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Abstract

This paper presents a method for estimating returns to schooling that takes
into account that returns may be heterogeneous among agents and that edu-
cational decisions are made sequentially. A sequential decision model is in-
teresting because it explicitly considers that the level of education of each
individual is the result of previous schooling choices and so, the variation of
supply-side instruments over time will emerge as a source of identification
of the desired parameters. A test for heterogeneity in returns from sequen-
tial schooling decisions is developed and expressions for Marginal Treatment
Effects are obtained in this context. Returns are estimated and tested from
cross-sectional data from a Spanish household survey that contains rich fam-
ily background information and useful instruments. This data is stratified
by level of education and so estimators are adapted to take this feature into
account. Finally, this methodology is used to analyze possible effects of the
1970 reform of the Spanish education system.

JEL Classification: 121, 128, C10, J31. Keywords: Schooling, Selection
Models, Heterogeneity, Sequential decisions, Policy Evaluation.



1 Introduction

Education plays a central role in the modern labor literature and in particular the
economic return to schooling is a fundamental parameter of interest in many areas of
economics and public policy. Although there are many other ways to measure returns
to schooling, most of the literature has focus on returns in term of wages and this is
also the case in this paper.

The traditional approach to estimate returns to schooling in terms of wages con-
sists in regressing the logarithm of observed wages on a variable about schooling (i.e.
years of schooling or a dummy variable for a given level of education) controlling
for variables that may affect wages (i.e. tenure, kind of job, kind of activity). The
main concern when trying to draw inferences from previous equations is the possible
endogeneity of the schooling variable used. That is, it is difficult to know whether
individuals who have higher education also have higher earnings because of their
schooling or because individuals with the ability to obtain greater earnings have cho-
sen to acquire higher education (selection problem). As a result of this, a wide range
of estimates, using different methods, have been presented. The traditional approach
consisting in assuming common returns for all individuals and using instrumental
variables for the schooling outcomes. Supply-side variables emerge in this context as
natural candidates for instruments. Card (1999, 2001) surveys this literature with
special emphasis on instrumental variable methods estimates.

However, different people may have different returns. If this is the case there is
no single return of the schooling choice but rather a distribution of them and the as-
sumptions that validate instrumental variables estimates break down. This is because
estimates using traditional instrumental variable methods will recover the average re-
turn for those induced to change their decisions by changes in the instrument values.!

This summary measure may not necessarily answer the policy questions we have in

Tmbens and Angrist (1994) show that, under independence and monotonicity assumptions, linear
instrumental variables estimates can be interpreted as a weighted average of treatment effects. In
particular, they show that if the instrument used is a binary variable we can recover the average
effect for those induced to change their decisions because of the instrument value. This summary
measure is known as Local Average Treatment Effect (LATE). Moreover, they show that in the
general case, where the instrument is not a binary variable, instrumental variables estimates identify
a particular weighted average of previous terms.



mind. Then, there are two problems that arise when we try to analyze the distribution
of returns. The first one is how to summarize the distribution to respond to policy
relevant questions and the second one, is how to obtain estimates of these summary
measures. This is the aim of an emerging modern literature on returns to schooling.
Estimates of the expected return of those who are likely to be affected by a policy can
be useful to construct parameters that give an answer to the first question. This sum-
mary measure is called Marginal Treatment Effect (MTE) and was first introduced
in this context by Heckman (1997).> Concerning the second question, the traditional
econometric approach for dealing with it consists in specifying structural models for
wage and decision equations joint with distributional assumptions for the error terms
in the model.?> However, in spite of its popularity and its computational convenience,
this approach has been criticized for its reliance on arbitrary distributional assump-
tions. On the other hand, the Policy Evaluation approach, which has focused on the
high school-college transition, seek to obtain robust estimates of different summary
measures of the distribution of returns without invoking distributional assumptions.
As an example of this approach we find Carneiro, Heckman and Vytlacil (2003) who
proposed a semiparametric test for the homogeneity of the returns to college, focusing
on the high school-college transition. In the empirical application of their test they
found that selection in the returns to college was an empirically important phenom-
enon using different US data sets. They showed that in this case different estimators
and instruments yield different measures of the distribution of returns which do not,
in general, answer the economic question we are interested in. Finally, they used the
MTE to construct estimates of different treatment parameters and to characterize
what instrumental variables methods estimate in this case.

If returns to schooling are heterogeneous and individuals are sorted accordingly,
it is not sufficient to focus the analysis of educational policies on the high school-
college transition. This is so because high school graduates are a self-selected group
of the population. So, the dynamics and timing of schooling decisions will be very

important if we want to draw valid conclusions for the whole population. However,

2Bjorkland and Moffit (1987) introduced a first version of a marginal treatment effect in the
context of the parametric normal Roy model.
3See, e.g., Willis and Rosen (1977), Heckman (1990).



less attention has been paid to this fact when estimating returns. An exception
is Carneiro, Hansen and Heckman (2003), who used factor structure models and a
generalized version of ordered choice models to identify the whole distribution of
returns. However, the application of ordered choice models is justified only if there
are no option values of continuing studying that affect the decisions. That is, it is
not possible for individuals to decide to continue studying because of the only reason
of accessing higher levels of education with greater earnings. Concerning this, Taber
(2001) develops and estimates an structural dynamic programming model that allows
for such option values of continuing studying. Heckman, Lochner and Todd (2003)
considered also a model that allowed for the existence of these option values and
analyzed the empirical role that they play in determining rates of return to schooling.
They concluded that more research is needed to determine their empirical importance.

In this paper I also analyze the problem of heterogeneous returns from multiple
educational choices but from a different perspective. I extend existing methods of
estimating heterogeneous returns to college, considering multiple levels of education
and that educational decisions are made in a sequential way. A sequential decision
model is interesting because it explicitly considers that the level of schooling of each
individual is the result of previous schooling choices. Then, at any stage, an alteration
in the benefits or costs of a given level of education affects the proportion of people
in any preceding stage. Therefore, the variation of supply-side instruments over time
will emerge as a source of identification of the desired parameters. Moreover, the
notion of the option value of education emerges naturally in this context. So, esti-
mated returns will take into account the selection of individuals in previous levels of
education in a more general fashion than ordered choice models. Alternative methods
recently developed in the nonparametric statistics literature are applied to test for
the homogeneity of sequential returns (Stute (1997) and Stute, Gonzélez Manteiga
and Presedo Quindimil (1998)).

In addition, this paper has an empirical contribution. Estimated returns are ob-
tained and tested, under different assumptions, using an interesting cross-sectional
Spanish data set (“Encuesta de Conciencia y Biografia de Clase” (ECBC) (1991)).

Spain has experienced a rapid growth in their secondary and post-secondary school



enrollment rates at the same time as substantial transformations occurred in the ed-
ucational system. Therefore, supply side variables will emerge as good candidates
for being instruments. In particular, the variation in distance to college due to the
creation of new universities that took place in Spain will be used as a source of identi-
fication of the desired parameters. The ECBC is a survey which contains rich family
background information, including area of residence at the time of schooling decisions,
but it is stratified by level of education. This is helpful because it provides more in-
formation about this group of people that can have spare representation in a random
sample. However, this is something that should be considered when estimating the
model. Estimators that do not take this into account will be inconsistent. In order
to solve this problem weighted estimators are used where oversampled categories are
given a low weight while undersampled ones are given a high weight. The empirical
application suggests that heterogeneity is an important feature of the data set used.
Moreover, marginal returns are obtained to analyze possible effects of the 1970 reform
of the Spanish educational system.

The rest of the paper is organized as follows: Section 2 shows the framework to
estimate and test heterogeneous returns to schooling. Expressions for MTEs when
returns are heterogeneous and schooling decisions are made sequentially are presented
in Section 3. Section 4 describes some facts about the Spanish education system.
The main characteristics of the data set used are shown in Section 5. Section 6
shows estimates of the returns to schooling assuming common returns, a test for
the homogeneity of sequential returns as well as, estimated returns when they vary
among individuals and schooling decisions are made sequentially. Moreover, latter
methodology is used to analyze the 1970 reform of the Spanish educational system.

Finally, Section 7 concludes.

2 Heterogeneity in the returns to schooling

Accounting for individual-level heterogeneity on the returns and individual decisions
on education level taking returns into account is the main concern of modern literature
on returns to schooling. If this is the case, the dynamics and timing of the decisions

will be very important to be able to draw conclusions that are valid for the whole



population. From the point of view of policy designers, knowing the value added
of attending different educational levels would be essential. In order to obtain a
comprehensive evaluation of these policies it will not be sufficient to consider high-
school graduates only. This is because these individuals would make up a self-selected
group of the population.

In this section, I extend the methodology developed by Carneiro, Heckman and
Vytlacil (2003), for testing and estimating heterogeneous returns to college, consider-
ing multiple levels of education and that decisions among them are made sequentially.
A natural extension to the binary choice case is to consider three levels of education.
Extensions to more complex finite horizon specifications are, however, straight for-
ward. Let me define the following general levels of education and a dummy variable

for each one:

D{ = 1 if the individual 7 left school at a low level of education.
Di = 1 if the individual i left school at a medium level.
Db = 1 if the individual 7 left school at a high level of education.

Moreover, consider that each individual can obtain the following latent log wages

(In(y}) Vj = 0,1,2) according to the level of education achieved:
In(yy) = alz')+uj for the low level
In(y}) = a(2')+p; +u} for the medium level
) = a(a')+ By +uby for the high level

N .

In(y

where x are observable variables in the wage equations, whereas wug, u; and uy are
unobservable variables that are assumed to be independent of x. 3, and 3, are
constant. It is assumed that ln(yj-) V7 = 0,1,2 are defined for each individual and
that these outcomes are independent across persons, i.e. that there are no interactions
among agents. Then, the returns, in terms of wages, of achieving a certain level of

education are:

Bl = In(y}) —In(yy) = B; +uf — u
B;O = In(yb) — In(yy) = By + uh — ujy

531 = ln(yé) —In(yy) = 520 - mo
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As can be seen from previous equations, if there is a distribution of unobservable
variables in the population there is also a distribution of returns across individuals.
3%, and (b, denote the individual returns, in terms of wages, to achieve medium
and high level of education as compared to the low level. 3%, denotes the return to
achieving the high level of education as compared to the medium level.*

However, for each individual we only observe the wages related to his/her schooling
choice (In(yy) if D = 1, In(y}) if D} = 1 and In(y3) if D} = 1). Then, the observed

log wages may be written as:

In(y") = Djln(y;)+ Dyln(ys) + Dyln(yg) = (1)
= Djln(yy) + DyIn(ys) + (1 — D} — D5) In(yp) =
= a(z') + (By +uj —ug) D + (By + uy — up) Dy + up =
= a(z') + F1oDi + B D + ug

where the coefficients of education variables are allowed to be different across indi-
viduals. For simplicity the individual superscript ( ¢ ) will be dropped from now
on.

Firstly, consider that returns are the same among individuals (u} = uf) = ub), i.e.
that 8%, and B, will be constant. Let z denote a set of observed variables that affect
the probability of choosing each level of education and that are independent of the
unobserved terms (ug, u1, us). Then, the following expression for the expected value

of In(y) conditional on z and z is valid in this case:

E(n(y)[z,z) = a(x) + E(Bi-Dilz,2) + E(B3-Dslz, x) =
= ax)+ B Pr(Dy = 1|z, ) 4+ By Pr(Dy = 1|2, x)
This is a linear function of the propensity scores (Pr(D; = 1|z, z), Pr(Dy = 1|z, x)).

The result would be the same in case of mean independence between D;, D and

the distribution of (u; — ug) and (us — ug). That is, if there is heterogeneity in the

4In these expressions it is assumed that there is no observed heterogeneity in the returns. This is
an assumption normally made in the returns to schooling literature. Carneiro, Heckman and Vytlacil
(2003) considered that the only observed heterogeneity in the returns came from the scores of the
individuals in different tests. I do not consider this case given that I do not have this information
for the empirical application section.



returns to schooling but it does not affect the decisions of the individuals. In both
cases, the only econometric problem that could arise when estimating (1) is due to the
correlation between the decisions (D; and Ds) and the error term (ug) (ability bias
or measurement error bias). This problem can be solved using instrumental variables
methods.

On the other hand, assume that there is a distribution of returns in the population,

then:®

E(In(y)|z, ) = a(z) + E(B1oD1lz, ) + E(ByDo|z,x) =
= o(z) + E((By + (u1 — u0)) D1lz, @) + E((B5 + (u2 — o)) Dal2, 7) =
= a(x) + B, Pr(D; = 1|z,2) + B, Pr(Dy = 1]z, 2) + K(Pr(D; = 1|2,2), Pr(Dy = 1]z, 2))

where

K(Pr(Dy = 1|z,2),Pr(Dy = 1]z,2)) =
= E((u1 —ug)| Dy = 1,Pr(D;y = 1|z,2),Pr(Dy = 1]z, 2)) Pr(D;, = 1]z, 2)+
+E((ug — ug)| Do = 1,Pr(Dy = 1|z, 2), Pr(Dy = 1|z, 2)) Pr(Ds = 1|2, x)
This is an unknown function of Pr(D; = 1|z,z) and Pr(Dy = 1|z,z). So, to test
the heterogeneity of the returns to schooling a linearity test of F(In(y)|z,z) with
respect to Pr(D; = 1|z,2) and Pr(Dy = 1|z,7) can be performed.’ Alternative

methods recently developed in the nonparametric statistics literature are applied, in

the empirical application to test for the homogeneity of sequential returns.

3 Marginal Treatment Effects

If returns vary with unobserved ability and thus there is a distribution of returns in

the population, we need to find a manner in which to summarize this random variable.

5In obtaining this expression the following is assumed:

E(ln(y)|z, Pr(Dy = 1]z,2),Pr(De = 1|2, 2)) = E(In(y)|z, 2)

This assumption can be obtained from a version of the index sufficiency restriction assumption
frequently used in the selection models’ literature (see, e.g., Powell (1994)).

6The same result for the binary choice case was presented in Carneiro, Heckman and Vytlacil
(2003).



The traditional treatment parameters defined in the literature: the average return for
a person randomly drawn from the population (Average Treatment Effect (ATE)), the
average return for those that achieved a certain level of education (Treatment on the
Treated (TT)), the average return for those that decided not to achieve a certain level
of education (Treatment on the Untreated (TUT)), as well as, different instrumental
variables parameters will give different summary measures of the distribution. The
problem is that, these parameters will not in general answer the policy questions we
may have in mind.” It is in this context where the MTE grows in importance because
it can be useful to obtain the desired summary measures. This is so because the
MTE gives us the average return for those who are likely to be affected by policies.
Moreover, under the appropriate assumptions, all the conventional treatment effect
parameters can be estimated as weighted averages of the MTE.®

The MTE was defined in a binary choice framework in the following way. Consider
two levels of education (high school (0) and college (1)) and the following outcomes
that correspond to high school and college, respectively, In(Yy) and In(Y{). Define
also the binary variable D such that:

Di 0 if the individual left with the high school level
~ | 1if the individual left with the college level

and assume that the following latent variable model generates the variable D in this

way:”

Dl = up(zi)—UE

*

D' = 1if D! >0, =0 otherwise.

"See Carneiro, Heckman and Vytlacil (2003).

8See, Heckman and Vytlacil (1999, 2000).

9The assumption of the existence of this kind of unobserved index that determines selection is
equivalent to the assumptions needed in the LATE approach. In this approach we need to invoke
independence and monotonicity assumptions to be able to interpret linear instrumental variables
estimates as a weighted average of treatment effects. Vytlacil (2002) shows that, given the additive
separability assumption, latent index models imply LATE assumptions. On the other hand, he shows
that, given LATE assumptions, there always exists a selection model that rationalizes the observed
and counterfactual data. Then, LATE assumptions are not weaker than the assumption of a latent
index model, they impose the same restrictions on the counterfactual data, when nonparametric
functional forms or distributional assumptions are invoked.



D! denotes the net utility or gain to the decision-maker from choosing going to co-
llege. z* is a set of covariates that includes valid instrumental variables and U is an
unobserved random variable. Without loss of generality Up will be assumed to be
uniformly distributed between 0 and 1. As in previous section, the observed wages

have the following form:

In(Y") = D'In(Y{) + (1 — D") In(Yy)

Then, the MTE is defined in this context as:
MTE(u) = E(In(Y;) — In(Yy)|Up = u)

If the instrument is externally set such that p(z) = u, where p(z) = Pr(D = 1|z),
this is the average return of going to college for those in the margin of indifference
between going or not. In order to estimate the MTE, the Local Instrumental Variable

Parameter (LIV) is used. This treatment parameter is defined as:

IE(In(Y)|P(z) = p(2))
0p(2)
LIV is the limit version of the Local Average Treatment Effect (LATE) parameter in-

LIV (p(z)) =

troduced by Imbens and Angrist (1994) and, given the previous index model, is equal
to MTE(p(z)). One thing to notice is that under homogeneity or if returns are het-
erogenous but people is not sorted in each educational level accordingly MTE(p(z))
will be the same than estimated returns using instrumental variables methods.

In this section, expressions for the MTE in the case of having multiple levels of
education and decisions about enrolling in each one made in a sequential fashion are
presented. Consider three levels of education and that people make their schooling
decisions sequentially:

continue to the high level
(D2=1)

medium level )
leave at the medium level
Low level (Dy=1)

leave at the low level
(Do=1)



This model takes into account that decisions are made at different moments in time.
Firstly (¢ = 0), everybody achieves the low level of education. Then, (¢ = 1), the
individual has to decide whether to leave school at a low level or to continue to
a medium level. Finally (¢ = 2), the individual decides to attend a high level of
education or to leave at the medium level. Then, define as m(z) the probability of
continuing studying from the low level of education and as (%) the probability of
continuing studying from the medium level for those who at least achieved this level.!”
Given that the decision of continuing studying from the medium level of education
takes place in a second moment of time the set of variables in 2" can be different or
can have different values compared to the variables in z. Then, the probabilities of

achieving each level of education can be written as:

Pr(Do=1| 2z, 2') = (1 —mo(2))
Pr(D; =1| z, 2') = mo(2)(1 — m1(2"))
Pr(Dy = 1] 2, 2') = mo(2)m1(2")

With this notation, consider the equation for observed log wages and rewrite it in the

following way:

In(y) = a(z)+ B1oD1 + BagD2 +ug = (2)
= a(z) + B19(D1 + D2) + (B — B1g) D2 + ug =
= a(@) + By(D1) + By D2 + ug

where D, is equal to D; + D,. In the context of our application D; takes the value
one if the individual overcame the low level of education. Given the sequential model
the probability of this even was defined as m(z). Moreover, D, takes a value of one
if the individual achieved the high level of education. According to the sequential
decision model the probability of this occurring is equal to mo(2)m(%).

As in the binary case, consider that individuals will decide to leave with the low

level of education (D; = 0), in a first stage, if the following is true:

10See Appendix part D for an example of an economic model that can be behind these probabilities.
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1 =71() —e1 <0

that is, if the expected net utility of continuing studying from the low level of edu-
cation is less than 0. z are observed variables that affect the decision of continuing
studying in a first moment of time.

On the other hand, consider that individuals, that achieved the medium level of
education, decide to acquire the high level according to the following latent variable

model:

Dy = () e
Dy, = 1ifD;>0and D, =1

D3 represents the expected net utility of achieving the high level of education. In
this stage individuals make the decision with the information they have in this second
moment of time and so, the value of the variables in 2’ can be different to the value
of the variables in z.!* Without loss of generality, we can assume that e, and e, are
uniformly distributed between 0 and 1 in which case we have: 7j(z) = mo(z) and
75(2) = m(2).

Then, taking expectations in (2) conditional to (2" ) and mo(2) :'2

1Tt is assumed that individuals make their decisions about continuing studying with the informa-
tion that is common knowledge at each moment of time.
2In this result it is assumed that:

E(In(y)lz, 2,2") = E(In(y)|z, 71 (=), 73(z))
and that Supp({e;}) = R Vj =1, 2. If this is the case:

E(ln(y)|x’ % Z/) = E(ln(y)|x, 770(2)’ 771(2/))

This a version of the index sufficiency restriction usually exploided in the literature about semi-
parametric estimation of selection models (See Powell (1994)).

11



Elln(y)|z, m1(2'), mo(2)] = (3)
= a(z) + E[ByyD1|z, m1(2 ), mo(2)] + E[Bgy Doz, m (%), mo(2)] =
= a(z) + E[(B; + (w1 — o)) Di|a, m1 (2 ), mo(2)]+
+E[(Byy + (u2 — u1)) Dol mi(2), mo(2)] =
= a(x) + B17m0(2) + Boymo(2)m1(2) + E(uy — uo)Dy|my (), mo(2)]+
+E[(ug — u1)Da|m1(2"), mo(2)]

Where:

E(ur — ug) Di|mi(2), m0(2)] = Ep, (E[(u1 — ug)|m1(2), mo(2),75(2) — €1 > 0) =

71(2) oo

= / /(Ul — uo)f(ul — Uo‘c‘?l = r)d(ul — UO)dT
0 —oo
70(2) oo

= / /(u1 — ). f(ur — ugler = r)d(uq — uo)dr
0 —oo

El(ug — u1) Do|m1(2), mo(2)] =
= Ep,(E[(uz — u1)|m1(2), m0(2),71(2) —e1 > 0,75(¢) —e2 > 0) =
75(2) 71 (2) oo

= / / /(U2 —uy) f(ug —usler = r1, €2 = ro)d(ug — uy)dridry
0 0 —oc

m1(2") mo(2) oo

= / / /(U2 —uy) f(ug —urler = 71,69 = ra)d(us — uq)dridry

0 0 —x

So,
Elln(y)|m1(2), mo(2)] = a(x) + Bymo(2) + Byymo(z)m1 (7)) + (4)
+@o(m0(2), m1(2"))m0(2) + 1 (mo(2), T1(2))mo(2) 71 (2")

where ¢q(mo(2), 71(2")) and ¢, (mo(z),71(2")) are general functions of the propensity

scores (mo(z),m1(2")).

12



In this context it is natural to define the following MTEs:

MTE(u,71(2) = E(ln(y) — In(y)ler = u, m1(2))
MTE;(mo(2),u) = FE(In(y}) —In(y})|es = u, mo(2), Dy = 1)

where In(y{.) denotes the logarithm of wages in the final best option in the set of all
choices except the low level of education (In(yj.) = DiIn(ys) + DjIn(yt)). If u is set
equal to mo(z) MT Ey(u,m) denotes the average return to continue studying from
the low level of education for those who are in the margin of indifference between
continuing or not. MTE;(mg,u) denotes the average return of achieving the high
level of education for those who achieved at least the medium level but that do not
have a preference about continuing after this level when u equals 71 (2").

As in the binary case, point-wise estimates of these MTEs can be obtained from

the following Local Instrumental Variable parameters:

OE[In(y)|m (<), mo(2)]

L1Vo(mo(2), m1(2")) = O70(2) = By + Bor.m (7 )+
+ /(Ul — uo).f(u1 — U0|81 = Wo(Z)).d(ul — U0)+
m1(2") ooioo
+ (Ug — ul).f(UQ — Ul‘él = 7T()(Z), E9g = TQ).d(UQ — ul)drg =
0 —oo

= MTEy(mo(2), m1(7))

OE[In(y)|m (=), mo(2)]

LIVi(mo(2),m1(2)) = ) = By .mo(2)+
mo(z) oo
+ 0/ _/ (ug —up).f(ug — urler = ri, 60 = m(2")).d(ug — uy).dry =

= MTE;(mo(2), m1(7))

For the validity of this result it is needed to be able to change m((z) without changing

71(2) and vice versa. A sufficient condition to assure this variation in my(z) without

13



varying m(2) is with exclusion restrictions. That is, having a variable in z that it
is not in 2° On the other hand, we can have the variation needed in 7;(2") given the
sequential nature of the decisions!®. That is, given that the decision about achieving
the high level or stopping at the medium level of education takes place in a second
period and so it can be an unexpected shock that changes it without changing the
decision made in a first stage.!* So, the variation of supply-side instruments over
time can be used to obtain this result. The expansion of the number of universities
that took place in Spain, specially in the years between 1970 and 1990, is an example
of this kind of variation. Note that what we can obtain are point-wise estimates
for the values of my(z) and m1(2") in the support of the data set used. Finally, it
should be pointed out that in this case, in contrast with the binary case, in spite of
assuming homogeneity of the returns estimated returns using IV methods will not
coincide with previous MTEs. If we apply instrumental variable methods using two
valid instruments into equation (2) we will obtain estimates of: 3, and (3, — ;).

Whereas MTEs parameters have the following form under homogeneity:

MTEy(mo(2), m1(2")) By + (By — By)mi(2)
MTE(mo(2), m1(2) = (Bz —51)770(2)

4 Some facts concerning Spanish education.

Spain is the country of the OECD (Organization for Economic Co-operation and
Development) that has undergone, in recent years, the most spectacular educational
transformation. The average level of education in the population has increased gen-
eration by generation as shown in Table 1. This table shows the proportion of indi-
viduals in each finished level of education for five-year cohorts of those born between

1918 and 1967. As one can see in this table the level of illiteracy has been falling

13Note that exclusion restrictions are a sufficient but not necessary condition for having indepen-
dent variation. It the coefficients of the variables in 7g(z) are sufficiently different from those of the
variables in 71 (2) we can have this independent variation without invoking exclusion restrictions.

YTaber (2000) showed that the same kind of exclussion restrictions, along with a monotonic
transformation and strong support conditions, were needed for the semiparametric identification of
general sequential discrete choice models.
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dramatically while the proportion of people with a college degree increased from 5.68
% for those born between 1918 and 1922 to 16.14 % for those who were born between
1953 to 1957. Then, this proportion fell down to 14.87%, for those born between 1958
and 1962, and to 13.13%, for those born between 1963 and 1967. This can be due to
the fact that a great proportion of those who decided to go to college in these cohorts
had not finished studying in the moment the survey was carried out. One thing to
notice is that the greatest proportion of people left school when they were 10 years
old for those who were born between 1918 and 1957, whereas those born between the
years 1958 and 1967 left school at 14 years old. This phenomenon took place at the
same time as the 1970 reform of the Spanish educational system.

The 1970 reform of the Spanish educational system raised the age of compulsory
schooling from 10 to 14 years old. Yet another reform, in 1990, raised this age to 16
years. Figure 1 shows the main characteristics of the system previous to the 1970
reform and the one between 1970 and 1990.'° These are the relevant ones for the
individuals in the data set used.

Concerning the supply side, the number of universities has increased a lot specially
in the years between 1970 and 1990. Before 1970 there were 19 universities in Spain.
This figure increased to 33 in the 1970’s and to 38 in 1980’s. Finally, the number
of universities increased to 68 in the 1990’s. It should be pointed out, however, that
Spanish universities offer two kind of degrees: the university disciplines, that are
considered traditional in other countries and that are designed to last for between
four and six years, and studies that are completed in a three year duration. The
latter kind of study may be to train nurses, teachers, physiotherapists etc. and are
considered vocational studies in many other countries. Most of the new universities
were located in places where three-year courses were already instructed. As a result
of this, the creation of universities affected mainly the decision of accessing four-year
college degrees. This phenomenon was strengthened because the number of four-year
degrees offered in some existing universities also increased during the 60’s and 70’s. In
fact, there are only five old universities that traditionally have offered a great variety

of four-year courses.

15 These pictures are based on Pons and Gonzalo (2001).
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In addition, no authoritative comparative ranking has even been drawn up of
Spanish universities. Furthermore, students used to go to the university closest to
home. In fact, they were not able to go to a different one by government decree.
This did not changed until 1991, when the government, trying to introduce some
competition in the hope of raising standards, allowed prospective students to choose

between any of the universities in the region where they lived.

5 Data

This paper estimates returns to schooling based on the ECBC (“Encuesta de Con-
ciencia y Biografia de Clase”) survey (1991).1° One peculiarity of this survey is that
it has information related to the educational level of the individuals, earnings and
family background. It should be stressed that this information is not found in other

Spanish surveys. In particular, this survey has the following data about these topics:

e Level of education completed by the individuals and number of years completed

in that level.

e Information on whether the individual obtained education prior to or after the
reform of 1970.

e Information about the kind of studies pursued by those in vocational studies or

at college.

e Retrospective data about the head of household at the age of 16, like the level of
education and labor situation. The same information is available for the mother

if she is not the head of household.

e Information about where the individual lived for the most part of his/her child-

hood.

o Wages.

16See Appendix part A for a detailed description of this survey.

16



It has been found that in most surveys with a size similar to the ECBC and that
have been done with the same aim as this one, there is scant representation of top pro-
fessionals, such as entrepreneurs or managers. This is the reason for over-representing
these categories in the ECBC. It was decided to overrepresent these individuals, with
the help of data that is available in the Spanish Electoral Census (“Censo Electoral”)
(1986). Specifically, the survey over-represented those with a medium or high level of
education. This bias should be considered when estimating the model. In particular,
the following weights (w(s)) are constructed for each individual depending on the

stratum (s) he/she belongs to:

where ((s) denotes the population density of stratum (s) and H(s) is the arbitrary
distribution used when sampling the data. Q(s) is constructed with the help of
data in the 1991 Census. These weights eliminate the bias giving a low weight to
over-sampled categories and wvice versa. Then, each observation is weighted properly

according to the estimation method used.!”

6 Empirical Application

In this section I present estimates of returns to different levels of education using a
sample from the ECBC survey (1991). Firstly, I assume that returns are homogenous
among individuals of a same level of education or that they are heterogeneous but
people is not making their schooling decisions considering their returns. Under this
assumption estimates assuming that each additional unit of schooling has the same
return as well as, of models where different levels of schooling have different returns
are obtained. Then, alternative methods recently developed in the nonparametric
statistics literature are applied to test if returns are heterogeneous and individuals are
sorted in each level of education considering them. This test shows that heterogeneity

is an important feature of the sample used. Then, estimates of the MTEs are obtained,

17See Appendix part B for a description of how these weights are constructed and used.
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both assuming normality as well as without imposing distributional assumptions.
Finally, estimates of MTEs are used to analyze some effects of the 1970 reform of the
Spanish educational system.

In order to obtain these estimates different schooling attainments are classified in

the following three levels of education:

1. Low level. Illiterate people, people without studies and people who left school
at the primary level (“EGB”, “Graduado Escolar”, “Primaria”, “Bachiller El-

emental”) (at age 14 at most) are in this group.

2. Medium Level. People in this group completed at least one year of post-
compulsory secondary education (vocational studies or high school) (“FPI”,
“FPIT”, “Bachiller Superior”, “BUP”, “COU”, “Diplomado”).'®

3. High Level. People in this group completed at least one year of college.’

Concerning the instrumental variables used in the analysis, a first group of in-
struments considered is related to institutional sources of variation in schooling. In

particular the following variables are used:2’

e Distance to the nearest university. Variables about distance to college have
been used as instruments in the literature of returns to schooling as they are

21 These variables have been

a good measure of the cost of higher education.
criticized as being good instruments because of the possibility of endogenous
mobility decisions. However, regional migrations in Spain, for the period of the
sample used, where mostly motivated by families moving from the country-side

to big cities searching for a job. This, joint with the fact that individuals where

¥ Given the similarity between three-year courses imparted in Spanish universities and what are
considered vocational studies in many other countries, they are included in the medium level of
education. This makes the results comparable to similar works with data for other countries. One
problem with this classification is that individuals in the medium level that achieved a three-year
college degree have studied a greater number of years than some dropouts in the high level. However,
this problem does not seem to be relevant in the sample used as only 4.58% of those in the high
level are in this situation.

19Courses imparted in Spanish universities that last for more than three years.

20See appendix part C for a description of these variables.

21See for example Card (1999, 2001) and Carneiro, Heckman and Vytlacil (2003).
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obliged to go to the nearest university, makes of these variables good candidates

for being instruments in the case of Spain.

e Information about whether the individual studied before the 1970 reform or

after it.

The second group of instruments consists on variables which reflect the labor
situation in the moment of decision of the individuals. In particular, each individual
is assigned the family income and employment in the province of residence when
they were making schooling decisions. Data used to construct these variables was
obtained from Alcaide (2003). Finally, background information is used as instrument.
In particular, I use information about the level of education and kind of job of the
head of household when the individual was a child as well as, a dummy that takes
value one if he was a wage earner doing a supervisory job. Although this kind of
information has been criticized for being good instruments it turned out to be an

extra source of identification and so, it is used in some of the following estimates.

6.1 Estimates under homogeneity

The traditional literature on returns to schooling treated returns as if they were
homogenous. Basically, two kind of models have been considered in this context:
models where each additional unit of schooling has the same return and more flexible
models, where different levels of schooling have different returns. As an example of the
first kind of models we find the popular Mincer’s model of earnings (Mincer, 1974).
Mincer’s specification has been widely used over the last fifty years and continues to
be applied in recent work. Table 3 shows estimates of the Mincer’s model using the
ECBC survey.?? The sample considered consists on individuals between 19 and 65

years old, who were working, who stated have finished studying and who reported a

22In this Table OLS estimates with weights and without weights are reported. Estimated returns
using OLS with weighs were very similar to the ones without weights. Note that if we define the
weighted estimator as:

B = (X'WX)"{X'WY)
we have that the difference between the weighted and unweighted estimator has the following form:

Bu = Bots = (X'WX)THX'W(I - X(X'X)T'X")Y
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valid wage in the moment of the survey. Wages are measured per hour and net of
taxes. Variables in x are: 11 dummies for Spanish regions, age, age squared, tenure,
tenure squared, a gender dummy that equals one if the individual is a woman, 4
occupational dummies and 10 industry dummies. The effect of these covariates on
log wages is assumed linear for comparability with the literature.

GMM estimates are performed using as instruments: two variables with the in-
come in the province of residence when the individual was 14 and 18 years old, the
employment to population ratio in the province of residence when the individual was
14 years old, a dummy that takes the value 1 if the head of household, when the in-
dividual was a child, was a wage earner doing a supervisory job and a variable about
the distance to the nearest university when the individual was 18 years old.?* One
thing to notice is that IV estimates of the returns to schooling are greater than OLS
estimates. This is a result frequently found in studies that use supply-side variables
as instruments.

Previous estimates considered that each additional year of education has the same
return. Now this assumption is relaxed considering that the three levels of education
(low, medium and high) have different returns. However, returns are still assumed
to be the same among individuals in the same level of education. Table 4 shows
estimates for this model using OLS and GMM.?* The set of instruments for the
GMM estimates consists on: three dummies for the level of education (illiterate,
primary and high school) and three dummies for the kind of job (agriculture, mining,
blue collar job) of the head of household when the individual was a child, a dummy
that takes a value of one if this person is a wage earner doing a supervisory job, a
variable about the income in the province of residence when the individual was 14
years old and a variable for the distance to traditional universities when the individual

was 18 years old. It should be stressed that under homogeneity it will be concluded

So, a test for the significance of the difference between the two coefficients can be performed by
testing if the coefficient of the weighted regression of the unweighted regression errors on X are
different from zero (See Deaton (2000)). In this case, this hypothesis could not be rejected at a
confidence level of 99% (F(31,1622) = 0.68; p — value = 0.91).

23See Appendix part C for details of how these variables are constructed.

24 Estimated returns to schooling using OLS without weights were similar to the ones using weights.
The hypothesis of being equal could not be rejected at a confidence level of 99% (F(32,1620) = 0.76;
p — value = 0.83).
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that individuals will benefit from educational policies that encourage them to acquire

higher levels of schooling.

6.2 Schooling choices estimates

The sample considered to estimate the sequential decision model consists of individ-
uals who were between 19 and 65 years old and stated have finished studying. Those
who stated a level of education lower than the level registered in the 1986 Census or
a level of education that implies an increment of more than four academic years were
not considered.

As it can be seen in Table 2,2 those with the high and medium level of education
are on average younger, have more educated parents in higher qualified jobs and lived
in richer regions during their childhood than those with the low level of education. On
the other hand, the proportion of women is higher in the low level. Finally, those with
a high level used to live in regions that were closer to a province that traditionally
offered a great variety of four-year college degrees.

As it was shown in Section 3, for the identification of MTEs using LIV parameters
it is needed to have independent variation of the probability of continuing studying
after the low level of education (my(z)) and the probability of achieving the high level
for those that completed the low level (m1(2)). One way of obtaining this variation
is imposing exclusion restrictions. In the following estimates variables about the
family income in the moment of decision will be explanatory variables in m(z) but
not in m1(z). On the other hand, variables about regional employment rate in the
moment of decision will be considered for estimates of 71(2) but not for the ones
of mo(z). These variables are excluded as explanatory variables in these probabilities
because they turned out not to be significant. On the other hand, another source
of variation comes from the sequential nature of schooling decisions. It can be that
something changes (%), in the second moment of decision, without changing mo(z).
For the sample considered, the increment of the number of four-year degrees offered
in existing universities during the latter 60’s and 70’s can be used as a source of this

kind of variation. However, it could not be possible to take advantage of the creation

25Gee the Appendix part C for a description of the variables in this table.
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of new universities that took place in Spain among the 80’s and 90’s due to the
limitation in the number of Spanish household surveys with the required information.

In particular, two variables about the distance to universities are used. The first
one is a measure of the distance to universities which offer a great variety of four-year
degrees. Madrid, Barcelona, Salamanca, Valladolid, and Granada are considered the
provinces that have had such a university for those who were born before 1961. This
group was augmented considering also Seville, Zaragoza, A Coruna, Asturias and
Valencia for those who were born after 1961. This variable is used as an explanatory
variable for obtaining estimates of 71 (Z). Within the explanatory variables in m(z) I
consider a dummy variable that takes value one if the individual was living far away
from one of the provinces that traditionally had a university. In this case, Madrid,
Barcelona, Salamanca, Valladolid and Granada are the provinces in this group for
those who were born before 1966. The augmented group considering also Seville,
Zaragoza, A Coruna, Asturias and Valencia was the relevant for those who were born
after 1966. When using this definition of the variables I am considering that those who
were born between 1961 and 1966 are the ones that experienced the augmentation of
the number of degrees offered in the period in between the two educational decisions.

Table 5A shows estimates of 7m((z), using a probit model with and without weigh-
ting. Table 5B allows different variables to have different effects depending on the
individual studying before the 1970 reform or after it. Estimates of m;(2), using a
probit model, are presented in Tables 6A and 6B. Again Table 6B allows different
effects of the variables according to the different educational systems. As we can see
in these tables, those who lived in a region with higher family income and who studied
before the 1970 reform have a higher probability of continuing studying from the low
level of education. Moreover, if the head of household when the individual was a
child was illiterate, had primary studies or worked in the agriculture or manufacture
sector this probability is smaller. Being a woman or leaving far away from one of the
traditional universities has a negative effect on this probability especially for those
studying before the 1970 reform. Concerning (%), if the head of household had
a low level of education the probability of achieving the high level of education is

lower. In addition, this probability is also smaller if the head of household had a job
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in the agriculture, mining or manufacture sector. Furthermore, living in a province
nearer to one of the traditional universities has a positive effect on this probability.
Finally, being a woman and studying before the 1970 reform has a negative effect on
the probability of achieving the high level of education. The sign of the estimated
coefficients was the one expected for all variables except for the coefficient of age,
for those who studied after the 1970 reform, in the estimation of m(%). Age has a
positive and significant effect in this case. This can be due to the fact that those in
younger cohorts who achieved the high level of education would be still studying in
the moment of the survey. It can be seen from a comparison of estimates with and
without weights that weighting changes the estimated coefficients of the variables as
well as their level of significance.

The support of the estimated probabilities m(z) and (%), using estimates of
Tables 5B and 6B, is shown in Figures 2 and 3. As it can be seen in these figures it
is almost the full unit interval for mo(z) whereas it is concentrated in small values for
71(%). Moreover, at the high extreme of the cell of data it become very thin, especially
for 71 (7). This will make it hard to estimate some of the parameters defined over the
full support of m(z) and 7 (2). However, it will still be possible to obtain point-wise
estimates of interesting parameters for a wide range of evaluation points; these points
being representative of the sample used. Estimated probabilities using estimated
coefficients of Tables 5B and 6B are used when needed to obtain estimates presented

1n next sections.

6.3 Testing homogeneity

With the framework of Section 2 in hand, one way of testing the homogeneity of
sequential returns to schooling consists in testing if E(log(y)|x, Py, P2) is linear with
respect to the propensity scores (P, = Pr(D; = 1|z,2), P, = Pr(Dy = 1|z,)).%
P, and P, are considered to be the result of sequential education decisions made
by individuals. In this section, the method developed by Stute (1997) and Stute,
Gonzdlez Manteiga and Presedo Quindimil (1998), for testing the goodness of fit of

a parametric regression model, is applied to test the homogeneity of returns.

26 Alternatively, one could consider equation (4) and test for the linearity of E[ln(y)|m1(2), mo(2)]
with respect to mo(z) and mo(z)m1(2").
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Under the null hypothesis of homogeneous returns to schooling:

E(log(y)|z, P, Py) =
= a(x) + B P + By Ps

If this is the case, we can write:

log(y) = a(x) + B, Py + ByPy + ¢

where ( is an error term such that:

E(C|z, P, P,) =0

So, The null hypothesis we want to test is:

Hy: E(C|$, PlaPQ) =0

against the alternative hypothesis:

Hy : E((|x, P, ) = K(Py, P»)

where K( ) is a general function on the propensity scores.?

If Hy is true then we will have that:

E(K(P1, )() =0

That is, the error term ( is uncorrelated with any function of the propensity scores.
Different methods have been used to test for this kind of hypothesis. For example,
estimates of the conditional expectation of (, in a completely non parametric frame-
work, can be obtained and tests for its dependence on the propensity scores could
be performed. However, the main disadvantage of this method is that it requires
smoothing of the data and leads to less precise fits in general.?® Other methods used

approximate K( ) using polynomials or assume different distributional forms for it.

2THere it is assumed that all the dependence on z is captured in a general fashion by a(z).
28 See Stute (1997).
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A problem using this approach is the lack of consistency on the whole H;. Stute
(1997) and Stute, Gonzélez Manteiga and Presedo Quindimil (1998) developed a test
that overcomes these problems. The idea underlying this test is to capture all the de-
pendence between the error terms and the propensity scores using indicator functions
and then summarize it taking an average measure.

The test proposed by Stute (1997) is based on the integrated regression function

that, in this context, has the following form:

I(pl,pg) =//(Q(SU)+m(P1,P2))dF(P1,P2)

Where P, and P, are given values of the propensity scores, F' is the distribution

function of these probabilities and m(P;, Py) is:

m(Pr, Py) = B, Py + B, Ps

Tests of Hy can be based on [ (]51, 152) because this function uniquely determines

a(z) +m(Py, Py). A consistent estimator of I(P;, Py) for a sample of size n is:

(P, P) == 1(P] < P, Py < Py)(log(y"))
i=1

with this estimator the following function is constructed:

R(Py, By) = ™2 SO 1(P; < Py, Py < By)llog(y') — a(a®) — (P, Py)]

i=1
Where 1(A) is the indicator function for the event A occurring. Then, mainly two
statistic tests are used in order to test for Hy : The Kolmogorov-Smirnov and Cramér-

Von Mises statistics which has, respectively, the following form in this context:

D= sup |R(P1, ]52)|

and




where
n

7' =n 'Y llog(y’) — ala') — (P}, Fy)P

i=1

Finally, the null hypothesis is rejected if these statistics exceed a critical value.
Given the complexity of the asymptotic distribution of R(Pl, 152) bootstrap technics
are required to obtain it. Stute, Gonzdlez Manteiga and Presedo Quindimil (1998)
found that the wild bootstrap scheme yield a valid approximation for the distribu-
tion of fi(ﬁl, 152), whereas, classical bootstrap, smooth bootstrap and residual based
bootstrap do not, in general.

Table 7 shows the results for the homogeneity test with the sample used in Section
6.1. 500 replications using wild bootstrap were performed to obtain the distribution
of Cramer Von-Mises and Kolmogorov statistics.?? The hypothesis of linearity on the
propensity scores is rejected at a confidence level of 95% for the Cramer Von-Mises
and at a confidence level of 90% for the Kolmogorov statistic.?’ Given this result, the
hypothesis of heterogeneity in the returns to schooling and individuals deciding to
attend different levels of education with some knowledge of them cannot be rejected.

That is, selection bias is relevant in the sample considered.

6.4 Marginal Treatment Effects
6.4.1 Control function Approach

From latter estimates we saw that selection bias was an important feature of the sam-
ple used. One popular approach for dealing with selection bias consists on assuming
a normal distribution for the error terms of the model. Although this approach has
been criticized for its reliance on distributional assumptions and lack of robustness
when departures from normality it is a natural point of reference for the estimates of

the marginal returns in this context.

29Wild bootstrap is performed obtaining drawns from the following distribution for the residuals:
¢ = { 1_2_2\/5 éi with probability %l

(LV51Z, with probability 1- 452

where ; = (log(y') — a(z') — (P}, )

30Tn order to perform this test, a(z) is assumed to be linear on x. Then, log(y) — a(z) —m(Py, Py)
is estimated by the residuals of a linear regression of log wages on the explanatory variables and the
propensity scores.
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Consider the equation for E[ln(y)|x, m1(2"), m0(2)] (equation (3)) and assume that

the error terms in the model have the following joint distribution:*!

U; 0 1 pi,el pi,€2
a |"N{{o]).[p, 1 0 i=0.1,2
€2 O p’i,EQ 0 1

Given this assumption and the latent variable models assumed for the schooling

decisions we have that:

E((u1 = uo)|[D1 =1, D5 = 0) = E((u1 — uo)|7;(2)

>
_ B —¢(71(2))2(—3(2)) 3 o(v
= (P1e, — Poc) ( B(71(2)) (=732 ) + (P16, — Po,e) (<I> o
i(

))
= (Pre, — Poc,) (%) + (P1es = Pocy) (—1 f ((;%(Z)) )7

and

= B((u2 — u0) 1 (2) = 1, 73(2) =€) =

)
) v (D)

Then:

In(y) = a(r) + Blf)l + (32 - B1)D2 + (pl,al - Po,al) (_gb(fy (Z)))) D+

S(13(2) —90(1i(2))
—i—(pL52 - Po,gz) <W) D, + (p2,€1 - Po,al) (W) Do+

3 —9(15(2))
(pQ,EQ p0,£2) ( CI)(’Y;(@) ) D2 +<

where F((|z, z,2) = 0. The second column of Table 8 shows estimates of this equa-

tion using instrumental variables methods. These estimates are valid in presence of

31 As it was assumed that:

f(e2|Dy = 1) ~ N(0,1)

when estimating the sequential decision model, implicitly we are assuming that €2 and 1 are inde-
pendent.
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selection bias as well as ability bias or measurement error bias. On the other hand, if
the only important bias comes because of the heterogeneity of the returns we do not
need to use instrumental variables methods. Estimates for this case are presented in
the first column of the same table.

The marginal treatment effects have the following form given the normality dis-

tribution assumption:?

MTEra(e), () = By + (Ba = Bm() + (o1, p02) ¥ (ra()(1 = ma()+
Hoe = )@ ) ( + (or, = ) (T ) (- )

] e - EAE

MTE:(mo(2), m1(2)) = By — B)7o(2) + (92es — Po) — (1 — p021))
(‘“é ““””)waa+w@u,—m@>—@m,—%@»@1wmawda

mo(2)

If we compare latter expression with the one that would be derived in case of
having only two levels of education the main differences are in the presence of the
second term and of 7mg(2) in the rest of terms.*® This is the way the selection in the
first level of education is being considered. Figure 4 and Figure 5 show the MTEs:
MTEy(mo(z), m1(2) = 0.10) and MTE,(mo(z) = 0.43,m1(%)). Their values are based
on the GMM estimated coefficients reported in Table 8.

6.4.2 Semiparametric Estimation Approach

The objective of this section is to perform estimates of the Marginal Treatment Effects
without imposing arbitrary distributional assumptions. In order to do this, estimates
of mo(2) and 7 (2) that arise from the sequential model are used but non assumptions
on the distribution of (u;,e1,2) (i =0, 1,2) are invoked.

Then,

32To obtain these expressions we need to use the fact that: vi(z) = ® !(m(2)) and v3(2) =
1 (m(2)).
33See, Heckman, Tobias and Vytlacil (2001) for the binary case expressions.
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K(mo(2), m1(2)) = Bymo(2)(1 — m1(2)) + Bamo(2)m (7)) +
+E((u1 — uo)|D1 =1, (1 = Ds) = 1,mo(2), m1(2))mo(2) (1 — m1(2))+
+E((U2 — UO)‘Dl = 1,D2 = 1,70(2),71'1(2/))71'0(2)71'1(2/)

is an unknown function that will be estimated nonparametrically. In general, unless
mo(z) and 71(2" ) have full support we will not be able to identify separately the
constant term in «(z), B; and B,.** As this is not the case in the sample used,
it is not possible to separately identify these parameters but we still will be able
to obtain the Marginal Treatment Effects as estimates of LIVy(mo(z), m1(2")) and
LIVi(m(2), m(2)), for the points in the support of my(z) and 7(2).

Estimates are performed following next steps that are a version of the method

used by Carneiro, Heckman and Vytlacil (2003) for the binary case:

1. Firstly, each continuous variable in z and In(y) is regressed on my(z) and m(2),

35

using Local Linear Regression,” and residuals of each of these regressions are

obtained. A probit model is estimated for each binary variable.

2. Then, the residuals of the regression of In(y) are regressed on the residuals of the
regressions of  and the probit models, using OLS.?¢ Residuals of this regression

are obtained again.

34 Following Heckman (1990) we can identify these paramaters separately using an “identification
at infinity” argument:

1. For those with 7mq(2)(1 — 71(2)) ~ 1 we will identify 3, plus the constant term in a(x).

2. For those with 7o (2)7m1(2) ~ 1 we will identify 3, plus the constant term in a(z).

Then assuming that K (mg (%), 71(%)) = 0 for previous groups of individuals we manage to identify
separatly the contant terms in a(z) and in K (mg(2),71(%)), as well as, 8; and B,. Estimators that
use this argument are presented, for example, by Heckman (1990) and by Andrews and Schafgans
(1998).

35 A1l the Local Linear Regression estimates are performed using a bivariate normal kernel and a
common bandwidth equal to 0.24 (rule of thumb bandwidth). The propensity scores are divided by
the standard deviation to avoid problems because of their disparate variation.

36This regression does not include a constant variable given that it is not separatly identified from
,K'(Tl'(]7 71'1).
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3. Finally, previous residuals are regressed on mo(z) and 71 (z"), using Local Linear

Regression. This leads to an estimate of K (mo(z),m1(2)).5

Figure 6. shows estimated K(mg,m1) as a function of 7y for those individuals
with 71 smaller than 5%, whereas, Figure 7 shows it as a function of m; for those
with an estimated value of 7y between 20% and 30%. As it is shown in these figures,
there are signs of departure from linearity. This result agreed with the result of the
homogeneity test of previous section.

Once the estimate of K (mo(z),m1(2")) is obtained its derivatives are approximated

taking discrete differences:

OK(mo(2), m (7)) | K(mwo(z) +hm(2)) = K(mo(z), m(2))

Omo(2) o h
OK(mo(2), m1(2))  K(mo(2), m1(¥) +h) — K(mo(z), m1(2))
(971'1(2/) B h

where h is set to be equal to 0.01. These pseudo derivatives are estimates of the
MTEs: MTEy(mo(z),m1(2")) and MTE;(mo(z),m1(%")) respectively. Figure 8 and
Figure 9 show estimated MTFE, as a function of my and MTF; as a function of
m1. One thing to remark from these figures is that there are individuals for whom
estimated MT Es are negative. If this is the case, they will not benefit from policies
that obliged them to continue studying. This is something that should be taken into
account when evaluating this kind of policies and that cannot be inferred from the
traditional treatment effect parameters in the literature. Moreover, estimated MT E's
differ from the ones obtained under normality assumptions. This suggests that these

assumptions are not valid in the sample used.

6.5 The 1970 reform

The 1970 reform of the Spanish education system raised the age of compulsory school-

ing to 14 years old. So, all the individuals after the reform were obliged to complete

3TAn alternative method consists on approximate K (o, 1) using series based on orthogonal
polynomials in which the number of terms increases with the sample size (Newey (1988)). See,
Newey, Powell and Walker (1990) for an empirical application of this kind of estimators. These
estimates were also performed using a bivariate normal kernel and a common bandwidth equal to
0.50.
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the low level of education. Then, those individuals who had such big costs to continue
studying that would have decided not to complete this level of education were obliged
to do it. On the other hand, if costs of schooling are endogenous, as individuals were
obliged to complete more years of education, their costs could had been reduced be-
cause of the reform. In the sample used, 63% of the individuals studied before this
reform. Moreover, the proportion of individuals who decided to continue studying
after the low level rose from 59% for those who studied before the reform to 72% for
those who studied after it. Then, a natural question is if those who studied before
the 1970 reform would have benefited in terms of wages from it. Figure 10 shows
the Marginal Treatment Effect of continuing studying after the low level of education
(MTE)) as a function of the probability of being affected by the reform. This proba-
bility is defined as the difference between the probability of continuing studying from
the low level that would have been obtained if the individual had studied after the
reform and the probability that is obtained given that the individual studied before
it. As it can be seen in this figure those individuals who would have benefited are
those with a lower probability of changing their decisions. Individuals in this group
had more educated parents, in supervisory jobs and with a lower proportion of them
working in agriculture. On the other hand, those individuals with a higher change
in the probability because of the reform did not benefit from continuing studying.
Figure 11. shows the ratio of the probability that would be obtained if the individual
would have studied after the reform and his probability a priori as a function of this
latter probability. As it can be seen in this figure those who would have changed
more their probability of continuing studying from the low level are those with a
small probability a priori. Finally, the expected return for those who would change
their decision because of the reform, given m((z), m1(2) and a certain change in 7(2)
has this form:
mo(2)
1

PE(m(:).my()m () = [ MT B, m1(2)) s

o (z)
Table 9 shows estimates of this parameter for different values of my(z) and different

increments in this probability (Amg). As it can be seen in this table those who would
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benefit are those with high values of my(z) and small increments in this probability.
These individuals have also higher values of the probability, a prior:, of continuing

studying from the medium level of education ().

7 Conclusions

This paper presents a framework to estimate sequential returns to schooling when they
vary among the population and individuals decide their level of education taking into
account their returns. A test for homogeneity in returns from sequential schooling
decisions, based on methods recently developed in the nonparametric statistics li-
terature, is presented. Using this framework, returns are estimated and tested using
Spanish data. The data set used contains rich family background information and
useful instruments but it is stratified by level of education. Then, estimators were
adapted in order to obtain consistent estimates.

Firstly, homogeneity in the returns to schooling was assumed and estimated re-
turns were obtained using instrumental variables methods. These estimates suggest
that those individuals who normally would be affected by a supply side policy may
benefit from it.

However, the data suggest that there is a distribution of returns in the population
and people is sorted in each level of education taking into account their returns. If
this is the case, different instruments, as well as different treatment effects, will give
us different summary measures of this distribution. It is in this context where the
average return for those individuals in the margin of indifference (MTE) gains impor-
tance. Estimated returns are obtained in this case both imposing normal distribution
assumptions as well as nonparametrically. A comparison of the estimated marginal
effects under each of these frameworks suggests that normality assumptions do not
hold. Moreover, the empirical application shows that there could be groups of the
population for whom marginal effects are negative. In this case, these individuals will
not benefit, in term of wages, from an increment of their schooling levels. This is
something that should be considered when evaluating policies that oblige individuals
to achieve a certain level of education. An analysis of the 1970 reform of the Spanish

educational system suggests that those individuals, who studied before the reform,
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who would have experience a bigger change in the probability of continuing from the
low level of education due to the reform, have on average negative marginal returns.

Finally, as an extension of this work, it would be useful to develop methods that
take into account self-selection because of unemployment or non participation in the
labor market, when estimating the returns. This is something that can be important
especially for women and for high unemployment countries like Spain. It should also
be noted that this methodology do not consider explicitly the existence of general
equilibrium effects. It should be also good to the develop methods to assess the

importance of such effects.
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APPENDIX

A THE ECBC

The ECBC (“Encuesta de Conciencia y Biografia de Clase”) was carried out in 1991
by the Spanish National Statistical Office (INE) at the initiative of the regional go-
vernment of Madrid and “Instituto de la Mujer”. The main purpose of this survey
was the collection of data to carry out a sociological study of different regions in
Spain, as well as, to compare it with similar works in other countries. 6632 people
from all regions were interviewed and data about personal information, current and
previous labor status, family background, information about the spouse and opinions
about different issues were collected.

The process to collect the data was the following: In each region and each size
of district, except for Madrid, the number of interviews was chosen in order to be
proportional to their population. A total of 5000 interviews were first planned for
these regions. On the other hand, in Madrid area they planned to do 1600 interviews.
Then, in a second step, they decided on the number of interviews that should be
done in each region, size of district and level of education for the overrepresenting
of people with a medium or high level of education. They aggregated the levels of
education reported in the Spanish electoral census (1986) in the next categories: low
level of education (illiterate people, those without any degree but who have ever gone
to school and people with an elementary degree (“Bachiller Elemental” or “EGB”)),
medium level (vocational studies (“Formacion Profesional”) and people with a high
school degree (“Bachiller Superior” or “BUP”)) and high level (people with at least
a college degree (“FEscuelas de Grado Medio” included)). In the regions Cataluna
and Madrid three times as many interviews were conducted for people with high level
of education. For the rest of regions of Spain, the number of interviews for people
with medium level of education was doubled and four times more interviews were
conducted for those with high level of education. The interviews needed for the over-
representing of these levels of education were subtracted of the ones assigned to the
low level.

Once the number of interviews for each stratum (region, size of district and level
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of education) was decided, people who should be interviewed were chosen, with a list
of possible people to be interviewed as replacements. The substitutes were ordered
according to the similarities they presented with the individuals chosen in the first
place. Those similarities being: first gender, then level of schooling and finally, age.
As a result of this process there were more interviews of young people with high levels

of education than planned.

B Estimates from stratified samples

It is quite common to find that samples used in econometric estimates are not ran-
domly drawn from the population; stratified samples are often obtained. In this case,
the population is divided into different strata, based on the value of an observed
vector and a random sample of a pre-assigned size is then drawn. This is useful in
order to sample different subsets of the population with different frequencies. From
the point of view of modelling stratification may be based on exogenous variables,
endogenous variables or a mixture of both. We won’t know in which case we are until
the specification of the model and the assumptions in it.

Let s = 1,2....5 denote the strata and i denotes elements of the population.
Then, let 5 = (B, 51, ----, B1) be the fixed finite population parameters that we wish

to estimate using a stratified sample of size n . Consider the following definitions:

Definition 1 () is the population frequency of stratum s. That is, it is the probability

that a randomly drawn observation falls into stratum s.

Definition 2 H; is the arbitrary probability distribution over the strata that is used

when sampling the data.

Then, for each element in the sample, define the function w(s) in the following

way:




where it is assumed that Q(s), that denotes the population density of the stratum s,
is known and we are able to recover H(s). As the strata are supposed to be exhaustive

and mutually exclusive:

Qi+ Qo+ ... + Qg =

Oversampled categories are given a low weight, and wvice versa, while using these

weights.

B.0.1 OLS with weights

Assume that we want to estimate the population parameters § from the following

model:

Y =XB+u (5)
E(X'u)=0

where Y and X are observed variables, whereas, u is an unobserved variable.

Then,

E(X(Y-XB) = 0=EXY)-EXX)8=0
N SR S

In order to obtain a consistent estimate in the case of having a stratified sample we
need the population totals of 22 and z;; and so, we obtain the following weighted

estimator:®®

R 1 n 2 _1 1 n
B = (ﬁ ;wlxz) (ﬁ ;wixiyi)

38If we assume E((Y — X3)|X) = 0 and the stratification is based on exogenous variables in the
model then, the unweighted estimator is consistent and more efficient than the weighted estimator
(See Deaton (2000) for a discussion on this topic).
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B.0.2 GMM with weights

Consider that we want to estimate equation (5) but now:

E(X'u)#0

Moreover, assume that there is a set of valid instruments Z such that:

E(Z'u) =0

and that we want to estimate the set of parameters  using the Generalized Method
of Moments (GMM).
In this context, estimates are based on a group of moments conditions V(X Z; )

that are satisfied in the population.

Eq(W(X. 2:6)) =0 [ W(X.Z:5)fa(X. 2)d(X. 2) =0

U(X,Z;p) = Z'u in our case. Eq denotes the Expectation with respect to the true
population distribution of the variables X and Z (fq(X, Z)).

However, if we have a stratified sample of the population we will have:

Bl ¥(X, Zi3)} £0 = [ W(X.Z:5)fulX, 2)d(X.2) £0

where E'y denotes the Expectation with respect to the arbitrary distribution of the
variables X and Z (fy (X, 7)), used when sampling the data.

However,

[ ¥z (X, 2%, 2) =0

where ¥*(X, Z;3) = Jo(X.2) U(X, Z; 3). Then we can use GMM in this modified mo-

T fa(X.2)
ments’ conditions in order to obtain consistent estimates in case of having a stratified

sample. If the number of moments’ conditions is greater than the number of parame-
ters we can compute a test for overidentifying moments’ restrictions using the GMM

based J-statistic.
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B.0.3 Discrete choice models with weights

Consider that y is a binary variable and that we are interested on estimating a discrete

choice model which gives us the following probability of choosing the alternative y;:

P(yi|z B)
which is assumed to be known except for the values of a set of parameters (3) that
we want to estimate from the choices of a sample of individuals.

Furthermore, assume that the sample is divided into subsets each consisting on
individuals who choose a particular alternative and that we sample at different rates
from different subsets. When the stratified sample is only based on the decisions of
the individuals it is usually referred to as a choice based sample.

In this case, the log-likelihood of the stratified sample will have the following

form:3?

S
LogL(B) = Z Z log f (zily:) = (6)

RS yzm 8).f (=)
= 2 2 )

where N(s) denotes the number of observations in stratum s. In order to obtain the
estimator that maximizes the likelihood of the sample we should maximize the latter

expression subject to the following restrictions:

QI3 f) = / Plylzs; B). (2)dz
s = 1,2.....8

The problem that we face if we want to use this estimator is that f(z;) is an unknown
function.

If we had an exogenous sample we would maximize the following log-likelihood
function:

39Gee Cosslett (1993).
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N

LogL() =) _(log P(y;|z; 8) +log(f (1)) (7)

i=1
In this case, when we maximize, with respect to 3, f(z;) is a constant and it can be
ignored.

As we can see, (7) and (6) are different and so maximization of (7) gives us es-
timators that are generally inconsistent in case of having a sample that is stratified
based on the decisions of the individuals. This is because we would be maximizing the
wrong likelihood. However, there is a straightforward modification of (7) that gives
us consistent and asymptotically normal estimators for the population parameters.
This estimator is called weighted maximum likelihood estimator (WESML) and was
first presented by Mansky and Lerman (1977). Although, in the case of endogenous
sampling, the standard estimators are generally inconsistent once the problem of con-
sistent estimation is recognized and solved endogenous stratification can improve the
precision of estimates, usually by the overrepresenting of those individuals who choose
an alternative that is uncommonly chosen. Please, note that if the stratification is
based on exogenous variables it is not a problem, as the only thing that we change is
f(zi); estimators that ignore it are consistent and asymptotically normal.

The WESML estimator has the following form:

- 1 Lo,
Bwrsyr = argmax — — log P(yi|z:; 8) (8)
8 N — H;

Under regularity conditions similar to those required in maximum likelihood esti-
mation, estimates obtained by the maximization of (8) are strongly consistent and
asymptotically normal, but generally not asymptotically efficient.*’ The idea under-
lying consistency, is the following:

Consider the log-likelihood for exogenous sampling of N observations evaluated at

any [ :

N

LogL(8) =) _(log P(yi|2:; ) + log(f (=) (9)

1=1

40See Wooldrige (2001).
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When we maximize (9) we obtain the estimator CE

~

N
1
f = argmax ;log P(yilz; )

Then the true value of the parameter 3 is the following:

B = arg max Egllog P(yi|z; 5)]
However, the pseudo true value that we obtain in the case of having a stratified sample

is:

5" = argmax Enllog P(y |25 )]
and so unless H equals () we will not obtain consistent estimators without weighting.

On the other hand, the WESML estimator will be consistent:

Biveswr = EH[% log P(yi|zi; B)] = EQ[log P(yilzi; )]

Given this, we should weight each observation with the weights:

in order to obtain consistent estimators.

B.1 ECBC sampling

In the case of the ECBC we have different subsamples in which they modify the
probabilities of the educational levels. So, in this sample we have both exogenous
and endogenous stratification. If the stratification were on T exogenous strata, the
stratification could be ignored. Nevertheless, if each of those strata is then split into
GG endogenous strata, we have to work with 7' x G endogenous strata; the exogenous
stratification can no longer be ignored. In this case, the population probabilities Q(s)
will be different for each exogenous stratum.*!

In particular, in the case of the ECBC the sampling is based on the following

strata: province, size of district and level of education reported in the 1986 Census.

41Gee Cosslet (1993).
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This is a case of endogenous stratified sampling because the level of education reported
by the 1986 Census is highly correlated with the level of education reported in the
moment of the interview (December 1990/ March 1991). The number of strata that
should be considered is given by the number of combinations in the categories of
province, size of district and level of education.

The sample density of stratum j is obtained in the following way:

H(s) =

N = ) N(s)

whereas the population densities )(s) are estimated as:

Q(s) = Pr(Level of education| Province, Size of district). Pr(Province, Size of district)
= Pr(Level of education|Province, Size of district). Pr(Size of district|Province)

Pr(Province)

Pr(Level of education| Province, Size of district) and Pr(Size of district|Province) are
reported in the ECBC and Pr(Province) is taken from the 1991 Census.
Then each individual observation is assigned the following weight depending on

the stratum they belong to:

)
) = 3

As an example of how this weights work, consider the highest level of education

completed for the people who were born between 1928 and 1932. The ECBC sample

shows the following shares for each level of education:

Level of Education | Percent Percent
(with weights)

compulsory level 55.75 80.43

high school 9.20 7.34

college 35.06 12.23
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As it can be seen in previous table, weighting changes the share of individuals in
each level of education. Using data from the surveys EPF80, EPF90 and Encuesta
Continua de Presupuestos familiares 95 we have that these proportions are: 81.43%

for the compulsory level, 8.05% for high school level and 10.52% for college.

C Definition of variables

e Distance (In 100 km). This variable measures the distance from the province
where the individual used to live during his/her childhood to the nearest province
in the group of provinces that traditionally had a university. Madrid, Barcelona,
Salamanca, Valladolid, and Granada are the provinces considered in this group
for those who were born before 1961. Given the increment of the number of
four-year college degrees offered by some existing small universities during the
latter 60’s and 70’s, this group was augmented for those who were born after
1961. In addition to previous provinces, Seville, Zaragoza, A Coruna, Asturias

and Valencia were also included in this case.

e Distance to the nearest university at the age of 18. This variable takes
value 0 if the individual lived in a province which had a university when he was
18 years old. If there was no university it is equal to the number of kilometers

to the nearest capital of province which had a university in that moment.

e High distance. Dummy variable that takes value one if the individual was
living far away from one of the provinces that traditionally had a university
(more than 352 km) in the moment of decision. Madrid, Barcelona, Salamanca,
Valladolid, and Granada are the provinces considered in this group for those
who were born before 1966. This group was augmented for those who were born

after 1966 considering also Seville, Zaragoza, A Coruna, Asturias and Valencia.

e Family income 14 and family Income 18.% Per capita gross family income
in prices of 1995. This variable measures the total income of the families, net of

taxes and Social Security payoffs. It includes transfers of the government. It is

42This data was taken from Alcaide (2003).
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measured per capita dividing by the total population of each province as at the
1st of July of each year. Each individual in the sample is assigned the family
income at the age of 14 and 18, respectively, of the province where he/she used

to live during his/her childhood.

e Employment 14 and employment 18.*3 Number of occupations in the
province, where the individual used to live during his/her childhood, at the age

of 14 and 18, divided by the population of the province in that moment.

e Illiterate, primary, high school. Dummy variables for the level of education

of the head of household when the individual was a child.

e Blue collar, agriculture, mining, manufacture. Dummy variables for the
kind of job of the head of household when the individual was a child (blue collar

job, agriculture sector’s job, mining sector’s job and manufacturing sector’s job).

e Unemployed. Dummy variable that takes value one if the head of household

when the individual was a child was unemployed.

e Supervisory. Dummy variable for the head of household, when the individual

was a child, doing a supervisory job.
e Female. Dummy variable that takes value one if the individual is a woman.

e Islands. Dummy variable that takes value one if the individual lived in Canary

Islands, Balearic Islands, Ceuta or Melilla when he/she was a child.
e Medium and high. Dummy variables that take value one if the individual

achieved the medium and high level of education, respectively.

D A Sequential Decision Model for Schooling Choices

This section presents an economic model for sequential schooling decisions. Models
of this kind where presented, for example, by Heckman, Lochner and Todd (2003)
and Comay, Melnik and Pollatscheck (1973).

43This data was taken from Alcaide (2003).
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A sequential decision model takes into account that the level of schooling of each
individual is the result of previous schooling choices. Thus, the probability that a
person enters to university depends on high school graduation which also depends
on deciding to start high school and so forth until the earliest schooling decision.
Given this, something that alters the benefits or costs of a given level of education,
at any stage, will affect the proportion of people in any preceding stage. This is
important because of self-selection of individuals in each level of education that should
be considered when estimating returns. Moreover, a sequential model allows the
consideration of the existence of an option value of each education level which will
affect the decisions made by the individuals. As explained by Heckman, Lochner and
Todd (2003) there are mainly two reasons that can explain the fact that the option

value of a given level of schooling is different from zero:

1. Returns to schooling may be not constant across different levels of education. In
this case, an individual can be interested in finishing a certain level of schooling

in order to access a higher level with greater earnings.

2. If there is uncertainty that is resolved as additional years of schooling are fin-
ished, the returns to schooling should include the expected value of the new
information that is revealed. This uncertainty can be related, for example, to

costs of schooling, earnings or the ability of the individuals.

In both cases, it will not be sufficient to analyze these decisions in a static binary
choice framework like it has been usually done in the literature (see, e.g., Willis and
Rosen (1979) or more recently Carneiro, Heckman and Vytlacil (2003)).

Consider the case in which there are no dropouts and if individuals want to achieve
a level they are allowed to do it. People decide their level of education maximizing the
expected present discounted value of lifetime earnings, given the available information,
that would be obtained with each choice. An individual has two options in each
moment of decision: continue studying or start working. Then, the present discounted

value of earnings net of costs as of the schooling completion date are:
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t=0
T-—T1

wy = ) (14r) () -G
t=0
Tr—To

wy = (L+7)"yh(t) — Cy
t=0

where, T} and T3 are the number of years that the individual (7) has to study, from
the low level, to achieve the medium and high level, respectively. T, denotes the age
of retirement and 7 is the discount rate in the moment of decision which is assumed
to be externally specified. Cy, C; and Cy are the direct costs of achieving the low,
medium and high level of education.

Define as Ey(Vy) the total expected value of achieving the medium level of edu-

cation given the information in the moment of decision (¢t = 1) :

uTl)TQTIEl(wé)}

Eo(V}) = Egmax{w!,
where Vj’ for j = 1,2 denote the benefits of studying up to the low and medium
level of education, respectively. E; for j = 0,1 denotes the expected value given the
information the individual has in the moment of deciding to continue studying up to
each level of education (t =1, t = 2).

When making their decisions, individuals consider not only the direct benefits
from completing the next level of education but also the value of the offered option of

entry into even higher levels. The option value of continuing studying from the low
level, as defined in Heckman, Lochner and Todd (2003), is:

i i i 1 i i
OO = EO(‘/l — ’U)l) = EO max {O, (mEl(w2)> — 'LUl}
An individual will decide in (¢ = 1) to continue studying from the low level of educa-

tion if the following is true:

45



i 1 i i
Wo < mEo(Vi) = wy < (

1
1+7)

(Eo(wy) + Op)

1
L+~

7 Eo max{w}, By (wh)} =

= w; < m
This is assuming that an individual knows ones earning potential after completion
of each level of education, but cannot foresee his potential after completion of higher
levels of education.
On the other hand, given this model, an individual decides to continue studying
from the medium level of education if the following is true:

i 1 i
wy < mEl(wg)
and given that high is the final level of education considered the option has value

equal to zero in this case:

O'=0 Vi

1

Pr(w}), < : WEI (w3)})

-
(I+r)h

Assume, for instance, that individuals are myopic, i.e., in deciding about conti-
nuing studying from the low level of education they fall prey to the making the easier
choice of entering the labor market after completing the medium level. Moreover,

assume that the following two conditions are satisfied:
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1
—F
T

1

wy > Eymax{ (L wy, (ESE Ey(wy)})

If this is true, then, decisions made by myopic individuals and those that decide

sequentially would be the same. It is important to note that, in this case, there is an
option value to continue studying from the low level of education which is different
from zero but individuals are not changing their decisions because of it. On the other

hand, if both of the following conditions are satisfied:

1 i
WEO(’%)
wy < EOmaX{(l_i_r)lelv (1+T)T2E1(w2)})

A binary static model predicts that individuals that fall under the above category will

stop studying at the low level, whereas, a sequential model says that these individuals
will continue studying solely for the purpose of achieving higher earnings from the
high level of education.

Assume for an instance that there is no uncertainty. Then, in a multinomial

(static) model the probability of each level of education can be written as:

Pr(D! = 1) = Px(

Pr(D) = 1)=P < , >
r( 2 ) r((1+/r‘)T1 (1+T)T2 (1+7‘)T2 wO

Although people don’t make decisions this way if they know everything, the sequence
is not important; the sequential model gives the same decisions as in a multinomial

static model with people deciding at ¢ = 0.
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On the other hand, if there is something that changes from one stage to the other
then the probability of each decision will be modelled by (10). Let 7 and 7% denote
the probability of continuing studying from the low and medium level of education.

Then, the probabilities of each level of education can be rewritten in the following

way:
Pr(Dy = 1] 2, 2) = (1 —my(2))
Pr(D} =1] z, 2) = mp(2)(1 — 71(2))
Pr(Dy = 1] 2, 2) = m1(2)mp(2)
where:
mo(z) = Pr(wg < mEo max{wj, mﬂ(wg)})
7T1(Z)) = PI'(’U}I < mEl(wgﬂwo < mE@ maX{wl, mEl(wg)})

The value of the variables in z can be different of the value of the variables in 2" as
some uncertainty is resolved as additional years of education are completed.

The likelihood of a sample of size NV has the following form:

Lioy= ] Q-m@) JI Q-m@)me) J] @)
i=1|Di=1 i=1|Di=1 i=1|Di=1

Which, taking logarithms, results in the following expression:
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N N N

log L(...|]z) = Z log(1 — mh(2)) + Z log(1 — 7 (2)) + Z log(mh(2)) +

i=1|Di=1 i=1|Di=1 i=1|Di=1
N . N '

+ ) log(mi() + Y log(m(2))

i=1|Di=1 i=1|Di=1

¢
log L(...|x) = Z log(1 —my(2)) + Z log(mg(2)) +

i=1|Di=1 i=1|Di=1UD§=1

+ Y log(l—mi())+ ) log(ni(2))

i=1|Di=1 i=1|Di=1

Then , we can estimate the following reduced form models:**

1. Considering all the sample estimate a model for the probability of continuing

studying from the low level.

2. With those who have achieved at least the medium level estimate a model for

the probability of achieving the high level.

44 Assuming that there are neither restrictions between the parameters nor the unobservables in
each choice.
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Table 1. Levels of Education by cohorts. (%)

Level of Education

Year of Birth 0 1 2 3 4 5
1918-1922 5,68 2527 53,07 535 495 5,68
1923-1927 4,04 26,74 52,63 5,66 497 596
1928-1932 3,90 26,07 50,65 6,38 5,64 7,37
1933-1937 2,85 23,11 51,58 744 691 §11
1938-1942 1,98 20,29 48,62 10,21 9,11 9,78
1943-1947 0,89 12,60 48,09 13,56 12,10 12,76
1948-1952 0,71 9,08 42,31 17,67 16,37 13,85
1953-1957 0,51 5,52 33,48 2265 21,70 16,14
1958-1962 0,16 3,74 25,17 29,28 26,78 14,87
1963-1967 0,27 1,50 16,83 38,58 29,69 13,13

Note: (i) Source: EPF 80, EPF 90 and Encuesta Continua de Presupuestos Familiares 95.

(ii) Level 0 refers to illiterate people, those who did not complete any level of education but can
read and write are in Level 1. Level 2 represents the education of those who left school when they
were 10 years old, level 3 is for those who dropped out at 14, level 4 is for those who finished high

school or the vocational studies, and level 5 is for people who have a college degree.
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Table 2. Sample Statistics

Dy=1 D=1 Dy=1

age 42.56  35.50  37.53
female 61.73 53.76  44.93
illiterate 48.60 22.70 9.18
primary 47.45 55.70 48.79
high school 2.67 11.31 15.46
college 1.28 10.30 26.57
white collar 2.13 11.73 22.46
blue collar 16.16 29.54 41.79
agriculture 32.81 14.18 8.45
mining 8.99 9.70 3.14
manufacture 33.41 29.37 17.87
unemployed 6.62 5.74 7.00
supervisory 4.56 15.19 25.36
distance 158.95 157.18 145.67

high distance 8.26 6.41 7.97
family income-14  0.66 0.86 0.85
employment-14 0.38 0.36 0.38

family income-18 0.94 0.93
employment-18 0.36 0.37
n.obs 1646 1185 414
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Table 3. Mincer equation. OLS & GMM estimates

Variable OLS OLS GMM
with weights without weights with weights
age 0.049 *** 0.039 *** 0.050 ***
(0.0093) (0.0077) (0.0088)
age2 —0.00053***  —0.00041***  —0.00049***
(0.00011) (0.000090) (0.00011)
tenure 0.013** 0.014 *** 0.014 ***
(0.0053) (0.0036) (0.0052)
tenure2 —0.00022 —0.00021*  —0.00025*
(0.00015) (0.000093) (0.00014)
female —0.20™ —0.17"* —0.17
(0.030) (0.023) (0.033)
schooling 0.044 *** 0.046 *** 0.086***
(0.0041) (0.0035) (0.022)
constant 5.22%* 5.20™* 4.35™
(0.20) (0.15) (0.39)

Note: (i) Number of observations: 1653,(ii) Source: ECBC, (iii) Standard errors in parenthesis.
¥ means significance at a 99% level, ** at a 95% level and * at a 90% level, (iv) 11 dummies for
Spanish regions, as well as, 4 occupational dummies and 10 industry dummies were also included
in these estimates, (v) These estimates are performed using as instruments: income of the family
at 14 and 18 years old, distance to the nearest university when the individual was 18 years old

and a dummy for the head of household doing a supervisory job. Sargan identification test: 2.90
(p-value=0.57)
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Table 4. Levels of schooling OLS € GMM estimates

Variable OLS GMM
with weights without weights with weights
age 0.049 *** 0.039 *** 0.054***
(0.0097) (0.0075) (0.016)
age2 —0.00057***  —0.00043***  —0.00057***
(0.00012) (0.000091) (0.00016)
tenure 0.014 *** 0.015 *** 0.020 ***
(0.0055) (0.0036) (0.0056)
tenure2 —0.00023*** —0.00022*** —0.00036**
(0.00016) (0.000093) (0.00016)
female —0.20"* —0.17*** —0.15***
(0.031) (0.023) (0.036)
medium 0.18 *** 0.23 *** 0.65**
(0.030) (0.027) (0.31)
high 0.47 *** 0.44 *** 0.83**
(0.041) (0.037) (0.38)
constant 5.39*** 5.58*** 4.78***
(0.20) (0.14) (0.43)

Note: (i) Number of observations: 1653,(ii) Source: ECBC, (iii) Standard errors in parenthesis.
¥ means significance at a 99% level, ** at a 95% level and * at a 90% level, (iv) 11 dummies for
Spanish regions, as well as, 4 occupational dummies and 10 industry dummies were also included
in these estimates, (v) These estimates are performed using as instruments: income of the family
at 14 and 18 years old, distance to a city that traditionally have a university (Madrid, Barcelona,
Salamanca, Valladolid and Granada are the provinces considered), employment in the province
of residence at the age of 18, a dummy for studying in the system after the 1970 reform and
variables about the head of household when the individual was a child (three dummies for the level
of education, three dummies for the kind of job and a dummy for doing a supervisory job). Sargan
identification test: 6.93 (p-value=0.50).
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Table 5A. Probability of continuing studying from the low level ()

Variable Without weights With weights
age —0.020*** —0.012*
(0.0043) (0.0052)
illiterate —1.49™ —1.61"
(0.15) (0.20)
primary —0.96"** —1.14***
(0.15) (0.19)
high school —0.40™ —0.40"
(0.17) (0.23)
blue collar —-0.14 —0.018
(0.13) (0.17)
agriculture —0.75" —0.63™*
(0.13) (0.18)
mining —0.54*** —0.26
(0.15) (0.19)
manufacture —0.57"* —0.41**
(0.13) (0.17)
unemployed —0.24 —0.22
(0.15) (0.19)
supervisory 0.34 *** 0.26™*
(0.095) (0.13)
employment-14 0.40 —0.73
(0.61) (0.71)
family income-14 0.23 0.75%*
(0.14) (0.17)
female —0.32*** —0.31"**
(0.050) (0.061)
high distance —0.10 —0.13
(0.10) (0.10)
constant 2.06™** 1.38***
(0.29) (0.37)

Note: (i) Number of observations: 3245,(ii) Source: ECBC, (iii) Standard errors in parenthesis.
*** means significance at a 99% level, ** at a 95% level and * at a 90% level.

o8



Table 5B. Probability of continuing studying from the low level (o)

System before 1970 Without weights With weights

Variable
age —0.024** —0.011*
(0.0046) (0.0058)
illiterate —1.58™* —1.55™
(0.16) (0.22)
primary —1.03*** —1.05"**
(0.15) (0.22)
high school —0.49* —0.26
(0.18) (0.27)
agriculture —0.63"** —0.63"**
(0.081) (0.097)
mining —0.43" —0.28"
(0.12) (0.15)
manufacture —0.54*** —0.44**
(0.079) (0.10)
supervisory 0.317** 0.26*
(0.12) (0.16)
family income-14 0.13 0.73*
(0.17) (0.21)
high distance —0.10 —0.22*
(0.10) (0.12)
female —0.50*** —0.49**
(0.061) (0.076)
constant 2.53** 1.03**
(0.34) (0.45)

Note: (i) Number of observations: 3245,(ii) Source: ECBC, (iii) Standard errors in parenthesis.
*** means significance at a 99% level, ** at a 95% level and * at a 90% level.
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Table 5B. Probability of continuing studying from the low level (o)

(continuation)

System after 1970 Without weights With weights

Variable
age 0.065*** 0.024*
(0.012) (0.014)
illiterate —1.72%* —2.15"**
(0.33) (0.33)
primary —1.22% —1.71
(0.32) (0.32)
high school —0.52 —0.99***
(0.36) (0.37)
agriculture —0.56™** —0.47
(0.14) (0.16)
mining —0.32* —0.13
(0.15) (0.18)
manufacture —0.26™* —0.22*
(0.10) (0.13)
i A1 .
supervisory 0(0.17) % 2)25)
family income-14 0.12 0.18
(0.22) (0.26)
high distance —0.08 —0.06
(0.11) (0.23)
female —0.032 —0.073
(0.086) (0.10)
constant 0.031 1.18*
(0.55) (0.61)

Note: (i) Number of observations: 3245,(ii) Source: ECBC, (iii) Standard errors in parenthesis.
*** means significance at a 99% level, ** at a 95% level and * at a 90% level.
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Table 6A. Probability of continuing studying from the medium level ()

Variable Without weights With weights
age 0.0078* 0.010**
(0.0039) (0.0039)
illiterate —0.97*** —0.96™**
(0.16) (0.19)
primary —0.52*** —0.52***
(0.13) (0.16)
high school —0.40™ —0.49™
(0.14) (0.17)
blue collar 0.17 0.092
(0.12) (0.15)
agriculture —0.16 —0.19
(0.16) (0.19)
mining —(0.58™* —0.62™
(0.20) (0.22)
manufacture —0.15 —0.23
(0.14) (0.17)
unemployed 0.20 0.17
(0.18) (0.21)
supervisory 0.17* 0.20*
(0.10) (0.12)
islands —0.20 —0.29
(0.19) (0.20)
distance —0.063** —0.079*
(0.027) (0.030)
employment-18 —0.16 —2.06*
(0.87) (1.098)
female —0.27** —0.22*
(0.071) (0.080)
constant —0.15 —0.29
(0.30) (0.33)

Note: (i) Number of observations: 1599, (ii) Source: ECBC, (iii) Standard errors in parenthesis.
*** means significance at a 99% level, ** at a 95% level and * at a 90% level.
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Table 6B. Probability of continuing studying from the medium level (1)

System before 1970 Without weights With weights

Variable
age —0.0051 —0.012*
(0.0052) (0.0060)
illiterate —0.72*** —0.73***
(0.18) (0.21)
primary —0.31* —0.37**
(0.14) (0.18)
high school —0.26 —0.40"
(0.17) (0.21)
agriculture —0.34* —0.43"**
(0.15) (0.16)
mining —0.66"** —0.50**
(0.23) (0.24)
manufacture —0.40*** —0.44**
(0.13) (0.15)
islands —0.29 —0.44*
(0.20) (0.21)
distance —0.092*** —0.11™
(0.028) (0.031)
supervisory 0.12 0.17
(0.10) (0.12)
employment-18 1.39 0.40
(1.11) (1.28)
female —0.44*** —0.44**
(0.11) (0.11)
constant 0.33 0.33
(0.49) (0.49)

Note: (i) Number of observations: 1599, (ii) Source: ECBC, (iii) Standard errors in parenthesis.
*** means significance at a 99% level, ** at a 95% level and * at a 90% level.
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Table 6B. Probability of continuing studying from the medium level (1)

(continuation)
System after 1970 Without weights With weights
Variable
age 0.13*** 0.11%**
(0.018) (0.023)
illiterate —1.20™** —1.11
(0.23) (0.25)
primary —0.31* —0.55***
(0.14) (0.20)
high school —0.27 —0.49**
(0.17) (0.23)
agriculture —0.36 —0.14
(0.23) (0.24)
mining —0.66"** —0.90"**
(0.23) (0.26)
manufacture —0.40"** —0.29**
(0.13) (0.15)
islands —0.30 —0.44*
(0.18) (0.21)
distance —0.092** —0.11"**
(0.028) (0.031)
i 12 1
supervisory % 12 % .127)
employment-18 —4.83"** —3.59**
(1.53) (1.61)
female —0.11 —0.069
(0.11) (0.12)
constant —1.67"* —2.13"
(0.61) (0.61)

Note: (i) Number of observations: 1599, (ii) Source: ECBC, (iii) Standard errors in parenthesis.
*** means significance at a 99% level, ** at a 95% level and * at a 90% level.
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Table 7. Linearity Test on the Propensity Scores

Statistic Cramer Von-Mises Kolmogorov
Value 1.30-10~* 0.41
Critical Value (a = 0.05) 0.92:10° 0.43
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Table 8. OLS & GMM estimates. Control Function

Variable ~ OLS ' Variable GMM *
without weights with weights
. 5 kkk 0.0 1***
age o8 age oo
age2 —0.00059*** age2 —0.00068***
(0.00011) (0.00012)
tenure 0.010 *** tenure 0.018 ***
(0.0038) (0.0053)
tenure2 —0.00017"** tenure2 —0.00032**
(0.000096) (0.00015)
female —0.17*** female —0.19***
(0.025) (0.031)
medium 0.32* medium 0.69***
(0.17) (0.18)
high . high 1.08***
G
Al —0.72*** Al 0.327**
(0.25) (0.11)
S 0.66 Ay —0.55**
(0.65) (0.26)
A5 —0.038 A3 —0.053
(0.72) (0.15)
A4 0.41
(0.33)
constant 5.09*** constant 5.02***
(0.22) (0.22)

Note: (i) Number of observations: 1653,(ii) Source: ECBC, (iii) Standard errors in parenthesis.
¥ means significance at a 99% level, ** at a 95% level and * at a 90% level, (iv) 11 dummies for
Spanish regions, as well as, 4 occupational dummies and 10 industry dummies were also included in
these estimates, (v) Sargan Identification Test: 7.49 (p-value=0.48)

1) A1 = —=¢(71(2)) (1 = mi(2)); Ay = —=6(71(2))m1(2); Az = ¢(73(2))mo.

2) These estimates are performed using as external instruments: income of the family when the
individual was 14 years old, distance to a city that traditionally have a university, three dummies
for the level of education, three dummies for the kind of job, a dummy for doing a supervision job
of the head of household when the individual was a child, a dummy for studying after the 1970

reform and regional employment at the age of 18. A\ = (_d)(ﬂ(z))) Dy; My = (M) Dy;

2(71(2)) 1-3(v3(2))
_ [ =(i (=) . _ [ =o(3(2)
g = (74)(%1@) ) Dy: Ay = (74)(7;(@) ) D,
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Table 9. Treatment Effects for the Extension of the 1970 Reform

ATy Low 7g Medium 7 High 7
(0.08) (0.30) (0.80)

1.2 —0.031 —0.021 - 0.083
(mPin=0.03, 7P**=0.10) (7P =0.06, 7"**=0.27) (7P"=0.21, 7**=0.54)

1.5 —0.036 —0.027 ~0.089
(rPin=0.03, aP2*x=0.14)  (aPin=0.06, 7P>*=0.36) (777=0.21, 7P**=0.62)

2.0 —0.039 —0.032
(rPin=0.03, 7Pa*=0.19)  (7Pin=0.05, 7P3*=(.38)

4 —0.032

(7min=(.03, 7Pax=(.38)
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Spanish Educational System
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Figure 1. Spanish Educational System
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Fraction

Figure 2. Estimated Probability of Continuing Studying After the Low Level of
Education ()

Fraction

Figure 3. Estimated Probability of Achieving the High Level of Education for Those
That Completed The Low Level (1)
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Figure 5. Control Function Approach. MT FE;(my = 0.43, 1)
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Figure 6. K (mg, 1) for Values of the Probability of Continuing Studying after the
Medium Level Smaller than 0.05 (71 < 0.05)
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Figure 7. K (mg, 1) for Values of the Probability of Continuing Studying after the
Low Level between 0.20 and 0.30 (0.20 < 7o < 0.30)
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Figure 8. MTE, as a Function of the Probability of Continuing Studying after the
Low Level ()
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Figure 9. MTE; as a Function of the Probability of Continuing Studying after the
Medium Level (7;)
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Figure 10. MTE, as a Function of the Probability of Being Affected by the 1970
Reform for those that Studied Before It
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Figure 11. Change in the Probability of Continuing Studying from the Low Level
(o) Because of the 1970 Reform for those that Studied Before It.
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