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This paper proposes a semiparametric estimator for single� and multiple index

models. It provides an extension of the average derivative estimator to the multi�

ple index model setting. The estimator uses the average of the outer product of

derivatives and is shown to be root�N consistent and asymptotically normal. Unlike

the average derivative estimator, our estimator still works in the single�index setting

when the expected derivative is zero (symmetry). Compared to other estimators for

multiple index models, the proposed estimator has the advantage of ease of computa�

tion. While many econometric models can be regarded as multiple index models with

known number of indices, our estimator in addition provides for a natural framework

within which to test for the number of indices required.
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1 Introduction

We consider the multiple index mean regression model

E(yjx) = H(xTβ1, .., x
TβP ), (1)

with dependent variable y and explanatory variables x. H is an unknown, but sufficiently

smooth function, and β = (βT
1
, ..., βT

P
)T is the vector of unknown parameters. Many econo-

metric models can be regarded this way, for example, binomial and multinomial choice

model, sample selection model, and disequilibrium model. Various
p
N consistent asymp-

totically normal estimators of β for the multiple index model have been proposed, among

others, by Ichimura and Lee (1991), Lee (1995), and Picone and Butler (2000). Since the

multiple index model provides a general and flexible modelling strategy, one would expect

to see numerous applications of the multiple index model given the existence of these esti-

mation methods. A simple explanation for the absence of these applications could be that

these advantages are offset by the computational complexity of the proposed methods. The

advantage of our estimator is the ease of computation. Another advantage of the proposed

estimator is that it provides a natural framework within which to test for the number of

indices required.

Let g(x) = E(yjx).1 The derivative of this unknown function, g′(x), by application of

the chain rule of differentiation, is a weighted average of the true coefficients βp

∂g(x)

∂x
=

PX
p=1

�
∂H

∂(xTβp)

¶
βp. (2)

For single index models this property is sufficient to identify the parameters “up-to-scale”.

Properties of the average derivative estimator (henceforth ADE) are given by Powell, Stock

and Stoker (1989), Robinson (1989), Härdle and Stoker (1989) and Stoker (1991). For mul-

tiple index models the average derivative does not provide enough information to identify

βp, p = 1, .., P “up-to-scale” unless the indices have no variables in common.
1
To clarify our use of notation,

0
denotes the derivative of a function with respect to its argument,

typically the vector x;
00
denotes the matrix of second order derivatives, and

T
denotes the transposed of

a vector.
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The estimator we propose uses the average of the outer product of derivatives instead

to remedy this identification problem. The average of the outer product of derivatives (gra-

dient) is of practical interest because it provides us with the following moment conditions

for the parameters of interest

E(g′(x)g′(x)T ) =
X
p,q

E

�
∂H

∂(xTβp)

∂H

∂(xTβq)

¸
βpβ

T

q
. (3)

To facilitate the derivation of the asymptotic distribution for the outer product of the

gradient we use a weighted version of these moment conditions instead

E(ω(x)g′(x)g′(x)T ) =
X
p,q

E

�
ω(x)

∂H

∂(xTβp)

∂H

∂(xTβq)

¸
βpβ

T

q
(4)

=
X
p,q

γω,pqβpβ
T

q
with γω,pq = γω,qp,

where we define γω,pq = E[ω(x) ∂H

∂(xTβp)
∂H

∂(xTβq)
]. These moment conditions are used within

a GMM framework to estimate βp, p = 1, .., P and the auxiliary parameters γω given

typical exclusion and normalization restrictions. Under these restrictions, the parameters

βp, p = 1, .., P are identified “up-to-scale”. An alternative set of restrictions on H is

proposed as well such that exclusion restrictions can be avoided.

The estimator has the added benefit that, unlike the ADE estimator, it also works for

single index models when the expected derivative of the unknown function is zero (say, g is

an even function and X is symmetrically distributed). Also in less extreme situations the

ADE estimator does not use all available information, since the contribution of observations

with negative derivative of the unknown function is (at least partially) cancelled out by

the contribution of observations with a positive derivative. Our estimator is based on the

squared derivative, hence this averaging out of the local derivatives does not occur. To

enhance the efficiency of our estimator, nonetheless, one could add the moment restrictions

that are used by ADE. This would guarantee a more efficient estimator than the ADE. As

this extension is conceptually straightforward, we do not pursue this extension in detail.

To estimate the average outerproduct of the gradient in (4), we implement a kernel based

nonparametric estimator of g′(x) and replace the expectation with the sample average.
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After imposing identifying restrictions, estimates of β and γω are obtained by applying the

GMM approach to the moment conditions that hold for the average outer product of the

gradient. The asymptotic theory for our estimator of β (β̂) and γω (γ̂ω) is then obtained

as follows. First, we show that the nonparametric estimator of the outer product of the

gradient is
p
N consistent and asymptotically normal. Second, we apply the generalized

method of moments (GMM) framework to show that β̂ and γ̂ω are also
p
N consistent and

asymptotically normal.

The multiple index model is also treated in the statistical literature, where it is inter-

preted as a regression-type model for dimension reduction that can be used to overcome

the “curse of dimensionality” (P is smaller than the dimension of X). Xia et al. (2002)

and Hristache et al. (2001) show that the effective dimension reduction (EDR) directions

can be estimated at the parametric rate
p
N, using a computationally demanding estima-

tion procedure. However, they do not develop the asymptotic theory for the estimated

parameters. Moreover, no statistical test is provided to determine the appropriate number

of EDR directions. In this paper, we show that such a test can be constructed by using a

test of the rank of the outer product of derivatives. For this, we can make use of existing

tests for the rank of a matrix by Cragg and Donald (1996, 1997) and Robin and Smith

(2000). Alternatively, a test for the number of indices required can be based on a test for

overidentifying restrictions within the GMM framework that is used to estimate β.

The paper is organized as follows. In Section 2, we give a
p
N consistent, asymptotically

normal estimator for a weighted version of the outer product of the gradient. In Section

3, we show how GMM yields a
p
N consistent, asymptotically normal estimator for the

parameters of interest on the basis of the estimated outer product of the gradient. In

Section 4, we discuss a test for the number of indices (EDR directions). In addition to

theoretical results, we provide some simulations to illustrate the estimator’s usefulness in

Section 5. Section 6 concludes. An Appendix contains proofs of the technical lemmas

stated in Section 2 and the proof of consistency of the estimator of the covariance matrix.
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2 Kernel estimation: outer product of derivatives

Let the observed data zi = (yi, x
T
i )T i = 1, ..., N constitute a random sample from a

distribution with density f∗(y, x), y is an endogenous variable and x is a k dimensional

vector of explanatory variables. Let f(x) denote the marginal density of x, and f ′(x)

its derivative. Let G(x) denote the function
R
yf ∗(y, x)dy, then g(x) = G(x)/f(x). The

regression derivative, g′(x), can be expressed as

g′(x) =
G′(x)

f(x)
¡ G(x)f ′(x)

f(x)2
. (5)

Our interest is in estimating the average outer product of derivatives E(g′(x)g′(x)T ) (or a

weighted version thereof).

A natural estimator for the average outer product of derivatives is given by its sample

analogue, which uses nonparametric kernel regression estimates of the density of x, its

derivative f ′(x), G(x) and G′(x) :

1

N

NX
i=1

Ã
Ĝ′(xi)

f̂(xi)
¡ Ĝ(xi)f̂

′(xi)

f̂ 2(xi)

!Ã
Ĝ′(xi)

f̂(xi)
¡ Ĝ(xi)f̂

′(xi)

f̂ 2(xi)

!T

. (6)

Specifically, we use the Nadaraya-Watson leave-one-out kernel estimators

f̂(xi) = 1
(N−1)hk

NP
j=1,j �=i

K
¡xi−xj

h

¢
; f̂ ′(xi) = 1

(N−1)hk+1

NP
j=1,j �=i

K ′
¡
xi−xj

h

¢
;

Ĝ(xi) = 1

(N−1)hk

NP
j=1,j �=i

K
¡
xi−xj

h

¢
yj; Ĝ′(x) = 1

(N−1)hk+1

NP
j=1,j �=i

K ′
¡
xi−xj

h

¢
yj,

(7)

where K(¢) is a kernel function, h is the bandwidth parameter, and h! 0 as N ! 1.

Obviously, we will need to introduce some trimming function to down-weight observa-

tions for which f̂(x) is very small. Rather than using an indicator function 1(f(x) > bN)

where bN ! 0 as N ! 1, that is used in the proof of the asymptotics of the ADE in

Härdle and Stoker (1989) and Stoker (1991),2 we introduce a smoothed indicator function

2
Powell, Stock and Stoker (1989) consider the density weighted ADE instead of using a trimming

function. We decided against a similar approach due to the conditions we would need to impose when

using the asymptotics of higher order U¡statistics, see, e.g., Hoe®ding (1948).
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s(f(x) ¡ b) along the lines of Horowitz (1992), or

ω(x) = s(f(x) ¡ b) ´ sx. (8)

We assume b is fixed with b > 0. Here b could be allowed to go to zero as N ! 1 at

the cost of imposing additional moment conditions. The need for a smoothed trimming

function instead of an indicator trimming function is explained in detail in the Appendix

directly following the proof of Lemma 2.

Define the weighted outer product matrix of derivatives as

M = E
©
g′(x)g′(x)T sx

ª
(9)

and its kernel based estimator

M̂ =
1

N

NX
i=1

ĝ′(xi)ĝ
′(xi)

T ŝxi
, (10)

with ŝxi
= s(f̂(xi) ¡ b). Let vechX stack the columns of the matrix X under each other

to form a single column, where only that part of each column is included in vechX which

is on or below the diagonal of X (Henderson and Searle (1979)). The property of this

transformation is that it stacks all unique elements of a symmetric matrix, such as M .

We now state the assumptions required for our main result. The first assumption

formalizes our use of independent and identically distributed observations and continuity

of the regressors.

Assumption 1 Let zi = (yi, x
T

i
)T , i = 1, .., N be a random sample drawn from f∗(y, x),

with f ∗(y, x) the density of (y, x). The underlying measure of (y, x) can be written as vy£vx,
where vx is Lebesque measure. Let f(x) denote the density of x. The support Ω of f is a

compact, convex, possibly unbounded subset of Rk with nonempty interior.

Assumptions 2 and 3 formalize a number of continuity and differentiability requirements

and Assumption 4 describes the kernel used.

Assumption 2 g(x) = E(yjx) is twice continuously differentiable and M2(x) = E(y2jx)

is continuous in x on Ω.

6



Assumption 3 Let p = k + 3. All partial derivatives of f(x) and G(x) = g(x)f(x) of

order p+ 1 exist on Ω.

Assumption 4 The kernel function K(u) has bounded support fu : juj � 1g , is symmetric,
has p moments, and vanishes at the boundary. K(u) is of order p, so with (l1, .., lk) an index

set Z
K(u)du = 1,Z
ul11 ...u

lk

k
K(u)du = 0 l1 + ...+ lk < pZ

ul11 ...u
lk

k
K(u)du 6= 0 l1 + ...+ lk = p.

The next assumption is an assumption on the smoothness of the trimming function s(¢)

Assumption 5 s(τ ) : R!R is a continuous, twice differentiable function with bounded

second derivatives, such that

s(τ) = 0, for τ � 0

> 0, for τ > 0.

The function s is used to obtain a smooth trimming of the observations with low den-

sities. Trimming will be based on the density of x, such that observations are weighted by

ŝx = s(f̂(x) ¡ b), b > 0. This guarantees that only a compact set of x with f̂(x) ¸ b is

considered for the estimation of M. In the sequel, superscript K (L) denotes the derivative

with respect to the K-th (L-th) element of x, for instance GK(x) = ∂G(x)

∂xK
. Moreover, s′

x

denotes ∂s(τ)/∂τ evaluated at v = f(x) ¡ b and sK
x

denotes ∂s(f(x) ¡ b)/∂xK = s′

x
fK(x).

Finally, we make two technical assumptions. Assumption 6 assures that U-statistics

theory can be applied to each of the elements of the linearized version of M , while As-

sumption 7, in conjunction with the use of a higher order kernel, assures that our estimator

is asymptotically unbiased. These assumptions are given next.
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Assumption 6 The functions f(x) and g(x), both Rk ! R obey local Lipschitz conditions:

For v 2 Rk in an open neighborhood of 0, there exist functions ψf(x), ψfK (x), ψg(x), ψgK (x)

and ψgKL(x), Rk ! R, such that for 1 � K,L � k

jf(x+ v) ¡ f(x)j < ψf(x) jvj , ¯̄
fK(x+ v) ¡ fK(x)

¯̄
< ψfK (x) jvj ,

jg(x+ v) ¡ g(x)j < ψg(x) jvj , ¯̄
gK(x+ v) ¡ gK(x)

¯̄
< ψgK(x) jvj¯̄

gKL(x+ v) ¡ gKL(x)
¯̄
< ψgKL(x) jvj

By continuity one can derive the bounding ψ¡functions for products of these functions,

for example, jgf(x+ v) ¡ gf(x)j < ψgf (x) jvj with ψgf = ψgf + gψf + ψgψf .

Assumption 7 Let ι denote an index set (l1, . . . , lk), with l1 + ... + lk = p. For a vector

u = (u1, . . . , uk) define u
ι = ul1

1
¢ ¢ ¢ ulk

k
. Then f

(p)
ι = ∂pf/(∂u)ι denotes the p¡th order

partial derivative of f. Similar definitions hold for G
K(p)
ι , G

(p)
ι , and f

K(p)
ι . Local Hölder

continuity holds for G
(p)
ι , f

(p)
ι , G

K(p)
ι , and f

K(p)
ι , so there exists δ > 0 and functions cG(x),

cf(x), cGK (x) and cfK(x), Rk ! R, such that for all v 2 Rk in an open neighborhood of 0,¯̄
G(p)

ι
(x+ v) ¡G(p)

ι
(x)
¯̄ � cG(x) jvjδ¯̄

f (p)

ι
(x+ v) ¡ f (p)

ι
(x)
¯̄ � cf(x) jvjδ¯̄

GK(p)

ι
(x+ v) ¡GK(p)

ι
(x)
¯̄ � cGK (x) jvjδ¯̄

fK(p)

ι
(x+ v) ¡ fK(p)

ι
(x)
¯̄ � cfK(x) jvjδ

p+ δ moments of K(¢) exist.

The main result is given next,

Theorem 1 Given Assumptions 1—7.

(i) N ! 1, h! 0

(ii) for some ε > 0, N1−εh2k+4 ! 1
(iii) Nh2(k+3) ! 0

then
p
N(vechcM ¡ vechM)) has a limiting normal distribution with mean 0 and variance

ΣM , where

ΣM = E(vechR(zi) (vechR(zi))
T ) ¡ (vechM)(vechM)T
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is the variance-covariance matrix of vechR(zi), and

R(zi) = g′(xi)g
′(xi)

T sxi
+ 2(g(xi) ¡ yi)g

′′(xi)sxi

+ (g(xi) ¡ yi)
f ′(xi)g

′(xi)
T + g′(xi)f

′(xi)
T

f(xi)
sxi

+ (g(xi) ¡ yi)(f
′(xi)g

′(xi)
T + g′(xi)f

′(xi)
T )s′

xi

+ g′(xi)g
′(xi)f(xi)s

′

xi
¡ E(g′(x)g′(x)Tf(x)s′

x
).

As is typically necessary for
p
N convergence of the average of nonparametric estimators,

condition (iii) of Theorem 1 implies that the nonparametric kernel estimates must be

(asymptotically) undersmoothed.

The proof of
p
N consistency and asymptotic normality of vech M̂ follows a similar

strategy as Härdle and Stoker (1989) and Stoker (1991). The asymptotic properties of

vech M̂ are derived element wise, where the (K,L)th element of M̂ , M̂KL, is given by

M̂KL = 1

N

P
N

i=1

£
ĝ′(xi)ĝ

′(xi)
T
¤
KL

ŝxi

= 1

N

P
N

i=1

ĜK(xi)Ĝ
L(xi)f̂

2(xi)

f̂4(xi)
ŝxi ¡ Ĝ(xi)f̂

K(xi)Ĝ
L(xi)f̂(xi)

f̂4(xi)
ŝxi

¡ ĜK(xi)Ĝ(xi)f̂
L(xi)f̂(xi)

f̂4(xi)
ŝxi + Ĝ2(xi)f̂

K(xi)f̂
L(xi)

f̂4(xi)
ŝxi.

(11)

We recall that derivatives with respect to the K-th (L-th) element of x are indicated using

superscript K (L), so, e.g., GK(x) = ∂G(x)

∂xK
,where ĜK indicates its nonparametric estimator.

To prove Theorem 1, we make use of three technical lemmas. The first lemma shows that

in deriving the asymptotic distribution of M̂ we can concentrate on deriving the limiting

distribution of a linearized version of the estimator. The linearization of M̂KL along the
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lines of Stoker (1991), denoted by M̃KL, is given by

M̃KL = 1

N

NP
i=1

[
£
g′(xi)g

′(xi)
T
¤
KL

sxi

+
h
ĜK(xi) ¡GK(xi)

i
g
L(xi)
f(xi)

sxi ¡
h
f̂K(xi) ¡ fK(xi)

i
g(xi)g

L(xi)
f(xi)

sxi

+
h
ĜL(xi) ¡GL(xi)

i
gK(xi)
f(xi)

sxi ¡
h
f̂L(xi) ¡ fL(xi)

i
g(xi)gK(xi)

f(xi)
sxi

¡
h
Ĝ(xi) ¡G(xi)

i
fK(xi)gL(xi)+fL(xi)gK(xi)

f(xi)2
sxi

+
h
f̂(xi) ¡ f(xi)

i
−2gL(xi)gK(xi)f(xi)+g(xi)(fK(xi)gL(xi)+fL(xi)gK(xi))

f(xi)2
sxi

+ [ŝxi ¡ sxi]
£
g′(xi)g

′(xi)
T
¤
KL

].

(12)

Lemma 1 Given Assumptions 1—5, as

(i) N ! 1, h! 0

(ii) for some ε > 0, N1−εh2k+4 ! 1
p
N
³
M̂KL ¡ M̃KL

´
= op(1).

The second lemma gives an asymptotic linear expansion for the linearized estimator.

Since the linearized estimator can be represented as the sum of “average kernel estimators”,

second order U¡statistics theory can be used to provide this asymptotic expansion (see

also Hoeffding (1948) and Lemma 3.1 in Powell, Stock and Stoker (1989)).

Lemma 2 Given Assumptions 1—6

p
N(M̃KL ¡ E(M̃KL)) = N−1/2(

NX
i=1

r(zi) ¡ E(r(z)))) + op(1),

where

r(z) = gL(x)gK(x)sx + 2(g(x) ¡ y)gKL(x)sx+

(g(x) ¡ y)
fK(x)gL(x) + fL(x)gK(x)

f(x)
sx+

(g(x) ¡ y)(fK(x)gL(x) + fL(x)gK(x))s′x+

gK(x)gL(x)f(x)s′x ¡ E(gK(x)gL(x)f(x)s′x).

The last lemma shows that M̃KL (and consequently M̂KL) are consistent estimators of

MKL. Here the use of higher order kernels in combination with undersmoothing is needed

to ensure that possible biases vanish sufficiently fast asymptotically.
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Lemma 3 Given Assumptions 1—5, and 7 as

(iii) Nh2(k+3) ! 0

E
n
M̃KL

o
¡MKL = o(N−1/2).

The proofs of the lemmas are given in the Appendix.

We now turn to the proof of our main result.

Proof of Theorem 1

Lemmas 1—3 give

p
N(M̂ ¡M) = N−1/2

X
(R(zi) ¡ E(R)) + op(1), (13)

with

R(zi) = g′(xi)g
′(xi)

T sxi
+ 2(g(xi) ¡ yi)g

′′(xi)sxi
(14)

+ (g(xi) ¡ yi)
f ′(xi)g

′(xi)
T + g′(xi)f

′(xi)
T

f(xi)
sxi

+ (g(xi) ¡ yi)(f
′(xi)g

′(xi)
T + g′(xi)f

′(xi)
T )s′

xi

+ g′(xi)g
′(xi)

Tf(xi)s
′

xi
¡ E(g′(x)g′(x)Tf(x)s′

x).

Clearly E(R(z)) = E(g′(x)g′(x)T sx) = M.

Using the linear vech operator, this gives

p
N(vechM̂ ¡ vechM)) = N−1/2

X
(vechR(zi) ¡ E(vechR)) + op(1). (15)

Application of the Lindeberg-Levy Central Limit theorem then yields the result. �

The covariance matrix can be consistently estimated as

bΣM =
1

N

NX
i=1

�³
vech bR(zi)

´³
vech bR(zi)

´T¶
¡
³

vechcM´³vechcM´T , (16)

with

cR(zi) =

Ãbg′ibg′Ti + 2(bgi ¡ yi)bg′′i + (bgi ¡ yi)
bf ′ibg′iT + bg′i bf ′i Tbfi

!
ŝxi

+ (17)

(bgi ¡ yi)( bf ′ibg′iT + bg′i bf ′i T )ŝ′xi
+ bgi′bgi′T bfiŝ′xi

¡ bg′bg′T bfŝ′x,
11



where nonparametric kernel regression estimates, its derivatives, and kernel derivative den-

sity estimates are used.

Theorem 2 Under the conditions of Theorem 1, bΣM is a consistent estimator of ΣM .

The proof is given in the Appendix. An alternative consistent estimator of ΣM , in analogy

to Härdle and Stoker (1989), can be derived from the U-statistics decomposition described

in the Appendix.

3 Parameter identification and estimation

We now turn to the GMM framework we use to estimate the parameters of interest βp,

p = 1, .., P and the auxiliary parameters γω. To estimate these parameters, identifying

assumptions, such as the exclusion and normalization restrictions used by, for example,

Ichimura and Lee (1991) have to be imposed. In making these assumptions, implicitly,

an assumption about the number of indices to be estimated is made as well. When we

discuss the issue of identification, we will be more explicit about the implications of such

an assumption. In Section 4, we will also present a test on the validity of the assumption

about the number of indices to be estimated, something which has not been considered

before.

Let us recall the moment conditions for the parameters of interest

vech

"
E(g′(x)g′(x)T sx) ¡

X
1≤p,q≤P

γpqβpβ
T
q

#
= 0, (18)

where γpq = E
n
sx

∂H
∂(xTβp)

∂H
∂(xTβq)

o
= γqp. Define Γ = [γpq]p,q=1,..,P and γ = vech(Γ). The mo-

ment conditions depend on more parameters than can be uniquely identified in the model,

where one can think, for example, about the identification of β “up-to-scale”. While we will

turn to the issue of identification later, let θ0 denote the vector of identified parameters,

which is an element of a compact parameter space Θ.3

3
When identi¯cation is obtained by imposing the usual exclusion and normalisation restriction, we will
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Assumption 8 θ0 2 Θ , where Θ is compact.

The moment conditions given above are a function of the identified parameters and will

be denoted as

m(θ0) = 0. (19)

Let m̂(θ0) denote the estimated sample analogue of m(θ0)

m̂(θ0) ´ vech

"
1

N

NX
i=1

(bg′(xi)bg′(xi)
T ŝxi

) ¡
X

1≤p,q≤P

γpqβpβ
T
q

#
(20)

= vech

"cM ¡
X

1≤p,q≤P

γpqβpβ
T
q

#
.

From Theorem 1, we note that
p
N(vech(M̂)¡vech(E(g′(x)g′(x)T sx))) =

p
N(m̂(θ0)¡

m(θ0)) ´
p
Nm̂(θ0) has a limiting normal distribution with mean 0 and variance-covariance

matrix ΣM . The proposed generalized method of moments estimator (or minimum distance

estimator) for estimating θ0, therefore, is given by

bθ = arg min
θ∈Θ

m̂(θ)T [ΣM ]−1 m̂(θ), (21)

where we assume ΣM to be positive definite. To implement the GMM estimator for θ0 we

can use the consistent estimator for ΣM , bΣM , given in the previous section.

To prove consistency of our parameter estimates, bθ, we need to show that the regularity

conditions ensuring identification and uniform convergence are satisfied, see, for example,

Theorem 2.6 in Newey and McFadden (1994).

In order to establish conditions for identification of the parameters, let us first turn to

the number of indices to be estimated. This is an important determinant of the number

of parameters in the model. The implications of an assumption on the number of indices

in the model should therefore include information about the number of parameters that

can be estimated. Recall, that g(x) can be written in the “multiple index” form g(x) =

H(xTβ1, .., x
TβP ). The assumption that P is the minimum number of indices required to

see that �0 contains all ° parameters and the parameters of ¯ that are not restricted by the identifying

restrictions.

13



appropriately model E(yjx) as H(xTβ1, .., x
TβP ) can be formalized with two assumptions,

that have to hold simultaneously. The first assumption is on the indices B ´ (β1, .., βP )

and the second is on the shape of the function H(.).

Assumption 9 Rank(B) =rank((β1, .., βP )) = P.

Assumption 10 The function H(.) satisfies

rank

Ã
E

(�
∂H

∂(xTβp)

∂H

∂(xTβq)

¸
1≤p,q≤P

)!
= P.

Assumption 9 assures that no fewer than P indices are needed by ruling out multicollinearity

of the indices. The exclusion restrictions usually applied in semi-parametric multi-index

models, see, among others, Ichimura and Lee (1991), are sufficient for this assumption to

hold, but other restrictions are also possible. At the same time Assumption 10 asserts that

each of the indices provides unique information on the shape of H(.), that is, the derivatives

of H(.) with respect to each of the indices are not linearly dependent, almost everywhere.

Since our estimator of the outer product of derivatives is based on an estimator that uses

trimming, we strengthen Assumption 10 to ensure that the number of indices is not affected

by the trimming function

Assumption 10′When P indices are estimated and the trimming function used to estimate

M is s(f(x) ¡ b) ´ sx, the function H(.) satisfies

rank

Ã
E

(�
sx

∂H

∂(xTβp)

∂H

∂(xTβq)

¸
1≤p,q≤P

)!
= P

With Assumptions 9 and 10 we ensure that indeed P indices have to be estimated.4

The vector of all parameters in the model is given by [βT
1
, .., βT

P
, γT ]T and includes a

total of kP +P (P +1)/2 parameters. Let us consider the identification of these parameters

4
Assumptions 10 and 10

0
are used interchangeably.
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based on the matrix M under the identifying assumptions stated in Assumptions 9 and 10,

with

M = E(g′(x)g′(x)T sx) =
X
p,q

E

�
∂H

∂(xTβp)

∂H

∂(xTβq)
sx

¸
βpβ

T

q
(22)

=
X
p,q

γpqβpβ
T

q
= BΓBT ,

a symmetric matrix. The rank of M equals P, which follows from the fact that B has rank

P and Γ is of full rank. Consequently, there are kP ¡ P (P ¡ 1)/2 free elements in M . So,

at most kP ¡ P (P ¡ 1)/2 parameters can be estimated. In other words, P 2 identifying

restrictions will be needed. Indeed, the restrictions that are usually applied in this type

of models are a total of P 2 normalization and exclusion restrictions on β. A more general

set of identifying assumptions that could be proposed is to impose orthonormality on the

βs (Xia et al. (2002)), so BTB = I, in combination with the assumption that Γ = D, a

positive definite diagonal matrix. These restrictions do not require us to specify exclusion

restrictions. However, interpretation of the resulting parameter estimates is more cumber-

some, and we have decided to take the approach generally accepted in the econometrics

literature.

The exclusion and normalization restrictions are summarized in Assumption 11 and

guarantee that Assumption 9 is satisfied.

Assumption 11 Each index xTβp, p = 1, .., P , contains one explanatory variable which

does not enter the other P ¡ 1 indices. In the equations where these variables do occur, the

parameters on these variables are normalized to equal 1.

Assumption 11 leads to P (P¡1) exclusion restrictions and P normalization restrictions,

resulting in a total of P 2 restricted parameters. The vector of identified parameters, θ0,

therefore contains the P (k ¡ P ) free parameters in B and the parameters in γ.

The restrictions on the parameters in Assumption 11 have already been discussed by

Ichimura and Lee (1991) and Lee (1995). Necessity of these restrictions is clear, but it has

not yet been shown that these restrictions also provide sufficient information for identifica-

tion of β. In fact, one needs an assumption on the shape of H(¢) as well, such as Assumption
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10. Otherwise, one could have, for example, H(¢) = 0, which makes identification impossi-

ble. We now set out to prove the following lemma.

Lemma 4 With ΣM positive definite, Assumptions 10 and 11 ensure that, for θ 2 Θ,

m(θ)T [ΣM ]−1m(θ) is uniquely minimized at θ0 2 Θ.

Proof of Lemma 4

Assumption 11 enables us to write without loss of generality

B =

0BBBBBB@
1 0 ¢ ¢ ¢ 0

0 1 ¢ ¢ ¢ 0
...

...
. . .

...

0 0 ¢ ¢ ¢ 1

β1,P+1 β1,P+2 ¢ ¢ ¢ β1,k

β2,P+1 β2,P+2 ¢ ¢ ¢ β2,k
...

...
. . .

...

βP,P+1 βP,P+2 ¢ ¢ ¢ βP,k

1CCCCCCA

T

.

With this ordering of the indices and x’s, it is straightforward to show that the first column

of M is equal to
P

1≤p≤P
γp1βp, since M = BΓBT . Similar expressions can be derived for

the first P columns of M. The first P columns of M therefore equal BΓ. Since the first P

rows of B constitute the identity matrix, Γ is identified from the upper left P £P block of

M, which is straightforward to see by decomposing M as

M = BΓBT =

0@ Γ ΓB̃T

B̃Γ B̃ΓB̃T

1A (23)

where B̃ is such that B = (I : B̃T )T , based on the decomposition shown above.

Given that Γ is identified and nonsingular by Assumption 10, B̃ (and B) is identified

from the remaining k ¡ P rows of the first P columns of M, which equal B̃Γ. As there is

only a single θ that satisfies the moment conditions for the first P columns of M, there is

at most one θ that satisfies all moment conditions, which is θ0. �

Lemma 4 shows that we are able to uniquely identify B̃ and Γ, so we define θ0 =

[vec(B̃)T , vech(Γ)T ]T as the vector of identified parameters under assumptions 9 and 10.

This uniqueness result in combination with the continuity of m(θ) on Θ and the compact-

ness Assumption 8 ensures identification of our estimator θ̂. Uniform weak convergence is
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ensured by the consistency of M̂ and bΣM , which was proved in the previous section, and

Assumption 8.

Provided we assume that θ0 lies in the interior of Θ, the only additional condition that

needs to be considered to ensure that all regularity conditions required for our asymptotic

normality result of θ̂ are satisfied (see Theorem 3.2 in Newey and McFadden (1994)), is

that m′(θ0)
TΣ−1

M
m′(θ0) is nonsingular, where

m′(θ0) =
∂m(θ0)

∂θT
=

∂

∂θT
vech

¡
BΓBT

¢
. (24)

In other words, given the nonsingularity of ΣM , we need to show that m′(θ0) has full

column rank. Using the decomposition given in (23), it is sufficient to show that the

submatrix

�¡
∂

∂θT
vech(Γ)

¢T
,
³

∂

∂θT
vec(B̃Γ)

´T¶T
has full column rank. The reason for this

is that reducing the number of rows and changing the order of the rows can only lead to a

reduction in the column rank of a matrix.

We start with analyzing ∂

∂θT
vech(Γ). With ∂

∂vec(B̃)T
vech(Γ) = 0 and ∂

∂ vech(Γ)T
vech(Γ) =

IP (P+1)/2, we obtain ∂

∂θT
vech(Γ) =

¡
0 : IP (P+1)/2

¢
. To analyze ∂

∂θT
vec(B̃Γ) we make use

of results and notation from Magnus and Neudecker (1988).5,6 In particular, using the

equalities vec(B̃Γ) = (Γ−Ik−P )vec(B̃) by the symmetry of Γ and vec(B̃Γ) = (IP−B̃)vec(Γ),

we obtain ∂

∂vec(B̃)T
vech(B̃Γ) = (Γ − Ik−P ) and ∂

∂ vech(Γ)T
vech(B̃Γ) = (IP − B̃)DP , where

DP is the duplication matrix, which satisfies DP vech(Γ) = vec(Γ). In other words, we

obtain ∂

∂θT
vec(B̃Γ) =

³
(Γ − Ik−P ) : (IP − B̃)DP

´
.

Combining these results we getÃ�
∂

∂θT
vech(Γ)

¶T
,

�
∂

∂θT
vec(B̃Γ)

¶T
!T

=

0@ 0 IP (P+1)/2

Γ − Ik−P (IP − B̃)DP

1A . (25)

Given the structure of this matrix, especially the block of zeroes in the top left corner,

the rank of this matrix is at least as large as rank(IP (P+1)/2) + rank(Γ − Ik−P ), which

5
When A;B; and C are three matrices such that the matrix product ABC is de¯ned, vec(ABC) =

(CT
−A)vec(B) (Magnus and Neudekker (1988)).

6With A an n£nmatrix, the duplication matrixDn (unique), transforms vech into vec, orDn vech(A) =

vec(A) (Magnus and Neudekker (1988)).
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equals 1

2
P (P + 1) +P (k¡P ) using Assumption 10. As this equals the number of columns,

we have found that

�¡
∂

∂θT
vech(Γ)

¢T
,
³
∂

∂θT
vec(B̃Γ)

´T¶T
, and therefore m′(θ0), has full

column rank.

By satisfying all regularity conditions of GMM estimators (minimum distance estima-

tors), our final result is given by

Theorem 3 Under the conditions of Theorem 1, with ΣM positive definite, θ0 in the inte-

rior of Θ, Assumptions 8, 10′ and 11

p
N(θ̂ ¡ θ0) » N(0,Ω)

with Ω =
£
m′(θ0)

TΣ−1

M
m′(θ0)

¤
−1
.

Since ∂m(θ)

∂θ
is continuous in θ and θ is consistenly estimated by θ̂, Ω can be consistently

estimated by
h
m′(θ̂)T Σ̂−1

M
m′(θ̂)

i
−1

.

4 Testing for the number of indices

Estimation of β can only be performed conditional on the number of indices to be esti-

mated. So far, the number of indices has been imposed, either by economic theory, or by

the researcher. However, we note that it is possible to test for the number of indices. As-

sumptions 9 and 10 imply that P indices have to be estimated, but, at the same time, they

also imply that M = BΓBT has rank P. Each index in the multiple index model reduces

the null space of M with one dimension. The number of indices therefore can be tested

by testing the rank of the estimated average outer product of the gradient. This is similar

to determining the number of effective dimension reduction (EDR) directions in Xia et al.

(2002). No statistical procedure for testing the number of dimensions is provided by these

authors.

In this section we discuss testing for the number of indices in the multiple index model.

We start with tests that are based on the property that rank M equals P. These tests

do not require an estimate of β itself. Another type of test for the number of indices
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is provided by the GMM framework used to estimate β. The validity of the assumption

concerning the number of indices can be tested by a test of the validity of the overidentifying

restrictions. One word of caution should be made here. The overidentifying restrictions

test is a general test for misspecification. When identification is obtained by assuming

BTB = I and Γ = D, a diagonal matrix, the only possible misspecification is too few

indices in the model. When exclusion and normalization restrictions are used, this imposes

a structure on the model, which will be tested by the overidentifying restrictions test as

well. The test for overidentifying restrictions within the GMM framework is well known.

In the remainder of this section we focus on tests for the number of indices based on the

rank of M .

In recent years, there has been a resurgence of interest in the development of tests of the

rank of a matrix. Cragg and Donald (1996, 1997), Gill and Lewbel (1992), and Robin and

Smith (2000) develop tests for the rank of a matrix that is unobserved but for which a
p
N

consistent asymptotically normal estimator is available. Gill and Lewbel (1992), the first

authors to consider this problem, base their test on a Gaussian elimination Lower-Diagonal-

Upper triangular (LDU) decomposition. For any symmetric matrix M of full rank, there

exists a unique decomposition of the form QMQT = LDLT , where Q is a permutation

matrix (row permutations) derived from complete pivoting, L is a lower triangular matrix

and D is a diagonal matrix with the diagonal elements decreasing in absolute size. In case

M is not of full rank, this decomposition can still be made, but it is not unique. The

rank of M equals the number of nonzero elements in the diagonal “pivot” matrix D in this

decomposition (see also Golub and van Loan (1983)). Focussing on a test for the rank of

M being P, Gill and Lewbel partition the LDLT decomposition as

LDLT =

24 L11 0

L21 L22

3524 D1 0

0 D2

3524 LT
11

LT
21

0 LT
22

35 . (26)

L11 and L22 are a lower triangular matrices of dimension P and (k ¡ P ) respectively, L21

is a (k ¡ P ) £ P matrix, and D1 and D2 are diagonal matrices, also of dimension P and

(k ¡ P ) respectively. When the matrix has rank P, the diagonal elements in D2 will be
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zero, resulting in the non-uniqueness of the decomposition in L22, which complicated the

development of the asymptotic theory in Gill and Lewbel. In fact, Cragg and Donald (1996)

show that the asymptotic theory only holds for k ¡ P = 1.

Instead of full pivoting, proposed by Gill and Lewbel (1992), Cragg and Donald (1996)

propose not to “sweep” the smallest k ¡ P pivots and to partition QMQT as

QMQT =

24 A11 A12

A21 A22

35 .
Here A11 is a P £ P matrix of assumed full rank, A12 is a P £ (k ¡ P ) matrix, A21 = AT

12
,

and A22 is a matrix of dimension k¡P. Cragg and Donald consider a test statistic based on

Ω22 = A22¡A21A
−1

11
A12. This is what remains in the bottom-right (k¡P )£ (k¡P ) corner

after sweeping the first P columns. The test is based on the realization that rank(Ω22) = 0

if and only if M has rank equal to P. Specifically, the test statistic for symmetric matrices

is given by N vech(Ω̂22)
T Ŵ−1 vech(Ω̂22), where

Ŵ = RĤ[Âvar
¡
vec(QMQT )

¢
]ĤTRT , (27)

Ĥ =
h
¡Â21Â

−1

11
: Ik−P

i
−
h
¡ÂT

12
Â−1
11

: Ik−P

i
.

R is the Moore-Penrose inverse (unique) of the duplication matrix Dk−P , D+

k−P
, which con-

verts the vec of Ω22 into vech(Ω22) (see also Magnus and Neudecker, 1988). The estimated

asymptotic variance of vec(QMQT ) is given by (Q̂− Q̂)DkPΣMD
T

kP
(Q̂T − Q̂T ), where DkP

is again a duplication matrix.

The gaussian elimination based test is asymptotically equivalent to the minimum chi-

squared approach presented in more detail in Cragg and Donald (1997)

min
M

fN(vech(M̂ ¡M)TΣ−1
M

vech(M̂ ¡M)) : rank(M) = Pg.

The resulting test statistic is distributed asymptotically as chi-squared with (k¡P )(k¡P+

1)/2 degrees of freedom. This test is equivalent to the test for overidentifying restrictions in

the GMM framework. An interpretation of the degrees of freedom, therefore, easily follows

from the number of overidentifying restrictions.
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The Robin and Smith (2000) test for the rank of a matrix involves the characteristic

roots of a quadratic form in M given by ΣMΨMT , with Σ and Ψ positive definite. We

set Σ and Ψ equal to the identity matrix. Again, when rank(M) = P, the smallest k ¡ P

eigenvalues of ΣM̂ΨM̂T (and similarly of M̂) converge to 0 in probability. Robin and

Smith show that N times the sum of the k¡P smallest eigenvalues of ΣM̂ΨM̂T converges

to a weighted sum of independent χ2
1

distributed variables. The advantage of this test is

that the variance-covariance matrix of vec(M̂) is not required to be positive definite, which

circumvents the difficulties that arise from symmetry of the matrix.

A caveat which we see with these tests, in finite samples, is that they do not take

into account the precision with which the elements in the M matrix are estimated. This

holds in particular for the Gaussian elimination procedure in Cragg and Donald (1996) and

the selection of the k ¡ P smallest eigenvalues in Robin and Smith (2000). We partially

solve this problem by performing both weighted and unweighted variants of these tests.

Instead of testing the rank of M we consider testing the rank of the weighted variant

ΛMΛT , where Λ is a diagonal matrix of full rank which ensures that the diagonal elements

of ΛMΛT are estimated with equal precision. Since Λ is of full rank, the rank of M

equals that of ΛMΛT . This weighting scheme only corrects for differences in the estimation

precision of the diagonal elements. One would, however, prefer to correct also for the

differences in estimation precision of the non-diagonal elements and the correlations between

the estimates. As the test for overidentifying restrictions uses full information on the

estimation uncertainty of each element, theoretical considerations would favor the use of

this test. In the simulation study we compare the performance of each of these tests in

practice.

It should be noted that the tests by Cragg and Donald (1996, 1997) and Robin and

Smith (2000) tests do not deal specifically with the positive semidefiniteness of the M

matrix unlike Gill and Lewbel (1992). Checking the validity of the tests for positive semi

definite matrices and developing the relevant extensions (when required) lies beyond the

scope of the present paper.

A sequential procedure for obtaining a weakly consistent estimator for the rank of a
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matrix involves testing sequentially whether the rank of a matrix equals r against the

alternative that the rank exceeds r, r = 0, 1, .., k ¡ 1, and halting at the first value for

r for which the statistics indicates nonrejection of the null rank(M) = r. Appropriate

adjustments dependent on the sample size to the asymptotic size αP of the test at each

stage of the sequential procedure, is required. In particular, we require αrN = o(1) and

¡N lnαrN = o(1) (see also Cragg and Donald (1997) and Robin and Smith (2000)).

5 Simulation

In order to illustrate the estimator’s usefulness, we perform various simulations. We con-

sider two models each with two indices, one multiplicative model and one additive model

y =
¡
XTβ1

¢ ¡
XTβ2

¢
+ 0.5ε (Model 1)

y =
¡
XTβ1

¢
+
¡
XTβ2

¢2
+ 0.5ε (Model 2).

(28)

From Assumption 11, we note that for our two index models (P = 2) at least three

explanatory variables are required. We assume that X » N(0, Ik) and ε » N(0, 1) are

independent random variables, where k indicates the number of explanatory variables set

equal to three. The multivariate kernel function K(¢) (on R3) is chosen as the product of

three univariate kernel functions. We let β1 = (1, 0, 1)T and β2 = (0, 1, 1)T . The sample

size is set at 1000 and 500 replications are drawn in each case.

With the number of explanatory variables equal to three, our theoretical results imply

that we use a sixth order kernel, p = k + 3. We consider

K6(x) =
35

256
(¡99x6 + 189x4 ¡ 105x2 + 15)1(jxj � 1) (29)

as proposed by Gasser et al. (1985). Besides using this higher order kernel (“bias-corrected”

kernel) we consider using the second order quartic kernel (“not bias-corrected” kernel) as

well, because of its easier implementation. Both are bounded, symmetric kernels. A band-

width sequence fhng satisfying the assumptions is given by hn = cn−1/(2k+5)[= cn−1/11],

where c is a constant factor independent of n, which we allow to vary for each explanatory
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variable. Using cross-validation, we determine for each explanatory variable the constant,

where it is noted that the cross-validation bandwidth is given by the optimal bandwidth

sequence hgcvn = cn−1/(2p+3) (see Stone (1982)) with p equalling the order of the kernel.

Keeping the constant fixed, we proceed by using the following three increasingly under-

smoothed bandwidths, hgcvn , hgcvn ¢ n− 1

2
[1/(2k+5)−1/(2p+3)], and hgcvn ¢ n−[1/(2k+5)−1/(2p+3)]. The

latter bandwidth sequence is an undersmoothed bandwidth sequence in accordance with

the theoretical requirements, i.e., hn = c∗n−1/(2k+5), while the middle bandwidth sequence

considers some intermediate sequence.

It should be noted, however, that this approach only leads to increasingly under-

smoothed bandwidths as long as p > k + 1. When we use a second order kernel the

approach would lead to oversmoothing instead. Our theoretical analysis therefore does not

provide guidelines with respect to the amount of undersmoothing required when using a

second order kernel. In that case, we apply the same amount of undersmoothing as would

be required when using the sixth order kernel — the order theoretically required. Therefore,

the three bandwidths considered are given by hgcvn , hgcvn n−
1

2
[1/11−1/15], and hgcvn n−[1/11−1/15]

whether we use a sixth or a second order kernel.

Finally, we consider the following smoothed trimming function

s(f(x) ¡ b) =

8>>>>>><>>>>>>:

[1
3
d2(f(x) ¡ b)3 ¡ 1

2
d(f(x) ¡ b)4+

1

5
(f(x) ¡ b)5] ¤ 30 ¤ d−5 for f(x) 2 (b, b+ d)

0 for f(x) � b

1 for f(x) ¸ b+ d,

(30)

where we let b = 0.0025 and d = 0.0025. This trimming is such that about 9 percent of

the observations receive no weight and about 7 percent of the observations receive a weight

between zero and one. It is noted though that this depends on the kernel and bandwidths

used as well. We also consider the sensitivity to the smoothed trimming function by

comparing our results to those we obtain when using the indicator function instead, as

suggested in Härdle and Stoker (1989), among others. Here we ignore the influence the

indicator trimming function has on the asymptotic variance.
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Table 1 presents the results on various rank tests for the two models using the smoothed

trimming function. In Table A.1 in the Appendix, the results are presented using the in-

dicator trimming function. The results are presented for second order kernels (not bias

corrected) and sixth order kernels (bias corrected) for different bandwidths. The cross-

validated bandwidth is obtained using the Nelder Meade optimization algorithm.7 For

Model 1, the second order kernel gives, on average, rise to the cross-validated bandwidth

(0.861, 0.865, 0.565)T , while the sixth order kernel gives (3.091, 3.073, 2.185)T . For model 2,

the cross-validated bandwidths are, on average, (1.249, 0.580, 0.559)T and (3.902, 2.238, 2.202)T

for second and higher order kernels respectively.

The table reports the percentage of times we accept that the rank equals 0, 1, or 2 at

the five percent significance level given that the true rank equals 2, using the sequential

procedure described above. W stands for the Cragg and Donald Wald test based on the

LDU decomposition, CRT gives the Robin and Smith test, while OI gives the overidentifi-

cation test. The overidentification test is the only test that requires estimation of β and γ

consistent with the assumed rank of M and the identifying restrictions. It is a minimum

Chi-squared test, where subject to the assumption that the true rank equals 0, 1, or 2, the

test is computed as

N(vech(M̂ ¡ M̃)T Σ̂−1

M
vech(M̂ ¡ M̃)) : rank(M̃) = 0, 1, 2,

where M̃ = B̂Γ̂B̂T . As we use the normalization and exclusion restrictions in estimating

the parameters, these assumptions are also tested. In our simulation setting, we know these

assumptions are satisfied. The tests for the rank of a matrix do not rely on the parameter

estimates of β or γ. However, these tests do not account for the estimation uncertainty

in M̂. Therefore, we perform an unweighted and a weighted variant of these tests. The

weighted version of the test is based on ΛMΛT , such that the estimated variances of the

diagonal elements are equal.

7
To ensure convergence to the global optimum, we start the procedure with di®erent starting values,

and consider our problem optimized once no improved cross%validation objective is found four times in a

row.
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Table 1: Testing the Rank of a Matrix

Model 1: y = (XTβ1)(X
Tβ2) + ε

Not Bias Corrected, hgcvn = (0.861, 0.865, 0.565)T Bias Corrected, hgcvn = (3.091, 3.073, 2.185)T

Rank W Ww CRT CRTw OI W Ww CRT CRTw OI

hn = hgcvn

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.080 0.056 0.098 0.024 0.082

2 0.082 0.348 0.504 0.604 0.642 0.782 0.924 0.894 0.970 0.912

hn = hgcvn n−
1

2
[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.002 0.000 0.000 0.006 0.046 0.030 0.096 0.014 0.052

2 0.038 0.230 0.336 0.430 0.486 0.762 0.956 0.894 0.982 0.944

hn = hgcvn n−[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.002 0.004 0.000 0.000 0.010 0.032 0.022 0.100 0.006 0.046

2 0.028 0.156 0.220 0.324 0.368 0.618 0.952 0.880 0.990 0.954

Model 2: y = (XTβ1) + (XTβ2)2 + ε

Not Bias Corrected, hgcvn = (1.249, 0.580, 0.559)T Bias Corrected, hgcvn = (3.902, 2.238, 2.202)T

Rank W Ww CRT CRTw OI W Ww CRT CRTw OI

hn = hgcvn

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.182 0.006 0.002

2 0.002 0.334 0.100 0.454 0.484 0.210 0.980 0.674 0.980 0.984

hn = hgcvn n−[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.002 0.000 0.002 0.002 0.000 0.278 0.002 0.002

2 0.000 0.238 0.046 0.330 0.358 0.134 0.990 0.542 0.990 0.994

hn = hgcvn n−[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.002 0.000 0.000 0.004 0.004 0.330 0.002 0.004

2 0.000 0.164 0.010 0.248 0.276 0.060 0.966 0.416 0.982 0.984
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Focussing on the tests that only require estimation of the M matrix, we see a noticeable

difference between the weighted and unweighted variants of the tests. By using the weighted

M matrix, we improve our ability to accept the null that the rank equals the true rank both

with the Cragg and Donald test and the Robin and Smith test. Moreover, the desire to use

a higher order kernel in accordance with the theoretical results over a second order kernel

is highlighted. While our ability to find the true rank is still limited when using a second

order kernel, our ability to find the true rank is greatly enhanced when using the higher

order kernel. In model 1, for instance, using a second order kernel with cross-validated

bandwidth we only find support for the true rank in 35 percent of our simulations using

the Cragg and Donald test and 60 percent using the Robin and Smith test. Using the higher

order kernel instead, we find support for the true rank in respectively 92 and 97 percent of

our simulations. Our ability to find the true rank further improves when undersmoothing

is used, i.e., when the theoretically correct bandwidth is used. The empirical size of the

test of the null that the rank equals the true rank, nevertheless, is lower than the nominal

size of the test when using the bias reducing kernel with bandwidth corresponding to our

theoretical result, 0.026 and 0.004 for the Cragg and Donald and Robin and Smith test

respectively (cannot be obtained directly from our table). This difference between the

empirical and nominal size could have arisen from our estimator of the covariance matrix,

giving rise to somewhat larger theoretical standard errors than the empirical ones. The

power against accepting the null of too few number of indices is better for the Robin and

Smith test than the Cragg and Donald test, 0.994 versus 0.978.

The test results for model 2 are similar, be it with a slight improvement in our ability

to observe the true rank when using the bias correcting kernel. However, the results of

the intermediate level of undersmoothing are better than the results obtained with the

theoretically correct bandwidth. While the power is almost identical for the two tests for

model 2, 0.996—0.998, the empirical size of the Cragg and Donald test is slightly closer to

the nominal size than the Robin and Smith test, 0.03 versus 0.016 using the bandwidth

corresponding to our theoretical result. Overall, the weighted Robin and Smith test gives

the best performance among the rank based tests in terms of identifying the true rank,
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however, when comparing the size and power of the hypothesis that the rank equals the

true rank preference is given to the Cragg and Donald test.

The test of overidentifying restrictions confirms the result that our models using two

indices are particularly well specified when estimated using a higher order kernel, i.e., the

distinct k(k + 1)/2 moments are jointly zero. When using less indices than needed, the

overidentified moments generally are significantly different from zero. Using a second order

kernel does not lead to a similar support for the specification being appropriate when

the true number of indices are considered. We argue therefore for the need of using a

higher order kernel in accordance with theoretical requirements, in contrast with the usual

practice where second order kernels are more common. Importantly, the overidentification

test results correspond closely to the weighted test results and are thereby supportive or

our modification of the rank tests, not considered elsewhere in the literature. Comparing

the performance of the tests for determining the number indices, we finally note that while

the weighted Robin and Smith test outperforms the overidentification test for model 1, the

reverse is true for model 2. The weighted Robin and Smith test for testing the null that

the rank equals the true rank has similar empirical size as the overidentification test for

both models.

When we use the indicator trimming instead, see Table A.1, we can draw exactly the

same conclusions for the bias corrected kernel. The only difference is a slight improvement

in the test results for model 2, against a slight worsening in the test results for model 1.

For the second order kernel, the performance of the estimator with indicator trimming gets

even worse. The right model is selected in only about 10 percent of the cases, compared to

more than 90 percent for the bias corrected estimates.

Tables 2 and 3 present an analysis of the parameter estimates for [β̃T1 , .., β̃
T
P ]T for the

two models, where the number of indices, P, equals the true number of indices (which

in turn is equal to the true rank of M). Because we are primarily interested in the β

parameter estimates, tables giving the analysis of the γ parameter estimates are relayed

to the Appendix, see Tables A.2 and A.3. Given the smoothed trimming function used

(b = 0.0025, d = 0.0025), the true parameter vector θ = [β1,3, β2,3, γ
T ]T of the two models
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Table 2: Model 1, β parameter estimates

Model 1: y = (XTβ1)(XTβ2) + ε

Not Bias Corrected, hgcvn = (0.861, 0.865, 0.565)T

True MEAN Var

sample

Var

theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 1.047 0.025 0.058 0.027 0.949 1.040 1.141 0.124

β2,3 1.000 1.059 0.024 0.058 0.028 0.963 1.047 1.149 0.125

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 1.018 0.048 0.078 0.049 0.901 1.022 1.122 0.156

β2,3 1.000 1.066 0.054 0.079 0.058 0.931 1.045 1.173 0.170

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 1.010 0.093 0.108 0.093 0.833 0.996 1.138 0.214

β2,3 1.000 1.066 0.112 0.115 0.117 0.882 1.031 1.186 0.228

Bias Corrected, hgcvn = (3.091, 3.073, 2.185)T

True MEAN Var
sample

Var
theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 1.056 0.019 0.064 0.022 0.972 1.055 1.127 0.110

β2,3 1.000 1.054 0.030 0.076 0.033 0.966 1.038 1.122 0.110

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 1.018 0.015 0.059 0.015 0.938 1.023 1.094 0.095

β2,3 1.000 1.007 0.017 0.063 0.017 0.927 1.006 1.088 0.099

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 0.978 0.017 0.072 0.017 0.896 0.980 1.053 0.100

β2,3 1.000 0.976 0.019 0.076 0.019 0.900 0.971 1.054 0.102

28



Table 3: Model 2, β parameter estimates

Model 2: y = (XTβ1) + (XTβ2)2 + ε

Not Bias Corrected, hgcvn = (1.249, 0.580, 0.559)T

True MEAN Var
sample

Var
theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 1.171 0.018 0.054 0.047 1.080 1.168 1.245 0.181

β2,3 1.000 1.011 0.007 0.011 0.008 0.962 1.001 1.059 0.063

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 1.121 0.028 0.071 0.043 1.015 1.118 1.211 0.161

β2,3 1.000 1.014 0.013 0.016 0.013 0.952 1.003 1.066 0.079

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 1.082 0.046 0.099 0.053 0.940 1.062 1.190 0.167

β2,3 1.000 1.015 0.033 0.029 0.033 0.918 0.995 1.073 0.112

Bias Corrected, hgcvn = (3.902, 2.238, 2.202)T

True MEAN Var
sample

Var
theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 0.956 0.031 0.085 0.033 0.861 0.943 1.032 0.122

β2,3 1.000 1.016 0.005 0.016 0.006 0.971 1.011 1.055 0.056

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 0.892 0.018 0.068 0.029 0.807 0.891 0.966 0.139

β2,3 1.000 1.018 0.006 0.023 0.006 0.974 1.018 1.059 0.056

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 0.846 0.018 0.081 0.042 0.765 0.848 0.931 0.170

β2,3 1.000 1.016 0.008 0.031 0.009 0.963 1.016 1.064 0.070
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is (1, 1, 1.325, 0.646, 1.325) and (1, 1, 0.870, 0, 5.294) respectively, where the true parameter

values for the gamma parameters (the last three or P (P + 1)/2 parameters) are based on

a simulation with 10,000 draws of x.

The tables present the following summary statistics for the 500 replications: the sample

mean, the sample variance, the average of the theoretical variance, mean squared error

(MSE), lower quartile (LQ), median, upper quartile (UQ), and mean absolute error (MAE).

Each are reported for the different bandwidths considered, hgcvn , hgcvn ¢ n− 1

2
[1/11−1/15], and

hgcvn ¢n−[1/11−1/15]. While hgcvn ¢n−[1/11−1/15] would provide a bandwidth sequence in accordance

with our theory, when we use the sixth order kernel, our chosen values for c, c∗, are not

necessarily optimal.8 For the optimization with respect to β and γ two sets of starting

values were considered, the true values (as can only be done in the simulation setting)

and starting values obtained directly from our estimated M matrix, with Γ̂ = M̂P,P and

B̂ = M̂k−P,P Γ̂−1, where M̂P,P is the upper left P £ P block of M̂ and M̂k−P,P is the lower

left (k ¡ P ) £ P block of M̂. Of the two sets of parameter estimates thus obtained, we

select the estimate which yield the best GMM objective function. It should be noted that

for the bandwidths considered the parameter estimates obtained using these two starting

values were by and large identical. In Tables A.4 and A.5 in the Appendix, an analysis of

the parameter estimates is presented using the indicator trimming function.

From Table 2, we notice quite reasonable parameter estimates for β1,3 and β2,3. Choos-

ing the bandwidth parameter smaller (undersmoothing) causes a reduction in bias while

increasing the variance. The selection of a bias-correcting kernel further reduces the bias

of our parameter estimates without significantly affecting the theoretical variance of our

parameter estimates. The latter is due to the larger bandwidths used (based on cross-

validation again) when applying the bias-correcting kernel. In contrast to Powell, Stock,

and Stoker (1989) we do not keep c constant when changing from second to higher or-

der kernels. Our theoretical variance typically exceeds that of the sample variance, which

might be due to our inability in small samples to observe events that happen only with

8
The theory for optimally chosing c; when undersmoothing is required, is not well developed.
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small, though non-negligible, probability. The MSE of the higher order kernel generally

is lower than the second order kernel. Both in terms of MSE and MAE our results give

preference to the higher order kernel. This corresponds to the results obtained from our

overidentification test, which lend strong support of our specification revealing all unique

k(k + 1)/2 moments to be jointly zero. The median of our parameter estimates closely

follows the pattern of the mean of our estimates. When the bias-corrected kernel is used

with the undersmoothed bandwidth sequences hgcvn ¢ n− 1

2
[1/11−1/15] and hgcvn ¢ n−[1/11−1/15]

the bias of the β parameters is insignificant at the 5 percent level of significance, while

the bias is highly significant for the second order kernel estimates. Using the indicator

function instead as our trimming function, see Table A.4, as suggested e.g., in Härdle and

Stoker (1989), leads as expected to a lower theoretical variance as it ignores the influence

our smoothing function has on the asymptotic variance. The sample variance, on the other

hand, increases due to the discontinuity of the trimming function. The bias of the parame-

ter estimates using the bias-corrected kernel with the undersmoothed bandwidth sequences

is somewhat larger, though not significantly so.

When considering Table 3, we notice that the parameter estimate of β2,3 is estimated

more precisely than β1,3. Not only does β̂2,3 have a lower variance, it has been estimated

with less bias as well. The stronger signal of the β2 parameters, which enter through the

index XTβ2 quadratically, is reflected in the large value for γ2,2 and provides an explanation

for this finding. Contrary to the good estimates for β2,3, not significantly different from

one at the 1 percent level of significance using both bias corrected and not bias corrected

kernels, we notice that the bias of β1,3 is significantly different from zero at this level

of significance. While the p-value improves when we use a higher order kernel instead

of a second order kernel, the bias of β1,3 remains significantly different from zero. The

improvement in parameter estimates for β1,3 when using the higher order kernel should be

seen in the light of the less biased parameter estimates of γ obtained when using higher order

kernels as well. Using the higher order kernel about halves the MAE associated with γ̂2,2

for instance. As in model 1, the higher order kernel is associated with a lower MSE, lending

support to its adoption in addition to the overidentification test results which revealed the
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appropriateness of our model when using the bias-corrected kernel. The bias of β1,3 worsens

when rather than using the smoothed trimming, we apply the indicator trimming. While

the interquartile range contains the true value when we use the cross-validated bandwidth

with smoothed trimming, the true value does not lie in the interquartile range when using

indicator trimming instead. So, β1,3 is strongly underestimated, in combination with the

overestimation of γ1,1.

6 Concluding Remarks

In this paper we consider the estimation of semiparametric multi-index models. Although

estimation methods for these models are available for quite some time, these methods all

are rather computationally intensive. The advantage of our method is that it only in-

volves a single non-parametric step, which is the computation of the average outer product

of the derivatives and its covariance matrix. Parameter estimation is then based on the

nonparametrically estimated matrix using a GMM approach. This step involves a sim-

ple minimization problem, but importantly, no additional kernel based calculations are

required. The estimator is shown to be root-N consistent and asymptotically normal.

Parameter estimation in multi-index models is only feasible when the number of indices

is given. So far, the number of indices has been imposed, either by economic theory, or by

the researcher — no data driven procedures were considered to determine this. We provide

such a procedure, as it can be shown that the rank of the outer product of derivatives equals

the number of indices required in the semiparametric model. Application of existing tests

for the rank of a matrix then provides the desired testing procedure. The GMM framework

used for estimating the parameters of interest provides an alternative way to test the

appropriateness of the number of indices chosen through the overidentifying restrictions

test.

In a simulation study, we have examined the performance of our model. Our results

clearly indicate that using a second order kernel, which is done often in practice, leads

to worse results than using a bias reducing kernel, especially for the test on the number

32



of indices required. Similarly we investigate the effects of using the indicator function

as a weighting function, as was proposed by Härdle and Stoker (1989). As argued in

the theoretical section, this does not affect the bias of the estimates, but it increases the

variance.

While our estimator of β uses moment conditions for the outerproduct of the gradient

only, it is straightforward to use additional moment conditions, such as the gradient itself,

within our framework in an attempt to improve the efficiency of our estimator. We see

various other areas in which this research could be extended. As our method is derivative

based, parameter estimation is only feasible for continuous variables. We would like to

consider an extension of the work by Horowitz and Härdle (1996) for the ADE framework

to deal with discrete variables. Furthermore, the estimator could be extended to the es-

timation of multi-equation models. The selection of the bandwidth is another area where

further research is warranted. In this paper, we used an approach to select the required

undersmoothed bandwidth based upon an adjustment of the rate of convergence upon the

bandwidth attained under generalized cross validation. An advantage of this approach is

that the bandwidth depends not only on the distribution of the explanatory variables, but

also on the amount of noise in the dependent variable, which is not the case for many

rule-of-thumb procedures. Without further theoretical developments on this topic, this

procedure is nothing more than a rule-of-thumb, be it that it is a bit more sophisticated.

Appendix

This appendix gives the proofs of Lemmas 1—3 and Theorem 2 of Section 2. The need for a

smoothed trimming function in place of the indicator function arises in the proof of Lemma

2. As a consequence of this, we discuss this issue in more deatil at the end of the proof of

Lemma 2. As indicated, the proofs bear close resemblance to that of Härdle and Stoker

(1989), Powell, Stock and Stoker (1989), and Stoker (1991).

For notational convenience we do not explicitly mention the dependence of each function

on xi, where no ambiguity exists, so in the sequel G = G(xi), f = f(xi), s = sxi
. We recall,

superscript K (L) denotes the derivative with respect to the K-th (L-th) element of x, and
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ˆ indicates a nonparametrically estimated quantity.

Proof of Lemma 1

To prove that
p
N
³
M̂KL ¡ M̃KL

´
= op(1) we first rewrite M̂KL. From (11)

M̂KL =
1

N

XN

i=1

Ã
ĜK f̂

f̂ 2
¡ Ĝf̂K

f̂ 2

!Ã
ĜLf̂

f̂ 2
¡ Ĝf̂L

f̂2

!
ŝ. (A.1)

Taking out f̂−4 and replacing ĜK by ĜK ¡GK +GK and f̂K by f̂K ¡ fK + fK gives

M̂KL = 1

N

P
N

i=1
f̂−4[(ĜK ¡GK)f̂

³
ĜLf̂ ¡ Ĝf̂L

´
ŝ+GK f̂

³
ĜLf̂ ¡ Ĝf̂L

´
ŝ

¡(f̂K ¡ fK)Ĝ
³
ĜLf̂ ¡ Ĝf̂L

´
ŝ¡ fKĜ

³
ĜLf̂ ¡ Ĝf̂L

´
ŝ].

(A.2)

Similarly, replacing ĜL by ĜL ¡GL +GL and f̂L by f̂L ¡ fL + fL, results in

M̂KL =
1

N

P
N

i=1
f̂−4
h
(ĜK ¡GK)f̂2

³
ĜL ¡GL

´
ŝ + (ĜK ¡GK)f̂ 2GLŝ (A.3)

¡ (ĜK ¡GK)f̂ Ĝ(f̂L ¡ fL)ŝ¡ (ĜK ¡GK)f̂ ĜfLŝ

+GK f̂ 2(ĜL ¡GL)ŝ+GK f̂ 2GLŝ¡GK f̂ Ĝ(f̂L ¡ fL)ŝ¡GK f̂ ĜfLŝ

¡ (f̂K ¡ fK)Ĝf̂(ĜL ¡GL)ŝ¡ (f̂K ¡ fK)Ĝf̂GLŝ

+ (f̂K ¡ fK)Ĝ2(f̂L ¡ fL)ŝ+ (f̂K ¡ fK)Ĝ2fLŝ

¡ fKĜf̂(ĜL ¡GL)ŝ¡ fKĜf̂GLŝ+ fKĜ2(f̂L ¡ fL)ŝ+ fKĜ2fLŝ
i
.

Substituting Ĝ = Ĝ¡G+G and f̂ = f̂ ¡ f + f in the numerator and using

f̂−4 = f−4[1 ¡ 4
³
f̂−f

f̂

´
+ 6
³
f̂−f

f̂

´
2

¡ 4
³
f̂−f

f̂

´
3

+
³
f̂−f

f̂

´
4

] (A.4)
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we obtain

M̂KL =
1

N

P
N

i=1
f−4[1 ¡ 4

³
f̂−f

f̂

´
+ 6
³
f̂−f

f̂

´
2

¡ 4
³
f̂−f

f̂

´
3

+
³
f̂−f

f̂

´
4

]£ (A.5)

[(ĜK ¡GK)(f̂ ¡ f)2(ĜL ¡GL)ŝ + (ĜK ¡GK)2(f̂ ¡ f)f(ĜL ¡GL)ŝ

+ (ĜK ¡GK)f 2(ĜL ¡GL)ŝ+ (ĜK ¡GK)(f̂ ¡ f)2GLŝ

+ (ĜK ¡GK)2(f̂ ¡ f)fGLŝ+ (ĜK ¡GK)f 2GLŝ

¡ (ĜK ¡GK)(f̂ ¡ f)(Ĝ¡G)(f̂L ¡ fL)ŝ¡ (ĜK ¡GK)f(Ĝ¡G)(f̂L ¡ fL)ŝ

¡ (ĜK ¡GK)(f̂ ¡ f)G(f̂L ¡ fL)ŝ¡ (ĜK ¡GK)fG(f̂L ¡ fL)ŝ

¡ (ĜK ¡GK)(f̂ ¡ f)(Ĝ¡G)fLŝ¡ (ĜK ¡GK)f(Ĝ¡G)fLŝ

¡ (ĜK ¡GK)(f̂ ¡ f)GfLŝ¡ (ĜK ¡GK)fGfLŝ+GK(f̂ ¡ f)2(ĜL ¡GL)ŝ

+GK2(f̂ ¡ f)f(ĜL ¡GL)ŝ+GKf 2(ĜL ¡GL)ŝ+GK(f̂ ¡ f)2GLŝ

+GK2(f̂ ¡ f)fGLŝ+GKf 2GLŝ¡GK(f̂ ¡ f)(Ĝ¡G)(f̂L ¡ fL)ŝ

¡GKf(Ĝ¡G)(f̂L ¡ fL)ŝ¡GK(f̂ ¡ f)G(f̂L ¡ fL)ŝ¡GKfG(f̂L ¡ fL)ŝ

¡GK(f̂ ¡ f)(Ĝ¡G)fLŝ¡GKf(Ĝ¡G)fLŝ¡GK(f̂ ¡ f)GfLŝ¡GKfGfLŝ

¡ (f̂K ¡ fK)(Ĝ¡G)(f̂ ¡ f)(ĜL ¡GL)ŝ¡ (f̂K ¡ fK)(Ĝ¡G)f(ĜL ¡GL)ŝ

¡ (f̂K ¡ fK)G(f̂ ¡ f)(ĜL ¡GL)ŝ¡ (f̂K ¡ fK)Gf(ĜL ¡GL)ŝ

¡ (f̂K ¡ fK)(Ĝ¡G)(f̂ ¡ f)GLŝ¡ (f̂K ¡ fK)(Ĝ¡G)fGLŝ

¡ (f̂K ¡ fK)G(f̂ ¡ f)GLŝ¡ (f̂K ¡ fK)GfGLŝ+ (f̂K ¡ fK)(Ĝ¡G)2(f̂L ¡ fL)ŝ

+ (f̂K ¡ fK)2(Ĝ¡G)G(f̂L ¡ fL)ŝ+ (f̂K ¡ fK)G2(f̂L ¡ fL)ŝ

+ (f̂K ¡ fK)(Ĝ¡G)2fLŝ+ (f̂K ¡ fK)2(Ĝ¡G)GfLŝ+ (f̂K ¡ fK)G2fLŝ

¡ fK(Ĝ¡G)(f̂ ¡ f)(ĜL ¡GL)ŝ¡ fK(Ĝ¡G)f(ĜL ¡GL)ŝ

¡ fKG(f̂ ¡ f)(ĜL ¡GL)ŝ¡ fKGf(ĜL ¡GL)ŝ

¡ fK(Ĝ¡G)(f̂ ¡ f)GLŝ¡ fK(Ĝ¡G)fGLŝ¡ fKG(f̂ ¡ f)GLŝ¡ fKGfGLŝ

+ fK(Ĝ¡G)2(f̂L ¡ fL)ŝ+ fK2(Ĝ¡G)G(f̂L ¡ fL)ŝ+ fKG2(f̂L ¡ fL)ŝ

+ fK(Ĝ¡G)2fLŝ+ fK2(Ĝ¡G)GfLŝ+ fKG2fLŝ].

Finally, we substitute ŝ = ŝ¡ s + s ´ (ŝ¡ s + s)I∗, where I∗ = I(f̂(x) ¸ b or f(x) ¸ b).
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The result is given below in (A.7), where the following notation (similar to Stoker (1991))

is used

ζf = f−1
h
f̂ ¡ f

i
I∗; ζGK = f−1

h
ĜK ¡GK

i
I∗; ζfK = f−1

h
f̂K ¡ fK

i
I∗;

ζG = f−1
h
Ĝ¡G

i
I∗; ζf̂ = f̂−1

h
f̂ ¡ f

i
I∗; (A.6)

ζf̂ f̂ =
h
6( f̂−f

f̂
)2 ¡ 4( f̂−f

f̂
)3 + ( f̂−f

f̂
)4
i
I∗; and

ζs = [ŝ¡ s] I∗.

The final rewritten version of M̂KL, thus obtained, is then given by

M̂KL =
1

N

PN
i=1

h
1 ¡ 4ζf̂ + ζf̂ f̂

i
[ζs + s]£ (A.7)£

ζGKζ
2

f ζGL + 2ζGKζfζGL + ζGKζGL + ζGKζ
2

fG
L/f + 2ζGKζfG

L/f + ζGKG
L/f

¡ ζGKζfζGζfL ¡ ζGKζGζfL ¡ ζGKζfζfLG/f ¡ ζGKζfLG/f ¡ ζGKζfζGf
L/f

¡ ζGKζGf
L/f ¡ ζGKζfGf

L/f 2 ¡ ζGKGf
L/f 2 + ζ2f ζGLG

K/f + 2ζfζGLG
K/f

+ ζGLG
K/f + ζ2fG

KGL/f 2 + 2ζfG
KGL/f2 +GKGL/f 2 ¡ ζfζGζfLG

K/f ¡ ζGζfLG
K/f

¡ ζfζfLG
KG/f 2 ¡ ζfLG

KG/f 2 ¡ ζfζGG
KfL/f 2 ¡ ζGG

KfL/f2 ¡ ζfG
KGfL/f 3

¡GKGfL/f 3 ¡ ζfKζGζfζGL ¡ ζfKζGζGL ¡ ζfKζfζGLG/f ¡ ζfKζGLG/f

¡ ζfKζGζfG
L/f ¡ ζfKζGG

L/f ¡ ζfKζfGG
L/f 2 ¡ ζfKGG

L/f 2 + ζfKζ
2

GζfL

+ 2ζfKζGζfLG/f + ζfKζfLG
2/f 2 + ζfKζ

2

Gf
L/f + 2ζfKζGGf

L/f 2 + ζfKG
2fL/f 3

¡ ζGζfζGLf
K/f ¡ ζGζGLf

K/f ¡ ζfζGLf
KG/f2 ¡ ζGLf

KG/f 2 ¡ ζGζff
KGL/f2

¡ ζGf
KGL/f 2 ¡ ζff

KGGL/f 3 ¡ fKGGL/f3 + ζ2GζfLf
K/f + 2ζGζfLf

KG/f 2

+ ζfLf
KG2/f 3 + ζ2Gf

KfL/f 2 + 2ζGf
KGfL/f 3 + fKG2fL/f4

¤
.
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The linearized version, M̃KL, see equation (12), can similarly be rewritten as

M̃KL =
1

N

PN
i=1[s+ ζs] £ [GKGL/f 2 ¡GfKGL/f 3 ¡GKGfL/f 3 +G2fKfL/f 4] (A.8)

+ s£ [ζGKG
L/f ¡ ζGKGf

L/f2 ¡ ζfKGG
L/f 2 + ζfKG

2fL/f 3

¡ ζfLGG
K/f 2 + ζfLG

2fK/f 3 + ζGLG
K/f ¡ ζGLGf

K/f 2

¡ ζGf
KGL/f 2 + ζGf

KGfL/f 3 ¡ ζGf
LGK/f 2 + ζGf

LGfK/f 3

+ ζfG
KGL/f 2 ¡ ζfG

KGfL/f 3 + ζfG
LGK/f 2 ¡ ζfG

LGfK/f 3]

¡ 4sζf £ [GKGL/f 2 ¡GfKGL/f 3 ¡GKGfL/f 3 +G2fKfL/f 4].

The first five lines of this expression also appear in the expression for M̂KL in (A.7). The

elements in the last line also appear there, except that ζf is replaced by ζf̂ . Since ζf ¡ ζf̂ =

ζfζf̂ this results in
p
N
³
M̂KL ¡ M̃KL

´
equalling second and higher order polynomial terms

in the ζ’s only.

Since the set fxjf̂(x) ¸ b or f(x) ¸ bg is compact and h! 0, following the arguments

of Collomb and Härdle (1986) or Silverman (1978), we can assert as Härdle and Stoker

(1989)

sup jζf j = Op

h¡
N 1−ε/2hk

¢−1/2i
sup jζGKj = Op

h¡
N 1−ε/2hk+2

¢−1/2i
(A.9)

sup jζfKj = Op

h¡
N1−ε/2hk+2

¢−1/2i
sup jζGj = Op

h¡
N 1−ε/2hk

¢−1/2i
,

and, using N 1−ε/2hk ! 1,

sup
¯̄̄
ζf̂

¯̄̄
= Op

h¡
N1−ε/2hk

¢−1/2i
(A.10)

sup
¯̄̄
ζf̂ f̂

¯̄̄
= Op

h¡
N 1−ε/2hk

¢−1i
.

By continuity of s(¢), and given the boundedness of s′ and s′′ a second order Taylor expan-

sion of ŝ around f reveals

sup jζsj = Op

h¡
N 1−ε/2hk

¢−1/2i
(A.11)
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since supjζsj � supjs′j sup
¯̄̄
f̂ ¡ f

¯̄̄
+supjs′′j sup

¯̄̄
f̂ ¡ f

¯̄̄
2

. These results allow us to derive the

rate of convergence of
p
N
³
M̂KL ¡ M̃KL

´
by analyzing each term in

p
N
³
M̂KL ¡ M̃KL

´
individually. Take, for example, 1√

N

P
ζfKζfLG

2/f 2 ´ 1√
N

P
ζfKζfLIG

2/f 2. It follows that¯̄̄
1√
N

P
ζfKζfLG

2/f2
¯̄̄
� p

NsupjζfKjsupjζfLj 1

N

P jI∗G2/f 2j = Op(N
1/2N−1+ε/2h−(k+2)) =

op(1), since 1

N

P jI∗G2/f 2j is bounded by Chebychev’s inequality and N1−εh2k+4 ! 1 by

condition (ii).

The other terms in
p
N
³
M̂KL ¡ M̃KL

´
are analyzed similarly, allowing us to conclude

p
N
¯̄̄
M̂KL ¡ M̃KL

¯̄̄
= Op(N

1/2N−1+ε/2h−(k+2)) = Op(N
−1/2+ε/2h−(k+2)) = op(1). �

Proof of Lemma 2

To prove that
p
N(M̃KL¡E(M̃KL)) = N−1/2(

PN
i=1 r(zi)¡E(r(z)))) + op(1) we rewrite

the linearized version of M̂KL, M̃KL, as the sum of “average kernel estimators”

M̃KL = δ̃0 + δ̃1 ¡ δ̃2 + δ̃3 ¡ δ̃4 ¡ δ̃5 + δ̃6 + δ̃7, (A.12)

with

δ̃0 =
1

N

PN
i=1

£
g′g′T

¤
KL

s

δ̃1 =
1

N

PN
i=1Ĝ

K g
L

f
s; δ̃2 =

1

N

PN
i=1f̂

K gg
L

f
s

δ̃3 =
1

N

PN
i=1Ĝ

Lg
K

f
s; δ̃4 =

1

N

PN
i=1f̂

Lgg
K

f
s (A.13)

δ̃5 =
1

N

PN
i=1Ĝ

fKgL + fLgK

f 2
s; δ̃6 =

1

N

PN
i=1f̂

¡2gLgKf + g(fKgL + fLgK)

f 2
s

δ̃7 =
1

N

PN
i=1(ŝ¡ s)

£
g′g′T

¤
KL

.

Notice that in rewriting many of the non-estimated terms in (12) cancel out. U-statistic

theory, see Hoeffding (1948), can then be used to show that each of the eδ’s is
p
N equivalent

to an ordinary sample average.

For δ̃0 this follows straightforward, since

p
N(δ̃0 ¡ E(δ̃0)) = N−1/2(

NX
i=1

r0(xi) ¡ E(r0(x))), (A.14)
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where r0(x) =
£
g′(x)g′(x)T

¤
KL

sx.

The analysis for δ̃1 through δ̃7 is fairly similar. We focus our discussion primarily on δ̃1,

while pointing out the more interesting modifications for the other δ̃’s.

Using a leave-one-out nonparametric estimator for ĜK
i , we note that δ̃1 can be written

as the following second order U-statistic

U1 =

�
N

2

¶
−1 N−1X

i=1

NX
j=i+1

p1N(zi, zj), (A.15)

where zi = (yi, x
T
i )T and

p1N(zi, zj) =
1

2

�
1

h

¶k+1

KK

�
xi ¡ xj
h

¶Ã
yj
gLi
fi
si ¡ yi

gLj
fj
sj

!
. (A.16)

KK denotes the first derivative of the kernel K with respect to the Kth argument. We

assume a symmetric kernel, hence KK(¡u) = ¡KK(u). Using Lemma 3.1 from Powell,

Stock and Stoker (1989),

p
N(δ̃1 ¡ E(δ̃1)) = N−1/2

Ã
NX
i=1

r1N(zi) ¡ E(r1N(z))

!
+ op(1), (A.17)

where r1N(z) = 2E(p1N(z, zj)jz), provided E
¡jp1N(zi, zj)j2

¢
= o(N). This condition is

verified next. Let M2(xi) = E(y2i jxi), then

E
¡jp1N(zi, zj)j2

¢
� 1

4b2h2(k+1)

Z ¯̄̄̄
KK

�
xi ¡ xj
h

¶¯̄̄̄2
[M2(xj)(g

L(xi)sxi
)2 +M2(xi)(g

L(xj)sxj)
2

¡ 2g(xj)g(xi)(g
L(xi)sxi)(g

L(xj)sxj)]f(xi)f(xj)dxidxj (A.18)

=
1

4b2hk+2

Z ¯̄
KK (u)

¯̄2
[M2(xi + uh)(gL(xi)sxi)

2 +M2(xi)(g
L(xi + uh)sxi+uh)2

¡ 2g(xi + uh)g(xi)(g
L(xi)sxi)(g

L(xi + uh)sxi+uh)]f(xi)f(xi + uh)dxidu

= O(h−(k+2)) = O(N(Nhk+2)−1) = o(N)

by continuity and Nhk+2 ! 1 is implied by condition (ii).
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Using (A.16), we find

r1N(zi) =
¡
1

h

¢k+1 R
KK

¡
xi−x
h

¢ ³
g(x)

gL
i

fi
si ¡ yi

gL(x)
f(x)

sx
´
f(x)dx

=
¡
1

h

¢k+1 hgL
i

fi
si
R
KK

¡
xi−x
h

¢
(gf)(x)dx¡ yi

R
KK

¡
xi−x
h

¢
gL(x)sxdx

i

= ¡ ¡ 1
h

¢ hgL
i

fi
si
R
KK (u) (gf)(xi + uh)du¡ yi

R
KK (u) gL(xi + uh)sxi+uhdu

i

=
gL
i

fi
si
R
K (u) (gf)K(xi + uh)du

¡yi
R
K (u)

£
gLK(xi + uh)sxi+uh + gL(xi + uh)sKxi+uh

¤
du.

(A.19)

The third equality applies a change of variable x = xi + uh and the symmetry of K(¢),
the last equality integrates by parts the first two terms making use of the fact that the

kernel vanishes at the boundary. Note sKxi = s′xif
K(xi), where s′x = ∂s(τ)/∂τ, evaluated

at τ = f(x) ¡ b. We now separate r1N(zi) into two parts: r1(zi), independent of N, and

t1N(zi), with

r1(zi) =

�
gL(xi)
f(xi)

(gf)K(xi) ¡ yig
LK(xi)

¶
sxi ¡ yi(g

LfK)(xi)s
′

xi

=
¡
(gLgK)(xi) + (ggLfK)(xi)/f(xi) ¡ yig

LK(xi)
¢
sxi ¡ yi(g

LfK)(xi)s
′

xi
(A.20)

t1N(zi) =
gL(xi)
f(xi)

si
R
K (u)

£
(gf)K(xi + uh) ¡ (gf)K(xi)

¤
du+

¡yi
R
K (u)

£
gLK(xi + uh)sxi+uh ¡ gLK(xi)sxi

¤
du+

¡yi
R
K (u) [(gLfK)(xi + uh)s′

xi+uh
¡ (gLfK)(xi)s

′

xi
]du.

(A.21)

As r1N (zi) = r1(zi) + t1N(zi),

N−1/2(
PN

i=1 r1N(zi) ¡ E(r1N(z))) = N−1/2(
PN

i=1 r1(zi) ¡ E(r1(z)))

+N−1/2(
PN

i=1 t1N (zi) ¡ E(t1N(z))).
(A.22)

To show that the last term converges in probability to zero, we show that its variance is

bounded by E(t1N(z)2) = o(1). Lipschitz conditions on (gf)K, gLKs and gLfKs′ (implied

by Lipschitz conditions on gLK, gK, and fK , and Assumption 5) guarantee that the second

moments of the three terms in (A.21) vanish in probability. For example, by Assump-

tion 6, the second moment of the first term on the right hand side of (A.21) is bounded
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by h2
¡R jujK(u)du

¢2
E(gL(x)2s2xψ

2
(gf)K (x)), which, by our assumptions, is O(h2) = o(1).

To allow b ! 0 as N ! 1 in the trimming function, an assumption on the existence

of E(gL(x)2ψ2
(gf)K (x)) will be required, as in Härdle and Stoker (1989). To conclude,

E(t1N (z)2) = o(1), so

p
N(δ̃1 ¡ E(δ̃1)) = N−1/2(

NX
i=1

r1(zi) ¡ E(r1(z))) + op(1), (A.23)

where r1(z) =
¡
(gLgK)(x) + (ggLfK)(x)/f(x) ¡ ygLK(x)

¢
sx ¡ y(gLfK)(x)s′x.

Using a leave-one-out nonparametric estimator for bfKi , δ̃2 can be written as the following

second order U-statistic

U2 =

�
N

2

¶
−1 N−1X

i=1

NX
j=i+1

p2N(zi, zj), (A.24)

and

p2N(zi, zj) =
1

2

�
1

h

¶k+1

KK

�
xi ¡ xj
h

¶Ã
gig

L
i

fi
si ¡

gjg
L
j

fj
sj

!
. (A.25)

A similar analysis as for δ̃1 reveals that, under the appropriate assumptions, such as Lips-

chitz conditions on fK , (ggL)Ks, and ggLfKs′ (implied by Lipschitz conditions on g, fK , gK,

and gKL and Assumption 5),

p
N(δ̃2 ¡ E(δ̃2)) = N−1/2(

NX
i=1

r2(zi) ¡ E(r2(z))) + op(1), (A.26)

where r2(z) = (
¡
ggLfK)(x)/f(x) ¡ (gKgL)(x) ¡ (ggLK)(x)

¢
sx ¡ (ggLfK)(x)s′x.

By symmetry

p
N(δ̃k ¡ E(δ̃k)) = N−1/2(

NX
i=1

rk(zi) ¡ E(rk(z))) + op(1), k = 3, 4 (A.27)

with

r3(z) =
¡
(gKgL)(x) + (ggKfL)(x)/f(x) ¡ ygKL(x)

¢
sx ¡ y(gKfL)(x)s′x (A.28)

r4(z) =
¡
(ggKfL)(x)/f(x) ¡ (gKgL)(x) ¡ (ggLK)(x)

¢
sx ¡ (ggKfL)(x)s′x. (A.29)

The analysis for δ̃5 and δ̃6 is very similar again. Using leave-one-out nonparametric

estimators for Ĝi and bfi, δ̃5 and δ̃6 can be written as the following second order U-statistics

Uk =

�
N

2

¶
−1 N−1X

i=1

NX
j=i+1

pkN(zi, zj), k = 5, 6 (A.30)
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with

p5N(zi, zj) =
1

2

�
1

h

¶k

K

�
xi ¡ xj
h

¶
[yj
fKi g

L
i + fLi g

K
i

f 2i
si + yi

fKj g
L
j + fLj g

K
j

f2j
sj] (A.31)

p6N(zi, zj) =
1

2

�
1

h

¶k

K

�
xi ¡ xj
h

¶
[ ¡ 2

gLi g
K
i

fi
si +

fKi gig
L
i

f2i
si +

fLi gig
K
i

f 2i
si (A.32)

¡ 2
gLj g

K
j

fj
sj +

fKj gjg
L
j

f 2j
sj +

fLj gjg
K
j

f 2j
sj].

Under our assumptions, we obtain

p
N(δ̃k ¡ E(δ̃k)) = N−1/2(

NX
i=1

rk(zi) ¡ E(rk(z))) + op(1), k = 5, 6, (A.33)

where

r5(z) = [g(x) + y][(fK(x)gL(x) + fL(x)gK(x))/f(x)]sx (A.34)

r6(z) = 2[¡2gL(x)gK(x) + g(x)(fK(x)gL(x) + fL(x)gK(x))/f(x)]sx. (A.35)

Finally, we consider δ̃7 = 1
N

PN
i=1 [ŝ¡ s] gKgL. A second order Taylor expansion of ŝ

around f(x), gives

δ̃7 =
1

N

PN
i=1

³
s′(f̂ ¡ f) + 1

2
s′′(f∗)(f̂ ¡ f)2

´
gKgL, (A.36)

where f ∗ lies between f and f̂ . Given s′′ is bounded, (A.9) gives

δ̃∗7 ´
1

N

PN
i=1s

′(f̂ ¡ f)gKgL = δ̃7 + op(N
−1/2). (A.37)

We now note that δ̃∗7, using a leave-one-out nonparametric estimator for bfi, can be written

as the following second order U-statistic

U7 =

�
N

2

¶
−1 N−1X

i=1

NX
j=i+1

p7N(zi, zj), (A.38)

and

p7N(zi, zj) = 1
2

"�
1

h

¶k

K

�
xi ¡ xj
h

¶
¡ fi

#
gLi g

K
i s

′

i+

1
2

"�
1

h

¶k

K

�
xi ¡ xj
h

¶
¡ fj

#
gLj g

K
j s

′

j.

(A.39)
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Using a similar approach as before, it can be shown that

p
N(δ̃∗7 ¡ E(δ̃∗7)) = N−1/2(

NX
i=1

r7(zi) ¡ E(r7(z))) + op(1), (A.40)

where

r7(z) = (gKgLf)(x)s′x ¡ E((gKgLf)(x)s′x). (A.41)

In other words, we argue that the difference between trimming on the basis of the estimated

density relative to the true density is not negligible, unlike Härdle and Stoker (1989) and

Stoker (1991).

From (A.14), (A.23), (A.26), (A.27), (A.33), (A.37) and (A.40), finally, we conclude

that M̃KL ´ δ̃0 + δ̃1 ¡ δ̃2 + δ̃3 ¡ δ̃4 ¡ δ̃5 + δ̃6 + δ̃7 has the representation

p
N(M̃KL ¡ E(M̃KL)) = N−1/2(

NX
i=1

r(zi) ¡ E(r(z)))) + op(1), (A.42)

where

r(zi) = r0(zi) + r1(zi) ¡ r2(zi) + r3(zi) ¡ r4(zi) ¡ r5(zi) + r6(zi) + r7(zi)

= gL(xi)g
K(xi)sxi + 2(g(xi) ¡ yi)g

KL(xi)sxi+

(g(xi) ¡ yi)
fK(xi)g

L(xi) + fL(xi)g
K(xi)

f(xi)
sxi+ (A.43)

(g(xi) ¡ yi)(f
K(xi)g

L(xi) + fL(xi)g
K(xi))s

′

xi
+

gK(xi)g
L(xi)f(xi)s

′

xi
¡ E(gK(x)gL(x)f(x)s′x). �

The need for a smoothed trimming function instead of an indicator trimming function

is best illustrated using the proof of Lemma 2 given above, as it affects the asymptotic

properties of δ̃1, δ̃2, δ̃3, δ̃4, and δ̃7 while leaving the asymptotic properties of δ̃5 and δ̃6 un-

changed. Indeed, only sx appears in the asymptotic properties of δ̃5 and δ̃6, which can be

replaced by the indicator function, while s′

x appears in the analysis of the other terms.

Let us return to the last equality in (A.19). With the use of the indicator function, our

assumptions guarantee, for example, that

h−1yi

Z
KK (u) gL(xi + uh)1 (f(xi + uh) > b) du (A.44)
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converges to ¡yigLK(xi)1(f(xi) > b) almost everywhere. However, it does not do so near

the boundaries, where the trimming function is active. Let us be more precise and rewrite

(A.44) as

h−1yi

Z
u:1(f(xi+uh)>b)

KK (u) gL(xi + uh)du. (A.45)

Integration by parts gives that (A.45) equals

h−1yi
£
K(u)gL(xi + uh)

¤
u:1(f(xi+uh)=b)

¡ yi

Z
u:1(f(xi+uh)>b)

K (u) gLK(xi + uh)du, (A.46)

where the second term behaves nicely for h! 0.

The first expression only behaves well when a bounded kernel is used and xi is sufficiently

far away from the boundary, as this leads to K(u) = 0 for u 2 fu : 1(f(xi + uh) =

b)g. For xi close to the boundary, or when an unbounded kernel is used, the behavior of

h−1yi
£
K(u)gL(xi + uh)

¤
u:1(f(xi+uh)=b)

is dominated by h−1 ! 1. Consequently, there exists

no square integrable function which bounds
¯̄
h−1yi

R
KK (u) gL(xi + uh)Ixi+uhdu

¯̄
, which is

needed to ensure the
p
N asymptotic normality, see also Assumption 1 of Proposition 6 in

Lee (1995). However, at the same time the part of the support of x, Ω, that is close enough

to the boundary to be affected, shrinks at a rate h. These two opposing effects result in

a non-negligible effect on the asymptotic behavior of the estimator. Using the smoothed

trimming function we are able to quantify this influence, as is shown by the presence of s′

in the expression for the asymptotic covariance matrix.

Proof of Lemma 3

To prove that the bias of the estimator is o(N−1/2), we rewrite E
n
M̃KL

o
¡MKL as

τ1N ¡ τ2N + τ3N ¡ τ4N ¡ τ5N + τ6N + τ7N , where

τ1N = E

½³
ĜK ¡GK

´ gL
f
s

¾
; τ2N = E

½³
f̂K ¡ fK

´ ggL
f
s

¾
; (A.47)

τ3N = E

½³
ĜL ¡GL

´ gK
f2
s

¾
; τ4N = E

½³
f̂L ¡ fL

´ G
f

gK

f
s

¾
;

τ5N = E

½³
Ĝ¡G

´�fK
f 2
gL +

fL

f 2
gK
¸
s

¾
;

τ6N = E

½³
f̂ ¡ f

´ ¡2gLgKf + g(fKgL + fLgK)

f 2
s

¾
; τ7N = E

©
[ŝ¡ s] gKgL

ª
.
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We can analyze the bias of the estimator by analyzing the bias components individually.

We will focus our attention on the first bias component, τ1N . Let ι denote an index set

(l1, . . . , lk), with
P
m
lm = p. For a vector u = (u1, .., uk) define uι = ul11 ¢ ¢ ¢ulk

k
and f

(p)
ι =

∂pf/(∂u)ι. Similar definitions hold for G
K(p)
ι , G

(p)
ι , and f

(p)
ι .

Using this notation, we note

τ1N = E

½³
ĜK ¡GK

´ gL
f
s

¾
=

Z "
1

hk

Z
∂K
¡
xi−xj

h

¢
∂xiK

G(xj)dxj ¡GK(xi)

#
gL(xi)sxidxi

=

Z �
1

h

Z
∂K (u)

∂uK
G(xi ¡ uh)du¡GK(xi)

¸
gL(xi)sxidxi

=

Z Z
K (u)

£
GK(xi ¡ uh) ¡GK(xi)

¤
du gL(xi)sxidxi (A.48)

=

Z Z
K (u) hp

X
ι

GK(p)

ι (ξ)uιdu gL(xi)sxidxi

= hp
Z
gL(xi)sxi

X
ι

GK(p)

ι (xi)

Z
K (u)uιdu dxi

+ hp
Z
gL(xi)sxi

X
ι

Z
K (u) (GK(p)

ι (ξ) ¡GK(p)(xi))u
ιdudxi

= O(hp).

The third equality applies a change of variables, the fourth equality integrates by parts,

using the fact that the kernel vanishes at the boundary. The fifth equality uses a Tay-

lor approximation, where ξ is a point between x and x + uh. The last equality uses our

assumption 7, cf Stoker assumption 6, specifically G
K(p)
ι is locally Hölder continuous and

the existence of p + δ moments of K(¢). The boundedness of our integrals is ensured by

the presence of our trimming function, sx, which guarantees integration over a bounded

interval only, and the existence of the functions over which we want to integrate. Bounding

conditions on these integrals will be required when allowing b! 0 as N ! 1, see Härdle

and Stoker (1989).

After a similar analysis for τ2, .., τ7, we obtain that given assumptions 1—5, and 7,

E
n
M̃KL

o
¡MKL = O(hp) + o(N−1/2) = O(N−1/2(Nh2p)1/2) + o(N−1/2). Condition (iii)
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Nh2p ! 0 ensures E
n
M̃KL

o
¡MKL = o(N−1/2). �

Proof of Theorem 2

Because M̂ is a consistent estimator for M, we focus on establishing that the leading

term 1

N

PN
i=1

³
vech bR(zi) vech bR(zi)

T
´

is consistent for E(vechR(zi) vechR(zi)
T ). R̂(zi) is

the matrix containing as (K,L)th element the estimated elements r̂(zi), with

r(zi) = r0(zi) + r1(zi) ¡ r2(zi) + r3(zi) ¡ r4(zi) ¡ r5(zi) + r6(zi) + r7(zi) (A.49)

defined in the proof of Lemma 2. We note

N−1

NX
i=1

³
vech bR(zi) vech bR(zi)

T
´
¡ E(vechR(zi) vechR(zi)

T ) (A.50)

= N−1

NX
i=1

³
vech( bR(zi) ¡ R(zi)) vech( bR(zi) ¡ R(zi))

T
´

+N−1

NX
i=1

³
vechR(zi) vech( bR(zi) ¡R(zi))

T
´

+N−1

NX
i=1

³
vech( bR(zi) ¡ R(zi)) vechR(zi)

T
´

+N−1

NX
i=1

vechR(zi) vechR(zi)
T ¡ E(R(zi)R(zi)

T ).

Because of the existence of the variance of the elements in R (zi), the latter term converges

to zero by Khinchine’s law of large numbers. Once, we show that E
°°(br(zi) ¡ r(zi))

2
°° =

o(1), Chebychev’s and Hölders inequality give us the desired result that all term vanish

asymptotically. In particular, 8ε > 0,

Pr(

°°°°° 1

N

NX
i=1

³
vech( bR(zi) ¡ R(zi)) vech( bR(zi) ¡ R(zi))

T
´°°°°° > ε) (A.51)

�
E
°°°vech( bR(zi) ¡R(zi)) vech( bR(zi) ¡R(zi))

T
°°°

ε

�

qPk
K=1

PK
L=1E j(br(z) ¡ r(z))2j

ε
,

46



where the second inequality uses the relation kAk =
p
tr(A′A), with A a matrix. Now,

E
¯̄
(br(z) ¡ r(z))2

¯̄
(A.52)

� E
¯̄
ĝLĝK ŝ¡ gLgKs

¯̄
2

+ 2E
¯̄
ĝĝKLŝ¡ ggKLs

¯̄
2

+ 2Ey2
¯̄
ĝKLŝ¡ gKLs

¯̄
2

+ E

¯̄̄̄
¯ĝ
Ã
f̂K

f̂
ĝL +

f̂L

f̂
ĝK

!
ŝ¡ g

�
fK

f
gL +

fL

f
gK
¶
s

¯̄̄̄
¯
2

+ Ey2

¯̄̄̄
¯
Ã
f̂K

f̂
ĝL +

f̂L

f̂
ĝK

!
ŝ¡
�
fK

f
gL +

fL

f
gK
¶
s

¯̄̄̄
¯
2

+ E
¯̄̄
ĝ
³
f̂K ĝL + f̂LĝK

´
ŝ′ ¡ g

¡
fKgL + fLgK

¢
s′
¯̄̄
2

+ Ey2
¯̄̄³
f̂K ĝL + f̂LĝK

´
ŝ′ ¡ ¡fKgL + fLgK

¢
s′
¯̄̄
2

+ E
¯̄̄
ĝK ĝLf̂ ŝ′ ¡ gKgLfs′

¯̄̄
2

+ E
¯̄̄
ĝK ĝLf̂ ŝ′ ¡ gKgLfs′

¯̄̄
2

+ E
¯̄
gKgLfs′ ¡ E(gKgLfs′)

¯̄
2

.

Using equalities A.9—A.11, it is easy to derive

sup k[ĝ ¡ g]I∗k = O(
¡
N1−

ε

2hk
¢
−1/2

) (A.53)

sup
°°[ĝK ¡ gK]I∗

°° = O(
¡
N 1−

ε

2hk+2
¢
−1/2

),

where we recall ŝ = ŝ¡ s+ s ´ (ŝ¡ s+ s)I∗, where I∗ = I(f̂(x) ¸ b or f(x) ¸ b). For the

second order derivatives of the nonparametric regression estimator, we obtain

sup
°°[ĝKL ¡ gKL]I∗

°° = O(
¡
N 1−

ε

2hk+4
¢
−1/2

). (A.54)

With these results and our equalities A.9—A.11, we obtain

E
¯̄
(br(z) ¡ r(z))2

¯̄
= O(

¡
N1−

ε

2hk+4
¢
−1

),

where we note the boundedness of E(y2I∗). Provided N2−εh(2k+8) ! 1, our result is

established, which follows from our conditions (i), (ii) and h! 0. �
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Table A.1: Testing the Rank of a Matrix. Trimming using the indicator function

Model 1: y = (Xβ1)(Xβ2) + ε

Not Bias Corrected Bias Corrected

Rank W Ww CRT CRTw OI W Ww CRT CRTw OI

hn = hgcvn

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.120 0.004 0.002

2 0.008 0.088 0.170 0.218 0.238 0.632 0.966 0.830 0.980 0.986

hn = hgcvn n−
1

2
[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000

1 0.000 0.000 0.000 0.000 0.002 0.008 0.008 0.194 0.008 0.014

2 0.004 0.058 0.106 0.148 0.160 0.610 0.966 0.764 0.984 0.978

hn = hgcvn n−[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000

1 0.000 0.000 0.002 0.000 0.000 0.020 0.006 0.226 0.032 0.022

2 0.006 0.052 0.058 0.094 0.104 0.446 0.952 0.700 0.948 0.970

Model 2: y = (Xβ1) + (Xβ2)2 + ε

Not Bias Corrected Bias Corrected

Rank W Ww CRT CRTw OI W Ww CRT CRTw OI

hn = hgcvn

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.464 0.030 0.002

2 0.000 0.072 0.024 0.132 0.140 0.126 0.972 0.350 0.952 0.984

hn = hgcvn n−
1

2
[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.006 0.004 0.590 0.028 0.004

2 0.000 0.084 0.006 0.134 0.136 0.110 0.952 0.210 0.946 0.976

hn = hgcvn n−[1/11−1/15]

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.006 0.000 0.000 0.004 0.004 0.610 0.028 0.012

2 0.000 0.080 0.006 0.108 0.114 0.068 0.920 0.110 0.920 0.944
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Table A.2: Model 1, γ parameter estimates

Not Bias Corrected True MEAN Var(s) Var(t) MSE LQ Median UQ MAE

hn = hgcvn

γ1,1 1.325 1.025 0.018 0.045 0.108 0.938 1.023 1.109 0.302

γ1,2 0.646 0.437 0.008 0.021 0.052 0.382 0.435 0.502 0.209

γ2,2 1.325 1.021 0.019 0.045 0.111 0.935 1.012 1.097 0.308

hn = hgcvn n−
1

2
[1/11−1/15]

γ1,1 1.325 1.105 0.026 0.063 0.074 1.000 1.098 1.201 0.235

γ1,2 0.646 0.440 0.010 0.028 0.053 0.374 0.440 0.511 0.208

γ2,2 1.325 1.087 0.028 0.062 0.085 0.984 1.081 1.174 0.254

hn = hgcvn n−[1/11−1/15]

γ1,1 1.325 1.189 0.040 0.090 0.059 1.055 1.185 1.311 0.196

γ1,2 0.646 0.436 0.014 0.036 0.058 0.367 0.436 0.510 0.214

γ2,2 1.325 1.169 0.048 0.088 0.073 1.031 1.168 1.300 0.216

Bias Corrected True MEAN Var(s) Var(t) MSE LQ Median UQ MAE

hn = hgcvn

γ1,1 1.325 1.115 0.030 0.047 0.074 1.004 1.113 1.237 0.227

γ1,2 0.646 0.519 0.010 0.027 0.026 0.453 0.516 0.585 0.138

γ2,2 1.325 1.122 0.034 0.051 0.075 1.012 1.118 1.237 0.227

hn = hgcvn n−
1

2
[1/11−1/15]

γ1,1 1.325 1.239 0.031 0.059 0.038 1.117 1.234 1.358 0.157

γ1,2 0.646 0.559 0.010 0.028 0.018 0.490 0.558 0.628 0.110

γ2,2 1.325 1.246 0.032 0.064 0.038 1.139 1.243 1.363 0.156

hn = hgcvn n−[1/11−1/15]

γ1,1 1.325 1.353 0.033 0.085 0.034 1.232 1.343 1.466 0.143

γ1,2 0.646 0.582 0.011 0.034 0.015 0.518 0.576 0.648 0.100

γ2,2 1.325 1.358 0.036 0.094 0.037 1.237 1.346 1.460 0.146
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Table A.3: Model 2, γ parameter estimates

Not Bias Corrected True MEAN Var(s) Var(t) MSE LQ Median UQ MAE

hn = hgcvn

γ1,1 0.870 0.659 0.005 0.008 0.050 0.611 0.649 0.703 0.212

γ1,2 0.000 -0.044 0.015 0.033 0.017 -0.115 -0.038 0.035 0.099

γ2,2 5.294 4.384 0.295 0.598 1.122 4.033 4.384 4.719 0.937

hn = hgcvn n−
1

2
[1/11−1/15]

γ1,1 0.870 0.723 0.007 0.012 0.029 0.666 0.711 0.776 0.152

γ1,2 0.000 -0.054 0.018 0.043 0.020 -0.129 -0.058 0.033 0.113

γ2,2 5.294 4.486 0.386 0.759 1.039 4.140 4.485 4.867 0.863

hn = hgcvn n−[1/11−1/15]

γ1,1 0.870 0.793 0.010 0.019 0.016 0.727 0.785 0.855 0.104

γ1,2 0.000 -0.068 0.026 0.058 0.030 -0.164 -0.064 0.035 0.132

γ2,2 5.294 4.587 0.607 0.967 1.106 4.169 4.567 5.080 0.846

Bias Corrected True MEAN Var(s) V ar(t) MSE LQ Median UQ MAE

hn = hgcvn

γ1,1 0.870 0.796 0.025 0.029 0.031 0.689 0.786 0.882 0.140

γ1,2 0.000 -0.022 0.015 0.036 0.015 -0.106 -0.017 0.060 0.098

γ2,2 5.294 5.061 0.416 0.900 0.470 4.715 5.090 5.415 0.511

hn = hgcvn n−
1

2
[1/11−1/15]

γ1,1 0.870 0.906 0.023 0.036 0.024 0.808 0.892 0.978 0.114

γ1,2 0.000 -0.029 0.016 0.047 0.017 -0.117 -0.026 0.059 0.104

γ2,2 5.294 5.135 0.393 1.129 0.418 4.798 5.167 5.476 0.469

hn = hgcvn n−[1/11−1/15]

γ1,1 0.870 1.006 0.024 0.048 0.043 0.913 0.983 1.079 0.155

γ1,2 0.000 -0.036 0.021 0.066 0.022 -0.124 -0.039 0.057 0.118

γ2,2 5.294 5.224 0.438 1.490 0.443 4.760 5.213 5.660 0.521
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Table A.4: Model 1, β and γ parameter estimates: Trimming with indicator function

Model 1: y = (Xβ1)(Xβ2) + ε

Not Bias Corrected,hgcvn = (0.861, 0.865, 0.565)

True MEAN Var
sample

Var
theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 1.054 0.027 0.039 0.030 0.953 1.051 1.145 0.130

β2,3 1.000 1.043 0.026 0.038 0.028 0.932 1.040 1.135 0.127

γ1,1 1.471 1.173 0.023 0.025 0.112 1.063 1.165 1.273 0.210

γ1,2 0.714 0.505 0.008 0.009 0.052 0.444 0.504 0.556 0.210

γ2,2 1.471 1.177 0.020 0.024 0.106 1.077 1.167 1.272 0.296

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 1.028 0.038 0.051 0.039 0.907 1.025 1.133 0.150

β2,3 1.000 1.044 0.037 0.051 0.039 0.922 1.038 1.149 0.150

γ1,1 1.471 1.267 0.030 0.038 0.071 1.149 1.260 1.379 0.207

γ1,2 0.714 0.511 0.010 0.013 0.052 0.443 0.506 0.571 0.207

γ2,2 1.471 1.258 0.030 0.037 0.076 1.139 1.243 1.369 0.237

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 1.041 0.100 0.073 0.102 0.857 1.007 1.187 0.223

β2,3 1.000 1.019 0.095 0.071 0.096 0.859 1.005 1.156 0.219

γ1,1 1.471 1.351 0.055 0.058 0.070 1.212 1.338 1.492 0.210

γ1,2 0.714 0.511 0.014 0.019 0.056 0.436 0.505 0.584 0.210

γ2,2 1.471 1.363 0.060 0.057 0.072 1.199 1.353 1.499 0.214
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Model 1: y = (Xβ1)(Xβ2) + ε

Bias Corrected, hgcvn = (3.091, 3.073, 2.185)

True MEAN Var
sample

Var
theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 1.005 0.024 0.046 0.024 0.908 1.001 1.096 0.113

β2,3 1.000 1.008 0.023 0.048 0.023 0.918 1.005 1.083 0.109

γ1,1 1.471 1.394 0.041 0.041 0.047 1.268 1.381 1.518 0.120

γ1,2 0.714 0.623 0.013 0.010 0.021 0.545 0.619 0.695 0.120

γ2,2 1.471 1.397 0.042 0.046 0.048 1.269 1.384 1.515 0.172

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 0.972 0.022 0.059 0.023 0.888 0.977 1.060 0.112

β2,3 1.000 0.965 0.025 0.065 0.026 0.870 0.952 1.051 0.120

γ1,1 1.471 1.538 0.050 0.079 0.054 1.379 1.516 1.686 0.110

γ1,2 0.714 0.659 0.016 0.016 0.019 0.572 0.652 0.747 0.110

γ2,2 1.471 1.546 0.052 0.085 0.057 1.392 1.537 1.680 0.184

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 0.934 0.032 0.080 0.037 0.831 0.933 1.037 0.143

β2,3 1.000 0.928 0.038 0.084 0.043 0.820 0.912 1.008 0.156

γ1,1 1.471 1.679 0.078 0.138 0.121 1.492 1.644 1.826 0.113

γ1,2 0.714 0.681 0.020 0.026 0.021 0.588 0.677 0.759 0.113

γ2,2 1.471 1.694 0.087 0.140 0.136 1.501 1.664 1.839 0.274
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Table A.5: Model 2, β and γ parameter estimates: Trimming with indicator function

Model 2: y = (Xβ1) + (Xβ2)2 + ε

Not Bias Corrected, hgcvn = (1.249, 0.580, 0.559)

True MEAN Var
sample

Var
theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 1.126 0.018 0.035 0.034 1.039 1.128 1.206 0.150

β2,3 1.000 1.009 0.004 0.005 0.004 0.971 1.008 1.048 0.048

γ1,1 0.907 0.714 0.007 0.006 0.044 0.658 0.704 0.763 0.099

γ1,2 0.000 -0.042 0.013 0.016 0.015 -0.121 -0.046 0.037 0.099

γ2,2 5.892 5.071 0.299 0.246 0.974 4.729 5.026 5.401 0.870

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 1.082 0.023 0.046 0.029 0.982 1.087 1.180 0.137

β2,3 1.000 1.010 0.006 0.007 0.006 0.960 1.003 1.059 0.061

γ1,1 0.907 0.784 0.009 0.009 0.024 0.718 0.769 0.840 0.109

γ1,2 0.000 -0.055 0.016 0.022 0.019 -0.141 -0.057 0.031 0.109

γ2,2 5.892 5.200 0.379 0.336 0.857 4.752 5.187 5.586 0.787

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 1.045 0.034 0.064 0.036 0.931 1.038 1.146 0.144

β2,3 1.000 1.010 0.010 0.011 0.010 0.949 1.001 1.069 0.076

γ1,1 0.907 0.859 0.012 0.015 0.015 0.790 0.848 0.926 0.126

γ1,2 0.000 -0.067 0.022 0.031 0.026 -0.167 -0.061 0.033 0.126

γ2,2 5.892 5.303 0.536 0.480 0.883 4.815 5.259 5.754 0.782
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Model 2: y = (Xβ1) + (Xβ2)2 + ε

Bias Corrected, hgcvn = (3.902, 2.238, 2.202)

True MEAN Var
sample

Var
theory

MSE LQ Median UQ MAE

hn = hgcvn

β1,3 1.000 0.819 0.080 0.102 0.113 0.710 0.792 0.886 0.238

β2,3 1.000 1.024 0.008 0.021 0.008 0.969 1.017 1.076 0.067

γ1,1 0.907 1.016 0.043 0.079 0.055 0.894 1.006 1.129 0.116

γ1,2 0.000 -0.019 0.022 0.021 0.022 -0.107 -0.020 0.076 0.116

γ2,2 5.892 5.867 0.553 0.911 0.553 5.389 5.876 6.334 0.566

hn = hgcvn n−
1

2
[1/11−1/15]

β1,3 1.000 0.783 0.075 0.106 0.122 0.661 0.757 0.861 0.269

β2,3 1.000 1.020 0.011 0.032 0.012 0.962 1.014 1.078 0.079

γ1,1 0.907 1.147 0.059 0.110 0.117 1.007 1.123 1.252 0.132

γ1,2 0.000 -0.035 0.029 0.035 0.031 -0.133 -0.023 0.082 0.132

γ2,2 5.892 6.010 0.731 1.403 0.745 5.466 5.963 6.477 0.634

hn = hgcvn n−[1/11−1/15]

β1,3 1.000 0.737 0.123 0.119 0.192 0.617 0.719 0.825 0.318

β2,3 1.000 1.033 0.021 0.050 0.022 0.947 1.023 1.103 0.105

γ1,1 0.907 1.276 0.073 0.132 0.210 1.119 1.233 1.379 0.156

γ1,2 0.000 -0.029 0.041 0.057 0.042 -0.152 -0.030 0.096 0.156

γ2,2 5.892 6.016 0.957 1.873 0.973 5.454 5.948 6.527 0.724
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