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Abstract
Production often causes pollution as a by-product. Once pollution problems
become too severe, regulation is introduced by political authorities which forces
the economy to make a transition to cleaner production processes. We model
this transition as a change in "general purpose technology" (GPT) and
investigate how it interferes with economic growth driven by quality-
improvements. The model gives an explanation for the inverted U-shaped
relationship found in empirical research for many pollutants, often referred to as
the Environmental Kuznets Curve (EKC). We provide an analytical foundation
for the claim that the rise and decline of pollution can be explained by policy-
induced technology shifts.
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1. Introduction

An old, classical, and recurring theme in economics is the relationship between
economic growth and public concern for environmental problems. It ranges
from the physiocrats’ focus on land, Jevon’s coal question, and the Club of
Rome’s doomsday scenarios to the current greenhouse gas problem. In recent
literature, the relationship between economic development and pollution has
been widely discussed. For many pollutants, an inverted-U-shaped relationship
between per capita income and pollution, labeled the Environmental Kuznets
Curve (EKC), is documented.1 Concentration of a certain pollutant typically first
increases with production, which reflects a scale effect, but later on, emissions
are de-linked from income.

Hypotheses to explain this de-linking of pollution from growth are either
the assumption of a shift in the composition of production (from manufacturing
to services), or a change in techniques used.2  Especially the latter change is
likely to be policy-induced. If the environment is a “normal good” of which
demand increases with income, higher income levels trigger more stringent
environmental policies that induce firms to change technology. This kind of de-
linking is thus achieved due to the combination of political correction of market
failures and technological change. Before policy-induced technical change can
arise, policy concerning environmental issues has to be shaped. Growing
evidence of harmful effects and new findings by natural scientists have a large
impact on public concern about the environment and may result eventually in
new environmental policy measures. Examples of rather late policy reactions to
growing evidence of potential problems are the greenhouse and nuclear power
problems. In sum, new information about ecological problems, the
implementation of policy measures, and new technological possibilities are at
the heart of the EKC.

Until now, there is a large empirical literature on EKCs, see Seldon and
Song (1994), Shafik (1994), Cropper and Griffiths (1994), Grossman and Krueger
(1995) and Hilton and Levinson (1998) in particular. But it is surprising that the
theoretical literature on environmental growth models does not say much about
the phenomenon.3 In general, the theory of growth tends to focus on balanced
growth paths which seems difficult to combine with the non-linear nature of the
EKC. Yet, the theory of endogenous growth exactly provides those building
blocks that are needed to seriously study the interaction between growth,
technology and environment. One of the exceptions is Stockey (1998) who
presents a model of growth and pollution in which relatively high marginal
abatement costs for the first units of abatement makes poor countries to abstain
from abatement activities. De Groot (1999) gives another growth-theoretical

                                                
1 See, for example, the special issues of Environment and Development Economics 1997 and
Ecological Economics 1998, and the survey article by De Bruyn 1999.
2 See Copeland and Taylor (AER 1994) for the distinction between scale, composition and
technique effects.
3 See Smulders 1995 and 1999 for a survey on environmental growth models and Bretschger
1999 for the integration of natural resource use into modern growth theory.
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explanation for the EKC. In his model, endogenous sectoral changes, driven by
income effects and learning-by-doing, generate the EKC pattern. This
mechanism, however, seems less relevant for mature economies in which
intersectoral shifts are of minor importance relative to intrasectoral changes.
Empirical decomposition studies confirm the overwhelming dominance of
intra-sectoral changes (Torvanger 1991, De Bruyn 1997, and 1999 p. 88). Finally,
Andreoni and Levinson (2000) present a simple model of the EKC driven by
income effects. Their approach, however, does not explicitly model economic
growth or technological change.

This paper aims to link the empirical evidence on the interaction between
economic growth and environmental problems to theories of technological
change and economic growth. Specifically, it explains the EKC in an
endogenous growth model with three key elements. First, technological change
allows for reductions in pollution. Second, intrasectoral shifts accompany the
adoption of pollution-reducing technologies. Third, technical change and
sectoral shifts are both driven by policy changes, which in turn occur at discrete
times and reflect awareness of environmental problems.

Pollution-saving inventions arise in clusters at discrete times; it is costly
to adopt them. They can be interpreted as general purpose technologies (GPT),
defined by Bresnahan and Trajtenberg (1995) as technologies that have a
potential to affect a large part of the economy. We can think of energy systems,
for example the technologies to use horsepower, fossil fuels, or nuclear power as
source of energy. Such technologies had and have a large impact on pollution,
for example in the context of the regional pollution of air and water. GPTs have
been studied in endogenous growth literature in the context of Romer’s variety
expanding model (Helpman and Trajtenberg 1998) or models of growth based
on inhouse R&D (Nahuis 2000). We model GPTs in the context of the quality
ladder model (Grossman and Helpman 1991, Chapter 4). Note that two types of
technical change play a role. Emissions per unit of output change when a new
GPT is adopted; quality of final goods changes if a new product generation is
introduced. Both adoption and quality improvements are costly and
endogenous in the model.

Intrasectoral shifts and market structure dynamics affect pollution. Since
it is costly to adopt new technologies, diffusion is slow and producers using old
technologies may coexist with producers using new ones. Producers are
heterogeneous in terms of pollution output ratios, prices and output levels.
Changes in pollution result not only from changes in the pollution tax, but also
from the process of creative destruction in which producers of one type are
gradually replaced by producers of another type.

As our model has to include several technologies, different types of
producers and different types of product qualities, the framework runs the risk
of becoming very complex. To reduce complexity, we make a couple of
simplifying assumptions. In particular, we set up the model such that only one
type of innovation is being undertaken at a certain moment in time, either
quality improvements, or new GPT adoption. Also, at most two types of firms
are active at any point in time. In addition, we first describe the working of the
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model in an informal manner. Moreover, we present possible extensions
complicating the model in a special section at the end.

The remainder of the paper is organised as follows. Section 2 presents the
general mechanisms producing EKCs in our model. In section 3, the different
time phases and acting firms are presented within a formal model. Section 4
discusses possible extensions and section 5 concludes.

2. An Informal Overview of the Model

In this section, we preview how the model generates a time pattern of
pollution that first increases and then falls, that is, how it generates the
environmental Kuznets curve. We distinguish four phases, which will be
discussed first. Figure 1 summarizes the main features of the phases.

In the first phase, the so-called “green phase”, production uses a
traditional general purpose technology (GPT) which causes no pollution.

In the second phase, a new GPT exogenously becomes available and is
gradually (and endogenously) adopted in the economy. This new GPT allows
production at lower labour cost than the traditional GPT. During adoption,
pollution caused by firms using the new GPT is not yet known or,
alternatively, not yet a public concern. Accordingly, we call this period the
“confidence phase”. This phase can be divided into two subperiods. Initially,
private research is used to invent the sector-specific complementary
innovations that allow a specific sector to adopt the new labour-saving
technology. Later, when all sectors in the economy have adopted the new
GPT, research is redirected at improving existing product qualities.

The third phase starts after a considerable amount of information has
been revealed that the new technology is harmful and after public concern has
become widespread. It suddenly becomes evident that, during the confidence
phase, pollution has steadily increased. From this point in time, the “alarm
phase” begins. The government taxes emissions from producers that use the
new GPT.

As soon as a new clean GPT becomes available, a new phase of
adoption starts. We assume that this third GPT allows firms to reduce costs
since it saves on pollution tax expenditures. With its invention, the “cleaning-
up phase” starts. The clean GPT is gradually introduced in the different
sectors of the economy and pollution decreases in the course of time. Again,
initially research is used to adopt the new GPT during a first subphase; once
the clean GPT has been fully adopted, however, research again switches and
then exclusively aims at upgrading existing product varieties.

Neither technological breakthroughs nor environmental regulation are
anticipated. New GPTs arise unexpectedly so that they do not affect agents’
forward-looking behaviour. Once available, however, private firms evaluate
whether it is profitable to adopt a new GPT or not. Individual firms face
uncertainty of being replaced in the market, but because the number of firms
is large, this uncertainty washes out at the aggregate level. Households face
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no aggregate uncertainty in the economy and anticipate future changes in
market structure. In particular, they predict how market structure and the rate
of return to innovation evolve over time.

Firms engage in R&D either to improve the quality of a good or to adopt
a new GPT. Both types of innovation result in creative destruction. Quality
improvements drive producers with lower quality levels out of the market.
Adoption drives producers exploiting the old technology out of the markets.
Hence, innovation drives changes in market structure and it is crucial to
understand what types of firms are active in which phases.

In the green phase, all incumbent firms use the traditional GPT so that,
obviously, only quality improvement is possible. That is, research is exclusively
aimed at upgrading of existing goods. Enterprises that produce these varieties
are called “traditional firms”. The next GPT is assumed to enable cutting costs in
the economy at a large scale, which is important to broaden industrial
development in an early stage. Provided that the return on adopting the new
GPT is larger than on improving product quality, research is fully directed at
adoption activities in the first period of the confidence phase. Firms that have
adopted this GPT are called “labour-cost leaders” and gradually replace
traditional firms. When no traditional firms are left and the labour-saving
technology is implemented in all sectors of the economy, researchers invent
blueprints to upgrade goods qualities. Firms buying these blueprints replace the
initial cost leaders. As there is no environmental regulation, we call the firms
that supply higher qualities “unregulated quality leaders”.

In the alarm phase, unregulated quality leaders suddenly become
“regulated quality leaders” as they are now taxed for their emissions. No clean
GPT is yet available, but still, research is economically attractive. Thus in the
alarm phase, research is again directed at upgrading of existing goods and
improved qualities become available in the economy.

This changes when a new clean GPT arrives and innovators have an
incentive to adopt. In this “cleaning-up phase”, the pollution tax induces
adoption, since it causes the return on adoption to be larger than the return on
quality upgrading. Firms that have adopted are called “first movers”. These
firms gradually replace enterprises using the older labour-saving technology.
Once all goods are produced with the clean technology, it is again quality
uprading that is undertaken. As a consequence, new “ecological quality
leaders” gradually spread over the whole range of supplied varieties.

What happens with pollution over time? In the green phase, there are no
polluting activities. In the confidence phase, however, pollution increases and
thus represents the upward sloping part of the EKC. Initially, pollution rises
because of the increase in the number of cost leaders that implement the labour
saving but polluting GPT. Even when this polluting technology has diffused
over all sectors, pollution still increases but at a steadily decreasing pace. The
reason for the rising but flattening time pattern of pollution is that cost leaders,
which charge a high price and produce relatively small output, are replaced by
quality leaders, which charge a lower price and produce and pollute more. Since
over time less and less cost leaders are in the market, this replacement effect



6

comes to an end and pollution stabilizes, which marks the end of the upward
sloping part of the EKC.

In the meantime, information about the adverse effects of the pollutant
accumulates and, at a certain moment, society imposes a tax on pollution, which
marks the beginning of the alarm phase. Then, pollution already decreases in a
discrete jump because industrial products become more expensive and demand
is smaller due to the tax. Firms can only avoid pollution by producing less. As a
consequence, more resources are used for research and less for current
production. This is the beginning of the downward sloping part of the EKC.
When a new clean GPT arrives, which starts the cleaning-up phase, steady
reductions in pollution become feasible. In fact, the emissions that are caused by
regulated quality leaders are gradually phased out in this period. When first
movers serve all markets, pollution disappears from the economy. Growth is
then characterized by the steady appearance of new ecological quality leaders.

Figure 1 shows the development of pollution over time and exhibits the
three GPTs and the six types of acting firms in the four phases the economy is
going through.

Insert Figure 1

3. The Model

3.1 Formal Overview

We first give a general overview of the model.  We start from Grossman and
Helpman (1991, Chapter 4) for the industrial structure of the economy, but we
extend it to two types of innovation and we add pollution externalities.

There is a continuum of sectors, indexed i, each producing a good that
enters the households’ utility function as an imperfect substitute. Each good can
be produced in a number of varieties. Varieties differ in two dimensions. First,
an unlimited number of different qualities of the same good can be produced.
Second, the labour input requirements and pollution output ratios for a given
quality level may differ according to the general technology adopted. If a new
generation of the product is of higher quality, it provides λ  times as many
services as the product of the generation before it. We refer to this type of
technological development as quality improvements. It is the climbing of the
quality ladder. The second type of technological progress is the switch to a
production process belonging to a new general purpose technology. In sum,
there are three dimensions of production: sector (i), quality (m) and (general
purpose) technology (j). Innovation takes place in the latter two dimensions.

Both types of innovation are costly. Researchers target research in a
certain sector to either develop a new quality or to develop the complementary
innovations that allow implementation of a new GPT. Such a new GPT becomes
available for adoption only at discrete times. Once a new technology becomes
available, it can be potentially adopted in all sectors in the economy. Adoption
requires a sunk cost (the development of the sector-specific blueprint) like
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innovation, and hence the rate of adoption (or diffusion of the GPT) is
endogenous. Because adoption is costly, only innovations that allow a switch to
lower production costs are adopted in equilibrium. Once a sector has switched
to the new technology, quality improvements can be realized at the same cost as
under the old GPT.

Competition among producers in the same sector results in the situation
that only the producer with lowest production costs per unit of quality survives.
This producer earns a profit that allows her to cover the cost of innovation or
adoption.

Pollution hurts households’ utility. Whether a new technology causes
pollution or not is unknown at the time of its introduction. Only when exposure
to the pollutant has been long enough, damages, if any, can be established and
an emission tax is implemented. This increase in production costs makes it
attractive to switch to new production processes with lower pollution output
ratios.

Households4

The representative consumer maximizes intertemporal utility given by:

 ( )∫
∞

−−=
0

0 ][ln dteHCU t
tt

ρ (1)

where ρ is the discount rate, C is the index of consumption, and H is harm from
emissions, which consumers take as given. Consumers have Cobb Douglas
preferences over a continuum of goods indexed i on the unit interval.
Differentiated products of a given good i substitute perfectly for one another,
once the appropriate adjustment is made for quality differences:

1

0

ln lnt im imt
m

C q x di
 

=  
 
∑∫ (2)

where qim is the quality of the mth generation of product in industry i and ximt is
the associated production at time t.

Maximization of utility subject to the usual budget constraints implies
that only the good with lowest price per unit of quality is consumed in each
industry i. We denote this good by im~ .  Static utility maximization implies:

imttimt pYx /= for m= im~

(3)
ximt = 0 otherwise

                                                
4 Households are modeled exactly as in Grossman and Helpman (1991), but for the inclusion
of damages in the utility function.
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where ∫ ∑≡
1

0
)( dixpY

m imtimtt  denotes total consumption expenditure.

Utility maximization also implies that consumption expenditure Y grows
at a rate equal to the difference between the (nominal) interest rate r and the
utility discount rate:

ρ  r = Y / Y −& . (4)

Production
Each producer holds a unique blueprint (patent) for production such that the
market form is monopolistic competition. The blueprint allows the holder to
produce good i at quality m, using technology j.

Unit production costs vary with technology but not with sector or
quality. Production of one unit of output x requires aLj units of labour and emits
aZj units of pollution if technology j is used. Unit costs c for technology j at time t
are thus given by:

jt Lj t Zj tc a w a τ= + (5)

where w and J denote the wage and pollution tax respectively.
Output in each sector is given by:

xi = Y/pi, (6)

that is spending per sector, Y (which equals aggregate spending because the
total mass of sectors is normalized to one), divided by the price set by the
incumbent in the sector, pi.

Within a sector, firms engage in Bertrand competition. The leading
firm sets the limit price that equals the cost level of its closest rival corrected
for quality differences. It is useful to distinguish between two (broad) types of
firms: cost leaders and quality leaders. Cost leaders are the first producers in
the sector that have introduced a new general purpose technology. They have
a cost advantage over their closest rival (but produce the same quality level).
Cost leaders using technology j set a price equal to their rival’s cost level cj−1.
Quality leaders are the producers that supply the highest quality level in the
sector. They have a cost advantage over their closest rival in terms of costs
corrected for the quality lead (but use the same technology). A quality leader
using technology j sets the limit price λ cj, where 1λ >  represents the quality
difference. Since new blueprints for higher quality levels become available as a
result of the innovation process (with the newest quality level being λ  times
the previous quality level developed), quality leaders are always λ  ahead.
This implies that we may write for the price set in sector i:

i jp cλ=  if in i a quality leader is active that employs technology j,
(7)

1i jp c −=  if in i a cost leader is active that employs technology j.
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Corresponding profit levels are given by

11i Yπ
λ

 = − 
 

 if in i a quality leader is active that employs technology j,

(8)

1

1 j
i

j

c
Y

c
π

−

 
= −  

 
 if in i a cost leader is active that employs technology j.

Let us now be more specific and distinguish between the three GPTs and
six types of producers already described above. The three GPTs appearing in
the model are indexed j=1,2,3 for the “traditional, “labour-saving” and
“clean” technology respectively. GPT 1 and 3 require one unit of labour per
unit of output and emissions are zero. GPT 2 requires 1η <  units of labour, but
emits 1 unit of the pollutant per unit of output. Hence we may write:

aL1=aL3=1, aL2=η , aZ1=aZ3=0, aZ2=1. (9)

In the green phase and in the confidence phase, there is no tax on pollution, that
is J=0, but from the alarm phase onward, emissions are taxed. The tax is
assumed to be constant in terms of the wage, so we then have /wτ  > 0.

Six types of producers must be distinguished, depending on the
technology used, whether they are cost leaders or quality leaders, and
whether pollution is taxed or not. First, producers who supply the leading
edge quality level of a good and employ the traditional technology (GPT 1)
are called “traditional firms”, which we denote by subscript T. Second,
producers who are the first in their sector to use the labour-saving technology
(GPT 2) are called “labour cost leaders”, denoted by subscript L. Third,
quality leaders using the labour-saving GPT active in the confidence phase
are “unregulated quality leaders”, labelled by subscript U. Once pollution is
taxed, the cost level of producers employing GPT 2 changes. Hence, quality
leaders that are subject to the emission tax are to be distinguished as a fourth
type of producers. They are labelled “regulated quality leaders” and denoted
by subscript R. Fifth, firms that adopt the clean GPT 3 first are called “first
movers” denoted by subscript F and, sixth, firms improving quality using
GPT 3 are the “ecological quality leaders” with subscript E.

It is now straightforward to determine prices and profits of each type
of producer from (7) and (8). Table 1 gives the results for producers of type
k=T, L, U, R, F, E.
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Table 1 Prices and profits for the six types of producers
k : T L U R F E

kp : wλ w wλη ( )wλ η τ+ wη τ+ wλ

kπ : 1
1 Y

λ
 − 
 

( )1 Yη− 1
1 Y

λ
 − 
 

1
1 Y

λ
 − 
 

1
1

/
Y

wη τ
 

− + 
1

1 Y
λ

 − 
 

Total employment in manufacturing, to be denoted by Lx, equals aggregate
manufacturing output, which can be written as:

( ) ( )
η η η

λ λη λ η τ η τ λ η τ
= + + + + +

+ + +x T L U R F E

Y Y Y Y Y Y
L n n n n n n

w w w w w w
(10)

where nT, nC, nU, nR, nF, and nE are the number of sectors with traditional firms,
cost leaders, unregulated quality leaders, regulated quality leaders, first movers,
and ecological quality leaders, respectively.

Total emissions are the sum of emissions of cost leaders, unregulated
quality leaders, and regulated quality leaders. Aggregate pollution can be
straightforwardly calculated as:

( )λη λ η τ
= + +

+L U R

Y Y Y
Z n n n

w w w
(11)

Innovation
R&D aims at developing blueprints for improving the quality of a certain
product or blueprints for incorporating the latest technology in a certain sector.
The development of a blueprint requires a units of labour, so that the cost of a
blueprint is aw. There are six types of blueprints corresponding to the six firm
types. That is, there are blueprints for higher quality the traditional technology
(denoted by T), blueprints for adopting the labour-saving GPT 2, denoted by L,
and so on. We denote these blueprints as type k=T, L, U, R, F, E. The total
amount of blueprints developed per period, or the research intensity5, is:

1
ι = ∑ gk

k

L
a

, (12)

where Lgk is the amount of labour engaged in developing blueprints of type k.
The value of a blueprint equals the stock market value of a firm that

exploits the blueprint. Free entry in research guarantees that, whenever research
activity is targeted at developing blueprints of type k=T, L, U, R, F, E, the value
of a firm of type k equals the cost of the blueprint:

                                                
5 Since the number of sectors is normalized to one, the number of blueprints developed equals
the fraction of sectors in which innovation occurs.
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awvk ≤  with equality whenever Lgk>0. (13)

The value of a firm is determined by the no arbitrage equation that states
that the expected rate of return on stock must equal the return in an equal size
investment in a riskless bond:

kkkk rvsv =−+ &π         (k = T, L, U, R, F, E) (14)

where sk is the expected value of the capital loss that occurs because of shocks to
the sector. This capital loss crucially depends on what type of innovation is
going on in the economy: whether it is quality innovation or adoption and
which sectors innovation is aimed at. To solve the model, we only need to know
the risk term for the type of firm for which new blueprints are developed. In the
present model setup, only one type of blueprints is being developed at a certain
point in time. Whenever quality improvements are being developed, quality
leaders face the risk of being replaced by a new quality leader. They lose total
value of the firm with a probability equal to the number of blueprints being
developed: k ks vι= . However, when researchers develop blueprints to adopt the
newest technology, cost leaders − firms that already have adopted the new
technology − face no risk such that sk = 0.

Labour market
Total labour is supplied inelastically and equal to L. Labour demand consists
of employment in manufacturing and total employment in R&D.

x gk
k

L L L= +∑ (15)

3.2 Innovation and pollution in the “green phase”

In the starting phase, all active enterprises are traditional firms, that is, quality
leaders using GPT 1. Innovation is aimed at improving product qualities
within GPT 1. The rate of innovation is exactly the one known from
Grossman/Helpman (chapter 4) and there is no pollution of the environment.

3.3 Innovation and pollution in the “confidence phase”

General equilibrium dynamics
The confidence phase is divided into two periods. In the first one, the adoption
subphase, technology GPT 2 is available for adoption, but has not been
implemented in all sectors. Adoption is costly, since only after developing the
sector-specific blueprint at cost aw, a sector can use the new technology.
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Adoption takes place only if the returns to this research investment are large
enough.

Traditional quality leaders stay active as long as no rival in their sector
has incurred the cost to adopt the new technology GPT 2. Innovators that do
have adopted become labour-cost leaders. They are able to supply the same
quality at a lower price. If research were targeted not only at adoption but also
at quality improvement in traditional sectors, we would require L Tπ π=  for this
to be an equilibrium, which only happens by coincidence. If L Tπ π< , no
adoption would take place (LgC=0), and the confidence phase would not start:
the economy would remain in the starting phase without any effect of the
arrival of a new GPT. We focus on the more interesting case in which L Tπ π>  so
that adoption takes place without quality improvements in traditional sectors
(LgT = 0, LgL > 0). Accordingly, we assume 1/η λ< . As long as there are still
sectors in which the new GPT 2 is not yet in use, all research is aimed at
adoption and none at quality improvements because the former yields a higher
return. Hence, once the new GPT becomes available, in the beginning all
labour in R&D develops blueprints for adoption so that Lgk =0 for all k … L,
ιa =LgL, and LgL+Lx=L. The relevant state variable in this phase is the number

of labour-cost leaders nL, which starts at zero. It increases with the number of
patents developed:

( )1
L xn L L

a
ι= = −& (16)

As noted above, with adoption only, cost leaders face no risk of being
replaced as long as no quality improvements take place (sL=0). Using (8), (13),
and (14), we find the following no-arbitrage equation for adoption:

1

1
−

 
− + =  

 

&j

j

c Y w
r

c aw w
(17)

Substituting (4) into (17) to eliminate r, substituting 1/j jc c η− = , substituting
(10) into (16) to eliminate Lx, and taking into account nT + nL = 1 and nU = nR =
nF = nE = 0, we find:

( ) 1
1 η ρ = − − 

 

&y
y

y a
(18)

1 1
µ

λ
   = − −      

&L L

L
n y n

a a
(19)

where (1/ ) 0µ λ η= − >  and y=Y/w. This system of differential equations in nL

and y  characterizes the dynamics of the first period of the confidence phase.
The resulting phase diagram is depicted in Figure 2 by the lower dy=0 locus
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and the curved path to the North East. The area above the 0ι =  locus is
infeasible since it represents negative employment in R&D. For any point
below this locus, innovation takes place, causing the number of quality
leaders nL to increase. The area to the right of the line nL=1 is also infeasible
since nL represents a fraction of sectors, which cannot exceed unity.

Adoption comes necessarily to an end if all sectors have adopted the
new GPT. It is clear from (18)-(19) that this will happen in finite time. In the
diagram, it happens when the nL=1 line or the 0Ln =&  locus is hit. What exactly
happens depends on the value y initially takes at the time that GPT 2 becomes
available. At this time the confidence phase starts at nL=0. Variable y has to
jump initially such that the boundary conditions are satisfied. The endpoint is
determined by the starting point of the subsequent improvement subphase.
Since consumption is proportional to Lx and Lx is proportional to y (see (10)),
consumption smoothing by households rules out a jump in y in the absence of
unexpected shocks. Hence, the end condition for y in the adoption subphase is
given by the initial value for y in the subsequent improvement subphase,
which is determined below.

Insert Figure 2:
Dynamics confidence phase

In the second period of the confidence phase, the improvement subphase,
all sectors have switched to the new GPT. As there is no further possibility to
invent blueprints for adoption and because research is still economically
attractive, inventions are now directed at improving product qualities so that
Lgk =0 for all k … U, and LgU+Lx=L. The rate of innovation can be expressed as:

( )1
xL L

a
ι = − (20)

The rate of innovation now reflects the fraction of sectors in which a new
quality leader replaces an incumbent. Since an innovator is indifferent
between replacing a quality leader (firm of type U) or a cost leader (L-firm) −
in both cases, profits equal (1 1/ )Yλ−  − she spreads innovation effort equally
over all sectors. As a result, a fraction nL of the total number blueprints
developed (ι ) hits L-firms, which are then replaced by quality leaders. Hence
we have:

ι= −&L Ln n (21)

At the same time, ι  is the probability for an individual quality leader that he
will be replaced and will experience a complete capital loss. Hence, we have

U Us vι= . Using (8), (13), and (14), we find the following no-arbitrage equation
for quality improvements:
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1
1 ι

λ
 − + − = 
 

&Y w
r

aw w
(22)

Substituting (4) into (22) to eliminate r, substituting (10) into (20) to eliminate
Lx, and taking into account nL + nU = 1, nT = nR = nF = nE = 0, we find:

( ) 1
1 µ ρ   = − − +   

   

&
L

y L
n y

y a a
(23)

1 1
µ

λ
   = − −     

&L
L

L

n L
n y

n a a
(24)

This dynamic system in the nL, y plane characterizes the second period of the
confidence phase. It is saddlepoint stable. Hence, starting at nL=1, y jumps to
the saddlepath and asymptotically converges to nL=0 and y L aρ= + . The path
to the South West in Figure 2 depicts the dynamic adjustment.

Pollution and Innovation
During the confidence phase, untaxed emissions rise. This rise in pollution can
be decomposed in a scale effect, technique effect and composition effect. First,
the scale effect represents the change in pollution due to changes in aggregate
production, holding sectoral production shares and pollution intensities
constant. Second, the composition effect isolates changes in sectoral output
shares due to changes in prices. Third, the technique effect represents the
change in pollution due to changes in sectoral pollution intensities.

In the adoption subphase, pollution can be derived from (11) as:

LZ n y= (25)

Since both nL and y gradually increase during the adoption subphase, we see
immediately from (25) that the same holds for pollution. We argue that this
happens because changes in scale, composition of demand, and technique all
tend to increase pollution. First, the technique effect is positive (that is, pollution
enhancing) because the number of sectors using the polluting technique
increases over time (nL rises). When a sector adopts the new GPT, it not only
starts to pollute but also reduces prices and produces more. This accounts for a
composition effect that increases pollution. Finally, total production affects
pollution. Defining total production as the sum of sectoral production levels, we
find the following expression for the confidence adoption subphase (from (6)
and Table 1):

1 1
1k k L

k

X n x y n
λ λ

  ≡ = + −    
∑ (26)
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Because nL and y gradually increase during the adoption subphase, we see
immediately from (26) that total production gradually rises, so that the scale
effect also contributes to rising pollution levels.

To find out what happens to the rate of innovation, we need to know
how Lx changes over time [see (16)]. The appendix shows that Lx increases
(decreases) and innovation falls (rises) over time if η  is large (small). The
intuition is as follows. On the one hand, the rate of innovation tends to fall over
time. This reflects the fact that the more sectors have switched, the fewer
opportunities are left for further adoption and the sooner innovation has to be
redirected to quality improvements, which yields a lower rate of return.
Forward-looking behaviour of investors ensures that the rate of return is
smoothed and research efforts are gradually reduced. With lower research
efforts, labour becomes available to expand the scale of production. On the other
hand, however, if production with the new GPT saves a lot of labour (that is, if
η  is small), the opposite happens and labour becomes available for research. In
the latter case, the process of adoption is relatively fast and the scale of
production as measured by Lx declines. Nevertheless, pollution increases over
time since fast adoption allows the technique and composition effect to
dominate the scale effect.

In the improvement subphase, pollution increases as well over time,
although at a decreasing pace. Since all sectors are using GPT 2 with a fixed
emission output ratio, changes in pollution can be explained entirely by changes
in total output (X) or labour in production (Lx). From (10) and (11) we find:

1
xZ X L

η
= = (27)

The Appendix shows that Lx rises over time. It implies a gradual increase in
pollution and a gradual fall in innovation. The underlying cause is a fall in the
rate of return to innovation. As the proportion of low-price firms increases,
more labour is allocated to incumbents and less is available per quality leader
that replaces a cost-leader. As a result, profits for entrants fall and innovation
becomes less profitable.

The innovation intensity at the end of the confidence phase (when nL

approaches zero) proofs to be:

1 1
GH

L
a

λ
ι ρ ι

λ λ
−

= − ≡ (28)

Not surprisingly, this equals the innovation rate in the Grossman and
Helpman (1991) model (denoted by GHι ).

3.4 Innovation and pollution in the “alarm phase”
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The economy enters the alarm phase once it starts taxing pollution. Society is
aware or alarmed about the polluting effects of production using GPT 2. To
mitigate the adverse effects, firms are charged a pollution tax. Provided that
all sectors are at least hit once during the second period of the adoption
phase, all active firms in the alarm phase are regulated quality leaders (R-
firms).

Because of the ongoing profit prospects, research is still active.
Innovators develop new quality generations of the regulated products.
Successful innovators become new quality leaders and set prices

( )Rp wλ η τ= + . No other types of innovation are undertaken, so that Lgk = 0 for
kÖR and LgR+Lx=L. The value of a blueprint is determined by vR, and we have
aw=vR if LgR>0. For simplicity we assume that the alarm phase starts only
when the number of labour-cost leaders is negligibly small (nL=0).

The dynamics of the alarm phase can be determined analogous to the
dynamics of the improvement subphase of the confidence phase. Substituting
(4) into (22) to eliminate r, substituting (10) into (20) to eliminate Lx, and
taking into account nR = 1, nk  = 0 for kÖR, we find:

( )
1 1

/
λ η

ρ
λ λ η τ

 −  = + − +    +   

&y L
y

y a w a
(29)

It is easy to see that, given a constant number of R-firms, y does not change
over time either. Therefore, the dynamic system becomes one-dimensional in
the alarm phase. Hence we can set (29) equal to zero to obtain the following
expression for the steady state expenditures per wage income:

21 /
ρ

θ λ
+

=
− Z

L a
y (30)

where 2 ( / ) /( / )θ τ η τ= +Z w w  is the share of pollution in total cost for GPT 2. In
addition, the innovation growth rate in the alarm phase is readily calculated
as:

( ) ( )
2

1
1 /
λ η

ι λ ρ
λ θ η τ

  
= − −  − − +  

SSAlarm
Z

L
a

a w
(31)

or, equivalently:

2

2

λ θ
ι ι ρ

λ θ λ
 = + −  

Z
SSAlarm GH

Z

(32)

where GHι  denotes the steady state growth rate of Grossman/Helpman (1991,
ch. 4), see (28). Note that spending per wage income and the rate of
innovation increase in the pollution tax. The intuition behind this remarkable
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result for growth is that a pollution tax increases the cost of production
relative to that of R&D, which is a non-polluting activity. Thus in the alarm
phase, the rate of innovation increases and total emissions fall compared to
the confidence phase.

3.5 Innovation and pollution in the “cleaning-up phase”

General equilibrium dynamics
From the point of view of GPTs, the cleaning-up phase is similar to the
confidence phase. A new unregulated technology is available for adoption,
but its diffusion takes time. Adoption is costly, since only after developing the
sector-specific blueprint at cost aw, a sector can use the new technology.
Adoption takes place only if the returns to this kind of research investment
are large enough. To guarantee sufficient incentives to adopt we assume

/λ τ η< +w , so that π π<R F  (see Table 1). Regulated quality leaders stay
active as long as no rival in their sector has incurred the cost to adopt GPT 3.
Innovators that produce with the new GPT are first movers (F-Firms).

We can use expressions derived for the confidence phase to find out
the dynamics of the cleaning-up phase. For the adoption subphase, we need
to replace nL by nF in (16). Substituting (4) into (17) to eliminate r, substituting

1/ 1/( / )j jc c wη τ− = + , substituting (10) into (16) to eliminate Lx, and taking
into account nR + nF = 1 and nT = nL = nU = nE = 0, we find:

1 1
1

/
ρ

η τ
  = − −  +   

&y
y

y w a
(33)

2

1 1 1 1
θ

η λ λ
   = − − +   

    
&F L F

L
n y n

a a
(34)

where 2 2/( / ) 1θ η η τ θ= + = −L Zw  is the labour cost share for GPT 2.
For the improvements subphase, we need to replace nL by nF in (21).

Substituting (4) into (22) to eliminate r, substituting (10) into (20) to eliminate
Lx, and taking into account nF + nE = 1, nT = nL = nU = nR = 0, we find:

( ) 1
1 µ ρ   = − − +   

   

&
F F

y L
n y

y a a
(35)

1 1
ˆ µ

λ
   = − −     

F F F

L
n n y

a a
(36)

where (1/ ) 1/( / )µ λ η τ= − +F w .
The two dynamic systems in (33)-(36) can be depicted in the nF, y plane

similar to Figure 2. The equilibrium dynamics can again be characterised by a
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rise in nF from 0 to 1, while y increases. Then there is an endogenous switch to
the improvement subphase in which both nF and y fall over time.

Pollution and innovation
Pollution is obviously absent in the improvement subphase. Moreover,
innovation falls similar to innovation in the improvement subphase of the
confidence regime. Hence, we focus on what happens to pollution and
innovation in the adoption subphase. Pollution is given by:

1
( / )

Fn
Z y

wλ η τ
 −

=  + 
(37)

It turns out that pollution continuously falls over time (see Appendix). More
and more sectors switch to the clean technique (nF increases), which reduces
pollution. The upward pressures on pollution from increases in spending y
are dominated by the technique effect.

Labour allocated to production can be written from (10) as:

( )
( / )

F
x

n
L y

w
λ η η
λ η τ

 − +
=  + 

(38)

Since y and nF increase over time, the amount of labour in production also
gradually increases. Since the rate of innovation is negatively related to Lx, as
in (16), innovation falls over time.

4. Extensions

This section discusses extensions to our theory on EKCs. A first additional
feature is the determination of the income level where pollution starts to
decrease. In reality the critical level of income at which pollution is de-linked
from income differs greatly among different pollutants. Some pollutants are
already almost completely phased out in rich economies (for example, CFCs),
while for other pollutants we see only the upward sloping part of the EKC (CO2
for example).6

A related issue is the idea of overlapping EKCs. Booth (1998) has argued
quite strongly that one pollutant can only be phased out because it is replaced
by another pollutant. Put more moderately, it could be that seemingly clean
GPTs turn out to be polluting in the end. If this is the case, additional GPTs have
to be developed until, finally, one really turns out to be clean.

If there are several shifts during economic development, a further
question would be the possible ability of individuals to expect the arrival of new
GPTs, at least with a certain probability. It is conceivable that, for certain
                                                
6 Of course, strictly speaking a monotonically increasing relationship between income and
pollution is not an EKC by definition.
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pollutants, technical solutions in the future can be anticipated to a certain
degree. In other cases, however, it seems reasonable to assume that the arrival of
a technological breakthrough is highly uncertain and arrives, if ever,
unexpectedly.

In addition, the sequencing of the different phases can be more complex
than modelled in this approach. Arrival dates of profitable GPTs and/or the
introduction of taxes can be assumed to occur at different points in time so that
more types of producers are active in the markets when a new phase begins.

Finally, one could elaborate more on optimal taxation. This requires the
analysis of instruments to correct pollution, to correct R&D, and to correct
output levels in order to remove the distortionary pricing effects. All these
highly challenging issues are left for future research.

5. Conclusions

The model used in this paper shows that the existence of EKCs can
conceivably be explained by a combination of public tax policy and different
technology options. In particular, the gradual adoption of new general
purpose technologies predicts a pattern of pollution over time that is
consistent with the the upward and downward sloping parts of the EKC.

It should be noted that our model does not necessarily predict an EKC
for all pollutants. In empirical research, the EKC is found only for specific
pollutants. In the model, the downward sloping part of the EKC emerges only
if the polluting GPT is replaced by a cleaner GPT. The adoption of the cleaner
GPT requires sufficient incentives, a high pollution tax and low enough
labour costs of the new GPT in particular. Otherwise, no technology shift
takes place and the pollution tax only has the conventional static (level) effect.
In addition, the further use of the dirty GPT without and with pollution taxes
yields a realistic background to demonstrate the reasons for the turning point
of the curve.

The framework has important policy implications. In the alarm phase, a
pollution tax both lowers emissions and raises growth, a classical win-win
situation. Moreover, the decline of pollution directly depends on the rate of
adoption of the new clean GPT. Subsidies to increase the invention of adoption
blueprints would be in favour of environmental quality. The optimum pollution
tax rate and the optimality of subsidies for adoption activities depend on the
weight of a clean environment in the utility function.
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Appendix

A. Pollution and innovation in the confidence phase.

To find out the development of aggregate pollution and the rate of innovation in
the confidence phase, we transform the phase diagram from Figure 2 and
equations (18), (19), (23), (24) into a phase diagram in the Lx, nL plane.

Adoption subphase
We show that Lx may either fall or rise during the adoption subphase,
depending on whether η  is small or large respectively.

From (10) we find the following expression for Lx in the confidence
adoption subphase:

1 (1 ) L
x

n
L y

λη
λ

− − =  
 

(A.1)

We use (A.1) to replace y in (18) and (19) by Lx and find the following dynamic
system for the adoption subphase:

{ }1
[ (1 ) 1 ] (1 ) [1 (1 ) ]

[1 (1 ) ]
x

x L
x L

L
L L n a

L a n
λ η λη λη λη ρ

λη
= − + − − − − − −

− −

&

(A.2)
1

( )L xn L L
a

= −& (A.3)

The 0xL =&  locus is downward sloping as long as 1/λ η>  which is the case
due to our assumption that 1/ 0µ λ η≡ − > . The initial jump in Lx is
determined in the same way as that of y, see main text: the endvalue of Lx is
determined by its initial value in the subsequent improvement subphase.
However, we can also use the endvalue of y to determine the end value of Lx

by using the relation between these two variables given by (A.1). Hence, we
can infer some useful properties of the endvalue of Lx from the endvalue of y.
From Figure 1 or (18) we see that when nL=1, y is bounded as follows:

1
( )

1
y L aρ

µ
< +

−
(A.4)

Thus, from (A.1) we see that when nL=1, Lx is bounded as follows:

( )
1xL L a

η
ρ

µ
< +

−
(A.5)

From (A.2) we see that when nL=1, we have
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0xL ≤&  if 
1x

L a
L

µ η ρ
µ η

+
≤

+ −
(A.6)

Now consider the following condition:

( )
1 1

L a
L a

η µ η ρ
ρ

µ µ η
+

+ ≤
− + −

(A.7)

If condition (A.7) holds, Lx has to reach a value at the end of the adoption
phase that turns out to be so small [namely smaller than the expression at the
LHS of (A.7), see (A.5)] that it can only be reached by a declining Lx [as is
revealed by (A.6)]. Note that for sufficiently low value of η  this condition is
satisfied. Figure 3c depicts this situation.

Let us now consider the opposite case in which η  takes its maximal
value, that is 1/η λ=  so that 0µ = . The dy=0 locus and the dLx=0 locus are
horizontal. Moreover, y and Lx have to reach the values L aρ+  and
( )/L aρ λ+  respectively at the end of the adoption subphase.  Under our
assumption that 0GHι > , see (28), this endpoint lies above the dLx=0 locus, see
(A.2), and Lx has to increase over the entire adoption subphase. Figure 3a
depicts this situation.

For intermediate values of η  we get the dynamics as depicted in Figure
3b. The larger η , the more likely a rising pattern for Lx becomes. Note that Lx

may first fall and then rise (but never the other way around) in the adoption
subphase.

Improvement subphase
We show that Lx unambiguously falls during the improvement subphase.

For this subphase, we find from (10):

1
x LL n yµ

λ
 = − 
 

(A.8)

We use (A.8) to replace y in (23) and (24) by Lx and find the following
dynamic system for the improvement subphase:

{ }1
[1 2 ] [1/ 2 ] [1/ ]

[1/ ]
x

L x L L
x L

L
n L n L n a

L a n
µ λ µ λ µ ρ

λ µ
= − − − − −

−

&

(A.9)
1

( )L
x

L

n
L L

n a
= − −

&
(A.10)

The 0xL =&  locus is downward sloping. Since the improvement subphase
starts at nL=1 and has to converge to nL=0 and a constant, Lx has to start at a
value above the dLx=0 locus and will increase over time. Figure 3 combines
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the two subphases.

insert Figure 3

The development of pollution in the improvement subphase directly follows
from (27) and the notion that Lx rises over time. The development of the rate of
innovation is exactly the mirror of that of Lx, since ( )/xL L aι = − .

B. Pollution in the Cleaning-up phase.

We transform the dynamic system in (35)-(36) into a dynamic system in terms of
Z and nR. Substituting (37) in these equations to eliminate y, and replacing nF by
1−nR, we find:

( / )R R

R

n Z L a nZ
Z an

ξ λ ρ− − −
=

&
(A.11)

[ / ( )]RR

R R

L n Zn
n an

λ λ η− − −
= −

&
(A.12)

where [ / (1 )]wξ η λ τ η λ= + − − − .
It should be noted that [ / (1 )] 1 0wτ η λ− − > − > from our assumptions

made above to ensure adoption of the clean GPT. We now have two
situations, depending on whether ξ  is positive or negative. First, if it is
positive, the dZ=0 locus slopes positive in the feasible region (for 0<nR<1) and
the saddlepath slopes downward so that pollution unambiguously falls with
the fall in nR. Second, if ξ  is negative, the dZ=0 locus has a vertical asymptote
at / 1Rn λ ξ= − >  and slopes downward in the feasible range (for 0<nR<1).
However, the saddlepath slopes downward so that again pollution
unambiguously falls with the fall in nR.
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