

iv) In case q∗ ∈ X, we have q∗ = p(q∗). This implies that f ∗ ∈ A(q∗)φ(q∗) ∩ π(0n).

Since f ∗ = β∗c ∈ C(0n), we obtain A(q∗)φ(q∗)∩π(0n)∩C(0n) �= ∅. According to condition

1 of Theorem 2.1, x∗ = q∗ is a zero point of φ. �

Let Z = {x ∈ X | 0n ∈ φ(x)} be the set of zero points of φ in X. For a non-empty,

compact set S ⊂ IRn, define the distance function dS : IRn → IR by dS(x) = min{‖x− y‖2 |

y ∈ S}. It is well known that dS is continuous.

PROOF OF THEOREM 2.1: From Lemma 4.1 it immediately follows that Z∩X− �=

∅ and Z ∩ X+ �= ∅, also Z is compact. For x ∈ Z, let Zx be the component of x in Z.

We know that Zx is connected and compact. The collection of all distinct components

in Z forms a partition of Z. Define Z− = ∪x∈Z∩X−Zx and Z+ = Z \ Z−. Now let

V − = X− ∪Z− and V + = X+ ∪Z+ and V = Z ∪X− ∪X+. Suppose the theorem is false.

Then V − and V + are non-empty, disjoint, compact sets. Hence, there exists ε > 0 such

that min{‖q0 − q1‖2 | q0 ∈ V −, q1 ∈ V +} ≥ ε. For r ∈ IN, let T r be a triangulation of

P with mesh size smaller than 1

r
and let ρr : [0, 1] �→ P be the corresponding continuous
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function with image set connecting P− and P+, as constructed in Corollary 3.16. Define

gr : [0, 1] �→ IR by

gr(t) = dV −(p(ρr(t)))− dV +(p(ρr(t))), ∀t ∈ [0, 1].

Since gr is continuous, gr(0) ≤ −ε, and gr(1) ≥ ε, there exists a point tr ∈ (0, 1) such that

gr(tr) = 0. Hence, dV −(p(ρr(tr))) = dV +(p(ρr(tr))) = dV (p(ρ
r(tr))) ≥ 1

2
ε. Without loss of

generality we assume that (ρr(tr))r∈IN converges to a point q∗ ∈ P. Hence,

dV (p(q
∗)) = dV ( lim

r→∞
p(ρr(tr))) = lim

r→∞
dV (p(ρ

r(tr))) ≥
1

2
ε > 0.

By Lemma 4.1, we have dZ(p(q
∗)) = 0. Because p(q∗) ∈ Z ⊆ V , it follows that dV (p(q

∗)) =

0, yielding a contradiction. �

From Lemma 4.1 and the proof of Theorem 2.1 above it follows that the projection on

X of any point of the piecewise linear path of parametrized stationary points of f r being

generated by the algorithm can be seen as an approximate zero point of φ in the sense

that every convergent sequence of parametrized stationary points of f r, for a sequence of

triangulations (T r)r∈IN with mesh size converging to zero, converges to a zero point of φ

when r goes to infinity. The approximation typically improves when the mesh size of the

triangulation becomes smaller. The fact that for every triangulation in the sequence the

algorithm generates a path of such points from P− to P+ guarantees that there exists a

continuum of zero points of φ connecting X− and X+.

5 Continuums of Coincidences, Fixed Points, and Op-

tima

In this section we derive several results from Theorem 2.1 about the existence of a con-

tinuum of zero points, coincidences, fixed points, optima and stationary points. Unless

otherwise stated, we maintain the notations and assumptions used in Section 2. In partic-

ular, c is a non-zero vector in IRn, B = {x ∈ IRn | ||x||2 ≤ 1, c�x = 0 }, and φ is an upper

semi-continuous point-to-set mapping from the non-empty convex and compact set X in

IRn to the collection of non-empty, convex and compact subsets of IRn.

Theorem 5.1 Suppose that for every x ∈ X and every v ∈ N(X(t), x) with c�v = 0,

there is a y ∈ φ(x) satisfying c�y = 0 and v�y ≤ 0, where t = c�x. Then there exists a

connected set C of zero points of φ in X such that C ∩X− �= ∅ and C ∩X+ �= ∅

Proof: Take A(x) = E(n) for every x ∈ X and π(v) = {y ∈ IRn | c�y = 0, v�y ≤ 0}

for v ∈ B. Clearly, π is an upper semi-continuous mapping from B to the collection
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of non-empty convex and closed subsets of IRn. Since for every v ∈ B it holds that

π(v)∩C(v) = {0n}, condition 1 of Theorem 2.1 is satisfied. The condition in the theorem

also implies that condition 2 of Theorem 2.1 is satisfied. Hence, according to Theorem 2.1

there exists a connected set of zero points of φ in X intersecting with both X− and X+.

�

By taking A(x) = −E(n) for every x ∈ X the same result holds when for every x ∈ X

and every v ∈ N(X(t), x) with c�v = 0 there is a y ∈ φ(x) satisfying c�y = 0 and v�y ≥ 0.

From Theorem 5.1 we immediately obtain the following results. The first result gives a

sufficient condition for the existence of a continuum of coincidences and therefore general-

izes Fan’s coincidence theorem; see Fan (1972) in which the existence of a single coincidence

is proved.

Theorem 5.2 Let φ and ψ be two upper semi-continuous mappings from X to the

collection of non-empty compact and convex subsets of IRn. Suppose that for every x ∈ X

and every d ∈ IRn satisfying both c�d = 0 and d�x = max{d�y | y ∈ X, c�y = c�x}, there

exist u ∈ φ(x) and w ∈ ψ(x) such that c�u = c�w and d�u ≥ d�w. Then there exists a

connected set C of points in X such that φ(x) ∩ ψ(x) �= ∅ for every x ∈ C, C ∩X− �= ∅,

and C ∩X+ �= ∅.

Proof: Define the mapping γ on X by γ(x) = ψ(x) − φ(x) for all x ∈ X. Since d�x =

max{d�y | y ∈ X, c�y = c�x} implies d ∈ N(X(t), x), where t = c�x, γ(·) satisfies the

conditions of Theorem 5.1. Hence, there exists a connected set of zero points of γ in X

intersecting with both X− and X+. By construction, every zero point of the mapping γ is

a coincidence of the mappings φ and ψ. �

The next result can be seen as a generalization of Browder’s fixed point theorem for

point-to-set mappings.

Theorem 5.3 Suppose that for every x ∈ X it holds that φ(x) ∩ X(t) �= ∅, where

t = c�x. Then there exists a connected set of fixed points of φ in X intersecting with both

X− and X+.

Proof: For any x ∈ X, take some y ∈ φ(x) ∩ X(t), where t = c�x. Since y ∈ X(t) we

have that c�y = c�x = t and v�y ≤ v�x for all v ∈ N(X(t), x). Hence, the mapping ψ

on X defined by ψ(x) = φ(x)− {x} for all x ∈ X satisfies the conditions of Theorem 5.1.

Therefore, there exists a connected set of zero points of ψ in X intersecting with both X−

and X+. Clearly, a zero point of ψ is a fixed point of φ in X. �

Notice that in this theorem we only require that φ(x) ∩X(t) �= ∅ for every x ∈ X(t).

The image φ(x) may contain elements outside the set X(t). Clearly, when φ is a fixed point
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mapping in the sense that for every x ∈ X it holds that φ(x) ⊆ X(t), where t = c�x, then

Theorem 5.3 implies that there exists a continuum of fixed points connecting X− and X+.

Corollary 5.4 Suppose that φ(x) ⊆ X(t) whenever x ∈ X(t). Then there exists a

connected set of fixed points of φ in X having a non-empty intersection with both X− and

X+.

Browder’s fixed point theorem for mappings is now an immediate consequence of this

corollary. Browder (1960) proved the continuous function case and Mas-Colell (1974)

extended the result to the upper semi-continuous point-to-set mapping case. For a mapping

φ from X × [0, 1] to X a point (x, t) ∈ X × [0, 1] is called a fixed point of φ if x ∈ φ(x, t).

Corollary 5.5 Let φ be an upper semi-continuous mapping from X × [0, 1] to the

collection of non-empty convex and compact subsets of X, where X is a non-empty, convex

and compact set in IRn. Then there exists a connected set of fixed points of φ in X × [0, 1]

intersecting with both X × {0} and X × {1}.

Proof: Define S = X × [0, 1] and the mapping ψ on S by ψ(s, t) = φ(s, t) × {t} for all

(s, t) ∈ S. Take c = (0n�, 1)�. Then S and ψ satisfy the conditions of Corollory 5.4 with

respect to the non-zero vector c. Hence, there exists a connected set of fixed points of ψ

in S intersecting with both S− = X × {0} and S+ = X × {1}. Clearly, a fixed point of ψ

in S is a fixed point of φ in X × [0, 1]. �

By generalizing Theorem 3.4 of Herings, Talman and Yang (2001) on polytopes, Talman

and Yamamoto (2001) establish the following existence theorem on a continuum of zero

points by using the concept of tangent cone. We will show that this result also follows from

Theorem 5.1. Recall that for x ∈ X the tangent cone of X(t) at x with t = c�x equals the

set

T (X(t), x) = {z ∈ IRn | y�z ≤ 0 for all y ∈ N(X(t), x)}.

Corollary 5.6 Suppose that for every x ∈ X it holds that φ(x) ∩ T (X(t), x) �= ∅ with

t = c�x. Then there exists a connected set of zero points of φ in X intersecting with both

X− and X+.

Proof: For any x ∈ X it holds that T (X(t), x) ⊆ {y ∈ IRn | c�y = 0, v�y ≤ 0} for every

v ∈ N(X(t), x). Hence, φ satisfies the conditions of Theorem 5.1. �

When in Theorem 2.1 π(v) = IRn for all v ∈ B, we may derive the following result,

which is a generalization of both Theorem 3.2 of Herings, Talman and Yang (2001) on

polytopes and of Theorem 3.1 of Talman and Yamamoto (2001) on non-empty compact

and convex sets.
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Theorem 5.7 Suppose there exists a continuous and non-singular matrix map A on X

such that for every x ∈ X, A(x)φ(x) ∩ N(X(t), x) is either empty or contains 0n, where

t = c�x. Then there exists a connected set of zero points of φ in X intersecting with both

X− and X+.

Proof: Take π(v) = IRn for all v ∈ B. Clearly, π is an upper semi-continuous mapping

from B to the collection of non-empty convex and closed subsets of IRn. Condition 2 of

Theorem 2.1 is satisfied because φ(x) �= ∅ for all x ∈ X. Concerning condition 1 of Theorem

2.1 take any x ∈ X and v ∈ N(X(t), x) ∩ B. From Lemma 3.2 we obtain that C(v) ⊆

N(X(t), x). Hence, A(x)φ(x) ∩N(X(t), x) = ∅ implies that A(x)φ(x) ∩ π(v) ∩ C(v) = ∅.

Moreover, since bothN(X(t), x) and C(v) contain 0n, we have that if A(x)φ(x)∩N(X(t), x)

contains 0n then also A(x)φ(x) ∩ π(v) ∩C(v) contains 0n. �

The theorem states that if every image of a point can be transformed in a continuously

linear way such that every transformed image has an empty intersection with the normal

cone at that point, unless it contains the origin, then there exists a connected set of zero

points. Special cases are when A(x) = E(n), or A(x) = −E(n) for all x ∈ X or more

generally when A(x) is a diagonal matrix with non-zero diagonal elements depending in a

continuous way on x for all x ∈ X.

When in Theorem 2.1 π(v) = {y ∈ IRn | v�y ≤ 0}, the following result is obtained.

Theorem 5.8 Suppose that for every x ∈ X and every v ∈ N(X(t), x), where t = c�x,

the following two conditions hold:

(i) The set φ(x) ∩ {y | v�y ≤ 0} ∩C(v) is either empty or contains 0n;

(ii) The set φ(x) ∩ {y | v�y ≤ 0} �= ∅.

Then there exists a connected set C of zero points of φ in X such that X− ∩ C �= ∅

and X+ ∩ C �= ∅.

Proof: Take A(x) = E(n) for all x ∈ X and π(v) = {y | v�y ≤ 0} for all v ∈ B. Clearly,

π is an upper semi-continuous mapping from B to the collection of non-empty convex and

closed subsets of IRn. Moreover, for every x ∈ X and v ∈ N(X(t), x) ∩ B conditions (i)

and (ii) imply conditions 1 and 2 of Theorem 2.1, respectively. �

Next, we give an application in the field of optimization theory. Let f : X �→ IR be a

function and let c be an arbitrary non-zero vector in IRn. Given t, t− ≤ t ≤ t+, an optimal
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solution of the problem

max f(x)

s.t. x ∈ X(t)

is called an optimum with respect to c of f on X. Then we have the following result saying

that there exists a continuum of optima with respect to c in case f is concave and smooth.

Theorem 5.9 Let f : X �→ IR be a concave smooth function and let c be a non-zero

vector in IRn. Then there exists a connected set C of optima with respect to c of f on X

satisfying that C ∩X− �= ∅ and C ∩X+ �= ∅.

Proof: For x ∈ X, let ∇f(x) be the gradient of f at x. Since f is a concave smooth

function, ∇f(x) is a continuous function from X to IRn. Let g(x) be the projection of the

point x +∇f(x) on X(t), where t = c�x. Then g is a continuous function from X to X

satisfying g(x) ∈ X(t) whenever x ∈ X(t). Therefore, g satisfies the condition of Corollary

5.4. Hence, there exists a connected set of fixed points of g intersecting with both X− and

X+. Clearly, a fixed point of g is an optimum of f with respect to c. �

Finally, we establish a general existence theorem on a continuum of solutions to the

non-linear variational inequality problem with respect to some non-zero vector; see also

Talman and Yamamoto (2001). Given an arbitrary point-to-set mapping φ defined on the

set X, the variational inequality problem with respect to c, where c is some non-zero vector

in IRn, is to find a point x∗ ∈ X and f ∗ ∈ φ(x∗) such that

(x∗ − x)�f ∗ ≥ 0, ∀x ∈ X(t∗),

where t∗ = c�x∗. Recall that such a solution is called a parametrized stationary point of

φ. We give a constructive proof.

Theorem 5.10 Let φ be an upper semi-continuous mapping from X to the collection of

non-empty convex and compact subsets of IRn and let c be a non-zero vector in IRn. Then

there exists a connected set C in X of solutions to the variational inequality problem for φ

with respect to c satisfying that X− ∩ C �= ∅ and X+ ∩ C �= ∅.

Proof: Take π(v) = IRn for all v ∈ B and A(x) = E(n) for all x ∈ X. Clearly, the mapping

π satisfies condition 2 of Theorem 2.1. Corollary 3.16 implies that for any triangulation T

of P there exists a piecewise linear path ρ([0, 1]) in P of parametrized stationary points of

the piecewise linear approximation f of φ̄ with repect to T connecting P− and P+. For

r ∈ IN, let T r be a triangulation of P with mesh size less than or equal to 1

r
and let ρr([0, 1])

be the corresponding piecewise linear path connecting P− and P+. Following the proof of

Lemma 4.1 we obtain that for every convergent sequence (qr)r∈IN with limit q∗ satisfying
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qr ∈ ρr([0, 1]) for all r ∈ IN, it holds that x∗ = p(q∗) is a parametrized stationary point

of φ with respect to c. By taking the set Z as the set of parametrized stationary points

of φ in X it follows from the proof of Theorem 2.1 that there exists a connected set of

parametrized stationary points of φ in X having a non-empty intersection with both X−

and X+. �

Notice that to show that the variational inequality problem with respect to c has a

continuum of solutions, no additional assumptions on φ are needed. Moreover, the result

holds for any non-zero vector c.
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