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Abstract

High breakdown-point regression estimators protect against large errors and data con-

tamination. Motivated by some – the least trimmed squares and maximum trimmed like-

lihood estimators – we propose a general trimmed estimator, which unifies and extends

many existing robust procedures. We derive here the consistency and rate of convergence

of the proposed general trimmed estimator under mild β-mixing conditions and demon-

strate its applicability in nonlinear regression, time series, limited dependent variable

models, and panel data.
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1 Introduction

In statistics and econometrics, more and more attention is paid to techniques that can deal

with data contamination, which can arise from miscoding or heterogeneity not captured or

presumed in a model. Evidence about contamination of data and its adverse effects on

estimators such as (quasi-) maximum likelihood is provided, for example, by Gerfin (1996) in

labor market data, by Sakata and White (1998) in financial time series, and by Č́ıžek (2004a)

in the prices of financial derivates. The global sensitivity or robustness of an estimator

against large errors and data contamination is typically characterized by the breakdown
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point, which measures the smallest fraction of a sample that can arbitrarily change the

estimator under contamination (see Rousseeuw and Leroy, 1987, and Rousseeuw, 1997, for

an overview). One way to construct a high breakdown-point method is to employ a standard

(parametric) estimator and to trim some “unlikely” observations from its objective function.

This is, for example, the case of the least trimmed squares (LTS) by Rousseeuw (1985),

the least trimmed absolute deviations (LTA) by Bassett (1991), and the maximum trimmed

likelihood (MTLE) by Neykov and Neytchev (1990) and Hadi and Luceno (1997). Here we

generalize the concept of trimming, prove its consistency, and demonstrate its applicability in

many econometric models including nonlinear regression, time series, and limited dependent

variable models. Additionally, we mention possible combinations of the “trimming principle”

and semiparametric estimation.

First, let us briefly review existing results concerning the LTS, LTA, and MTLE estima-

tors. The LTS estimator belongs to the class of affine-equivariant estimators that achieve

asymptotically the highest breakpoint 1/2 and it is generally preferred to the similar, but

slowly converging least median of squares (LMS; Rousseeuw, 1984).1 Thus, LTS has been

receiving a lot of attention from the theoretical, computational, and application points of

view. There are extensions involving nonlinear regression (Stromberg, 1993), weighted LTS

(Vı́̌sek, 2002), and adaptive smooth trimming (Č́ıžek, 2002), and in most of these cases, the

asymptotic and breakdown behavior is known in the standard regression with i.i.d. errors.

Simultaneously, there has been a significant development in computational methods (Agulló,

2001; Gilloni and Padberg, 2002; Rousseeuw and van Driessen, 1999). Last, but not least,

there are also first applications of LTS in economics (Beňáček, Jaroĺım, and Vı́̌sek, 1998;

Temple, 1998; Zaman, Rousseeuw, and Orhan, 2001) and finance (Knez and Ready, 1997;

Kelly, 1997).

Next, the LTA estimator has not attracted much attention yet despite its favorable com-

putational and robustness properties (see Hawkins and Olive, 1999, for an overview and

extensions of LTA). The asymptotic properties are known only in the univariate location

model (Tableman, 1994). Finally, the MTLE estimator, which can produce the LMS, LTS,

maximum likelihood, and some other estimators in special cases (Hadi and Luceno, 1997),

has been studied from the robustness point of view (Vandev and Neykov, 1998; Müller and
1See also a recent proposal of smoothed LMS by Zinde-Walsh (2002).
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Neykov, 2003) and applied in the context of (generalized) linear models (e.g., Neykov et al.,

2004). Despite of the appealing concept of the trimmed likelihood, the asymptotic results are

known only the case of linear regression with Gaussian errors (Vandev and Neykov, 1993).

The aim of this work is to generalize the principle of LTS, LTA, and MTLE, that is

trimming “unlikely” observations from a model point of view. The proposed general trimmed

estimator (GTE) does not only include LTS, LTA, and MTLE as special cases, but also

allows for application of the trimming principle to many existing parametric and semipara-

metric estimators. Moreover, we prove its consistency and derive its rate of convergence

under rather general conditions, which permit using trimmed estimators in a wide range of

econometric applications including time series, panel data, and limited dependent variable

models (additional conditions leading to the asymptotic normality of GTE are discussed as

well). Thus, the application area of robust trimmed estimators is extended substantially.

Another important consequence of the derived results is the consistency of LTA and MTLE

in a general multivariate location and regression models, which was not available up to now.

The main tools in achieving this are the (uniform) law of large numbers (Andrews, 1988 and

1992) and the uniform central limit theorem (Arcones and Yu, 1994, and Yu, 1994) for mixing

processes. On the other hand, computational issues and robustness properties of GTE, which

are analogous to LTS, LTA, and MTLE and motivate the use of trimmed estimators also as

tools for regression diagnostics, are not discussed here to a larger extent because of a large

number of existing studies that address the computation and breakdown behavior of trimmed

estimator.

In the rest of the paper, we first propose the general trimmed estimator in Section 2, where

we also extensively discuss assumptions needed for studying asymptotic properties of GTE.

Asymptotic results are summarized in Section 3. A number of specific trimmed estimators in

various econometric models is presented in Section 4. The proofs are provided in Appendix.

2 Generalized trimmed estimator

For the purpose of motivation, let us first present the LTS and MTLE estimators (Section 2.1

and 2.2). Later, the general trimmed estimator and the assumptions used in the paper are

discussed (Sections 2.3 and 2.4) as well as an alternative definition of GTE (Section 2.5).
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2.1 Least trimmed squares

Let us consider a nonlinear regression model (i = 1, . . ., n)

yi = h(xi, β
0) + εi, (1)

where yi represents the dependent variable, h(xi, β) is a regression function of explanatory

variables xi and unknown parameters β, and εi is a continuously distributed error term. The

least trimmed squares estimator β̂
(LTS,h)
n is then defined by

β̂(LTS,h)
n = arg min

β∈B

h∑

j=1

r2
[j](β), (2)

where r2
[j](β) represents the jth order statistics of squared residuals r2

i (β) = {yi − h(xi, β)}2

and B is a parameter space. The trimming constant h must satisfy n
2 < h ≤ n and determines

the breakdown point of the (nonlinear) LTS estimator since definition (4) implies that n −
h observations with the largest residuals do not directly affect the estimator. Thus, the

observations that are unlikely, that is, observations that have very large residuals in a given

parametric model, are dropped from the objective function. For h(x, β) = g(x>β), where g(t)

is unbounded for t → ±∞, Stromberg and Ruppert (1992) showed that the breakdown point

equals asymptotically 1/2 for h = [n/2] + 1 (most robust choice) and 0 for h = n (nonlinear

least squares). For an overview of the properties of LTS in linear and nonlinear regression,

see Č́ıžek and Vı́̌sek (2000), Vı́̌sek (2000), and Č́ıžek (2004b), Stromberg (1993), respectively.

2.2 Maximum trimmed likelihood

In the same way the LTS estimator is derived from the least squares, the maximum trimmed

likelihood estimator follows from the maximum likelihood estimator (MLE). For a sample

(xi, yi)n
i=1, MTLE is defined by

β̂(MTLE,h)
n = arg max

β∈B

n∑

j=n−h+1

ln l[j](xi, yi; β), (3)

where l[j](xi, yi;β) represents the jth order statistics of likelihood contributions l(xi, yi; β), i =

1, . . ., n, and h is again the trimming constant. Compared to MLE, the n − h observations
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with smallest likelihood values, that is least probable observations in a given model, are left

out of the likelihood function. The robustness properties of MTLE are similar to those of

LTS and they were studied in the linear and generalized linear regression models by Vandev

and Neykov (1998) and Müller and Neykov (2003), respectively.

2.3 General trimmed estimator

Let us consider a random sample (xi, yi)n
i=1, where xi ∈ Rk represents a vector of explanatory

variables and yi ∈ R denotes the dependent variable.2 Furthermore, assume that s(xi, yi;β)

represents a loss function identifying the true value β0 of parameter vector β ∈ B, where

B ⊆ Rp is a compact parametric space, and that large values of s(xi, yi; β) represents unlikely

observations for a given model (“bad fit”) and small values of s(xi, yi; β) correpond to likely

values (“good fit”). For example, s(xi, yi; β) = {yi−h(xi, β)}2 in the case of the least squares

loss and s(xi, yi; β) = − ln l(xi, yi; β) in the case of the likelihood criterion.3 The general

trimmed estimator β̂
(GTE,h)
n can be then defined by

β̂(GTE,h)
n = arg min

β∈Rp

h∑

j=1

s[j](xi, yi; β), (4)

where s[j](xi, yi; β) represents the jth order statistics of s(xi, yi; β), i = 1, . . ., n.4 Apparently,

this definition includes the LTS, LTA, and MTLE estimators as special cases.

Nevertheless, an even more general form of trimming is necessary to make trimmed estima-

tion operational in some models (e.g., binary-choice or panel data models). Let us introduce

an auxiliary trimming function r(xi, yi; β), which also indicates likely and unlikely observa-

tions in a given model by small and large values, respectively. Further, let sr:[j](xi, yi; β) be the

value of s(x, y; β) at observation (xi, yi) corresponding to the jth order statistics r[j](xi, yi;β)

of r(xi, yi; β), i = 1, . . ., n. Then the general trimmed estimator is defined by

β̂(GTE,h)
n = arg min

β∈Rp

h∑

j=1

sr:[j](xi, yi; β). (5)

2The assumption xi ∈ Rk and yi ∈ R correponds to most traditional use in regression models, but the
presented results are valid also for yi ∈ Rl and general multivariate models.

3For the sake of simplicity, we refer to s(xi, yi; β) for a given i ∈ N as residuals or losses.
4For the jth order statistics of s(xi, yi; β), I use symbol s[j](xi, yi; β). In this case, index i inside the order

statistics is just a formal notation and does not have any relationship to summation or other indices. It is to
be understood so that xi, yi inside s[j](xi, yi; β) just indicate the sample on which this order statistics is based.
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In other words, the ordering of observations and their inclusion in the objective function is

not given by ordering values s(xi, yi;β) of the loss function s(x, y; β), but by ordering values

r(xi, yi; β) of the auxiliary trimming function r(x, y; β). Although the existing trimmed esti-

mators are based on r(x, y; β) = s(x, y; β), using GTE in binary-choice models, for instance,

requires r(x, y; β) = Ey s(x, y; β) or r(x, y; β) = maxy s(x, y;β) (symbols Ey and maxy refer

to the expectation and maximum taken only with respect to dependent variable y). See

Section 4 for more details.

Before discussing assumptions concerning GTE, let us shortly return to the trimming

constant h. Naturally, the choice of the trimming constant h should vary with the sample

size n, and therefore, we have to work with a sequence of trimming constants hn. As hn/n

determines the fraction of sample included in the GTE objective function, and consequently,

the robustness properties of GTE, we want to asymptotically fix this fraction at λ, 1
2 ≤ λ ≤ 1.

The trimming constant for a given sample size n can be then defined by hn = [λn], where [x]

represents the integer part of x; in general, one can also consider any sequence {hn}n∈N such

that hn/n → λ.

2.4 Assumptions

Let us now complement the GTE definition first by some notation and definitions and later

by assumptions on the loss and trimming functions and random variables needed for further

analysis.

First, we refer to the distribution functions of s(xi, yi; β) and r(xi, yi;β) as Fβ(z) and

Gβ(z) and to the corresponding probability density functions, if they exist, as fβ(z) and

gβ(z), respectively. At the true parameter value β0, we also use a simpler notation F ≡ Fβ0

and G ≡ Gβ0 , and similarly for density functions, f ≡ fβ0 and g ≡ gβ0 . Further, whenever

we need to refer to the quantile functions corresponding to Fβ and Gβ, notation F−1
β and

G−1
β is used, respectively. Next, because the derivatives of functions s(x, y; β) and r(x, y;β)

are taken only with respect to β here, we denote tham simply by s′(x, y; β), r′(x, y; β), and so

on. Two purely mathematical symbols we need are the indicator function I(A), which equals

1 for x ∈ A and 0 elsewhere, and an open δ-neighborhood of a point x in a Euclidian space

Rl: U(x, δ) =
{

z ∈ Rl
∣∣ ‖z − x‖ < δ

}
.

Second, let us introduce the concept of β-mixing, which is central to the distributional
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assumptions made here. A sequence of random variables {Xi}i∈N is said to be absolutely

regular (or β-mixing) if

βm = sup
t∈N

E sup
B∈σf

t+m

|P (B|σp
t )− P (B)| → 0

as m → ∞, where the σ-algebras σp
t = σ(Xt, Xt−1, . . .) and σf

t = σ(Xt, Xt+1, . . .); see

Davidson (1994) or Arcones and Yu (1994) for details. Numbers βm,m ∈ N, are called

mixing coefficients.

Now, I specify all the assumptions necessary to derive the
√

n consistence of GTE (a

smaller subset of assumptions sufficient for the consistency of GTE is discussed at the end

of the section). They form three groups: distributional Assumptions D for random variables

(xi, yi), Assumptions F concerning properties of the loss function s(x, y;β) and auxiliary

trimming function r(x, y; β), and finally, identification Assumptions I.

Assumptions D

D1 Random variables {yi, xi}i∈N form an identically distributed absolutely regular sequence

of random vectors with finite second moments and mixing coefficients satisfying

mrβ/(rβ−2) (log m)2(rβ−1)/(rβ−2) βm → 0

as m →∞ for some rβ > 2.

D2 The distribution function Gβ of r(xi, yi;β) is absolutely continuous for any β ∈ B.

D3 Assume that for mG = infβ∈B G−1
β (λ) and MG = supβ∈B G−1

β (λ), it holds that

Mgg = sup
β∈B

sup
z∈(mG−δg ,MG+δg)

gβ(z) < ∞

and

mgg = inf
β∈B

inf
z∈(−δg ,δg)

gβ

(
G−1

β (λ) + z
)

> 0

for some δg > 0.

Having a general objective function s(x, y; β), Assumption D1 is a necessary condition for
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the uniform central limit theorem, see Andrews (1993) and Arcones and Yu (1994), for in-

stance. Assumption D2 indicates that at least one random variable have to be continuously

distributed. Assumption D3 formalizes two things: first, the density function gβ has to be

bounded uniformly in β ∈ B, which actually prevents distribution Gβ to become or be ar-

bitrarily close to a discrete one for some β ∈ B. Second, the density function has to be

positive in a neighborhood of the λ-quantile of Gβ, that is, around the chosen “trimming”

point of r(xi, yi; β) distribution. In a less general setting, when structure of a model is known,

Assumption D3 is usually implied by G ≡ Gβ0 being absolutely continuous with a density

function g ≡ gβ0 positive, bounded, and differentiable around G−1(λ); see Č́ıžek (2004b) for

the case of nonlinear regression model. Differentiability of density function g around the point

corresponding to the λ-quantile of the r(xi, yi; β0) distribution is a standard condition needed

for the analysis of rank statistics (see Vı́̌sek, 1999, and Zinde-Walsh, 2002, for instance).

Next, several conditions on the loss function s(xi, yi; β) and auxiliary trimming function

r(xi, yi; β) have to be specified. Most of them are just regularity conditions that are employed

in almost any work concerning nonlinear regression models. For example, the objective

function of an estimator is almost always assumed to be twice differentiable; see Pakes and

Pollard (1989). Further, since some assumptions stated below rely on the value of β and

I do not have to require their validity over the whole parametric space, I restrict β to a

neighborhood U(β0, δ) in these cases.

Assumptions F

Let us assume that there are a positive constant δ > 0 and a neighborhood U(β0, δ) such

that the following assumptions hold.

F1 Let s(xi, yi; β) and r(xi, yi; β) be a continuous (uniformly over any compact subset of the

support of x) in β ∈ B and s(xi, yi; β) be twice differentiable in β on U(β0, δ) almost

surely.

F2 Let {r(xi, yi; β)|β ∈ U(β0, δ)} and {s′(xi, yi; β)|β ∈ U(β0, δ)} form VC classes of func-

tions such that their envelopes E1(x) = supβ∈B |r(xi, yi; β)| and E2(x) = supβ∈U(β0,δ)

|s′(xi, yi; β)| have finite rβ-th moments.

F3 Expectations E supβ∈B |r(xi, yi;β)|1+δ, E supβ∈B |s(xi, yi; β)|1+δ, and finally, E supβ∈U(β0,δ)
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|s(xi, yi;β)|1+δ exist and are finite for l = 1, 2. Moreover, assume that E s′′(xi, yi; β0) =

Qs > 0, where Qs is a nonsingular positive definite matrix.

F4 Conditional expectation E
{

supβ∈U(β0,δ) [s′(xi, yi; β)| r(xi, yi; β) ∈ C]
}

is uniformly

bounded over all intervals C ∈ R such that G−1(λ) ∈ C.

Whereas the differentiability of the objective function and the existence of some moments are

standard assumptions, Assumption F2 deserves further comments, because it limits the class

of functions s′(x, y; β) and r(x, y; β) to VC classes (see Pollard, 1984, and van der Vaart, 1996,

for a definition). Although limited, they cover many common functions including polynomial,

logarithmic, and exponential functions, functions such that |f(x, t)− f(x, t′)| ≤ ξ(x) ‖t− t′‖α

for some α > 0 and nonnegative ξ(x), their sums, products, maxima and minima, composed

function and so on. Even though this assumption is not necessarily restrictive in many

contexts and it is not needed for the proof of consistency, it can be omitted as long as we

impose stronger distributional assumptions. For example, assume that function r(x, y;β)

is continuously differentiable in β ∈ U(β0, δ), its derivative r′(xi, yi;β) can be bounded by

M(zi) on β ∈ U(β0, δ), where M is an integrable function of a subset zi of variables (yi, xi),

and the distribution of r(xi, yi; β) conditional on zi is absolutely continuous (this is satisfied

in linear regression for r(x, y; β) = (y − x>β)2 and zi = xi, for instance). Then it is possible

to prove the Lrβ -continuity of I
(
r(xi, yi; β) ≤ G−1

β (λ)
)

in U(β0, δ) and to limit the braketing

cover numbers following results of Andrews (1993). Consequently, the results of Doukhan,

Massart, and Rio (1995) could be employed instead of Arcones and Yu (1994) and Yu (1994)

that are used in the current paper.

Additionally, the proof of
√

n consistency requires an unusual regularity assumption As-

sumption F4, which is the only and rather weak link between the loss function s(x, y; β) and

auxiliary trimming function r(x, y;β). First notice that conditioning by large intervals C is

not important here since the conditional expectation converges to the unconditional one for

C → R (Assumption F3). Considering small intervals around G−1(λ), Assumption F4 just

expresses the idea that the loss function should not behave wildly “around” the trimming

point (i.e., for xi, yi, and β such that r(xi, yi;β) is close to G−1
β (λ)). To exemplify, let us

use once again a linear regression model with s(x, y;β) = r(x, y;β) = (y − x>β)2. Then

s′(xi, yi;β) = (yi − x>i β)xi and conditioning has a form {(yi − x>i β)2 − G−1(λ)} ∈ (−a, b),
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where a, b > 0. For a → 0, b → 0, the conditional expectation becomes

E
{

(yi − x>i β)xi|(yi − x>i β)2 = G−1(λ)
}

= G−1(λ) E
{

xi sgn(yi − x>i β)
}

,

which is guaranteed by the existence of the second moments of xi.

Finally, we introduce two standard identification conditions.

Assumptions I

I1 B is a compact space.

I2 For any ε > 0 and U(β0, ε) such that B\U(β0, ε) is compact, there exists α(ε) > 0 such

that it holds

min
β∈B\U(β0,ε)

E
[
s(xi, yi;β) · I

(
r(xi, yi; β) ≤ G−1

β (λ)
)]

−E
[
s(xi, yi; β0) · I

(
r(xi, yi;β0) ≤ G−1

β0 (λ)
)]

> α(ε).

To close this section, let us note that Assumptions D, F, and I are sufficient to prove the
√

n

consistency of GTE. If only consistency is needed, one can omit all assumptions concerning

differentiability and derivatives of the regression function s(xi, yi;β) (Assumptions F), As-

sumption F2 on VC classes, and also weaken Assumption D1, since centered s(xi, yi; β) can

form a L1+δ-mixingale in the most general case (Andrews, 1988).

2.5 Alternative definition

Before proving the main results of the paper, some basic properties of the GTE objective

function Sn(β) =
∑hn

j=1 sr:[j](xi, yi; β) and its alternative formulation, which is more suitable

for deriving asymptotic results, are introduced.

Lemma 1 Under Assumptions D2 and F1, Sn(β) is continuous on B, twice differentiable at

β̂
(GTE,hn)
n as long as β̂

(GTE,hn)
n ∈ U(β0, δ), and almost surely twice differentiable at any fixed

point β ∈ U(β0, δ). Furthermore,

Sn(β) =
n∑

i=1

s(xi, yi; β) · I(
r(xi, yi; β) ≤ r[hn](xi, yi;β)

)
, (6)
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S
′
n(β)=

∂Sn(β)
∂β

=
n∑

i=1

s′(xi, yi; β) · I(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)
(7)

S
′′
n(β)=

∂2Sn(β)
∂β∂βT

=
n∑

i=1

s′′(xi, yi;β) · I(
r(xi, yi;β) ≤ r[hn](xi, yi;β)

)
(8)

almost surely at any β ∈ B and β ∈ U(β0, δ), respectively.

Proof: See Appendix A. ¤

In general, this definition is not equivalent to the one used in (4) unless all the residuals

are different from each other. However, Assumption D2 guarantees this with probability one.

Hence, we will use this notation and definition of Sn(β) in the rest of the paper.

3 Consistency

Let us now present the main asymptotic results concerning GTE: its consistency, rate of

convergence, and a discussion about asymptotic normality. In all cases, we split the GTE

objective function to two parts:

Sn(β) =
n∑

i=1

s(xi, yi; β) · I(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)

=
n∑

i=1

s(xi, yi; β)
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]

(9)

+
n∑

i=1

s(xi, yi; β) · I
(
r(xi, yi; β) ≤ G−1

β (λ)
)
. (10)

Whereas the first part (9) will be shown to be small because of the convergence of order

statistics to quantiles in mean, r[hn](xi, yi; β) → G−1
β (λ), the second part (10) will be dealt

with by standard asymptotic tools and shown to converge to

S(β) = E
{

s(x, y;β) · I
(
r(x, y; β) ≤ G−1

β (λ)
)}

.

First, using the uniform law of large numbers, we prove the consistency of the GTE

estimator β̂
(GTE,hn)
n minimizing Sn(β) on the parameter space B.

Theorem 2 Let s(xi, yi;β) and r(xi, yi; β) be continuous functions on B as specified in As-

sumption F1 and let Assumptions D, F3, and I hold. Then the general trimmed estimator
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β̂
(GTE,hn)
n minimizing (6) is weakly consistent, that is, β̂

(GTE,hn)
n → β0 in probability as

n → +∞.

Proof: See Appendix B. ¤

Next, we will derive the rate of convergence of β̂
(GTE,hn)
n to β0. Although the auxiliary

results necessary to establish
√

n-consistency are non-trivial, the basic idea of the proof is

simple. The second-order differentiability of S(β) at β0 together with Assumption F3, Qs > 0,

implies that ‖∂S(β)/∂β‖ ≥ C
∥∥β − β0

∥∥ in a neighborhood U(β0, ρ) for some C > 0 and

ρ > 0. Since the consistency of GTE guarantees that β̂
(GTE,hn)
n ∈ U(β0, ρ) with probability

approaching 1 as n → +∞, we just have to prove that
∥∥∥∂S(β̂(GTE,hn)

n )/∂β
∥∥∥ = Op

(
n−

1
2

)
.

This can be again done by using decomposition (9)–(10).

Theorem 3 Let Assumptions D, F, and I hold. Then β̂
(GTE,hn)
n is

√
n-consistent, that is,

√
n

(
β̂(GTE,hn)

n − β0
)

= Op(1)

as n → +∞.

Proof: See Appendix B. ¤

Finally, the asymptotic distribution of GTE would be of interest, but we are not able

to derive it in this general setting. Let us note however that the asymptotic normality was

proved in the case of nonlinear regression for LTS (Č́ıžek, 2004b) and the same idea and

steps can be used in practically any regression model with reduced form (1) under (slightly

extended) conditions for Lp-continuity of I
(
r(xi, yi; β) ≤ G−1

β (λ)
)

mentioned in Section 2.4.

More precisely, function r(x, y; β) should be continuously differentiable in β ∈ U(β0, δ), its

derivative r′(xi, yi; β) has to be bounded by M(zi) on β ∈ U(β0, δ), where M is an integrable

function of a subset zi of variables (yi, xi), and the distribution of r(xi, yi;β) conditional on zi

is absolutely continuous with a density function, which is positive, bounded, and differentiable

around G−1(λ).

4 Examples of trimmed estimators

In this section, we discuss various trimmed estimators and models where they can be applied.

To verify their feasibility, we check the identification Assumption I2, at least locally, as
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discussed in Section 4.1. Later, we present examples of trimmed estimators based on the

least-squares loss in nonlinear, times series, truncated, and censored regression (Section 4.2),

on the likelihood function in nonlinear and binary-response regression (Section 4.3), and their

use in panel data context (Section 4.4). Finally, we shortly treat possible combinations of the

GTE approach and semiparametric estimator (Section 4.5).

4.1 Identification condition

A crucial ingredient of the consistency of GTE is the identification Assumption I2, which

differs from a usual least squares or maximum likelihood identification condition by inclusion

of trimming. Plainly, the identification Assumption I2 can also be formulated such that

IC(β) = E
[
s(xi, yi;β) · I

(
r(xi, yi; β) ≤ G−1

β (λ)
)]

(11)

as a function of β has a unique minimum at β0. Since it is rather difficult to verify that β0

is a global minimum without having a specific model in hand, we concentrate only on local

behavior of IC(β): we try to justify that β0 is a local minimum of IC(β) by checking

∂IC(β0)
∂β

= 0 and
∂2IC(β0)

∂β2
> 0 (12)

(twice differentiability of s(xi, yi; β) is guaranteed by Assumption F1). Additionally, using

Lemmas 1 and 4 (Appendix A), we can write

∂IC(β0)
∂β

= E
[
s′(xi, yi; β0) · I(

r(xi, yi; β0) ≤ G−1(λ)
)]

= 0 (13)

∂2IC(β0)
∂β2

= E
[
s′′(xi, yi;β0) · I(

r(xi, yi;β0) ≤ G−1(λ)
)]

> 0, (14)

which are limits of (7) and (8); see the proof of Theorem 3 in Appendix B for details.

In the rest of this section, we try to verify conditions (13) and (14) for various models

and estimators. In all cases, we assume that a given “normal” estimator, which corresponds

to no trimming, λ = 1, is locally identified and we discuss additional assumption necessary

for “trimmed” identification conditions, λ < 1.
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4.2 Least trimmed squares

Let us now discuss GTE based on the least-squares loss, which in (non)linear regression

coincides with well-known LTS. After dealing with identification Assumption I2 and the use

of GTE in time series, an example of least-squares based GTE in truncated and censored

regression is given to demonstrate wider applicability of GTE compared to LTS.

The LTS estimator, considered here for nonlinear regression model (1), is a special case

of GTE for r(x, y; β) = s(x, y;β) = {y−h(x, β)}2. To apply GTE in the context of nonlinear

regression, the standard identification assumptions for least squares estimator – the orthogo-

nality E(εi|xi) = 0 and spheriality E
[
h′(xi, β

0)h′(xi, β
0)>

]
= Qh > 0 conditions – have to be

augmented by the symmetry of the conditional distribution of εi given xi, which guarantees

that

E
[
εi · I

(
ε2
i ≤ G−1(λ)

)∣∣ xi

]
= 0. (15)

First, let us verify condition (13):

∂IC(β0)
∂β

= E
[
s′(xi, yi; β0) · I(

r(xi, yi; β0) ≤ G−1(λ)
)]

= E
[
−2

{
yi − h(xi, β

0)
}

h
′
β(xi, β

0) · I
({

yi − h(xi, β
0)

}2 ≤ G−1(λ)
)]

= E
{
−2h

′
β(xi, β

0) E
[
εi · I

(
ε2
i ≤ G−1(λ)

)∣∣xi

]}
= 0.

Second, condition (14) can be verified similarly:5

∂2IC(β0)
∂β2

= E
[
s′′(xi, yi; β0) · I(

r(xi, yi; β0) ≤ G−1(λ)
)]

= E
[
2h

′
β(xi, β

0)h
′
β(xi, β

0)> · I
({

yi − h(xi, β
0)

}2 ≤ G−1(λ)
)]

−E
[
2

{
yi − h(xi, β

0)
}

h
′′
β(xi, β

0) · I({
yi − h(xi, β

0)
} ≤ G−1(λ)

)]

= E
[
2h

′
β(xi, β

0)h
′
β(xi, β

0)T · E{
I
(
ε2
i ≤ G−1(λ)

)∣∣xi

}]

−E
{
−2h

′′
β(xi, β

0) E
[
εi · I

(
ε2
i ≤ G−1(λ)

)∣∣ xi

]}

= λQhh > 0.

Let us note that given Assumptions D for the consistency of GTE, its application in

nonlinear regression models is not limited only to a classical cross-sectional regression. Linear
5For the sake of simplicity, we assume homoscedasticity here.
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and nonlinear regression models are used also in time series estimation, for example, in the

smooth threshold autoregressive model (STAR), which allows for a smooth transition between

states by means of a general function h(yt−d; c, δ) : R→ 〈0, 1〉:

yt = α0 +
p∑

i=1

yt−iαi +

(
δ0 +

p∑

i=1

yt−iδi

)
· h(yt−d; c, δ) + εt

(see Dijk, Terasvirta, and Franses, 2000, for a survey). For h ≡ 0, we obtain a standard

autoregressive process of order p. In this context, a use of a robust method such as GTE is

very advisable because, contrary to cross-sectional estimation, a single observation influences

not only its own residual, but also regression residuals of p− 1 following observations.

Additionally, GTE can be used in a wider range of models than LTS. For example, least

squares and LTS are not consistent in a truncated regression model, where a linear regression

y∗i = x>i β+εi with symmetrically distributed εi is presumed, but (yi = y∗i , xi) can be observed

only if y∗i > 0. On the other hand, Powell (1986) proposed symmetrically truncated least

squares (STLS) estimator, which restores the symmetry of distribution Φx of ε conditional on

x by truncating its tail and employes least squares afterwards. Specifically in our example, Φx

is truncated from below at −x>β, and therefore, it can be symmetrized by truncating from

above at +x>β. Powell (1986) shows that this can be achieved by minimizing
∑n

i=1(yi −
x>i β)2 · I(yi − x>i β < x>i β) with respect to β. Since the objective function is continuous

and differentiable in β almost everywhere, it is possible to define the corresponding trimmed

STLS estimator β̂
(GTE−STLS,h)
n by setting

s(x, y; β) = r(x, y;β) = (yi − x>i β)2 · I(yi < 2x>i β).

Note that this also applies in censored regression models, where STLS would be replaced by

symmetrically censored least squares (SCLS) of Powell (1986).

To conclude this example, let us verify identification conditions (13) and (14) for GTE–

SLTS under the previously mentioned assumptions: orthogonality E(εi|xi) = 0, spheriality

E(xix
>
i ) = Qx > 0, and conditional symmetry of Φx distribution. The first derivative of

IC(β) equals

∂IC(β0)
∂β

= E
[
−2(yi − x>i β0)xi · I

(
yi ≤ 2x>i β0

)
· I(

s(xi, yi; β0) ≤ G−1(λ)
)∣∣∣xi

]
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= E
[
xi E

{
−2εi · I

(
εi ≤ x>i β0

)
· I(

ε2
i ≤ G−1(λ)

)∣∣∣xi

}]
= 0.

Similarly, the second derivative is

∂2IC(β0)
∂β2

= E
[
2xix

>
i · I

(
yi ≤ 2x>i β0

)
· I(

s(xi, yi;β0) ≤ G−1(λ)
)∣∣∣ xi

]

= E
{

2xix
>
i E

[
I
(
εi ≤ x>i β0

)
· I(

ε2
i ≤ G−1(λ)

)∣∣∣ xi

]}
> 0

as long as E
[
I
(
εi ≤ x>i β0

)∣∣xi

]
> 0.

4.3 Maximum trimmed likelihood

Our next examples concern GTE based on the likelihood function, which in (non)linear

regression coincides with MTLE. After mentioning briefly identification of MTLE in nonlinear

regression, we again focus on examples, where standard MTLE does not apply, but it is

possible to construct a likelihood-based GTE: binary-choice and truncated regression.6

The MTLE estimator in nonlinear regression model (1) is also a special case of GTE for

r(x, y; β) = s(x, y; β) = lnφ{y − h(x, β)}, where φ denotes the density function of εi. Con-

ditions (13) and (14) can be verified in the same way as for LTS in Section 4.2. The most

important additional assumption is again the (conditional) symmetry of the εi distribution,

which implies that introducing “trimming” into the identification conditions does not inval-

idate them. For example under conditional symmetry of φ given xi, E[φ′(εi)/φ(εi)|xi] = 0

implies

E

[
φ′(εi)
φ(εi)

I
(− ln φ(εi) ≤ G−1(λ)

)∣∣∣∣xi

]
= 0.

Applying the GTE concept to maximum likelihood estimation becomes less trivial once we

consider less “continuous” models, such as binary-choice models. In this case, the dependent

variable takes on only two values, yi ∈ {0, 1}, and its conditional expectation is described by

E(yi|xi) = P (yi = 1|xi) = Φ(x>i β), where Φ is a symmetric absolutely continuous distribution

function (e.g., standard normal distribution function in the case of probit). The log-likelihood

contribution is then described by

s(xi, yi;β) = − ln l(xi, yi; β) = yi ln Φ(x>i β) + (1− yi) ln
{

1− Φ(x>i β)
}

.

6Even though the results are applicable in censored regression as well, we opt for truncated regression for
the sake of easier and more concise presentation.
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The MTLE estimator, which uses r(xi, yi; β) = s(xi, yi; β), cannot be applied because the

identification condition (13) is not satisfied for λ < 1 (φ denotes the density function corre-

sponding to Φ):

∂IC(β0)
∂β

= E

[{
−yiφ(x>i β0)

Φ(x>i β0)
xi +

(1− yi)φ(x>i β0)
1− Φ(x>i β0)

xi

}
· I(− ln l(xi, yi; β0) ≤ G−1(λ)

)]

= E

[
−P (yi = 1|xi)

φ(x>i β0)
Φ(x>i β0)

xi · I
(− ln l(xi, 1;β0) ≤ G−1(λ)

)]
(16)

+ E

[
+P (yi = 0|xi)

φ(x>i β0)
1− Φ(x>i β0)

xi · I
(− ln l(xi, 0;β0) ≤ G−1(λ)

)]
(17)

= E
{

φ(x>i β0)xi ×

×
[
I
(
− ln{1− Φ(x>i β0)} ≤ G−1(λ)

)
− I

(
− lnΦ(x>i β0) ≤ G−1(λ)

)]}
.

equals in general zero only if for all possible values of the random vector x,

I
(
− lnΦ(x>β0) ≤ G−1(λ)

)
= I

(
ln{1− Φ(x>β0)} ≤ G−1(λ)

)
, (18)

that is, if G−1(λ) = +∞ and λ = 1.7

On the other hand, this derivation hints that the identification condition would be satisfied

if the trimming function r(x, y; β) satisfies r(x, 0;β) = r(x, 1;β); see (16)–(18). Therefore, we

propose to set r(xi, yi; β) = max
{− lnΦ(x>β0),− ln[1− Φ(x>β0)]

}
and use GTE minimizing

h∑

j=1

− ln l(xi, yi; β) · I
(
− max

y∈{0,1}
ln l(xi, y; β) ≤ G−1

β (λ)
)

.

The conditions (13) and (14) can be then verified analogously to (16)–(17).

Finally, let us recall the truncated regression model mentioned in Section 4.2, which are

usually estimated by a maximum likelihood estimator. As we learned, a crucial condition for

applying the trimming principle is the symmetry of the error distribution. Therefore, MTLE

cannot be used in such cases because even if the underlying error distribution is symmetric,

limited observability (truncation or censoring) destroys the symmetry. On the other hand, it

is possible to construct a likelihood-based GTE estimator using the idea of Powell (1986)’s

STLS: we can symmetrically truncate the conditional distribution Φx of ε given x so that

symmetry is restored. For example, if Φx and its density φx are truncated from below at
7We neglect the other “solution,” λ = 0, which results in objective function constantly equal to zero.
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−x>β, they can be truncated from above at x>β to achieve symmetry. Consequently, the

original likelihood contribution l(x, y; β) = φx(y − x>β)/{1 − Φx(y − x>β)} · I(y > 0) is

replaced by

l(x, y; β) =
φx(y − x>β)

{Φx(x>β)− Φx(−x>β)} · I
(
0 ≤ y ≤ 2x>β

)
. (19)

4.4 Panel data

Even though regression estimation in panel data is based to a large extent on the same meth-

ods as cross-section and time series estimation, and therefore, the application of GTE seems

to follow the rules discussed in Sections 4.2 and 4.3, there is one extra feature of GTE worth

mentioning. Since we allow that the loss function s(x, y;β) is in general different from the

auxiliary trimming function r(x, y;β), it is possible to apply trimming to something else then

just individual observations. For example, panel data typically consist of observations on a

large number N of inviduals (cross-sectional units) over T time periods: (yit, xit)
N, T
i=1,t=1. Es-

pecially if the number T of time periods is small, one can consider, instead of trimming single

observations, to perform trimming across individuals. In such a case, the trimming function

r(x, y; β) could be a sum of losses per each individual, r(xit, yit; β) =
∑T

t=1 s(xit, yit;β), or

the worst loss of each individual, r(xit, yit; β) = maxt=1,...,T s(xit, yit; β), for all t = 1, . . ., T .

4.5 Semiparametric estimation

Last, but not least, one can ask whether the trimming principle used in GTE can be com-

bined with semi- and nonparametric estimators.8 Unfortunately, the derived results do not

allow in their current form to plug in a nonparametric estimator, for example, to propose a

trimmed form of Ichimura (1993)’s semiparametric least squares estimator of (1) with an un-

known regression function. Moreover, such an estimator would be probably computationally

infeasible. On the other hand, some estimators based on approximating unknown regression

or likelihood functions by a series expansion could be suitable candidates for deriving a cor-

responding trimmed method. For instance, the seminonparametric likelihood approach by

Gallant and Nychka (1987) relies on maximum likelihood principle and approximation of an
8Note that previously mentioned STLS and SCLS are often considered semiparametric estimators too, but

here we have in mind estimators using smoothing or series expansions to approximate an unknown regression
or likelihood function.
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unknown density function φ(x) by

φ(x) ≈ φa(x) = P 2
k (x− τ)φ2{x|τ, diag(γ)},

where P 2
k is a polynomial of order k ∈ N. Hence, defining GTE by s(x, y; β) = r(x, y;β) =

− ln φa(x, y; β) leads to a computationally feasible semiparametric estimator provided that

φa(x) is a symmetric function, that is, coefficients of polynomial P 2
k (x− τ) are zero for odd

powers of x− τ .

5 Conclusion

Motivated by LTS, LTA, and MTLE, we proposed a general trimmed estimator, which ex-

tends the applicability of high breakdown-point methods to a wide range of econometric

models, including nonlinear regression, time series, and limited dependent variable models.

Thus, GTE allows to employ classical parametric methods, but adds a protection against

contamination of data. The following conclusions concerns further asymptotic properties of

GTE, its extensions and use in applications.

Although we proved the consistency and the rate of convergence under rather general

conditions, it seems that results concerning the asymptotic distribution of GTE can be derived

only if the structure of a model and an underlying estimator becomes more specific. Thus,

this asymptotic result has to be probably derived on the case-by-case basis, although the

arguments are likely to follow similar lines as the proof of asymptotic normality of LTS by

Č́ıžek (2004b).

Furthermore, we discussed only the most basic form of trimmed estimation, where obser-

vations are either included in or excluded from the GTE objective function. Nevertheless,

various weighted trimmed estimators and data-adaptive choice of trimming, only recently

introduced for LTS and MTLE, are straightforward to apply.

Finally, we argued that computational, robustness, and finite sample properties of GTE

should be analogous to existing results concerning LTS, LTA, and MTLE. On the other hand,

most existing robust estimators are studied and applied in the context of location or linear

regression models, whereas possible applications of GTE also involve rather complex nonlinear

models. Hence, simulation studies have to be employed to learn more about finite sample
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behavior of GTE under different circumstances. Last, but not least, existing algorithms for

evaluating trimmed estimators have to be adapted to many different models and implemented.

Appendix

Here we present the proofs of lemmas and theorems on the order statistics of {r(xi, yi;β)}n
i=1

and the GTE objective function (Appendix A) and on the consistency of GTE (Appendix

B). Note that the alternative definition (6) of GTE is employed in all proofs. Additionally,

notation Snn(β) = Sn(β)/n and symbol Ω for the probability space, on which {xi, yi} is

defined, are used.

A Lemmas on order statistics and GTE objective function

Proof of Lemma 1: For a given sample size n, let us consider a fixed realization ω ∈
Ωn. The objective function Sn(β) at a particular point β ∈ B equals to one of functions

T1(β), . . . , Tl(β), where Tj(β) =
∑hn

i=1 s(xkji , ykji ; β), j = 1, . . . , l =
(

n
hn

)
, and {kj1, . . . , kjhn} ∈

{1, . . . , n}hn are sets of hn indices selecting observations from the sample. Each function Tj(β)

is uniformly continuous on B and twice differentiable in a neighborhood U(β0, δ). There are

two cases to discuss:

1. If one can find an index j and a neighborhood U(β, ε) such that Sn(β) = Tj(β) for

all β ∈ U(β, ε), Sn(β) is continuous at β. Additionally, if β ∈ U(β0, δ) there is a

neighborhood U(β, ε) ⊂ U(β0, δ) and Sn(β) = Tj(β) is even twice differentiable at β

(almost surely).

2. In all other cases, β lies on a boundary in the sense that there are some j1, . . . , jm such

that Sn(β) = Tj1(β) = . . . = Tjm(β) (that is, some residuals being present in the GTE

objective function Sn(β) are “switching” their place with those that are not present in

the objective function and are all equal at this particular β). Since Sn(β) = Tj1(β) =

. . . = Tjm(β) and all functions Tji , i = 1, . . . ,m, are continuous at β, Sn(β) is continuous

at β as well.

Furthermore, Sn(β) is also differentiable provided that T
′
j1

(β) = . . . = T
′
jm

(β) and β ∈
U(β0, δ). This condition is always satisfied at β̂

(GTE,hn)
n ∈ U(β0, δ) as T

′
j1

(β̂(GTE,hn)
n ) =
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. . . = T
′
jm

(β̂(GTE,hn)
n ) = 0; otherwise, β̂

(GTE,hn)
n would not minimize Sn(β).

Now, consider a fixed β ∈ U(β0, δ) (n is still fixed). Assumption D2 implies that r(xi, yi;β)

is continuously distributed. Therefore, the probability that any two residuals at a given β

are equal is zero:

P (Ω0 = {ω ∈ Ωn |∃i, j ∈ {1, . . ., n}, i 6= j, such that r(xi, yi; β, ω) = r(xj , yj ; β, ω)}) = 0.

Moreover, there is a δ′ > 0 such that r(xi, yi; β) is continuous on Ū(β, δ′), and therefore, it

is also uniformly continuous on Ū(β, δ′), i = 1, . . . , n. Therefore, for any given ω /∈ Ω0 and

κ(ω) = 1
2 mini,j=1,...,n;i6=j |r(xi, yi;β, ω)− r(xj , yj ; β, ω)| > 0 we can find an ε(ω) > 0 such that

it holds that supβ′∈U(β,δ′) |r(xi, yi; β′)− r(xi, yi; β)| < κ(ω) for all i = 1, . . ., n. Consequently,

the ordering of r(x1, y1; β), . . . , r(xn, yn; β) is constant for all β′ ∈ U(β, δ′) and there exist j

such that Sn(β) = Tj(β) on U(β, δ′) almost surely as stated in point 1 (P (Ω\Ω0) = 1). Thus,

Sn(β) is twice differentiable at β almost surely.

Finally, since we just derived that there are almost surely no i and j such that r(xi, yi;β) =

r(xj , yj ; β) at any β ∈ B and any fixed n ∈ N and that Sn(β) is almost surely twice differen-

tiable at any β ∈ U(β0, δ), we can write

Sn(β) =
n∑

i=1

s(xi, yi;β) · I(
r(xi, yi;β) ≤ r[hn](xi, yi;β)

)

S
′
n(β) =

∂Sn(β)
∂β

=
n∑

i=1

s′(xi, yi; β) · I(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)

S
′′
n(β) =

∂2Sn(β)
∂β∂βT

=
n∑

i=1

s′′(xi, yi;β) · I(
r(xi, yi;β) ≤ r[hn](xi, yi;β)

)

almost surely for β ∈ B and β ∈ U(β0, δ), respectively. ¤

The next lemma just verifies that the uniform law of large numbers is applicable for

trimmed sums.

Lemma 4 Let Assumptions D, F1, and I1 hold and assume that t(x, y; β) is a real-valued

function continuous in β uniformly in x and y over any compact subset of the support of
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(x, y). Moreover, assume that E supβ∈B |t(xi, yi;β)|1+δ < ∞ for some δ > 0. Then

sup
β∈B,K∈R

∣∣∣∣∣
1
n

n∑

i=1

[
t(xi, yi; β) · I

(
r(xi, yi; β) ≤ G−1

β (λ) + K
)]

− E
[
t(xi, yi;β) · I

(
r(xi, yi; β) ≤ G−1

β (λ) + K
)]∣∣∣ → 0

as n → +∞ in probability.

Proof: This result is an application of the generic uniform law of large numbers and we use

here its variant due to Andrews (1992, Theorem 4).9 Most of the conditions of the uniform

law of large numbers are satisfied trivially or by assumption: (i) the parameter space B is

compact by Assumption I1; (ii) differences

d(xi, yi;β,K) = t(xi, yi; β) · I
(
r(xi, yi; β) ≤ G−1

β (λ) + K
)

− E
[
t(xi, yi; β) · I

(
r(xi, yi;β) ≤ G−1

β (λ) + K
)]

are identically distributed (Assumption D1) and uniformly integrable since E supβ∈B |t(x, y; β)|1+δ

is finite for some δ > 0 (see Davidson, 1994, Theorem 12.10); and (iii) finally, the pointwise

convergence of

1
n

n∑

i=1

[
t(xi, yi; β) · I

(
r(xi, yi; β) ≤ G−1

β (λ) + K
)]

−E
[
t(xi, yi; β) · I

(
r(xi, yi;β) ≤ G−1

β (λ) + K
)]

P→ 0

at any β ∈ B and K ∈ R follows from the weak law of large numbers for mixingales due

to Andrews (1988) (any mixing sequence forms a mixingale, and moreover, the differences

d(xi, yi;β,K) are L1+δ-bounded, see Andrews, 1988, for more details).

Therefore, the only assumption of Andrews (1992, Theorem 4) which remains to be verified

is assumption TSE:

lim
ρ→0

P

(
sup

β∈B,K∈R
sup

β′∈U(β,ρ),K′∈U(K,ρ)

∣∣tI(xi, yi;β′,K ′)− tI(xi, yi; β, K)
∣∣ > κ

)
= 0 (20)

9For some function we apply this lemma to, namely to those forming a VC class, the result directly follows
from Yu (1994).
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for any κ > 0, where tI(xi, yi; β,K) = t(xi, yi, β) · I
(
r(xi, yi; β) ≤ G−1

β (λ) + K
)
. To simplify

the notation, we write suprema only with the respective variables β, K, β′,K ′ without the

corresponding sets B,R, U(β, ρ), U(K, ρ), respectively, which are fixed throughout the proof.

First, note that it holds for all β ∈ B and K ∈ R

sup
β,K

sup
β′,K′

∣∣tI(xi, yi;β′,K ′)− tI(xi, yi;β,K)
∣∣

≤ sup
β,K

sup
β′,K′

∣∣∣t(xi, yi;β′)
[
I
(
r(xi, yi;β′) ≤ G−1

β′ (λ) + K ′
)
− I

(
r(xi, yi;β) ≤ G−1

β (λ) + K
)]∣∣∣

(21)

+ sup
β,K

sup
β′,K′

∣∣∣
[
t(xi, yi; β′)− t(xi, yi; β)

]
I
(
r(xi, yi; β) ≤ G−1

β (λ) + K
)∣∣∣ (22)

Hence, we can verify assertion (20) by proving it for expressions (21) and (22). For a given

ε > 0, we find ρ0 > 0 such that the probabilities of these two expression exceeding given

κ > 0 are smaller than ε for all ρ < ρ0.

1. Let us start with (21). First, observe that

sup
β,K

sup
β′,K′

∣∣∣t(xi, yi;β′)
[
I
(
r(xi, yi;β′) ≤ G−1

β′ (λ) + K ′
)
− I

(
r(xi, yi;β) ≤ G−1

β (λ) + K
)]∣∣∣

≤ sup
β∈B

|t(xi, yi; β)| × (23)

× sup
β,K

sup
β′,K′

∣∣∣I
(
r(xi, yi; β′) ≤ G−1

β′ (λ) + K ′
)
− I

(
r(xi, yi; β) ≤ G−1

β (λ) + K
)∣∣∣ ,

where supβ |t(x1, y1;β)| is a function independent of β possessing a finite expectation. Be-

cause the difference
∣∣∣I

(
r(xi, yi; β′) ≤ G−1

β′ (λ) + K ′
)
− I

(
r(xi, yi; β) ≤ G−1

β (λ) + K
)∣∣∣ is al-

ways lower or equal to one, (21) has an integrable majorant independent of β. Therefore, if

we show that

P

(
sup
β,K

sup
β′,K′

∣∣∣I
(
r(xi, yi; β′) ≤ G−1

β′ (λ) + K ′
)
− I

(
r(xi, yi; β) ≤ G−1

β (λ) + K
)∣∣∣ = 1

)
→ 0

(24)

as ρ → 0, it implies, that (23) converges in probability to zero for ρ → 0 and n →∞ as well.

Second, let us derive an intermediate result regarding the convergence of distribution function

Gβ′ to Gβ. Assumption F1 states that r(xi, yi;β′) → r(xi, yi; β) for β′ → β uniformly over any

compact subset of the support of x, that is, r(xi, yi;β′) → r(xi, yi; β) for β′ → β in probability

uniformly on B. Recalling that Gβ(x) is the cumulative distribution function of r(xi, yi;β),
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it follows that Gβ′(x) → Gβ(x) for all x ∈ R (convergence in distribution) uniformly on B

because Gβ(x) is an absolutely continuous distribution function. The absolute continuity of

Gβ (Assumption D2) also implies that G−1
β′ (λ) converges to G−1

β (λ) uniformly on B.

Third, given the uniform convergence result of the previous paragraph, we can find some

ρ1 > 0 such that
∣∣∣G−1

β′ (λ) + K ′ −G−1
β (λ)−K

∣∣∣ < ε
8Mgg

for any β ∈ B, β′ ∈ U(β, ρ1), and

K ′ ∈ U(K, ρ1), where Mgg is the uniform upper bound for the probability density functions of

r(xi, yi; β) (Assumption D3). Further, we can find a compact subset Ω1 ⊂ Ω, P (Ω1) > 1− ε
2 ,

and corresponding ρ2 > 0 such that supβ,β′ |r(xi, yi; β′, ω)− r(xi, yi; β, ω)| < ε
8Mgg

for all

ω ∈ Ω1 and ρ < ρ2 (Assumption F1). Hence, setting ρ0 = min {ρ1, ρ2}, it follows that

P

(
sup
β,K

sup
β′,K′

∣∣∣I
(
r(xi, yi;β′) ≤ G−1

β′ (λ) + K ′
)
− I

(
r(xi, yi; β) ≤ G−1

β (λ) + K
)∣∣∣ = 1

)

≤ ε

2
+ P

(
∃β ∈ B : r(xi, yi; β) ∈

(
G−1

β (λ)− ε

4Mgg
, G−1

β (λ) +
ε

4Mgg

))

≤ ε

2
+

2ε

4Mgg
·Mgg = ε

for any ρ < ρ0 because Mgg is the uniform upper bound for the probability density functions

of r(xi, yi; β) around G−1
β (λ) over all β ∈ B. Thus, we have proved (24), and consequently,

we have verified that the expectation of (21) converges to zero for ρ → 0 in probability.

2. We should deal now with (22) and prove that for any given κ > 0

lim
ρ→0

P

(
sup
β,K

sup
β′,K′

∣∣∣
[
t(xi, yi; β′)− t(xi, yi; β)

]
I
(
r(xi, yi; β) ≤ G−1

β (λ) + K
)∣∣∣ > κ

)
= 0. (25)

First, note that the difference

∣∣t(xi, yi; β′)− t(xi, yi; β)
∣∣ ≤ ∣∣t(xi, yi;β′)

∣∣ + |t(xi, yi; β)| ≤ 2 sup
β
|t(xi, yi; β)|

can be bounded from above by a function that is independent of β and has a finite expectation,

as follows from the assumptions of this lemma. Let 2E supβ |t(xi, yi;β)| = UE .

Second, for an arbitrary fixed ε > 0, we can find a compact subset Aε of the support of (xi, yi)

(and its complement Aε) such that P ((xi, yi) ∈ Aε) > 1 − κε
2UE

(both xi and yi are random

variables with finite second moments) and 2
∫
Aε

supβ∈B |t(xi, yi;β)| < κε
2 . Given this set Aε

and β ∈ B, we can employ continuity of t(xi, yi; β) in β (uniform over all (x1, y1) ∈ Aε) and
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find a ρ0 > 0 such that

sup
(x1,ε1)∈Aε

sup
β,β′

∣∣t(xi, yi; β′)− t(xi, yi;β)
∣∣ <

κε

2
.

Hence,

E

{
sup
β,β′

∣∣t(xi, yi;β′)− t(xi, yi; β)
∣∣
}

≤
∫

Aε

2 sup
β∈B

|t(xi, yi; β)|dFx(xi)dFy(yi)

+
∫

Aε

κε

2
dFx(xi)dFy(yi)

≤ κε

2
+

κε

2
= κε,

and consequently,

P

(
sup
β,K

sup
β′,K′

∣∣∣
[
t(xi, yi; β′)− t(xi, yi;β)

] · I
(
r(xi, yi;β) ≤ G−1

β (λ) + K
)∣∣∣ > κ

)

≤ 1
κ

E

[
sup
β,K

sup
β′,K′

∣∣∣
[
t(xi, yi;β′)− t(xi, yi; β)

] · I
(
r(xi, yi; β) ≤ G−1

β (λ) + K
)∣∣∣

]

≤ κε/κ = ε

for any ρ < ρ0. Hence, we have verified that (25).

Thus, the assumption TSE of Andrews (1992) is valid as well and the claim of this lemma

follows from the uniform weak law of large numbers. ¤

The following assertions present some fundamental properties of order statistics of regres-

sion residuals.

Lemma 5 Let λ ∈ 〈
1
2 , 1

〉
and put hn = [λn] for n ∈ N. Under Assumptions D, F1, F3, and

I1, it holds that

sup
β∈B

∣∣∣r[hn](xi, yi; β)−G−1
β (λ)

∣∣∣ → 0 (26)

as n → +∞ in probability, and consequently,

EGn = E sup
β∈B

∣∣∣r[hn](xi, yi; β)−G−1
β (λ)

∣∣∣ → 0 (27)

as n → +∞.
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Proof: Let us recall that r(xi, yi;β) ∼ Gβ. Further, let us take an arbitrary K1 > 0, set

Kε = K1 ·mgg (see Assumption D3 for definition of mgg), and consider some ε ∈ (0, 1). For

any choice of ε, we will find n0 ∈ N such that for all n > n0

P

(
sup
β∈B

∣∣∣r[hn](xi, yi; β)−G−1
β (λ)

∣∣∣ > K1

)
< ε, (28)

which proves the lemma. Without loss of generality, we can assume that K1 < δg, where δg

comes from Assumption D3.

First, denote

v1i(β, K1) = I
(
r(xi, yi; β) ≤ G−1

β (λ) + K1

)
.

As it holds for all β ∈ B and i = 1, . . ., n

E v1i(β, K1) = P (v1i(β,K1) = 1) = P
(
r(xi, yi; β) ≤ G−1

β (λ) + K1

)
≥ λ,

it follows that E v1i(β, K1) ∈ (λ, 1〉. Further, Lemma 4 for choice t(x, y; β) = 1 guarantees

that we can use the weak law of large numbers for v1i(β, K1) uniformly on B × R+. Hence,

sup
β∈B,K1∈R+

∣∣∣∣∣
1
n

n∑

i=1

{ν1i(β, K1)− E ν1i(β,K1)}
∣∣∣∣∣ → 0

in probability. Consequently, we can find some n0 such that it holds for all n > n0

P

(
sup

β∈B,K1∈R+

∣∣∣∣∣
1
n

n∑

i=1

{v1i(β, K1)− E v1i(β,K1)}
∣∣∣∣∣ ≤

1
2
Kε

)
> 1− ε

2
.

Thus, it holds uniformly in β and K1 with probability greater or equal to 1− ε/2

− 1
2
Kε +

n∑

i=1

E v1i(β, K1) ≤
n∑

i=1

v1i(β,K1). (29)

Second, because K1 < δg, Assumption D3 implies E v1i(β,K1) > λ + K1 ·mgg = λ + Kε

for all β ∈ B and K1 < δg. This result together with equation (29) implies that

nλ + (n− 1
2
)Kε = −1

2
Kε + n(λ + Kε) < −1

2
Kε +

n∑

i=1

E v1i(β, K1) ≤
n∑

i=1

v1i(β,K1).
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But this means for all β ∈ B that at least nλ ≥ hn of values r(xi, yi; β) are smaller than

G−1
β (λ)+K1. In other words, r[hn](xi, yi; β) ≤ G−1

β (λ)+K1 with probability at least 1− ε/2.

The corresponding lower inequality, holding also with probability at least 1− ε/2, can be

found by repeating these steps for

v2i(β, K1) = I
(
r(xi, yi; β) ≥ G−1

β (λ)−K1

)
.

Finally, combining these two inequalities results in (26). Since r(xi, yi;β) is uniformly inte-

grable due to Assumption F3 and Davidson (1994, Theorem 12.10), r[hn](xi, yi; β) is uniformly

integrable as well and the second claim follows directly from the (26) by Davidson (1994, The-

orem 18.14), which shows that the convergence in probability of uniformly integrable random

variables implies the convergence in Lp-norm. ¤

Lemma 6 Let λ ∈ 〈
1
2 , 1

〉
and put hn = [λn] for n ∈ N. Under Assumptions D, F, and I1,

there is some ε > 0 such that

√
n sup

β∈U(β0,ε)

∣∣∣r[hn](xi, yi; β)−G−1
β (λ)

∣∣∣ = Op(1)

and

ELn = E

{
√

n sup
β∈U(β0,ε)

∣∣∣r[hn](xi, yi; β)−G−1
β (λ)

∣∣∣
}

= O(1)

for n → +∞.

Proof: The proof has a structure rather similar to the proof of Lemma 5. First, let us take a

fixed ε ∈ (0, 1), an arbitrary K1 > 0, and set Kε = K1 ·mg. Further, denote

v1i(β, K1) = I
(
r(xi, yi; β) ≤ G−1

β (λ) + n−
1
2 K1

)
.

As it holds for all β ∈ B and i = 1, . . ., n

E v1i(β, K1) = P (v1i(β, K1) = 1) = P
(
r(xi, yi; β) ≤ G−1

β (λ) + n−
1
2 K1

)
≥ λ,

it follows that E v1i(β, K1) ∈ (λ, 1〉.
Now, Assumption F2 and van der Vaart and Wellner (1996, Lemmas 2.6.15 and 2.6.18)

imply that {v1i(β,K1);β ∈ U(β0, δ),K1 ∈ R} form a VC class, which is uniformly bounded
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by 1. Because of Assumption D1 on the mixing coefficients, we can apply the uniform central

limit theorem of Arcones and Yu (1994) to see that

{
1√
n

n∑

i=1

{ν1i(β, K1)− E ν1i(β, K1)} : β ∈ U(β0, δ),K1 > 0

}

converges in distribution to a Gaussian process with uniformly bounded and uniformly con-

tinuous pathes. Consequently, we can find some ε > 0 and a constant U > 0

sup
n∈N

E sup
β∈U(β0,ε),K1>0

∣∣∣∣∣
1√
n

n∑

i=1

(v1i(β, K1)− E v1i(β, K1))

∣∣∣∣∣
2

< U

(functions v1i(β, K1) are bounded). By the Chebyshev inequality P (|X| > K) ≤ E |X|p/Kp,

it finally follows that

P

(
sup

β∈U(β0,ε),K1>0

∣∣∣∣∣
1√
n

n∑

i=1

(v1i(β,K1)− E v1i(β,K1))

∣∣∣∣∣ >
1
2
Kε

)
<

4U

K2
ε

.

Thus, it holds uniformly in β ∈ U(β0, ε) with probability greater or equal to 1− 4U/K2
ε

− 1
2
√

n ·Kε +
n∑

i=1

E v1i(β, K1) ≤
n∑

i=1

v1i(β, K1). (30)

Further, we can find n0 such that n−
1
2 K1 < δg for all n > n0 (δg comes from Assumption

D3), and thus, E v1i(β, K1) > λ + n−
1
2 K1 ·mg = λ + n−

1
2 Kε for all β ∈ U(β0, ε) and n > n0.

This result together with equation (30) imply that

nλ +
1
2
√

nKε = −1
2
√

nKε + nλ +
√

nKε < −1
2
√

nKε +
n∑

i=1

E v1i(β) ≤
n∑

i=1

v1i(β).

But this means for all β ∈ U(β0, ε) that at least nλ ≥ hn of values r(xi, yi;β) are smaller

than G−1
β (λ) + n−

1
2 Kε. In other words, r[hn](xi, yi;β) ≤ G−1

β (λ) + n−
1
2 Kε on U(β0, ε) with

probability at least 1−4U/K2
ε . The corresponding lower inequality can be found by repeating

these steps for

v2i(β, K1) = I
(
r(xi, yi; β) ≥ G−1

β (λ)− n−
1
2 K1

)
.

These inequalities can be rewritten as Zn = supβ∈U(β0,ε) n−
1
2

∣∣∣r[hn](xi, yi;β)−G−1
β (λ)

∣∣∣ ≤
Kε, which holds with probability 1− 4U/K2

ε . Thus, for any ε > 0 we find Kε = 1 +
√

4U/ε
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such that P (Zn(β) ≤ Kε) > 1 − ε, so Zn = Op(1). Furthermore, denoting the cumulative

distribution function of Zn by Fz,n, the expectation

EZn =
∫ ∞

0
[1− Fz,n(x)]dx ≤ 1 +

∫ ∞

1

4U

x2
dx = 1 + 4U

is finite. ¤

The following lemma and corollaries translate the results on the convergence of the order

statistics of residuals to the convergence of the indicators I
(
r(xi, yi;β) ≤ r[hn](xi, yi;β)

)
to

I
(
r(xi, yi;β) ≤ G−1

β (λ)
)

and their expectations.

Lemma 7 Under Assumptions D, F1, F3, and I1, it holds for any i ≤ n

PG = P

(
sup
β∈B

∣∣∣I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)∣∣∣ 6= 0

)
= o(1).

Additionally, under Assumptions D, F, and I1, there exists ε > 0 such that

PL = P

(
sup

β∈U(β0,ε)

∣∣∣I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)∣∣∣ 6= 0

)
= O

(
n−

1
2

)

as n → +∞.

Proof: To facilitate easier understanding, let us define the difference between indicators

νin(β) = I
(
r(xi, yi;β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)
.

Without loss of generality, we discuss only the case vin(β) = −1, which corresponds to

r[hn](xi, yi; β) < r(xi, yi; β) ≤ G−1
β (λ). The other case vin(β) = 1 can be derived analogously.

Also notice that P
(
supβ∈B |νin(β)|) = P (∃β ∈ B : |νin(β)| 6= 0) because |νin(β)| ∈ {0, 1}.

So, let us consider an event ω = (ω1, . . ., ωn) ∈ Ωn and assume without loss of generality

that i = n. Given ω′ = (ω1, . . ., ωn−1) ∈ Ωn−1 and (r(x1, y1; β, ω1), . . ., r(xn−1, yn−1;β, ωn−1))

r[hn](xi, yi; β, ω) =





r[hn−1](xi, yi; β, ω′) if r(xnyn; β, ωn) < r[hn−1](xi, yi; β, ω′)

r(xn, yn; β, ωn) if r[hn−1](xi, yi; β, ω′) ≤ r(xn, yn;β, ωn)

and r(xn, yn; β, ωn) ≤ r[hn](xi, yi; β, ω′)

r[hn](xi, yi; β, ω′) if r[hn](xi, yi; β, ω′) < r(xn, yn; β, ωn)

(31)
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Denoting Ω1, Ω2, and Ω3 subsets of Ωn corresponding to the three (disjoint) cases in (31),

we can write

P ({ω ∈ Ωn|∃β ∈ B : νnn(β) = −1}) = P ({ω ∈ Ω1|∃β ∈ B : νnn(β) = −1})

+ P ({ω ∈ Ω2|∃β ∈ B : νnn(β) = −1})

+ P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1})

and analyze this sum one by one.

1. P1 = P ({ω ∈ Ω1|∃β ∈ B : νnn(β) = −1})
≤ P

(∃β ∈ B : r[hn](xi, yi; β, ω) < r(xn, yn; β, ωn) < r[hn](xi, yi; β, ω)
)

= 0.

2. P2 = P ({ω ∈ Ω2|∃β ∈ B : νnn(β) = −1})
= P

(
∃β ∈ B : r[hn−1](xi, yi; β, ω′) ≤ r(xn, yn; β, ωn) = r[hn](xi, yi; β, ω) ≤ G−1

β (λ)
)

can

be analyzed in exactly the same way as P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1}), see point 3.

3. P3 = P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1})
= P

(
∃β ∈ B : r[hn](xi, yi;β, ω′) = r[hn](xi, yi; β, ω) < r(xn, yn; β, ωn) ≤ G−1

β (λ)
)
. We

can structure this last term in the following way (Assumption D3):

P
(
∃β ∈ B : r[hn](xi, yi; β, ω′) < r(xn, yn; β, ωn) ≤ G−1

β (λ)
)

= (32)

=
∫

ω′∈Ωn−1

∫

ωn∈Ω
sup
β∈B

I
(
r[hn](xi, yi; β, ω′) < r(xn, yn; β, ωn) ≤ G−1

β (λ)
)
dP (ω1)dP (ω′)

=
∫

ω′∈Ωn−1

Mgg · sup
β∈B

∣∣∣r[hn](xi, yi;β, ω′)−G−1
β (λ)

∣∣∣ dP (ω′)

= Mgg · E
{

sup
β∈B

∣∣∣r[hn](xi, yi; β, ω′)−G−1
β (λ)

∣∣∣
}

. (33)

The first claim of the lemma, PG = o(1), is then a direct consequence of Lemma 5.

The second result, PL = O
(
n−

1
2

)
, can be derived analogously, if we consider only a

neighborhood U(β0, ε) instead of B, write last expectation as

n−
1
2 Mgg · E

{
√

n sup
β∈B

∣∣∣r[hn](xi, yi;β, ω′)−G−1
β (λ)

∣∣∣
}

,

and employ Lemma 6. ¤
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Corollary 8 Let Assumptions D, F1, F3, and I1 hold and assume that t(x, y; β) is a real-

valued function continuous in β uniformly in x and y over any compact subset of the support

of (x, y). Moreover, assume that E supβ∈B |t(xi, yi; β)| < ∞. Then it holds that

E

{
sup
β∈B

∣∣∣t(xi, yi, β)
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]∣∣∣

}
= o(1).

Additionally, if Assumptions D, F, and I1 hold and there exists ε > 0 such that

E

{
sup

β∈U(β0,ε)

[
|t(xi, yi, β)|| I(

r(xi, yi; β) ≤ r[hn](xi, yi;β)
) 6= I

(
r(xi, yi; β) ≤ G−1

β (λ)
)]}

< Mt

is bounded,

E

{
sup

β∈U(β0,ε)

∣∣∣t(xi, yi, β)
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)]∣∣∣

}

= O
(
n−

1
2

)

as n → +∞.

Proof: This can verified along the same lines as Lemma 7. Defining functions νin(β) and sets

Ω1, Ω2, and Ω3 exactly the same way as in Lemma 7, we can express the expectation of any

random variable EX as
{∫

Ω1
+

∫
Ω2

+
∫
Ω3

}
xdF (x). By the same argument as in Lemma 7,

we will treat only part concerning
∫
Ω3

and assume without loss of generality that i = n.

First, since the expectation

E

{
sup
β∈B

|t(xn, yn, β) · νin(β)|
}
≤ E

{
sup
β∈B

|t(xn, yn, β)| · sup
β∈B

|νin(β)|
}
≤ E

{
sup
β∈B

|t(xn, yn, β)|
}

has an integrable majorant and P
(
supβ∈B |νin(β)| = 1

)
converges to zero as n → +∞ (Lemma 7),

the whole expectation converges to zero as well, which is the first claim of this corollary.

Second, similarly to (32)–(33), we can write

E

{
sup

β∈U(β0,ε)

|t(xn, yn, β) · νin(β)|
}
≤

∫

Ω3

{
sup

β∈U(β0,ε)

|t(xn, yn, β) · νin(β)|
}

dP (ω)

≤
∫

ω′∈Ωn−1

∫

ωn∈Ω
E

{
sup

β∈U(β0,ε)

[ |t(xn, yn, β)|| |νin(β)| = 1]

}
sup

β∈U(β0,ε)

|νin(β)| dP (ω′)dP (ωn)
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≤ Mt

∫

ω′∈Ωn−1

∫

ωn∈Ω
sup

β∈U(β0,ε)

|νin(β)| dP (ω′)dP (ωn)

≤ n−
1
2 MtMgg

∫

ω′∈Ωn−1

√
n sup

β∈U(β0,ε)

∣∣∣r[hn](xi, yi; β, ω′)−G−1
β (λ)

∣∣∣ dP (ω′)

Thus, we obtain from Lemma 6

E

{
sup
β∈B

|t(xn, yn, β) · νin(β)|
}
≤ n−

1
2 MtMggELn ·

∫

ωn∈Ω
sup
β∈B

|t(xn, yn, β)| dP (ωn) = O
(
n−

1
2

)
,

which closes the proof. ¤

Corollary 9 Under assumptions of Corollary 8, it holds that

sup
β∈B

∣∣∣∣∣
1
n

n∑

i=1

{
t(xi, yi, β)

[
I
(
r(xi, yi;β) ≤ r[hn](xi, yi;β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]}∣∣∣∣∣ = op(1)

and there exists ε > 0 such that

sup
β∈U(β0,ε)

∣∣∣∣∣
1√
n

n∑

i=1

{
t(xi, yi, β)

[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]}∣∣∣∣∣

= Op(1)

as n → +∞.

Proof: The corollary follows directly from the Chebyshev inequality for non-negative random

variables, P (X ≥ K) ≤ EX/K, since by Corollary 8

E

{
sup
β∈B

∣∣∣∣∣
1
n

n∑

i=1

t(xi, yi, β)
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)]∣∣∣∣∣

}

≤ E

{
sup
β∈B

∣∣∣t(xi, yi, β)
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi;β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]∣∣∣

}

= o(1)

and

E

{
sup

β∈U(β0,ε)

∣∣∣∣∣
1√
n

n∑

i=1

t(xi, yi, β)
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]∣∣∣∣∣

}

≤ n1/2 E

{
sup

β∈U(β0,ε)

∣∣∣t(xi, yi, β)
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)]∣∣∣

}

= O(1)
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as n → +∞ and the expectation is thus uniformly bounded in n ∈ N. ¤

B Proof of consistency and convergence rate

Proof of Theorem 2: This is a standard proof of consistency based on the uniform law of

large numbers and the convergence of the order statistics r[hn](xi, yi;β) to the corresponding

quantile G−1
β (λ). Let us recall the GTE objective function Snn(β) and denote

S(β) = E
{

s(xi, yi;β) · I
(
r(xi, yi; β) ≤ G−1

β (λ)
)}

.

By definition, P
(
Snn

(
β̂

(GTE,hn)
n

)
< Snn

(
β0

))
= 1. For any δ > 0,

1 = P
(
Snn

(
β̂(GTE,hn)

n

)
< Snn

(
β0

))

= P
(
Snn

(
β̂(GTE,hn)

n

)
< Snn

(
β0

)
and β̂(GTE,hn)

n ∈ U(β0, δ)
)

+ P
(
Snn

(
β̂(GTE,hn)

n

)
< Snn

(
β0

)
and β̂(GTE,hn)

n ∈ B\U(β0, δ)
)

≤ P
(
β̂(GTE,hn)

n ∈ U(β0, δ)
)

+ P

(
inf

β∈B\U(β0,δ)
Snn (β) < Snn

(
β0

))
.

Therefore, P
(
infβ∈B\U(β0,δ) Snn (β) < Snn

(
β0

)) → 0 as n → +∞ implies

P
(
β̂(GTE,hn)

n ∈ U(β0, δ)
)
→ 1

as n → +∞, that is, the consistency of β̂
(GTE,hn)
n (δ was an arbitrary positive number). To

verify P
(
infβ∈B\U(β0,δ) Snn (β) < Snn

(
β0

)) → 0 note that

P

(
inf

β∈B\U(β0,δ)
Snn (β) < Snn

(
β0

))

= P

(
inf

β∈B\U(β0,δ)
[Snn (β)− S(β) + S(β)] < Snn

(
β0

))

= P

(
inf

β∈B\U(β0,δ)
[Snn (β)− S(β)] < Snn(β0)− inf

β∈B\U(β0,δ)
S(β)

)

≤ P

(
sup
β∈B

|Snn (β)− S(β)| > inf
β∈B\U(β0,δ)

S(β)− Snn(β0)

)

≤ P

(
2 sup

β∈B
|Snn (β)− S(β)| > inf

β∈B\U(β0,δ)
S(β)− S(β0)

)
.
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Since the identification Assumption I2 implies

(∀δ > 0) (∃α > 0)
(

inf
β∈B\U(β0,δ)

S(β)− S(β0) > α

)
,

it is enough to show that for all α > 0

P

(
sup
β∈B

|Sn (β)− S(β)| > α

)
→ 0 as n → +∞.

This is a direct consequence of Corollary 9 and Lemma 4 for function t(xi, yi; β) = s(xi, yi;β),

see Assumptions D, F1, and F3, because

Snn (β)− S(β)

=
1
n

n∑

i=1

{
s(xi, yi; β)

[
I
(
r(xi, yi;β) ≤ r[hn](xi, yi;β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]}

+
1
n

n∑

i=1

{
s(xi, yi; β)I

(
r(xi, yi; β) ≤ G−1

β (λ)
)
− E

[
s(xi, yi;β)I

(
r(xi, yi;β) ≤ G−1

β (λ)
)]}

.

¤

Proof of Theorem 3: We already know that β̂
(GTE,hn)
n is consistent. Hence

P
(∥∥∥β̂

(GTE,hn)
n − β0

∥∥∥ > ρ
)
→ 0 as n →∞ for any ρ > 0 (Theorem 2).

Further, we employ the almost sure second-order differentiability of Snn(β) and

S(β) = E
{

s(xi, yi; β) · I
(
r(xi, yi;β) ≤ G−1

β (λ)
)}

at β0 (see Lemma 1 and Assumption F1). Since

Snn(β) =
1
n

n∑

i=1

s(xi, yi; β) ·
[
I
(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)]

(34)

+
1
n

n∑

i=1

s(xi, yi; β) · I
(
r(xi, yi; β) ≤ G−1

β (λ)
)
, (35)

Assumptions F, Lemma 4, and Corollary 9 imply Snn(β) → S(β) as n → ∞ in probability.

Using the same argument for the first two derivatives of Snn(β), see Lemma 1, S
′
nn(β) → S

′
(β)
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and S
′′
nn(β) → S

′′
(β) as n →∞ uniformly in β ∈ U(β0, δ), whereby

S
′′
(β0) = E

{
s′′(xi, yi; β0) · I

(
r(xi, yi; β) ≤ G−1

β (λ)
)}

= Qs > 0

by Assumptions D2 and F3. Since Qs is a positive definite matrix by Assumption F3, there is

a constant ρ, δ > ρ > 0, such that
∥∥∥S

′
(β)

∥∥∥ ≥ C
∥∥β − β0

∥∥ for all β ∈ U(β0, ρ) and some C > 0.

Due to the consistency of β̂
(GTE,hn)
n , this implies that for any ε > 0 there is some n0 ∈ N such

that β̂
(GTE,hn)
n ∈ U(β0, ρ) and subsequently

∥∥∥S(β̂(GTE,hn)
n )

∥∥∥ ≥ C
∥∥∥β̂

(GTE,hn)
n − β0

∥∥∥ for all n >

n0 with probability at least 1−ε. Therefore, it is sufficient to show that
√

n
∥∥∥S

′
(β̂(GTE,hn)

n )
∥∥∥ =

Op(1) to prove the theorem.

To analyze
√

nS
′
(β̂(GTE,hn)

n ), let us express it for n > n0 with probability greater than

1− ε as

√
nE

{
s′(xi, yi; β̂(GTE,hn)

n )I
(
r(xi, yi; β̂(GTE,hn)

n ) ≤ G−1
β (λ)

)}

≤ sup
β∈U(β0,ρ)

1√
n

n∑

i=1

{
−s′(xi, yi; β)I

(
r(xi, yi; β) ≤ G−1

β (λ)
)

(36)

+E
[
s′(xi, yi; β)I

(
r(xi, yi; β) ≤ G−1

β (λ)
)]}

+ sup
β∈U(β0,ρ)

1√
n

n∑

i=1

{
s′(xi, yi; β)

[
I
(
r(xi, yi;β) ≤ G−1

β (λ)
)
− I

(
r(xi, yi; β) ≤ r[hn](xi, yi; β)

)]}

(37)

(recall that S
′
nn(β̂(GTE,hn)

n ) = 0 by Lemma 1). We only have to show that both terms are

bounded in probability. This result for (37) is a consequence of Lemma 9 together with

Assumptions F1, F3, and F4. The other part (36) can be bounded in probability by the

following argument. Assumption F2 together with van der Vaart and Wellner (1996, Lemma

2.6.18) imply that

Fn,δ =
{

s′(x, y; β) · I
(
r(x, y; β) ≤ G−1

β (λ)
)

: β ∈ U(β0, δ)
}

form a VC class of functions. Therefore, Assumptions D1 and F2 permit the use of uniform

central limit theorem of Arcones and Yu (1994), which implies that Fn,δ converges in dis-

tribution to a Gaussian process with uniformly bounded paths, which confirms that (36) is
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bounded in probability. ¤
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