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In this paper we analyze cooperation in R&D in the form of RJVs.
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1 Introduction

The study of innovations has become an important area of research in the eco-

nomic literature due to its contribution to economic growth. However, there ex-

ists a series of market failures related to the research and development (R&D)

activity including for instance the problem of appropriability or the duplication

of effort1 that could undermine incentives of innovators to undertake research

investments. Therefore, governments apply a set of policy instruments to correct

these market imperfections. A policy that has received attention in the recent

past has been the promotion of cooperative R&D. Aside from enabling the par-

ticipants to overcome a cost-of-development barrier impenetrable to any of them

alone, one advantage of cooperative R&D is the elimination of duplication of

effort. As pointed out in Benfratello and Sembenelli (2002), Research Joint Ven-

tures (RJVs) are commonly seen as a potential solution to the small amount of

resources invested in R&D activities in Europe and to the low productivity of

these resources. Framework Programs for Science and Technology (FPST) and

the EUREKA program are examples of these policies in the European Union.

Recent years have witnessed the development of a large literature analyzing

cooperation in R&D activities. For a survey of different kinds of inter-firm part-

nerships see Hagedoorn et al. (2000) and Hagedoorn (2002). In the theoretical

literature papers studying cooperation in R&D include for instance Katz (1986),

D’Aspremont and Jacquemin (1988), Kamien et al. (1992), Suzumura (1992),

Petit and Tolwinski (1999), and Cellini and Lambertini (2002). Several forms of

RJVs have been studied in the literature where, while sharing the outcome of

their R&D efforts, firms can decide unilaterally on their R&D investments, or

they can coordinate them in order to maximize the sum of overall profits (RJV

competition and RJV cartelization). In the latter case they internalize the effect

that the R&D effort of one firm has on the profits of the other firms in the RJV

1For a review of the theoretical and empirical literature on the R&D activity see for instance

Kamien and Schwartz (1982), Cohen and Levin (1989), Reinganum (1989), Cohen (1995), and

Sena (2004).
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(the so-called combined-profits externality), and consequently the amount of

profitable R&D investments that firms are able to carry out is higher. However,

if firms are analyzing the investment decision in a R&D project of a given size,

and this project is profitable for an RJV independent of the way that firms

adopt investments decisions, a question arises: is there some additional criterion

that could help them to decide on which is the best organizational structure?

In many papers it is assumed that R&D expenditures lead to immediate

effects (see, e.g., among many others, Cellini and Lambertini, 2002), either in

product differentiation or in cost reduction. However, in reality it takes time

to develop a breakthrough, which is the topic of this paper. As pointed out

in Martin (1994), p. 362, “Like all investment projects, R&D involves time in

an essential way. A firm seeking to develop a new technique or product must

sink its funds into the project for some time before it profits from lower costs

or revenues from the sale of a new product”. The issue of time to complete

in an R&D project was also analyzed in, e.g., Miltersen and Schwartz (2004)

in a two-decision maker framework and Kort (1998) in a one-decision maker

framework, but where these papers concentrate on uncertainty, we undertake a

game theoretic approach within a deterministic framework. By including time to

complete in the R&D process we show that cooperation in R&D will not only

allow firms in the RJV to undertake larger R&D projects, but also to finish

them in a shorter time, accelerating the acquisition of the gains associated with

the innovation.

Another issued studied in previous works relates to the optimal number

of firms for the best RJV performance. As the number of firms in an RJV

increases, the required per-firm R&D effort for a given project is lower, but at

the same time competition in the output market increases, and thus the final

gain reduces. De Bondt et al. (1992) and Poyago-Theotoky (1995) study the

optimal number of firms in an industry in order to maximize the effective R&D.

Both papers analyze an industry with R&D aimed at cost reduction, and find

that the optimal size of the RJV depends on the degree of spillovers. For the

case of perfect spillovers and R&D cooperation, the optimal size includes all the
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firms in the industry (Poyago-Theotoky, 1995), while with RJV competition

the optimal size, being independent of the R&D cost function, is two firms (De

Bondt et al., 1992). We employ a more general R&D cost function and show

that its shape is crucial for the optimal RJV size. In particular we find that in

case the cost function consists of both a linear and a quadratic term (Poyago-

Theotoky (1995) and De Bondt et al. (1992) only have a quadratic term in

the cost function), the optimal number of firms in the RJV increases with the

increase of the parameter associated with the quadratic part relative to the

linear parameter.

In this paper we jointly address cooperation in R&D in the form of RJV

and time to complete. We consider an industry with N symmetric firms where

market competition takes place à la Cournot. Firms join an RJV aimed at pro-

cess innovation, so that they could reduce their unitary and constant production

cost once the innovation is achieved, but for which a positive time interval of

successive R&D efforts is required. While competing in the output market, firms

in the RJV can decide independently or coordinately on their R&D investments.

In the latter case we will also consider the case of collusion in the output market.

The paper is organized as follows. The model is introduced in section 2.

In section 3 we solve the model for the non-cooperative and cooperative cases.

Section 4 analyzes and compares results for the different cases, and their opti-

mality from a social point of view is studied in section 5. Finally, in section 6

conclusions are presented.

2 The Model

Consider an industry with N symmetric firms from which n of them (n ≤
N) constitute an RJV aimed at developing a process innovation. The R&D

improvement made in the joint venture due to the participation of firm i at

time t is denoted by xi(t). The costs of performing this improvement are given

by axi(t) + bx2
i (t), where a and b are positive constants. The fact that these

costs are convex in the research progress can be motivated by realizing that
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increasing the research improvement is more difficult when the improvement is

already large. Then more qualified people and/or equipment are needed, which

is more expensive. R&D effort is typically irreversible, so that xi(t) ≥ 0.

The firms being active in the joint venture are aware that the total R&D

improvement needed to complete the project at time t is known and equals Y (t).

Recalling that the number of firms that participate in the joint venture is n,

these definitions lead to the following state equation:

Ẏ (t) = −
n
∑

j=1

xj(t), Y (0) = Y0 > 0. (1)

where Y0 is the anticipated total R&D improvement required to complete the

project.

The project is finished once a sufficient amount of R&D improvement is

undertaken, which is the case when

Y (T ) = 0. (2)

The value of the innovation for the individual firm, obtained at the moment

that (2) holds, depends on two factors: the number of firms that can make use

of this innovation and the behavior of these firms in the output market. We

consider initially an industry with N firms, which play a Cournot game in a

homogeneous product market facing a linear inverse demand function

D−1(Q) = A − BQ,

where Q =
∑N

i=1 qi and qi, i = 1, ..., N, is the per-firm output. Once the inno-

vation is completed, the constant unit cost of firms in the RJV is reduced from

c to ĉ, where (c, ĉ) are the corresponding costs before and after the innovation

is achieved, respectively, and A > c. We assume that competition in the output

market is of the same kind before and after collaboration in the R&D project.

We also consider that the innovation is of the drastic type,2 so that after the

process innovation only n firms will be active in the output market. Hence, when

2See Tirole (1988).
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firms act non-cooperatively in the output market, the per-firm gain associated

with the innovation is

Rnc(n) =
1

r

(

(A − ĉ)
2

B (n + 1)
2 − (A − c)

2

B (N + 1)
2

)

, (3)

where r is the discount rate (r > 0 and constant). When firms cooperate in the

output market, the value of the innovation for the individual firm is

Rc(n) =
1

r

(

1

n

(A − ĉ)2

4B
− 1

N

(A − c)2

4B

)

. (4)

Hereafter, and without loss of generality we consider that n = N , that is, all

the firms present initially in that market join the RJV.3

Within this Cournot setting it holds that R′(n) < 0. Alternatively, we could

consider the case where R′(n) > 0. The latter holds in case of a positive network

externality, which implies that the value of the innovated product increases with

the number of users.

Finally, note that other assumptions on the output market can be included

by a direct modification of the functions (3) and (4). As this will lead only to a

different amount of the final gain, it is straightforward to extend the analysis to

these other settings. In particular, the case of firms operating in a market with

product differentiation will be briefly reviewed in Section 4.

3 Optimal RJV R&D policy

For this problem it holds that there exists a maximal amount of R&D improve-

ment needed to complete the project, given that the innovation project is still

profitable. We determine this critical level and study how it is affected by the

3Note however that the case n < N is quantitatively similar to an increase in the final

function value, since the per-firm gain of competition is a decreasing function of n for the

three analyzed cases. On the contrary, the case of n > N , that is, the incorporation of new

firms in the RJV, and subsequently in the output market, would lead to a decrease in the

final function. All these situations point to the existence of incentives to enter and exit the

market.
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parameters of the model depending on the behavior of the firms (both in the

R&D phase and in the output market). With respect to the behavior in the

R&D phase, firms can adopt an attitude of collaboration, by coordinating their

R&D efforts in order to maximize the sum of overall profits, or no collaboration,

by deciding unilaterally on their R&D efforts. The latter case corresponds to the

RJV competition model discussed in Kamien et al. (1992), where firms compete

but share their R&D efforts avoiding duplication of R&D activities, while the

former corresponds to RJV cartelization.

In case firms cooperate in the R&D phase, they maximize

W (Y (0)) = max
{x1,...,xn}



−
∫ T

0

e−rt

n
∑

j=1

[

axj(t) + bx2
j (t)
]

dt + nR(n)e−rT



 , (5)

where

T = inf [t | Y (t) = 0] .

In case firms do not cooperate, the value of firm i, being a participant in the

RJV, is given by

Vi(Y (0)) = max
xi

[

−
∫ T

0

e−rt
(

axi(t) + bx2
i (t)
)

dt + R(n)e−rT

]

. (6)

3.1 Non-cooperation in R&D

In case firms in the RJV do not cooperate during the R&D phase, the aim is to

find the Markov perfect Nash equilibrium.4 The value of the project for firm i

is given by (6), so that the HJB-equation is

rVi(Y ) = max
xi







−axi − bx2
i + V ′

i



−xi −
∑

j �=i

xj











, (7)

with the boundary condition

Vi(0) = Rnc(n). (8)

The first order condition is

xi = − 1

2b
(a + V ′

i ) , (9)

4See, e.g., Dockner et al., 2000.
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and substitution of (9) into (7), while assuming symmetry, gives the following

differential equation (note that the value of the firm is the same for all firms so

that we can drop the subscript i) for the value function:

rV =

(

2n − 1

4b

)

(V ′)
2

+
na

2b
V ′ +

a2

4b
. (10)

The general solution of (10) in implicit form5 is

2n− 1

2br
V ′ +

na

2br
ln |V ′| + α1 = Y, (11)

where α1 is the constant of integration, and

V ′ = −
(

na

2n − 1

)

− 1

2

√

(

2a (n − 1)

2n− 1

)2

+
16brV

2n − 1
. (12)

The constant α1 is obtained from (11) valued at Y = 0 where, from (8), we

know that the value of the project6 equals Rnc(n). Thus,

α1 = −2n− 1

2br
V ′(0) − na

2br
ln |V ′(0)| . (13)

Let Ȳnc−nc be the largest value for Y for which it is profitable to carry out

the project. Since the control variable is continuous, it holds that

V ′
(

Ȳnc−nc

)

= −a. (14)

Substituting (13) and (14) into (11) gives

Ȳnc−nc =
2n − 1

2br
(−a) +

na

2br
ln |−a| − 2n − 1

2br
V ′(0) − na

2br
ln |V ′(0)| . (15)

Note that for Ȳnc−nc the value of the project V (Ȳnc−nc) = 0. Only projects that

require an initial amount of total R&D investments below this critical level will

be interesting for the firm. Thus, the optimal R&D investment policy is

xnc−nc =







− 1
2b

(a + V ′(Y ))

0







for Y







<

≥







Ȳnc−nc.

5See Appendix A.
6Here we employ that equation (11) defines V as a function of Y (and therefore, also V ′

through (12)), which is ensured by the implicit function theorem.
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Projects with a required total amount of R&D improvement below Ȳnc−nc

have a positive value, since the cost of the R&D effort carried out during the

planning horizon [0, T ] falls below the final gain. Note that the assessment of

the project is carried out through the net present value rule. Then, Ȳnc−nc is

the value for which a R&D project has a zero net present value.

3.2 Cooperation in R&D

When firms cooperate in R&D, the problem for the RJV is given by (5). Per-

forming the same steps as in the non-cooperative case, we have that the value

of the project, W , for the RJV must satisfy the following differential equation:

rW =
n

4b
(W ′)

2
+

na

2b
W ′ +

na2

4b
. (16)

In order to solve (16), analogous to the non-cooperative case we obtain that

n

2br
W ′ +

na

2br
ln |W ′| + αi = Y, i = 2, 3 (17)

where α2, α3 ∈ R are the constants of integration when firms in the RJV compete

or cooperate in the output market, respectively. The root of (16) that guarantees

a positive control is

W ′ = −a − 2

√

b

n
rW.

Therefore, the general solution of (16) is

n

2br

(

−a − 2

√

b

n
rW

)

+
na

2br
ln

∣

∣

∣

∣

∣

−a − 2

√

b

n
rW

∣

∣

∣

∣

∣

+ αi = Y, i = 2, 3 (18)

with the boundary condition W (0) = nRc(n) in case firms in the RJV also co-

operate in the output market, or W (0) = nRnc(n) when there is no cooperation

once the R&D phase is finished. These two cases are denoted by the subscripts

(c-c) and (c-nc), respectively.

In order to determine the constant of integration α, we must take into ac-

count the behavior of firms in the output market. When there is no cooperation

in output (c-nc), we know that when Y = 0 the RJV value of the project, Wc−nc,
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is nRnc(n). Therefore, from (18) we obtain that

α2 =
n

2br

(

a + 2
√

brRnc (n)
)

− na

2br
ln
∣

∣

∣−a − 2
√

brRnc (n)
∣

∣

∣ . (19)

Let Ȳc−nc be the maximal R&D improvement for the RJV for which it is

still profitable to carry out the R&D project. From the continuity of the control

variable we know that at this level

W ′
c−nc

(

Ȳc−nc

)

= −a,

while the optimal control is zero. Then, evaluating (18) at Ȳc−nc gives

Ȳc−nc =
n

2br
(−a) +

na

2br
ln |−a|

+
n

2br

(

a + 2
√

brRnc (n)
)

− na

2br
ln
∣

∣

∣−a − 2
√

brRnc (n)
∣

∣

∣ . (20)

As before, only projects that require an initial amount of total R&D improve-

ment below this critical level will be interesting for the firm as a participant in

the RJV. Thus, the optimal per-firm policy is

xc−nc =







− 1
2b

(a + W ′
c−nc(Y ))

0







for Y







<

≥







Ȳc−nc.

In case firms cooperate in both phases of the game (c-c) we know that when

Y = 0 the RJV value of the project, Wc−c, is nRc(n). This leads to

α3 =
n

2br

(

a + 2
√

brRc (n)
)

− na

2br
ln
∣

∣

∣−a − 2
√

brRc (n)
∣

∣

∣ . (21)

Denoting by Ȳc−c the total maximal R&D improvement that the RJV could

carry out profitably in the fully cooperative case, then as before it holds that

W ′
c−c(Ȳc−c) = −a, where the optimal control is zero. Finally, we can determine

Ȳc−c by substituting the last condition in (18) to obtain that

Ȳc−c =
n

2br
(−a) +

na

2br
ln |−a|

+
n

2br

(

a + 2
√

brRc (n)
)

− na

2br
ln
∣

∣

∣−a − 2
√

brRc (n)
∣

∣

∣ . (22)
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In this case, the optimal per-firm R&D improvement rate for the fully coop-

erative case is

xc−c =







− 1
2b

(a + W ′
c−c(Y ))

0







for Y







<

≥







Ȳc−c.

4 Analysis of results

We first compare the level of profitable total R&D improvement in the three

cases analyzed above for a given number of firms in the industry, as well as the

optimal per-firm improvement rate for a given project size.7 Results are shown

in the following propositions, which are proved in Appendix B.

Proposition 1 Let Ȳs, (s = c − c, c − nc, nc − nc), be the maximal total R&D

improvement that the RJV can face profitably. Then, for a given number of firms

in the RJV, it holds that

Ȳc−c > Ȳc−nc > Ȳnc−nc.

Proposition 2 Given a level of pending work, Ỹ , the per-firm R&D improve-

ment rates xs(Ỹ ), (s = c − c, c − nc, nc − nc), satisfy

xc−c(Ỹ ) > xc−nc(Ỹ ) > xnc−nc(Ỹ ).

As expected, the higher the degree of cooperation, the larger the total R&D

improvement needed to achieve the innovation that the RJV could bear prof-

itably. When firms cooperate in the R&D phase they internalize the effect that

the R&D effort of one firm has on the profits of the other firms in the RJV

(the combined-profits externality according to Kamien et al., 1992), and con-

sequently they are able to obtain more profit from cooperation. Note that the

inequality Ȳc−nc(n) > Ȳnc−nc(n) can be seen as the increase in efficiency that

firms obtain when they coordinate their R&D decisions, since the final gain is

equal. In the fully cooperative case the higher final gain is due to the fact that

7All the results below hold for n ≥ 2, while for n = 1 results coincide in the three cases.
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firms are acting as a joint monopolist in the output market, and thus they are

able to acquire a major part of the surplus created.

Next we analyze the behavior of the maximal profitable total R&D improve-

ment with respect to changes in the final gain.8 To do so, we differentiate Ȳs,

(s = c − c, c − nc, nc − nc), with respect to the final gain R(n):

∂Ȳc−c

∂Rc(n)
> 0,

∂Ȳc−nc

∂Rnc(n)
> 0, and

∂Ȳnc−nc

∂Rnc(n)
> 0.

In the three cases the corresponding critical level Ȳs is increasing in R (n), so

that the larger R, the larger the total amount of required improvement that the

RJV can face. Nonetheless, it can be observed from

∂2Ȳc−c

∂Rc(n)2
< 0,

∂2Ȳc−nc

∂Rnc(n)2
< 0, and

∂2Ȳnc−nc

∂Rnc(n)2
< 0,

that the increase in Ȳ is diminishing in R. This holds because the costs related

to the achieved improvement are convex. This implies that in case we duplicate

the final gain, duplicating the effort needed in order to get the final gain would

imply multiplying the associated costs more than twice.

Proposition 2 states that the R&D effort is higher the higher the degree

of the cooperation, leading to a faster time to completion and thus a quicker

achievement of the process innovation. This is a relevant issue since the sooner

the innovation is achieved and translated to production, the sooner the corre-

sponding increase of private benefits (higher firm profits) and social benefits

(lower prices and higher output) takes place. By only taking into account the

size of a project, firms could be indifferent on the RJV organizational struc-

ture that firms choose to engage. However, the required time to complete also

matters. In order to illustrate this point, Table 1 shows the required time to

complete9 a project requiring the maximal total R&D improvement (column 3)

8As the ratio (A−c)/B yields a measure of market size and profitability, and since the final

gain is proportional to this ratio, the response of Ȳ to a change in R can also be interpreted

as the way the market size influences the critical level of R&D projects. In general, R&D

investment incentives in cost reduction are positively related to the level of output, because

the innovation costs can then be spread over a larger number of products.
9We have used Matlab software for computing the time to complete. The quadrature al-

gorithms do not allow to start the integration process from the exact value of Ȳ , so that we
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and the required time to complete a R&D project with a given size (column 4).

With respect to the R&D improvement rate, xs, (s = c− c, c− nc, nc− nc),

by differentiating it with respect to Y , where the expressions of ∂V ′(Y )/∂Y and

∂W ′(Y )/∂Y are obtained from (11) and (17) and the implicit function theorem,

respectively, we obtain that the control variable is a strictly decreasing concave

function of Y :
∂xs

∂Y
< 0, and

∂2xs

∂Y 2
< 0. (23)

Therefore, the smaller the total pending work (reducing Y ), the larger the opti-

mal effort, that is, the intensity of the research effort increases (at a decreasing

rate) as the pending work diminishes until the project is completed at T , where

Y (T ) = 0 and the firms in the RJV reduce their unit production cost.

Departing from (1), we can also analyze how the pending work and the

per-firm R&D improvement rate evolve over time.10 While the pending work,

Ys, (s = c − c, c − nc, nc − nc), is a decreasing concave function of time, i.e.,

∂Ys

∂t
< 0,

∂2Ys

∂t2
< 0, (24)

the R&D improvement rate, xs, (s = c− c, c−nc, nc− nc), is an increasing and

convex function of time,

∂xs

∂t
> 0,

∂2xs

∂t2
> 0, (25)

so that, as pointed out previously, at the moment that the investment effort

is maximal the time to completion of the innovation ends. This behavior is in

accordance with the empirical results pointed out in Scherer (1967):“...the time

pattern of R&D outlays is typically bell-shaped, with the peak rate of spending

occurring at the time when the end product is put into production.”

compute the time to complete with an error of 0.001 with respect to these values. While dif-

ferences are minimal for the (c-nc) and (c-c) cases, for the case of (nc-nc) the time to complete

could differ with small changes in the error value, because the optimal control is quite low at

the initial stages of the R&D phase, so that initial R&D improvement units need high times

to complete.
10See Appendix B.
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The explicit consideration of a positive time to develop a breakthrough also

stresses the importance of value of the discount rate. By differentiating Ȳs with

respect to r, we obtain that

∂Ȳs

∂r
< 0, (s = c − c, c − nc, nc − nc).

We conclude that in the three cases studied the maximal total amount of R&D

investment being profitable to undertake decreases when r increases. This is the

case since the stream of costs extends over the entire planning horizon whereas

the final gain is obtained at the end of the R&D period.

4.1 Optimal size of the RJV

In this section we analyze the optimal size of the RJV. As the number of firms

in the RJV increases, the required per-firm R&D effort for a given project is

lower. However, at the same time the number of firms in the output market

increases, so that the final gain reduces.

Contributions that study the optimal number of firms in an industry are,

for instance, De Bondt et al. (1992) and Poyago-Theotoky (1995). Both papers

analyze an industry where firms produce a differentiated or homogeneous prod-

uct with R&D aimed at cost reduction. Decreasing returns of the innovative

activity are modeled through a quadratic cost function for the R&D invest-

ments. While Poyago-Theotoky (1995) explicitly considers the formation of an

RJV with a subset of the firms in the industry, De Bondt et al. (1992) analyzes

a whole industry acting non-cooperatively in both R&D and output stages. In

both papers the optimal size of the RJV11 depends on the degree of spillovers.

For the perfect spillover case Poyago-Theotoky (1995) finds that the equilibrium

size of the RJV is equal to the total number of firms in the industry, which is

also the socially optimal size of an RJV.12 On the contrary, in De Bondt et al.

11Concerning De Bondt et al. (1992), we associate the RJV case with their perfect spillover

case.
12In her setting the equilibrium size is given by the number of firms that maximizes the

profits of any individual member of the RJV while the socially optimum size corresponds to

the number of firms that maximize joint industry profits for RJV and non-RJV firms.
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(1992) the optimal size corresponds to the duopoly case.13 Other models that

exhibit perfect spillovers, although with R&D aimed at product differentiation

rather than cost reduction, such as Cellini and Lambertini (2002), find that,

when firms compete in R&D and output, R&D investments are positively re-

lated to the number of firms. This effect is due to the fact that a larger number

of firms increases the incentive to invest in R&D in order to decrease competi-

tion through product differentiation. Note that in such a framework there is no

incentive at all to perform R&D in case of a monopoly.

From the perspective of the firms (welfare is considered later), we define the

optimal size of the RJV by the number of firms n∗ for which the RJV exhibits

the maximal profitable amount of R&D improvement, i.e.,

Ȳs(n
∗) > Ȳs(n

∗ − 1) and Ȳs(n
∗) > Ȳs(n

∗ + 1),

where s = c − c, c − nc, nc − nc, and let ∆Ȳs(n) = Ȳs(n + 1) − Ȳs(n), (s =

c− c, c−nc, nc−nc). If ∆Ȳs(n) > 0, an RJV consisting of more firms would be

desirable since, although per-firm final gains are lower with more firms acting

in the output market, the increase in R&D efficiency associated with sharing

R&D efforts, which have decreasing returns because of the quadratic structure

of the cost function, will allow the RJV to face larger R&D projects. On the

contrary, when ∆Ȳs(n) < 0 the R&D performance of the RJV would increase

with less firms participating in the RJV.

Because of the complexity of the expressions for ∆Ȳs(n), we rely on numerical

simulations for the cases (nc-nc) and (c-nc) to state the following result on the

sign of ∆Ȳ :

Corollary 1 In the cases (nc-nc) and (c-nc) there exists at most one positive

real root ns for the equation ∆Ȳs(n) = 0, s = nc − nc, c − nc. It holds that

13In De Bondt et al. (1992) the monopoly case is not analyzed explicitly, but by deriving

the optimal R&D effort for the monopolist and comparing it with the duopoly case, it can

be shown that while R&D investments are maximal with only one firm in the output market,

for not “too large” values of the parameter Γ in their cost function, total industry profits are

higher if R&D is conducted for two firms, so that the efficiency effect leads to an optimal size

of the RJV of n = 2.
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nnc−nc ∈ (0, 2) and nc−nc ∈ (0,∞). In the case (c-c) we have that ∆Yc−c(n) > 0

for all n.

Corollary 1 states that when firms compete in the output market, there

is a non-monotonic relation between the number of firms in the RJV and the

R&D performance, irrespective of their attitude in the RJV. This non-monotonic

relation leads to the existence of an optimal size of the RJV. We conclude

that this result is placed between the Schumpeterian hypothesis, which relates

R&D investment to profits associated with the innovation, and therefore with

the extent of market power, being maximal for the monopoly, and Arrowian

positions where R&D investments are negatively associated with market power

and profits.

The optimal size of the RJV depends on the trade-off between benefits from

sharing with a larger number of participants and the profit loss associated with

increased competition in the output market. To illustrate, we perform a nu-

merical analysis with respect to Ȳ for the cases (nc-nc) and (c-nc). Results are

shown in Table 2.

An increase in the cost function always leads to a reduction in the maximal

profitable total R&D improvement since total profitability of the innovation

project reduces. However, what determines a better R&D performance for a

larger number of firms in the RJV is not the total cost but the weight of the

quadratic term in the cost function. An increase in b/a raises the incentive to

have more firms in the RJV. The reason is that an individual firm can cut down

on R&D improvement if the number of firms increase. This especially leads to

a considerable cost reduction if b is large. Hence, we obtain that the optimal

size for the RJV will not only depend on the degree of spillovers (in our RJV

setting always maximal), but also on the relative weight of the quadratic vs. the

linear term in the cost function. This result is the more important because the

inclusion of a linear term in the cost function seems reasonable, at least in some

cases, to avoid a null marginal cost for initial R&D efforts.

In order to assess the influence of the linear term (a) in our cost function
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and also to connect our results with those of De Bondt et al. (1992) and Poyago-

Theotoky (1995), where only the quadratic term appears in their cost function,

we drop out this term by taking the limit of Ȳnc−nc(n) and Ȳc−nc(n) when a

goes to zero, and obtain that

Ȳ a=0
nc−nc(n) = lim

a→0
Ȳnc−nc(n) =

√
2n − 1

(n + 1)

√

(A − ĉ)2 − (A − c)2

bBr2
, (26)

and

Ȳ a=0
c−nc(n) = lim

a→0
Ȳc−nc(n) =

n

(n + 1)

√

(A − ĉ)2 − (A − c)2

bBr2
. (27)

It is straightforward to see that Ȳ a=0
nc−nc(n) has a maximum at n = 2, and that

∂Ȳ a=0
c−nc(n)/∂n > 0, ∀n. We conclude that the optimal size of the RJV for the

(nc-nc) case is achieved at n∗ = 2 (De Bondt et al., 1992). However, in the

general case, i.e., with a �= 0, this size depends on the ratio b/a . For the (c-nc)

case and a = 0 it is optimal for the RJV to contain all the firms in the industry,

which coincides with Poyago-Theotoky (1995), while for the general case (a �= 0)

the optimal size can be any n∗ ∈ [1, n].

For the total cooperative case (c-c) it holds that the larger the number of

firms in the RJV, the better the RJV’s R&D performance. This result confirms

fears on incentives of firms to curtail competition after the R&D cooperation

phase, since a fully cooperative agreement between firms would allow them

to obtain a positive gain by carrying out R&D projects that would be non-

profitable under a different scenario. One way to take advantage of the best

R&D performance associated with the fully cooperative case while avoiding an-

titrust regulation is to form an inter-industry or international RJV, so that

firms can benefit from R&D cost reduction without negative effects of compe-

tition in their respective output markets. In this sense, Steurs (1995) concludes

that inter-industry R&D cooperation is more likely to result in higher R&D

investment than intra-industry R&D cooperation. To see why in the fully coop-

erative case the cost saving effect dominates the profit loss in the output market

as n increases, we rearrange (22) to obtain that

Ȳc−c

n
=

1

2br

{

a ln |−a| + 2
√

brRc (n) − a ln
∣

∣

∣−a− 2
√

brRc (n)
∣

∣

∣

}

. (28)
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Now, from (4) we have that Rc(n) = (1/n )Rc(1) and considering, for instance,

the case of a duopoly, (n = 2), leads to

Ȳc−c

2
=

1

2br

{

a ln |−a| + 2

√

br
Rc(1)

2
− a ln

∣

∣

∣

∣

∣

−a − 2

√

br
Rc(1)

2

∣

∣

∣

∣

∣

}

,

being the per-firm final gain, which is exactly one half of the gain for the

monopoly. Owing to the quadratic R&D structure the firms prefer the case

where both Ȳc−c and Rc are halved. A similar reasoning holds for further in-

creases of n. Moreover, the joint effort rate for the cooperative case is higher

when the number of firms is larger. This implies a shorter time to completion

for a given project.

We summarize the former results in the following proposition:

Proposition 3 Let n∗ be the optimal size for the RJV, then:

1. Case (nc-nc): n∗ = 2 if a = 0, and n∗ ≤ 2 if a > 0.

2. Case (c-nc): n∗ = ∞ if a = 0, and n∗ decreases with a/b .

3. Case (c-c): n∗ = ∞ ∀a.

4.2 Output market with differentiated products

We now briefly discuss the effect of having some degree of differentiation in

the output market. As pointed out previously, this assumption will only affect

the final gain associated with the innovation. Obviously, when some positive

degree of differentiation exists in the output market, per-firm profits are higher

than those with a homogeneous output. Therefore, the maximal total R&D

improvement that an RJV can carry out profitably is higher, as seen before.

Here, we assume that the n firms in the industry sell n differentiated prod-

ucts, and that the inverse demand function for a variety i is pi = A − Bqi −
D
∑

j �=i qj , i = 1, . . . , n, where D ∈ [0, B] is the symmetric degree of substi-

tutability between any pair of varieties, so that when D = B products are

completely homogeneous, and when D = 0 products are totally independent. In
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the latter case each firm acts as a monopolist. The final gain functions for the

non-cooperative and cooperative case are, respectively:

Rnc =
1

r

(

B(A − ĉ)2

[2B + (n − 1)D]2
− B(A − c)2

[2B + (n − 1)D]2

)

, (29)

and

Rc =
1

r

(

(A − ĉ)2

4[B + (n − 1)D]
− (A − c)2

4[B + (n − 1)D]

)

. (30)

It is straightforward to see that as the degree of product differentiation

increases (D decreases), gains from innovation, (29) and (30), also increase.

Therefore, the more differentiated the products are, the larger the maximal

total R&D improvement that an RJV can carry out profitably, i.e.

∂Ȳs

∂D
< 0, (s = nc − nc, c − nc, c − c).

In a similar way we obtain that for a given level of pending work, Ỹ , the per-firm

R&D improvement rate negatively depends on the degree of product differenti-

ation D:
∂xs(Ỹ )

∂D
< 0, (s = nc − nc, c − nc, c − c).

The implication is that an RJV with firms operating in a more differentiated

product market will complete R&D projects in a shorter time.

We finally consider the optimal size of the RJV with differentiated products.

Taking again the limit of Ȳnc−nc and Ȳc−nc when a tends to zero we obtain that

lim
a→0

Ȳnc−nc(n) =

√
2n − 1

[2B + (n − 1)D]

√

B ((A − ĉ)2 − (A − c)2)

br2
,

and

lim
a→0

Ȳc−nc(n) =
n

[2B + (n − 1)D]

√

B ((A − ĉ)2 − (A − c)2)

br2
.

Now, Proposition 3 can be generalized directly14 in the following way:

Proposition 4 Let n∗ be the optimal size for the RJV, with participating firms

selling products with a degree of differentiation of D ∈ [0, B], then:

14For the (nc-nc) case, note that if 2B/D /∈ N when a = 0, then n ∗ must be determined

according to the sign of ∆Ȳnc−nc(n) at the integer part of 2B/D.
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1. Case (nc-nc): n∗ = 2B
D

if a = 0, and n∗ ≤ 2B
D

if a > 0.

2. Case (c-nc): n∗ = ∞ if a = 0, and n∗ decreases with a/b .

3. Case (c-c): n∗ = ∞ ∀a.

Note that in the fully non-cooperative case the upper bound (2B/D ) for the

optimal size of the RJV tends to infinity as products become more differentiated

(D → 0). When D = 0 firms are monopolists, so that the larger the number

of firms in the RJV, the higher the savings from sharing R&D efforts, while

they will not suffer negative effects on the per-firm final gain because of the

independence of their output markets.

5 Welfare analysis

The welfare performance of the R&D policies analyzed above can be gauged and

compared in terms of several alternative criteria. We follow Suzumura (1992),

and assume that competition in the output market lies beyond the regulatory

power of the government, so that the value of the innovation of the social planner

is

RS
j =

1

r

(

∫ Qj(ĉ)

0

P (Q)dQ − ĉQj(ĉ) −
∫ Qj(c)

0

P (Q)dQ − cQj(c)

)

, (31)

where Qj(c), (j = nc, c), is the industry output under Cournot and Monopoly

situations for a unit production cost of c, respectively. The objective function

of the social planner is

S(Y (0)) = max
{x1,...,xn}



−
∫ T

0

e−rt

n
∑

j=1

[

axj (t) + bx2
j (t)
]

dt + RS
j e−rT



 . (32)

Note that the problem for the social planner is similar, except for the final gain

given by (31), to that of the RJV when firms cooperate. In the previous sec-

tion we have seen that the maximal profitable R&D project positively depends

on the final gain. Since the social planner also considers the improvement in
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consumer surplus associated with the innovation, which leads to higher produc-

tion and lower prices, it holds that RS
c > nRc(n) and RS

nc > nRnc(n), so that

Ȳ S
j > Ȳc−j , (j = nc, c), where Ȳ S

j is the social critical level of the R&D project.

Hence, the social planner would start R&D projects that firms in the RJV do

not consider profitable, pointing to a socially inefficient behavior in the three

analyzed cases.

Moreover, the social planner would commit a larger amount of resources

to profitable projects than any RJV structure, leading to lower total times to

complete a given project. Policy implications are, therefore, that the government

should promote cooperative agreements between firms, as well as take actions

such as direct aids (e.g., investment grants or investment tax credits) to reach

a higher level of R&D spending, in order to improve social welfare.

With respect to the optimal size of the RJV from the point of view of the

social planner, it always comprises all the firms in the industry. For the case of

competition in the output market, this results comes directly by observing that

the gain in social welfare, i.e., the change in the consumer surplus together with

the change in total industry profits, is positive when n increases:

∂

∂n

(

n2((A − ĉ)2 − (A − c)2)

2B(n + 1)2
+

n((A − ĉ)2 − (A − c)2)

B(n + 1)2

)

> 0.

If firms compete in the output market, total industry profits decrease with more

firms, but aggregate quantity is higher and product price lower, so that the

consumer surplus increases and offsets the loss in the industry profits. Finally,

in the case of collusion in the output market, total industry profits remain

constant with more firms, as well as the consumer surplus, but in this case, as

shown in the former section, it is always desirable for the RJV to incorporate

more firms because of the gain in R&D efficiency.

Finally, note that this analysis extends in a straightforward way when there

exists some degree of differentiation in the output market. As seen before, in

that case firms in the RJV increase their R&D investments with the degree

of product differentiation. However, the social planner will also find the RJV’s

R&D policy socially inefficient.

21



6 Concluding remarks

We have taken a differential game approach to analyze the RJV’s R&D efforts

when the completeness of a process innovation requires a known given amount

of R&D improvement, Y0. Depending on the organizational structure of the

RJV we study the maximal amount of R&D improvement that an RJV can

undertake profitably, and determine the optimal effort for every level of pending

work during the research process.

Results obtained show that the coordination of the firm’s R&D efforts is

optimal from a double perspective. First, cooperation increases the ability to

manage larger innovation projects. Second, under cooperation it is optimal to

spend more resources in a given R&D project, which leads to a faster completion

of the innovation process and, consequently, to a sooner appropriation of the

private benefits (higher firm profits) and social benefits (lower prices and higher

output) associated with the innovation. With respect to the timing of R&D

investments, we have shown that the R&D improvement rate is an increasing

and strictly convex function of time, so that R&D investments are maximal at

the final stages of the process innovation.

We further established some results regarding the optimal size for the RJV.

We show that this optimal size depends heavily on the cost function of R&D

investments. While in the fully cooperative case it is always desirable to increase

the number of firms, in the other scenarios the optimal number of firms depends

on the relative weight of the quadratic and linear terms in the cost function.

Finally, a comparison with the social planner’s optimal R&D efforts shows

that society would consider it profitable to carry out projects that an RJV,

irrespectively of its organizational structure, would reject. And for profitable

projects, society would address more resources to every stage of the project,

pointing to a permanent delay in the introduction of new technologies from the

social point of view.
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Appendix A: Derivation of V (Y )

In order to solve (10) we rewrite it as:

V = Φ (V ′) =

(

2n − 1

4br

)

(V ′)
2

+
na

2br
V ′ +

a2

4br
. (33)

By definition, dV = V ′dY. Differentiating (33) we obtain that dV = Φ′ (V ′) dV ′.

From these relations we get

dY =
dV

V ′
=

Φ′ (V ′)

V ′
dV ′. (34)

Integrating (34) we finally obtain

Y =

∫

Φ′ (V ′)

V ′
dV ′ + α

=

(

2n − 1

2br

)

V ′ +
na

2br
ln |V ′| + α

where α ∈ R.

Equation (33) defines two solutions for V ′ :

Ψ1 = −
(

na

2n − 1

)

− 1

2

√

(

2a (n − 1)

2n − 1

)2

+
16brV

2n − 1
(35)

and

Ψ2 = −
(

na

2n − 1

)

+
1

2

√

(

2a (n − 1)

2n − 1

)2

+
16brV

2n− 1
. (36)

Next we study which of these two solutions is feasible for the studied problem.

The minimal R&D effort that each firm can perform is zero and let Ȳnc−nc be

the maximal R&D improvement that each firm considers the RJV can face

profitably under a non-cooperative attitude in the R&D phase. Therefore, from

the continuity of the control variable, we know that at Ȳnc−nc it is satisfied that

V ′
(

Ȳnc−nc

)

= −a, (37)

i.e., for Ȳnc−nc the optimal effort is zero, and the value of the project is zero,

i.e., V
(

Ȳnc−nc

)

= 0.

In order to assure positive values for the control variable, and from (9), it is

required that

V ′ < −a. (38)

23



First we analyze the solution given by (36). Solving (36) for V = 0 we have

that

Ψ2 (0) = − a

2n− 1
,

which contradicts (37). Since b and r are positive, we also have that V ′ is an

increasing function of V, so that the optimal control would always be negative.

Now we study the solution obtained from (35). Solving it for V = 0, we

obtain that V ′ = −a, that is, the value reached at Ȳnc−nc. Moreover, V ′ is now

a decreasing function of V , and this guarantees (38). Then we take (35) as the

differential equation to be satisfied by the value function V for each firm in the

RJV.

Appendix B: Proofs of the propositions and main

results

Proof of Proposition 1. We first prove that Ȳc−c > Ȳc−nc. First, we define the

function

f(ξ) ≡ − n

2br
ξ − na

2br
ln|ξ|. (39)

By subtracting Ȳc−nc from Ȳc−c, we conclude that Ȳc−c > Ȳc−nc holds if f(ξ1) >

f(ξ2), where ξ1 = −a − 2
√

brRc(n) and ξ2 = −a − 2
√

brRnc(n). Then, since

f(·) is a (strictly) decreasing function for ξ < −a, Rc(n) > Rnc(n) implies that

ξ1 < ξ2, so that f(ξ1) > f(ξ2).

Note also that f(ξ1) = α3 and f(ξ2) = α2, where α2 and α3 are the constants

of integration given in (19) and (21), respectively. Therefore, we also have that

α3 > α2, which is a result that we will use below.

Next, we prove that Ȳc−nc > Ȳnc−nc. We obtain from (15) and 20), that the

former inequality holds if

M > ln(N), (40)
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where

M =
1

na

(

a(n − 1) +
√

4brn2Rnc(n) −
√

(a(n − 1))2 + 4br(2n − 1)Rnc(n)
)

,

N =
a +
√

4brRnc(n)

na
2n−1 + 1

2

√

(

2a(n−1)
2n−1

)2

+ 16brRnc(n)
2n−1

.

By taking exponentials of both sides of (40), and then the second-degree Taylor

polynomial for the left-hand side of the resulting expression we obtain

eM =

∞
∑

n=0

Mn

n!
> 1 + M +

M2

2
> N, (41)

which after some calculations can be shown to hold.

Proof of Proposition 2. As xs(Ỹ ), s = c − c, c − nc, nc − nc, is given by the

expression −(1/ 2b)(a+γ(Ỹ )), γ(Ỹ ) = W ′
c−c(Ỹ ), W ′

c−nc(Ỹ ), V ′(Ỹ ), we will show

that W ′
c−c < W ′

c−nc < V ′, in order to construct the proof for Proposition 2.

We first look at the case W ′
c−c < W ′

c−nc, i.e., xc−c(Ỹ ) > xc−nc(Ỹ ). Let

f(·) be as defined in (39), which attains a minimum at ξ = −a (note that the

functions W ′
c−c, W ′

c−nc and V ′ will only reach values less or equal than −a for

any (given) admissible level of pending work Ỹ ). Now, the expressions for the

solution of the value function in the fully cooperative case (given in (18) with α

as in (21)) and for the value function when cooperation arises only in the R&D

stage ( given in (18) with α as in (19)) can be rewritten, respectively, into

f(W ′
c−c(Ỹ )) = −(Ỹ − α3),

and

f(W ′
c−nc(Ỹ )) = −(Ỹ − α2).

Since f(·) decreases on the admissible range for W ′
s(Y ), s = c − c, c − nc, and

α3 > α2, it follows that W ′
c−c(Ỹ ) < W ′

c−nc(Ỹ ).

Finally, in order to prove that W ′
c−nc < V , i.e., xc−nc(Ỹ ) > xnc−nc(Ỹ ), we
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define the functions

g(ξ) ≡ 2n − 1

2br
ξ +

na

2br
ln|ξ| + α1, (42)

h(ξ) ≡ n

2br
ξ +

na

2br
ln|ξ| + α2. (43)

with α1 as in (13). In order to compare g and h, we find the intersection point

between both functions, ξ̄ ∈ R/g (ξ̄) = h(ξ̄), so that

ξ̄ =
2br

n − 1
(α2 − α1), (44)

and now we check that ξ̄ > −a. Substituting the expressions for α1 and α2 into

(44), and rearranging terms in the inequality ξ̄ > −a, we obtain expression (40),

which was shown to be satisfied. Then, as g and h are continuous functions on

their domains, we have that for ξ ≤ −a it holds that either g > h or g < h.

Note that both functions, g and h, valued at ξ = −a are, respectively, Ȳnc−nc

and Ȳc−nc, so that, for ξ ≤ −a it holds that g < h. Then, for any given level of

pending work Ỹ ≤ Ȳnc−nc, we have that

g−1(Ỹ ) = V ′(Ỹ ) > h−1(Ỹ ) = W ′
c−nc(Ỹ ). (45)

Proof of Corollary 1. As pointed before, the results for the (nc-nc) and (c-nc)

cases rely on numerical simulations. For the (c-c) case, and in order to prove

that ∆Ȳc−c(n) > 0 we calculate the derivative of Ȳc−c(n) with respect to n, and

show that it is always positive:

∂Ȳc−c(n)

∂n
=

1

2br

{

a ln

(

a

a + 2Ψ

)

+ Ψ
√

2 +
a

2 + a
Ψ

}

,

where

Ψ =

√

b

n

(A − ĉ)2 − (A − c)2

4B
.

This derivative is positive if

Ψ
√

2 +
a

2 + a
Ψ

> Ψ +
a

2 + a
Ψ

=
2Ψ(a + Ψ)

a + 2Ψ
> a ln

(

a

a + 2Ψ

)

.
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Finally, this inequality holds if

M > ln(N), (46)

where now

M =
2Ψ(a + Ψ)

a(a + 2Ψ)
and N =

(

a + 2Ψ

a

)

.

As before, we take exponentials of both sides of (46), and then the second-degree

Taylor polynomial for the left-hand side of the resulting expression, to obtain

that

eM =

∞
∑

n=0

Mn

n!
> 1 + M +

M2

2
> N,

which after some calculations can be shown to hold.

Proof of Expressions (24) and (25). As the analysis is initially similar for

the three cases (nc-nc, c-nc, c-c), we omit subscripts where no confusion could

arise. We first prove that ∂Y (t)/∂t < 0 and ∂2Y (t)/∂t 2 < 0. From (1) and the

symmetric behavior assumption, we have that

Ẏ = −nx and Ÿ = −n
∂x

∂Y
Ẏ . (47)

As the control variable is assumed to be non-negative and with (23), the strict

concavity of Y (t) follows.

We now consider ∂x(t)/∂t > 0, and ∂2x(t)/∂t 2 > 0. Differentiating (1) with

respect to t and rearranging terms we have that

ẋ = −nŸ = n2 ∂x

∂Y
Ẏ , (48)

ẍ = n2Ẏ

[

∂2x

∂Y 2
Ẏ − n

(

∂x

∂Y

)2
]

. (49)

The sign of (48) comes from (23) and the sign of Ẏ shown above. On the other

hand, the sign of (49) will depend on the sign of the expression inside square

brackets, which, after substituting the expression for the control variable x =

−(1/ 2b)(a + γ(Y )), where γ(Y ) = W ′
c−c(Y ) ,W ′

c−nc(Y ), and V ′(Y ), becomes:

− 1

2b

∂2γ(Y )

∂Y 2

( n

2b
(a + γ(Y ))

)

− n

(

− 1

2b

∂γ(Y )

∂Y

)2

. (50)
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Now, from (11) and (18) and the implicit function theorem, we can calculate

∂γ(Y )/∂Y and ∂2γ(Y )/∂Y 2, ∀Y ∈ [0, Ȳ ).

We first consider the cases (c-nc) and (c-c) because of their symmetry, that

is, with γ(Y ) = W ′
s(Y ), s = c − nc, c − c, and obtain that

∂W ′
s

∂Y
=

2brW ′
s

n (a + W ′
s)

,

∂2W ′
s

∂Y 2
=

2abr

n (a + W ′
s)

2

2brW ′
s

n (a + W ′
s)

.

By substituting these expressions into (50), and after some calculations (taking

into account that W ′
s(Y ) < −a) it can be shown that the sign of (50) is negative.

Therefore, coming back to (49) we have that ẍ > 0.

Finally, for the case (nc-nc), where γ(Y ) = V ′(Y ), we have that:

∂V ′

∂Y
=

2brV ′

an + (2n − 1)V ′
,

∂2V ′

∂Y 2
=

2abrn

(an + (2n − 1)V ′)2
2brV ′

an + (2n − 1)V ′
.

Substituting the former expressions into (50), and after some calculations it can

be shown that the sign of (50) is negative for the (nc-nc) case. Therefore, coming

back to (49) we also have that ẍ > 0.
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n = 2 Ȳ T (Ȳ ) T (Y0 = 200)

nc-nc 409.31 145.44 12.14

c-nc 512.91 32.97 5.64

c-c 554.49 33.93 5.24

Table 1: Time to complete and maximal profitable total R&D improvement for

parameter values: a = 1, b = 0.1, r = 0.05, A = 100, B = 10, c = 70 and ĉ = 30.
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a n∗
nc−nc Ȳnc−nc n∗

c−nc Ȳc−nc

0.001 2 728.637 52 1212.553

0.01 2 718.302 19 1122.574

0.1 2 655.978 7 909.253

1 1 433.332 3 520.865

10 1 142.37 1 142.37

Table 2: Optimal size of the RJV for parameter values: b = 0.1, r = 0.05,

A = 100, B = 10, c = 70 and ĉ = 30.
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