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1 Introduction

Two main forces that influence a firm’s investment decision are uncertainty
about the profitability of the investment project, and the behaviour of po-
tential competitors, that have an option to invest in the same project. Most
of the literature on optimal investment deals with either aspect. The real
options theory concerns itself with investment decisions under uncertainty
(cf. Dixit and Pindyck (1994)). In this literature nature chooses a state of
the world at each point in time, influencing the profitability of the invest-
ment project. The problem is then to find an optimal threshold level of an
underlying variable (e.g. price or output value of the firm), above which the
investment should be undertaken.

In the strategic interaction literature a number of models have been
developed, dealing with different situations such as patent races and new
technology adoption. In general, a distinction can be made between two
types of models. First, there are preemption games in which two firms try
to preempt each other in investing (cf. Fudenberg and Tirole (1991)). The
equilibrium concept used in such games was developed in Fudenberg and
Tirole (1985). Another class is the war of attrition, which is first introduced
by Maynard Smith (1974) in the biological literature and later adopted for
economic situations (cf. Tirole (1988)). Originally, the war of attrition
describes two animals fighting over a prey. In an economic context one can
think of two firms considering adopting a new technology. From a certain
point onwards both know that for one firm it would be optimal to invest,
but however, both do not want to be the first to invest, since waiting for an
even newer technology would be better. The equilibrium concept used in
this type of game is introduced in Hendricks et al. (1988).

The literature combining both aspects is small indeed. Jensen (1982) was
the first to introduce uncertainty in a technology adoption model. Hoppe
(2000) extends this paper to a model where second mover advantages can
arise in equilibrium due to information spillovers. A first attempt to combine
real option theory with timing games was made in Smets (1991). Huisman
(2000) provides some extensions to this approach.

In Hoppe (2000) it is assumed that an investment is either profitable

or not. As soon as one firm invests, the true profitability of the project



becomes known. This creates informational spillovers that yields a second
mover advantage. The probability with which the project is profitable is
exogenously given, fixed and common knowledge. we present a framework
where the succes probability is updated over time due to information that
becomes available via signals that arrive according to a Poisson process. The
signal can either be good or bad: in the first case it indicates that the project
is profitable, whereas in the latter case it is signalled that the project is a
bad one, in which case investment yields a loss. However, the signals need
not provide perfect information in the sense that with a certain probability
A € (1/2,1] the signal gives the correct information. For simplicity, it is
assumed that the signals can costlessly be observed. They can be thought
of for example as arising from media or publicly available marketing research.

As an example of the duopoly model with signals, consider two soccer
scouts who are considering to contract a player. In order to obtain informa-
tion on the player’s quality both scouts go to matches in which the desired
player plays. If he performs well, this can be seen as a signal indicating high
revenues, but if he performs poorly, this is a signal that the investment is
not profitable. This induces an option value of waiting for more signals to
arrive and hence getting a better approximation of the actual profitability
of the project.

In this paper it is shown that, depending on the prior beliefs on the
profitability of the project and the first and second mover advantages, either
a preemption game or a war of attrition arises. If the information spillover
exceeds the first mover Stackelberg effect, then a war of attrition may result.
In the reverse case a preemption game arises. Even both types of games may
occur in the same scenario. Suppose that the information spillover prevails
and that the prior beliefs are such that a war of attrition arises. With
positive probability it would be the case that no firm makes the investment.
Over time new signals arrive that influence the belief in the profitability of
the project. Then it may happen — if enough good signals arrive — that at
a certain point in time the first mover advantage outweighs the information
spillover, hence inducing a preemption game. As soon as the game becomes
a preemption game, in equilibrium one of the firms or both firms invest.

From the standard theory of industrial organization it is well-known that

social welfare is not always higher in the case of competition than in the case



of a monopoly. For example, Mankiw and Whinston (1986) develop a model
in which competition can yield a number of firms operating in the industry
that is either too high or too low from a social welfare point of view. In this
paper we show that the presence of uncertainty concerning the profitability
of a new market can strengthen the effect of having social welfare under
competition. However, it can go either way. Three effects are at work here,
the first two of which are standard arguments. Firstly, the dead-weight loss
in monopoly is higher than in the case of duopoly. Secondly, the total sunk
costs in duopoly are higher than in monopoly. Finally, in the duopoly case
there can be a preemption effect, which induces firms to invest too soon
from a social welfare perspective, since at that specific time the economic
prospects are too uncertain for an investment to be undertaken optimally.
In order to facilitate welfare analysis a measure for ex ante expected total
surplus is introduced that incorporates the distribution of first passage times
through the various critical levels for monopoly and duopoly.

The present paper is related to Dcamps and Mariotti (2000) in which also
a duopoly model is considered where signals arrive over time. Differences
are that in Dcamps and Mariotti (2000) only bad signals exist and that
signals are perfectly informative. This means that after receiving one signal
the game is over since the firms are sure that the project is not profitable
(a soccer player who plays one bad game is definitely a bad player who
should not be contracted), while in our framework it could still be possible
that the project is good. In Dcamps and Mariotti it holds that, as long
as no signal arrives, the probability that the project is good continuously
increases over time. Furthermore the firms are assumed to be asymmetric,
which also induces uncertainty regarding the players’ types. This implies
that Dcamps and Mariotti need to apply the Bayesian equilibrium concept,
whereas in our model this is not the case. Another implication is that
the coordination problem between the two firms that is analysed in our
framework is not present in Dcamps and Mariotti (2000). This coordination
problem concerns the issue of which firm will be the first to invest in the
preemption equilibrium. Another duopoly paper where information arrives
over time is Lambrecht and Perraudin (1999), but there the information
relates to the behaviour of the competitor: one firm has a certain belief about

when the other firm would invest and this belief is updated by observing the



other firm’s behaviour.

The paper is organized as follows. In Section 2 the model is described.
Then, in Section 3 we analyse the model for the scenario that the firm
roles, i.e. leader and follower, are exogenously determined. In Section 4
the exogenous firm roles are dropped and the model is analysed for the
case where the firms are completely symmetrical. Section 5 reconsiders two
extreme cases, namely situations where either the information spillover or
the Stackelberg effect is absent. In Section 6 a welfare measure is introduced
and welfare effects are discussed. Finally, in Section 7 some conclusions will

be drawn.

2 The Model

The model presented in this section describes a new market situation where
two symmetric firms have the opportunity to invest in a project with uncer-
tain revenues. The first firm to invest becomes the Stackelberg leader. Its
revenues can be either high, U f , or low, U LL, where the latter is normalized
to zero. A bad project is also not profitable for the follower and as soon as
one firm has invested, the true state of the project is revealed. If the project
turns out to be good, the other firm, the follower, can decide to invest and
get revenues U 11;{ . It is assumed that U g >U 1{:{ . Hence, there is a first mover
Stackelberg advantage if the project turns out to yield high revenues. If both
firms invest simultaneously and the project turns out to be good, both re-
ceive U ﬁ, where U fv{ <U ﬁ <U f . The revenues can be seen as an infinite
stream of payoffs 7r§- discounted at rate r, i.e. U;f = ‘[600 e‘”wj-dt = %wé,
i=H,L j=L,M, F. Example 2.1 illustrates this framework.

Example 2.1 Consider a new market for a homogeneous good. Two firms
have the opportunity to enter the market, which can be either good or bad.
Let market demand be given by P(Q) =Y — Q for some Y > 0 if the
market is good (H) and by P(Q) = 0 if the market is bad (L). The cost
function is given by C(q) = cq, for some ¢ > 0. It is assumed that if
the firms invest they engage in Cournot competition. If the market turns
out to be bad, then the action to take is mot to produce in any case, i.e.

ULL = UIQ = Uf[ = 0. Suppose that there is one firm that invests in the



market first. This firm then is the Stackelberg leader.! The follower solves

the following profit mazximization problem

H(}?X%QF[P(QL +qr) —d,

where r is the discount rate. This yields qp = ch;qL. Using this reac-

tion, the leader maximizes its stream of profits. Solving the corresponding

mazximization problem yields q;, = YQ_C, which results in qp = Y4_C, and the
H _ (Y—¢)? H _ (Y—¢)? .
payoffs Up' = 5= and Uy = ~—57=, respectively. In case both firms

invest simultaneously, the Cournot-Nash outcome prevails. Straightforward
2
computations yield Uﬁ = (YQ;C) . Note that UI{{ > Uﬁ > U{;{.

Investing in the project implies incurring a sunk cost 1. It is assumed
that 0 < I < U 1{? , so that it is always worthwhile for the follower to enter
when the market is good. But if the project is bad the follower observes this
and thus refrains from investment. This implies that in case of a bad project
only the leader incurs a loss that is equal to the sunk costs of investment.
Hence, the presence of an information spillover leads to a second mover
advantage. To see who is in the best position, the leader or the follower, this
second mover advantage has to be compared with the first mover advantage
of being a Stackelberg leader.

Given the belief p that the project is good, the ex ante expected payoff

for the leader is given by

L(p) =p(Uf' = 1)+ (1 = p)(—1) = pUji’ — 1. (1)

Since the follower only invests in case of a good project, the payoff for the

follower is given by
F(p) =p(Uf ~1). (2)
In case of mutual investment each firm has an ex ante payoff that equals
M(p) = pUsy — I. (3)

Define by pjs the belief such that the ex-ante expected profit for the follower

equals the ex-ante expected profit of mutual investment, i.e. pjs is such that

Tt is assumed that firms can only set capacity once, thereby fixing the production level

forever. This resolves the problem mentioned in Dixit (1980).



F(py) = M(par)- Note that, as soon as p > pyy, the follower will always

invest simultaneously with the leader, yielding payoffs

I(p) = L(p) if p <pu, (@)

M(p) ifp>pu,

and

F(p) ifp<pwm,
M(p) ifp>pu.

A graphical representation of these payoffs is given in Figure 1.

o

M)
1)

payoff

1(p)

Figure 1: Payoff functions.

At the moment that the investment opportunity becomes available, both
firms have an identical prior belief about the project yielding high revenues,
say pg, which is common knowledge. Occasionally, the firms obtain signals
about the profitability of the project. These signals are observed by both
firms. A signal can either indicate high revenues (an h-signal) or low rev-
enues (an [-signal). A signal revealing the true state of the project occurs
with probability A > %, see Table 1. The signals arrive stochastically over
time following a Poisson process with parameter p > 0.

Let n denote the number of signals and let ¢ < n be the number of
h-signals. Given that at a certain point in time n signals have arrived, g of
which were h-signals, the firms then calculate their beliefs in a good project
in a Bayesian way. Note that only the relative difference between n and ¢

is interesting for the firm. By defining k := 2g — n and { := %, it can be
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H A 1-A
Li1-X A

Table 1: Conditional probabilities of h and [-signals.

shown that the belief in a good project is a function of k and is given by?
)\k
k)= —F————. 6
Note that the inverse of this function gives the number of h-signals in excess
of [-signals that is needed to obtain a belief equal to p. The inverse is given
by

log(1L5) + log(C)
_ log L)g | -

k(p)

3 Exogenous Firm Roles

Before we turn to the more interesting case where it is endogenously deter-
mined which firm invests first, we now look at the simpler case of exogenous
firm roles. Suppose w.l.o.g. that only firm 1 is allowed to be the first in-
vestor. Then, firm 1 does not need to take into account the possibility that
firm 2 preempts. Firm 2 can choose between the follower role and investing
at the same time as the leader. In the first case firm 1 is the Stackelberg
leader and in the other case a Nash equilibrium results. Firm 1 should invest
at the moment that its belief in a good project exceeds a certain threshold.
From Thijssen et al. (2001) it follows that this threshold belief py, is given
by
1
PL=ywir—n+1

(8)

where

Blr+ ) (r+p( =A) = pA(1 =N (r +p(l+5-N)
Blr+mw)(r+pA) —pA1 =N (r+puB+A)

2Note that k increases with one if an h-signal arrives and decreases with one if an

U=

l-signal arrives. See Thijssen et al. (2001) for a derivation.



and

8= T;—MM+%\/(§+1)2—4A(1—A)-

Hence, as soon as p exceeds pr, the leader invests. Then, the follower
decides whether or not to invest, based on the true state of the project that
is immediately revealed after the investment by the leader. Note that py, will
not be reached exactly, since the belief p(k) jumps along with the discrete
variable k. Therefore, it is worthwhile to define by p; the belief that is
reached first after exceeding py, i.e. pr = p([kr]), where k = k(pr).

As soon as p enters the region (pas, 1], both firms will imediately invest,
yielding for both a discounted payoff stream U£L if the project is good, and 0
if the project is bad. Here the belief is that high that the follower prefers to
receive the Nash equilibrium payoff rather than being a Stackelberg follower,
implying that it takes the risk of making a loss that equals the sunk costs

of investment when the project value is low.

4 Endogenous Firm Roles

Let the firm roles now be endogenous. This implies that both firms are
allowed to be the first investor. Define the preemption belief, p* to be the
belief at which L(p*) = F(p*) (cf. Figure 1). Hence, as soon as p raises
beyond p* (if ever), both firms want to be the leader and try to preempt
each other. Define p* = p([k*]), where k* = k(p*). In a similar way one
can define py; to be the first level of belief that is reached after the value
of mutual investment equals the follower value. Attached to pr, pps and
p* one can define the accompanying levels of k, denoted by k L ks and l;:*,
respectively. For the analysis an important part is played by the positioning

of kr,, which can be smaller or larger than k*. It can be shown that?

vl —ut
kp >k U< L £ 9
. )
3Equalizing F(p) and L(p), yields p*, i.e.
" I
P Eur R
L F

. . lug(TiL)Hug(C)
From eq. (8) and the monotonicity of the mapping p — —{%, the result follows.
log T—x



Note that if k; > k* then k; > k*. The right-hand side of the second
inequality in (9) can be seen as the relative price that the follower pays
for waiting to obtain the information spillover if the market is good. Since
U decreases with p and A, U increases with the value of the information
spillover. For if W is low, then this implies that the quality and the quantity
of the signals is relatively high. Therefore, by becoming the leader for low
values of ¥, a firm provides relatively less information to its competitor
than when W is high. So, expression (9) implies a comparison between the
value that the leader transfers to the follower, i.e. the information spillover,
and the price that the follower pays to obtain this information, i.e. the
Stackelberg advantage. In what follows we consider the two cases: k> k*
and IEL < k*.

4.1 The Case Where the Stackelberg Effect Outweighs the

Information Spillover

In this case it holds that &z > k*. This implies that firms try to preempt
each other in investing in the project. We will use the equilibrium concept
introduced in Fudenberg and Tirole (1985) which is extended for the present
setting involving uncertainty in Appendix A, to solve the game. The ap-
plication of this equilibrium concept requires using several stopping times.
Define T* = inf{t > O|p; > p*} and Ty = inf{t > Olps > par}, where
pt = p(kt). Note that Ty > T* a.s. As soon as t > T the value of mutual
investment is higher than the value of being the second investor. This im-
plies that no firm wants to be follower and hence that both firms will invest
immediately. Note that whether or not py; > py, is irrelevant, since if it
were not the case, then no firm would be willing to wait until py, is reached,
because of the sheer fear of being preempted by the other firm.

Consider now the region (7%, Tys). Again both firms try to preempt as
soon as this region is reached. This means that in a symmetric equilibrium*
each firm invests with a positive probability. Here both firms want to be
the first investor, since the expected Stackelberg leader payoff is sufficiently
large that it is optimal to take the risk that the project has a low payoff. On
the other hand, if both firms invest with positive probability, the probability

4Since the firms are identical, a symmetric equilibrium seems to be the most plausible

candidate.
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that both firms simultaneously invest is also positive. This would lead to
the Nash equilibrium payoff. However, since t < T, this payoff is not large
enough for the investment as such to be optimal. We conclude that there is
a trade-off here between the probability of being the leader on the one hand
and the probability of simultaneous investment on the other hand. As is

proved in Proposition 4.1 below the probability that the firms invest equals

L(p)—F(p)
L(p)—M(p)*
and decreases with the difference between the leader and the mutual payoff.

Hence, this probability increases with the Stackelberg advantage

The latter makes sense because if this difference is large the firms will try
to avoid simultaneous investment by lowering their investment probability.

From Fudenberg and Tirole (1985) one knows that the game must end as
soon as the preemption region is reached. This means that if no investment
takes place (which happens with positive probability) the game is replayed
instantly. It is assumed that this replay occurs at exactly the same time
instance, so it does not take any time. The replay goes on until firm 1 or firm
2 invests.? Hence, exactly at the point in time where the preemption region
is reached, the game ends. Again, the position of py, is of no importance,
since the leader curve lies above the follower curve, implying that both firms
will try to become the leader.

The last region is the region where ¢ < T™. In this region the leader
curve lies under the follower curve, and since in this case k;, > k*, pr has
not been reached yet. Hence, no firm wants to be the leader and both
firms abstain from investment until enough h-signals have arrived to make
investment more attractive than waiting.

Formally, the above discussion can be summarized in the following sub-

game perfect equilibrium.®

H_ 77H

Proposition 4.1 If ¥ < ULL]HYf, then a subgame perfect equilibrium is
L

given by the tuple of closed-loop strategies ((th,atl), (Gt,ag))te[o )’ where

®See Huisman (2000) for a concise treatment of the arguments.
6See Appendix A for a formal definition of subgame perfect equilibrium.
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fori=1,2

. 0 ifs<T,
Gi(s) = (10)
1 ifs>T",
0 if s < T,
al(s) = % if T* < s < Ty, (11)
1 ifS > TA[.

For a proof of this proposition, see Appendix B.

4.2 The Case Where the Information Spillover Outweighs
the Stackelberg Effect

In this case it holds that pr, < p*. Now the problem becomes somewhat dif-
ferent. We know that the game ends as soon as T is reached. Note however
that before this happens py, can be reached several times, depending on the
occurrence of h and [-signals. Note that p only changes if a new signal ar-
rives. Therefore, define the following increasing sequence of stopping times:
T, = inf{t > O|lp; > po} and Tp,1 = inf{t > Tp|ps > pr,}, n = 1,2,3,....
Note that n is the number of signals that have arrived up untill and includ-
ing time T,. For t > T* the game is exactly the same as in the former
case. The difference arises if ¢ is such that p; € [pr,p*). In this region
it is optimal to invest for the leader had the leader role been determined
exogenously. However, since the leader role is endogenous and the leader
curve lies below the follower curve, both firms prefer to be the follower. In
other words, a war of attrition (cf. Hendricks et al. (1988)) arises. Two
asymmetric equilibria of the war of attrition arise trivially: one firm invests
always with probability one and the other always with probability zero, and
vice versa. However, since the firms are assumed to be identical there is
no reason to expect that one of these asymmetric equilibria will actually be
played. Furthermore, very strong assumptions would have to be made on
the level of coordination between the two firms to reach these equilibria.
To find a symmetric equilibrium we argue in line with Fudenberg and
Tirole (1991) that for a symmetric equilibrium it should hold that for each
point in time, the expected revenue of investing directly exactly equals the

value of waiting a small period of time dt and investing when a new signal

12



arrives.” The expected value of investing at each point in time depends on
the value of k£ at that point in time. Denoting the probability that the other
firm invests at belief k& by v(k), the expected value of investing equals

Vi(pe) = (k) M (pe) + (1 — y(kt)) L(py)- (12)

The value of waiting for a small period of time equals the weighted value of

becoming the follower and of both firms waiting, i.e.

Va(pe) = v(ke) F(pe) + (1 = v(ke))V (pe), (13)

where V(p) is the value of waiting when both firms do so. Let y(-) be such
that Vi(-) = Va(+). Furthermore, define

Y(ke) if pr < pe <p”,
g(t) = . (14)
0 otherwise.
Finally, define ny = sup{n|T;, < t} to be the number of signals that have
arrived up untill time ¢. In the following proposition a symmetric subgame

perfect equilibrium is given.

Proposition 4.2 If U > Ug,;ijf, then a subgame perfect equilibrium is
L
given by the tuple of closed-loop strategies ((GY,a}), (Gg,aé))tqo o)’ where
fori=1,2
s I T (1 g(Ty)) ift <T*
Gi(e) = § e Toathy L (1= 9( )
1 if s >T*,
0 if s <T%,
aj(s) = % if T < s < T, (16)
1 Zf S Z T]V[.

The proof of Proposition 4.2 can be found in Appendix C.

To actually calculate the symmetric equilibrium, we use the fact that
only for certain values of p the probability of investment needs to be cal-
culated. These probabilities are the beliefs that result from the signals, i.e.

for the beliefs p such that p = p(k), k € Z. Therefore, from now on we will

"It might seem strange that a firm then also invests when a bad signal arrives. Note

however that it is always optimal for one firm to invest in the war of attrition region.
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analyse the model in terms of k. For notational convenience we will take
k as dependent variable instead of p. For example, we write V (k) instead
of V(p(k)). To calculate the isolated atoms — the probabilities of invest-
ment — in the war of attrition, y(-), the value of waiting V() needs to be

determined. It is governed by the following equation:

V (k) =e (1 — pdt)V (k) + pdt[p(k)(A\Vi(k + 1) + (1 = N)Vi(k — 1)) +
+ (1 =pk)(AVi(k —1) + (1 = M)Vi(k +1))]}
(17)

Eq. (17) arises from equalizing the value of V (k) to the value a small amount
of time later. In this small time interval, nothing happens with probability
1—pdt. With probability pdt a signal arrives. The belief a firm has in a good
project is given by p(k). If the project is indeed good, an h-signal arrives
with probability A, and an [-signal arrives with probability 1 —A. Vice versa
if the project is bad. If a signal arrives then investing yields either V;(k+1)
or Vi(k —1). After letting dt | 0 and substituting eqgs. (6) and (12) into eq.
(17) it is obtained that

~ k+1 _ )\ \k+1
Vi) = B ;kigg = ;i; ((k + )Mk +1) + (1 — (k= 1))

A4 (1= M)t
AE (1= Nk

+ (1 =k — 1)Lk — 1))} .

L(k+1)) + A1 = X) (y(k—=1)M(k—1)

(18)

Substituting eq. (18) into eq. (13) yields, after equating egs. (13) and (12)

and rearranging

agy(k) +bp = (1 = (k) (cxy(k + 1) + dpy(k — 1) + ex), (19)

14



where

ap, =M (k) — L(k) — F(k),
o AT - M

LT NI

A1 4 (1= Nt

(M(k+1) — L(k + 1)),

d =— 21— \) (M(k —1) = L(k — 1)),

Tt A C(1— M)k
2 Cp Y
G e v R
AL g(1 = At
M= N L(k—l)).

To solve for 7(+) note that if k£ < k1, no firm will invest, since the option
value of waiting is higher than the expected revenues of investing. Therefore
v(kg, —1) = 0. On the other hand, if k > k* the firms know that they enter
a preemption game. Therefore, they know that the game ends at that point
and a new game starts with an expected payoff equal to the follower value (cf.
Huisman (2000)). Note that it is possible that k* = kj;. Then the game
proceeds from the war of attrition directly into the region where mutual
investment is optimal. In this case the expected payoff is governed by M (-).
Since a new subgame starts we set 'y(l}*) = 1.8 For other values of k, we
have to solve a system of equations, where the k-th entry is given by eq.

(19). The complete system is given by
diag(y)Ay + By = b, (20)

where diag(-) is the diagonal operator, v = (y(kr — 1),...,7(k*)), b =

8This is purely for computational convenience. According to Proposition 4.2 we have
v(k")=0.
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0 ........ 0 dl?z*—l 0 Cix_1
i O 0 |
and
1 0 |
—dp  ap +ej CL. e
B = 0 —dp  ap+eg —Ck, 0

......................... _dfg*—l Qs T €1 —Cis_q
.................................. 0 1

The system of equations (20) cannot be solved analytically. However, for

any specific set of parameter values, it can be solved numerically.

Example 4.1 As an example consider a situation whose characteristics are

given in Table 2. For this example the preemption moment is given by p* =

U =133| r=0.1
UH =13 w=2
Ul =132 Xx=0.7
=2 po=0.5

Table 2: Parameter values.

0.87. The minimal belief that an exogenous leader needs to invest optimally
is given by pr, = 0.51. Using eq. (7) this implies that a war of attrition
arises for k € {1,2}. Solving the system of equations given in (20) yields
the vector of probabilities with which each firm invests in the project. It

yields y(1) = 0.4547, and v(2) = 0.7613.
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From this example one can see that the probability of investment increases
rapidly and is substantial. The reason is that in this particular case it
holds that k* = kj;. Therefore, the belief process jumps immediately to the
mutual investment region if sufficient good signals arrive. Both firms know
that it is better to become the leader, so as the mutual investment region

comes closer, both invest with higher probability.

5 Two Extreme Cases

Now that the equilibria of the game are known, one can look at two extreme
cases. First, we analyse the game when the information spillover is absent.

Afterwards, we investigate the game without Stackelberg advantage.

5.1 The Case Without Information Spillover

If there are no information spillovers, investment by the leader does not
generate information for the follower. That is to say, as soon as one of the
firms invests, the other firm still does not know whether the project is good

or bad. This implies that the revenue function for the follower is now given
by

f(p) = max{0, M(p)}. (5)

The equivalent of Figure 1 then becomes as depicted in Figure 2. In this

iyl

° payoff
5\

Figure 2: Payoff functions without information spillover.

case, the expected revenue for the leader is higher than the expected payoff
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of the follower if p > min{p|L(p) = 0}. Hence, both firms want to be the
leader as soon as the leader’s expected profits are non-negative, which is at
p*. As soon as one firm has invested, the other firm has an incentive to
wait because the follower value is higher than the mutual investment value.
Therefore, the follower waits to see whether the project is good or not. He

invests if the project is indeed good.

5.2 The Case Without Stackelberg Advantage

In this case, the firm that is first to invest does not gain anything by being
the leader. This is the case because in absence of the Stackelberg effect it
holds that UH = UH = UL. The payoff functions for this case are given

in Figure 3. Since the follower curve always lies above the leader curve it is

Ut

payoff

@ P)=M(e)

Figure 3: Payoff functions without Stackelberg advantage.

never optimal to become the leader. Therefore, there will never be a point
in time where in equilibrium preemption takes place. However, as soon as
k; has been reached each firm realizes that investment by one of the firms
is optimal, but neither firm wants to be the first one to invest. Hence, a
war of attrition arises in which both firms invest with a small but positive
probability. Note that the region for which a war of attrition arises is given
by [[kr],00). These probabilities can be found numerically by equating
for each k in this region the value of investing immediately and the value
of investing after the next signal has arrived. Of course, the asymmetric
strategies prescribing one firm to invest always and the other firm never to

invest still constitute an equilibrium.
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6 Welfare Analysis

Welfare effects resulting from investment under uncertainty have been re-
ported by e.g. Jensen (1992) and Stenbacka and Tombak (1994). In both
cases the timing of investment does not depend on the arrival of signals. In
these papers the uncertainty comprises the time needed to succesfully im-
plement the investment, i.e. the time between investment and the succesful
implementation of the investment is stochastic. The models in Jensen (1992)
and Stenbacka and Tombak (1994) allow for the critical levels to be explicit
points in time. In our model, the critical level is not measured in units
of time but measured as a probability, i.e. a belief. To perform a welfare
analysis it is necessary to incorporate the time element in the model.
Suppose for the sake of convenience that pg < p* < pr, i.e. a symmetric
subgame perfect equilibrium of this game is given by Proposition 4.1. This
equilibrium implies that as soon as k* is reached, at least one firm invests
and the game ends. Given the belief in a good project p, the probability of

mutual investment is given by?
alp
o) = g2 1)

For p € [p*, par) this implies that

L(p) — F(p)
L(p) —2M(p) + F(p)

b(p) = (22)

Let C’Sﬁu denote the discounted value of consumer surplus if the project
is | € {L,H} and simultaneous investment takes place. Furthermore, let
CS? and CST denote the discounted stream of consumer surplus in the
Stackelberg equilibrium if the project is good, and the discounted stream of
consumer surplus if the project is bad and one firm invests, respectively.

If the critical number of h-signals in excess of [-signals is given by k > 0
with first passage time ¢, the expected discounted total surplus if the project

gives high revenues is given by
ES™ (k,t) =" | (bo p)()(2U + CS})

(23)
+ (L= (bop)(k)) (U + UF + CSH) — 21|,

9See Appendix A.

19



whereas the expected total surplus if the project gives low revenue is given
by

ESL(k,t)=e [(b o p)(k)(CSfy —2I) + (1 — (bop)(k))(CSE — I)}.
(24)
The expected total surplus with critical level k£ with first passage time t is
then given by

W(k,t) = p(k)ESY (k,t) + (1 — p(k))ESE(k,t). (25)

So far, there is no difference with the ideas in Jensen (1992) and Sten-
backa and Tombak (1994). To incorporate the uncertainty regarding the
first passage time through k, we define the ex ante expected total surplus
W (k) to be the expectation of W (k,t) over the first passage time through
k. That is,

W (k) = Eg(W(k, t))
(26)
/ W (k,t) fi(t)dt,

where fi(+) is the pdf of the first passage time through k.
Denote the modified Bessel function with parameter p by I,(-), i.e

1 2l+p
ZZ'F (l+p+1) (2) ’

where T'(-) denotes the gamma function. The pdf of the first passage time
through k& > 0 can now be established as is done in the following proposition,

the proof of which can be found in Appendix D.

Proposition 6.1 The probability density function fi(-) of the first passage
time through k > 0 is given by

Fit) = AU (31— )2 /AT W

for allt > 0.

It is assumed that a social planner faces the same uncertainty about the
project being good or bad as the firms do. A social planner maximizing ex

ante expected total surplus therefore has to determine a critical level for k.
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Note that, because of the sunk costs I > 0, in the case of non-decreasing
returns to scale it is always optimal for the social planner to have one active
firm. Denoting the maximal sum of discounted consumer and producer
surplus if investment takes place at critical level k£ with first passage time ¢
by Wiee(k,t), the social planner maximizes ex ante expected total surplus
Woc,

Wioe = %gg{m(wsoc(k, £)) } (27)

From the standard theory of industrial organization it is well-known
that monopoly gives lower social welfare than competition. However, in the
following example it is shown that in the presence of uncertainty this need
not hold. In the remainder let C'S,0, and Wi, denote the present value of
the infinite flow of consumer surplus and the ex ante expected total surplus,
respectively, in the case of a monopolist. The critical level of investment for

the monopoly case is calculated as in Thijssen et al. (2001).

Example 6.1 (Example 2.1 continued) Reconsider the case of a new
market model with linear demand and linear costs as given in Example 2.1.

Consider the parameterization as given in Table 8. From Ezxample 2.1

Y=10| »r=0.1

c= uw=4
I=12 | po=04

Table 3: Parameter values.

and Thijssen et al. (2001) we can conclude that the monopoly price is

given by Ppon = Y;C, the price in case of mutual investment is given by

Y+3c
- -

Py = Y§20, and the price in the Stackelberg case is given by Pg =

Given that the market is good, the flow of consumer surplus is then given

by [P* (p)dp = (Y — P*)2, where P* is the equilibrium price. Hence,
csi = [oo MY = Pron)?dt = K—LY_];"O" Similarly, C Sk = K—LY_ESJ:M 2,
oS = D and CcSL, =Csh =csl =o.

If A = 0.8, then in the duopoly case a Nash equilibrium occurs. This
happens because p* < pyr < p*. The ex ante expected total surplus in case of
a duopoly is given by Wy, = 32.16. For the monopoly case we get Wi,on =
29.75 and for the social planner W, = 41.68.
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Now consider the situation where uncertainty increases in the sense that
the signals become less informative. As an example we take A = 0.6. In this
case too, duopoly gives a Nash equilibrium. Furthermore we get: Wion =
25.25, Wauo = 20.20, and Wsee = 36.56. Hence in case of a monopoly the

ex ante expected total surplus is higher than for a duopolistic market.

From Example 6.1 it can be concluded that comparing social welfare
under monopoly and duopoly leads to ambiguous results caused by opposing
effects. First, as is well-known from the industrial organization literature
(e.g. Tirole (1988)), the dead-weight loss is highest under monopoly. Second,
more firms entering the market reduces the dead-weight loss but, on the
other hand, the total amount of sunk cost investments is increased, which
has a negative effect on the welfare level. Third, social welfare is influenced
by the timing of investment. Tempted by the Stackelberg advantage (if it
outweighs the information spillover), the leader in a duopoly might invest
too soon in the sense that the payoff in the new market is too uncertain.

In the above analysis only the preemption case is considered. From a
mathematical point of view the advantage of considering the preemption
case is that one knows that the game stops as soon as the preemption level
is reached. This allows for the use of the distribution of the first passage time
in the definition of ex ante expected total surplus. In the case where the in-
formation spillover outweighs the Stackelberg effect a war of attrition arises.
To make a comparable welfare analysis for this case one has to consider all
possible paths for the arrival of signals. So, not only the distribution for the
first passage time, but also the distribution of all passage times have to be
considered, conditional on the fact that the preemption value is not reached.
Such an analysis is not analytically tractable. However, one could estimate
the ex ante expected total surplus by use of simulations. Also in this case
ambiguous results regarding the welfare effects of monopoly and duopoly
can be expected, depending on the position of the critical investment level
for a monopolist relative to pr. An additional effect concerning the welfare
comparison of monopoly and duopoly in case of a war of attrition is the free
rider effect. In a duopoly both firms like the other to invest first so that it
does not need to take the risk that the project has low value. Consequently

firms invest too late, leading to a low consumer surplus.
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7 Conclusions

Non-exclusivity is a main feature that distinguishes real options from their
financial counterparts (Zingales (2000)). A firm having a real investment
opportunity often shares this possibility with one or more competitors and
this has a negative effect on profits. The implication is that, to come to a
meaningful analysis of the value of a real option, competition must be taken
into account.

This paper considers a duopoly where both firms have the same pos-
sibility to invest in a new market with uncertain payoffs. As time passes
uncertainty is gradually resolved by the arrival of new information regard-
ing the quality of the investment project in the form of signals. Generally
speaking, each firm has the choice of being the first or second investor. A
firm moving first reaches a higher market share by having a Stackelberg
advantage. However, being the second investor implies that the investment
can be undertaken knowing the payoff with certainty, since by observing the
performance in the market of the first investor it is possible to obtain full
information regarding the quality of the investment project.

The outcome mainly depends on the speed at which information arrives
over time. If the quality and quantity of the signals is sufficiently high, the
information advantage of the second investor is low so that the Stackelberg
advantage of the first investor dominates, which always results in a preemp-
tion game. In the other scenario, initially a war of attrition prevails where
it is preferred to wait for the competitor to undertake the risky investment.
During the time where this war of attrition goes on it happens with posi-
tive probability that both firms refrain from investment. It can then be the
case that so many bad signals arrive that the belief in a good project again
becomes so low that the war of attrition is ended and that no firm invests
for the time being. On the other hand, it can happen that so many positive
signals in excess of bad signals arrive that at some point in time the Stackel-
berg advantage starts to exceed the value of the information spillover. This
then implies that the war of attrition turns into a preemption game.

From the industrial organization literature it is known that a monopoly
is bad for social welfare. Indeed, in our framework it is possible to find

examples where a duopoly does better than a monopoly in terms of ex ante
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expected total surplus. However, within a duopoly it is also possible that
in the case of a preemption equilibrium the first investor is tempted by the
Stackelberg advantage to undertake the investment too soon from a social
welfare perspective, i.e. when the environment is too risky. As a result it
happens that welfare is lower than in the monopoly case. In this sense, our
analysis strengthens the results from Mankiw and Whinston (1986).
Finally, departing from the modelling framework of this paper two in-
teresting topics for future research can be distinguished. Firstly, one could
include the possibility for firms to invest in the quantity and quality of the
signals. This would then give rise to an optimal R&D model, that also in-
cludes the problem of optimal sampling. Secondly, it is interesting to allow
for entry and exit in this model. This would then lead to an analysis of the

optimal number of firms from a social welfare perspective, thereby including
the model of Mankiw and Whinston (1986).

Appendix

A Equilibrium Concepts for Timing Games

This appendix introduces the equilibrium notions and accompanying strat-
egy spaces that are introduced in Fudenberg and Tirole (1985) for timing
games, extended with the presence of uncertainty. Let (2, F, {F; }+>0, P) be
a filtered probability space and let {X;}+>0 be an adapted process. The idea
is that we extend the concepts introduced in Fudenberg and Tirole (1985)

path-wise. First we define a simple strategy for the subgame starting at .

Definition A.1 A simple strategy for playeri = 1,2 in the subgame start-
ing at to € [0,00) is given by a tuple of real-valued functions (G°,al0) :
[to, 00) x Q — [0,1] x [0,1], such that for each w €

1. G (:;w) is non-decreasing and right-continuous;
2. al(t;w) > 0= GP(t)=1;
3. al(:;w) is right differentiable;

4. if dlo(t;w) = 0 and t = inf{u > tolalo(u;w) > 0}, then the right

derivative of afo (t;w) is positive.
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Since strategies are defined path-wise, we omit w for notational convenience.
Thus, the strategy set of simple strategies of player ¢ in the subgame starting

at tg is given by
SE(tg) = {s™]s" = (G, @) is a simple strategy of player 4}. (28)

Furthermore, define the strategy space by S°(to) = [[,—; S (t0) and denote
the strategy at p € [to, 1] by s%(t) = (G (t), @l (t))i1 2.

Note that GEO (t) is the probability that a firm has invested up to and
including time ¢. The function aﬁ“(-) is an atom. Since continuous time
modelling does not yield the same results as taking the limit of a discrete
time model, this function is used to replicate discrete time results. It is
assumed that if azo (t) > 0, then the game is repeated over and over again
instantaneously, not consuming any time!®, where firm 4 invests with prob-
ability a°(t) > 0, until at least one of the firms has invested. This time
interval can therefore be seen as an interval of atoms. As soon as at least
one firm has invested the game continues. To make the importance of the
atom function clear suppose that the game is played in discrete time and
in each period firm ¢ invests with probability «;, given that the realisation
of the stochastic process remains constant. Let At be the size of a period
and let Ta be such that for some constant T, TAAt = T. Then if we take

At =1 we get for instance
IP(both firms invest at the same time before time T')
=ajo+ (1 —a)(1 —a)aias+ -+ (1 — ozl)Tfl(l — ozg)Tfloqag.

Letting At | 0 we get a result that is independent of T,

TA/At %)
Etrﬁ) Z (1— al)t(l — ag)talag = o Z ((1 —ag)(l— ag))t
t=0 t=0
IR L

a1 + g — o
Were we not to use the atom function then the probability of simultane-
ous investment would equal one, whereas using the interval of atoms can
replicate the limiting case of the discrete time game.
The expected discounted value of the subgame starting at tg and at
strategy s’ € S%(tg) for player i = 1,2 is denoted by V;(to,s"). A Nash

equilibrium for the subgame starting at ¢ is then defined as follows.

10Hence7 X remains constant.
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Definition A.2 A tuple of simple strategies s* € S*(tg) is a Nash equilib-

rium for the subgame starting at to if
Vie(1,2)Vs;e8: (t0) © Vi(to, 8%) > Vi(to, si, s*;).
To define perfect equilibrium, the notion of closed loop strategy is needed.

Definition A.3 A closed loop strategy for player i € {1,2} is a collec-
tion of simple strategies {(GY, af)ici0,00)|(GE, o) € Si(t)}, that satisfies the

following intertemporal consistency conditions:
1. Yo<icusvcoo : Gi(v) = Gi(u) + (1 = Gi(u)) G} (v);
2. Vosi<usv<oo 1 05(0) = 0 (v) = 2 (v).

The set of closed loop strategies for player i € {1,2} is denoted by S¢. As
before, we define the strategy space to be S = [Le (1,2} Sfl. Now, subgame

perfect equilibrium can be defined.

Definition A.4 A tuple of closed loop strategies s* € S is a subgame
perfect equilibrium if for every t € [0,00), the corresponding tuple of simple

strategies (G, al)i—12 is a Nash equilibrium.

B Proof of Proposition 4.1

First notice that for each w € Q the strategy (G}, o});c(0,00) satisfies the in-
tertemporal consistency conditions of Definition A.3. Hence, the closed loop
strategies are well-defined. The proof follows closely the proof of Lemma 1
in Fudenberg and Tirole (1985). However, since it is an instructive proof, we
will present it in some detail. Let ¢ € [0,00). It will be shown that (G%, af)

is a Nash equilibrium for the game starting at t. We consider three cases.

1. t> Ty
Given that firm j plays its closed loop strategy, firm ¢ has three possible
strategies. First, firm ¢ can play Gi(t) = 0, i.e. it does not invest.
Then firm i’s expected payoff equals F(p;). If firm ¢ invests with
an isolated atom equal to A > 0, then the expected payoff equals
F(p)) + M(M(p:) — F(p)) > F(p;). Finally, suppose that G(t) = 1
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and ol(t) = a > 0. Using the theory from Appendix A one can

calculate the following probabilities.

a(1—at(t)
ataf(t)—aak(t)’
(1-a)at()
atal(t)—aak(t)’
act(t)

P(firms invest simultaneously) = m
i i

IP(firm ¢ invests first) =

P(firm j invests first) =

Since a§- (t) = 1, the expected payoff for firm i is given by

m (a(l — ali(t))L(p) + (1 — a)ol () F(p;) + aa;(t)M(PtD

= F(pt) + a(M(py) — F(pt)) = F(pr)-
(29)

So, maximizing the expected payoff gives a = 1.

Lt T

Given the strategy of firm j, if firm ¢ does not invest, its value is
W (pt). Since Ty, > T*, we know it is not optimal to invest yet. Hence,
W (pt) > L(p¢). If firm 7 invests with an isolated atom equal to A > 0,
then its expected payoff equals W(p;) + AN L(pt) — W(pe)) < W(pe)-
Investing with an interval of atoms, i.e. Gi(t) =1 and ai(t) =a >0
gives an expected payoff equal to L(p;). Hence it is optimal to set
Gi(t) =0.

LT <t < Ty

Investing with probability zero, i.e. Gi(t) yields an expected pay-
off equal to F(p;), given that firm j plays its strategy, i.e. Gi(t) =
1. If firm ¢ invests with an isolated jump equal to A > 0, then
IP(both firms invest simultaneously) = Ao (t), P(firm i invests first) =

A1 — af(t)) and P(firm j invests first) = 1 — A, Given af(t) =
L()—F(t)

X OSSYI0) the expected payoff for firm ¢ is given by

Ao () M (pr) + A1 = af(t)Lpe) + (1= N)F(pe) = F(pe).  (30)

Finally, if firm ¢ plays G%(t) = 1 and af(t) = a > 0, then the expected

27



payoff is given by

et (M) + a1 = o (1) L(p) + (1 = @)l () F (py))

= F(Pt)-
(31)

C Proof of Proposition 4.2

It is trivial to see that (G, al) satisfies the intertemporal consistency con-

ditions for each t € [0,00). We show it for the most difficult case. Let
T, <u<ov<T*andt <wu. Note that

Ny

1 — G%(u) = P(firm 7 has not invested before u) = H (1 —g(Ty))-

Hence, o
Gi(u) + (1 - Gl(w) Gl (v) =
g; % nf[m (1—g(Tw)) +
+n17j;<1 —g(Tn»g; %H (1 - o(T))
- S P T )+ 35 0 1] - atr)
- Z iy H (1= 9(Tw)) = Gi(v)

(32)

We now prove that for each subgame starting at ¢, the simple strategy

(G, al) is a Nash equilibrium. The case where ¢ is such that p; < py, is

exactly the same as the case where ¢ < T™ in the proof of Proposition 4.1.
The same holds true for the case where ¢t > Tjs. Consider a region for the

war of attrition, i.e. ¢ is such that p, € [pr,p*). Suppose that firm ¢ invests

t

with an interval of atoms and suppose af(t) = a. Then given that firm j
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invests with an isolated jump equal to (k). Using the by now familiar

reasoning we get

P(firm 7 invests first) = 1 — (&),
IP(firm j invests first) = y(k¢)(1 — a),

P(firms invest simultaneously) = ay(ky).

Hence, the expected payoff for firm ¢ is given by

ayj(ke) M(pe) + (1 = (ko)) L(pe) + 75(ke) (1 — @) F'(py).- (33)

This expected payoff is maximized for a = 0. Hence, firm ¢ will not play an
interval of atoms. Suppose firm ¢ plays an isolated jump equal to 7. Then

his expected payoff equals

YWalpe) + (1 = )Va(pe), (34)

and is hence independent of 7 since, by definition, v;(k;) is such that Vi (p;) =
Va(pt). Therefore, any «y € [0, 1] maximizes the expected payoff.
]

D Proof of Proposition 6.1

The proof follows Feller (1971), Section 14.6 and is probabilistic. Note that
the process starts at k = 0. Arriving at k # 0 at time ¢ can only be possible
if a jump has occurred before t. Assume that the first jump occurred at
time ¢ — x. The conditional probability of the position k # 0 at time ¢t is
denoted by Py (t). It is the convolution of the probability that the process
was at k—+1 at time x or at k — 1 at time x and the probability of an arrival
of an [-signal or an h-signal, respectively. Since the arrival of signals follows
a Poisson process with parameter 1 and hence the interarrival times are

exponentially distributed with parameter p, Py () is given by
t
Pelt) = [ ne 0 [ = DPa(o) + alk + D P ()] o, (35)
0
where

XN
AR (1 = AR

q(k—1) (36)
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is the probability of reaching state k from state £ — 1 and

N (1= )
)\k—‘rl + C(l _ A)k—‘,—l’

@k+1)=A1-X) (37)

is the probability of reaching state k from state k + 1. That is, Py (¢) is the
convolution of the distribution of reaching k+1 or k—1 at time ¢t —x and the
distribution of the arrival of one signal in the interval (¢ — x,t]. For k = 0,
the probability of no jump up to t, 1 — fot pe Htdt = e~ must be added,
ie.

A=+ e [ ()P (@) + (P @] dr, (39)

Denoting the Laplace transform of Py (-) by mx(-) we get from eqgs. (35)
and (38)

mk(7) = (k= Dmea() + ek + Dmen ()] for k£0,  (39)
m0(1) = = + Ll (D 0) + 2 ()m ()] (40)

By substituting egs. (36) and (37) into eq. (39) one obtains the following

second order linear difference equation

PAL = N) Fiep1 () — (1 +7) Fr(7) + pFr-1(y) = 0, (41)
where
i) = %

The roots of the characteristic equation of eq. (41) are

e VA (e i )
2pN(1 — N) ’

By

and

BN T o e VA VT ) e Tt LR

7 2uA(1 — \)
_ 44201 — N)
2PN = N+ 7 = /(1 +7)? = 421 = X))
1
RSV
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The general solution for k # 0 is therefore given by

1
Fk(’V) = Avﬁfl; + Iy

—k
TSV

Note that for £ > 0 it holds that 5’; — 0 as v — oo, but that (r,l; — 00 as
v — oo. Since mg(y) and hence Fy() are bounded as v — oo, we get for
k > 0 that B, = 0. Similarly we get for £ < 0 that A, = 0. So, a solution
to eq. (41) is given by

Fo(7)85 k>0
Fyy=4 »
mFO('V)ﬁy k <0,
and hence,
)\k —)\ k
| AR gy () k>0 42

1 _
T a S M) k<0,
Solving for 7y(y) using eq. (40) gives

ol )_i A1 =)
O B e AT =N — (1 + 2T — N2)

Hence, eq. (42) is well-defined.

If at time t the process is at k£ > 0, the first passage through k must have
occurred at time 7 < t. In this case, the conditional probability of being
at k again at time t equals the probability of being at state 0 at time ¢t — 7
times the probability of a first passage through k at time 7, i.e.

Pult) = /0 R () Polt — 7). (43)

where Fj(-) is the distribution of the first passage time through k. The
Laplace transform of eq. (43) is given by

k() = fe(¥)70(7)- (44)

From eq. (42) we therefore conclude that the Laplace transform of Fj(-)

equals fx(y) = Ak#:c;)‘ﬁﬁl; Feller (1971) shows that for v > 1, (y —

72 — 1)k is the Laplace transform of the density %Ik(t). Applying the

mapping y — ol

——L__ is a change of scale and applying the mapping
20/ A(1=X)
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v + 7 + p reflects multiplication of the density by e~#!. Applying both

mappings gives

(v — VJ_DMH(7+M_\K7+MF—@HM1—M>k
2u/A(1 = N)

AP 1—\)F 1 2
- +1C(+< ) §<Ak+<ac—x>k(k(1_mw>'

Hence, the pdf of the first passage time through k is given by

Ji(r) = AN (31 )R o AT e
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