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Matrices and Graphs

Willem H. Haemers
Tilburg University, Dept. of Econometrics and O.R.,
Tilburg, The Netherlands, e-mail: haemers@uvt.nl

Abstract

The present article is designed to be a contribution to the chapter
‘Combinatorial Matrix Theory and Graphs’ of the Handbook of
Linear Algebra, to be published by CRC Press. The format of the
handbook is to give just definitions, theorems, and examples; no
proofs. In the five sections given below, we present the most im-
portant notions and facts about matrices related to (undirected)
graphs.
1. Graphs.
2. The adjacency matrix and its eigenvalues.
3. Other matrix representations.
4. Graph parameters.
5. Association schemes.
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1 Graphs

Definitions:

A graph G = (V,E) consists of a finite set V = {v1, . . . , vn} of vertices
and a finite multiset E of edges , where each edge is a pair {vi, vj} of
vertices (not necessarily distinct). If vi = vj the edge is called a loop. A
vertex vi of an edge is called an endpoint of the edge.

A simple graph is a graph with no loops where each edge has multi-
plicity at most one.

Two graphs (V, E) and (V ′, E ′) are isomorphic whenever there exist
bijections φ : V → V ′ and ψ : E → E ′, such that v ∈ V is an endpoint
of e ∈ E if and only if φ(v) is an endpoint of ψ(e).

A walk of length ` in a graph is an alternating sequence (vi0 , ei1 , vi1 , ei2 ,..
.., ei` , vi`) of vertices and edges (not necessarily distinct), such that vij−1

and vij are endpoints of eij for j = 1, . . . , `.

A path of length ` in a graph is a walk of length ` with all vertices
distinct.

A cycle of length ` in a graph is a walk (vi0 , ei1 , vi1 , ei2 , . . . , ei` , vi`) with
vi0 = vi` , ` 6= 0, and vi1 , . . . , vi` all distinct.

A graph (V, E) is connected if V 6= ∅ and there exists a walk between
any two distinct vertices of V .

The distance between two vertices vi and vj of a graph is the length of
a shortest path between vi and vj. (The distance is infinite if there is no
path between vi and vj.)

The diameter of a connected graph G is the largest distance that occurs
between two vertices of G.

A tree is a connected graph with no cycles.

A graph (V ′, E ′) is a subgraph of a graph (V,E) if V ′ ⊂ V and E ′ ⊂ E.
If E ′ contains all edges from E with endpoints in V ′, (V ′, E ′) is an in-
duced subgraph of (V,E).

A spanning tree of a connected graph (V, E) is a subgraph (V ′, E ′)
with V ′ = V , which is a tree.

A connected component of a graph (V, E) is an induced subgraph
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(V ′, E ′), which is connected and such that there exists no edge in E with
one endpoint in V ′ and one outside V ′. A connected component with
one vertex and no edge is called an isolated vertex .

Two vertices u and v are adjacent if there exists an edge with endpoints
u and v. A vertex adjacent to v is called a neighbor of v. The degree
or valency of a vertex v is the number of neighbors of v.

A graph (V, E) is bipartite if there is at least one edge, no loops, and
the vertex set V admits a partition into two parts, such that no edge of
E has both endpoints in one part.

A simple graph (V,E) is complete if E consists of all unordered pairs
from V . The (isomorphism class of the) complete graph on n vertices is
denoted by Kn.

A graph (V, E) is empty if E = ∅. If also V = ∅, it is called the null
graph .

A bipartite simple graph (V,E) with parts V1 and V2 is complete bi-
partite if E consists of all ordered pairs from V with one vertex in V1

and one in V2. The (isomorphism class of the) complete bipartite graph
is denoted by Kn1,n2 , where n1 = |V1| and n2 = |V2|.
The (isomorphism class of the) simple graph that consists only of ver-
tices and edges of a path of length ` is called the path of length `, and
denoted by P`+1.

The (isomorphism class of the) simple graph that consists only of vertices
and edges of a cycle of length ` is called the cycle of length `, and
denoted by C`.

The complement of a simple graph G = (V, E) is the graph G = (V, E),
where E consists of all unordered pairs from V that are not in E.

A graph G is regular (or k-regular), if every vertex of a graph G has
the same degree (equal to k).

A graph G is walk-regular if for every vertex v the number of walks
from v to v of length `, only depends on ` (not on v).

A simple graph G is strongly regular with parameters (n, k, λ, µ),
whenever G has n vertices and:
• G is k-regular with 1 ≤ k ≤ n− 2,
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• every two adjacent vertices of G have exactly λ common neighbors,
• every two distinct nonadjacent vertices of G have exactly µ common
neighbors.

Let G be a simple graph. The line graph L(G) of G has the edges of G
as vertices, and vertices of L(G) are adjacent, if the corresponding edges
of G have an endpoint in common.

The cocktail party graph CP (a) is the graph obtained by deleting a
disjoint edges from the complete graph K2a. (Note that CP (0) is the
null graph.)

Let G be a simple graph with vertex set {v1, . . . , vn}, and let a1, . . . , an

be nonnegative integers. The generalized line graph L(G; a1, . . . , an)
consist of disjoint copies of the line graph L(G) and the n cocktail
party graphs CP (a1), . . . , CP (an) together with all edges joining a vertex
{vi, vj} of L(G) with each vertex of CP (ai) and CP (aj).

The (strong) product G · G′ of two simple graphs G = (V,E) and
G′ = (V ′, E ′), is the graph with vertex set V × V ′, where two distinct
vertices are adjacent whenever in both coordinate places the vertices are
adjacent or equal. The strong product of ` copies of a graph G is denoted
by G`.

An imbedding of a graph in Rn, consists of a representation of the ver-
tices by distinct points in Rn, and a representation of the edges by curve
segments between the endpoints, such that a curve segment only inter-
sects another segment or itself in an endpoint. (A curve segment between
x and y is the range of a continuous map φ from [0, 1] to Rn with φ(0) = x
and φ(1) = y.)

A graph is planar if it admits an imbedding in R2.

A graph is outerplanar if it admits an imbedding in R2, such that the
vertices are represented by points on the unit circle, and the representa-
tions of the edges are contained in the unit disc.

A graph G is linklessly imbeddable , if it admits an imbedding in R3,
such that no two disjoint circuits of G are linked. (Two disjoint Jordan
curves in R3 are linked if there is no topological 2-sphere in R3 separating
them.)

Contraction of an edge e of a graph (V,E) is the operation that merges
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the endpoints of e in V , and deletes e from E.

A minor of a graph G is any graph that can be obtained from G by a
sequence of edge deletions and contractions.

Facts:

If no reference is given, the fact is trivial or a classical result that can be
found in almost every introduction to graph theory, such as [13].

1. A graph G is bipartite if and only if G has at least one edge and no
cycles of odd length.

2. A tree with n vertices has n− 1 edges.

3. [7, p.8] A regular generalized line graph is a line graph or a cocktail
party graph.

4. (Whitney) The line graphs of two connected non-isomorphic graphs
G and G′ are non-isomorphic, unless {G,G′} = {K3, K1,3}.
5. [10, p.81] A strongly regular graph is walk-regular.

6. A walk-regular graph is regular.

7. The complement of a strongly regular graph with parameter set
(n, k, λ, µ) is strongly regular with parameter set (n, n− k − 1, n− 2k +
µ− 2, n− 2k + λ).

8. Every graph can be imbedded in R3.

9. [17] (Robertson, Seymour) For every graph property P that is closed
under taking minors, there exists a finite list of graphs such that a graph
G has property P if and only if no graph from the list is a minor of G.

10. The graph properties: planar, outerplanar, and linklessly imbeddable
are closed under taking minors.

11. (Kuratowski, Wagner) A graph G is planar if and only if no minor
of G is isomorphic to K5 or K3,3.

Examples:

1. The complete graph Kn is walk-regular and regular of degree n− 1.

2. The complete bipartite graph Kk,k is regular of degree k, walk-regular
and strongly regular with parameters (2k, k, 0, k).
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Figure 1: The Petersen graph

3. For n ≥ 4, the line graphs L(Kn) and L(Kk,k) and their complements
are strongly regular. The complement of L(K5) is the Petersen graph
(See Figure 1).

4. Examples of outerplanar graphs are all trees, Cn, and P5.

5. Examples of graphs that are planar, but not outerplanar are: K4,
CP (3), C6 and K2,n−2 for n ≥ 5.

6. Examples of graphs that are not planar, but linklessly imbeddable
are: K5, and K3,n−3 for n ≥ 6.

7. The Petersen graph, and Kn for n ≥ 6 are not linklessly imbeddable.

2 The adjacency matrix and its eigenvalues

Definitions:

The adjacency matrix AG of a graph G with vertex set {v1, . . . , vn} is
the symmetric n× n matrix, whose (i, j)th entry AG[i, j] is equal to the
number of edges between vi and vj.

The eigenvalues of a graph G are the eigenvalues of its adjacency ma-
trix.

The spectrum of a graph G is the multiset of eigenvalues with their
multiplicities.

Two graphs are cospectral whenever they have the same spectrum.

A graph G is determined by its spectrum if every graph cospectral
with G is isomorphic to G.

A Hoffman polynomial of a graph G is a polynomial p(x) of minimum
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degree such that p(AG) = J .

The main angles of a graph G are the cosines of the angles between
the eigenspaces of AG and the all-ones vector 1.

Facts:

If no reference is given, the fact is trivial or a standard result in algebraic
graph theory that can be found in the classical books [2] and [5].

1. If AG is the adjacency matrix of a simple graph G, then AG =
J − I − AG is the adjacency matrix of the complement of G.

2. If AG and AG′ are adjacency matrices of simple graphs G and G′,
respectively, then ((AG + I)⊗ (AG′ + I))− I is the adjacency matrix of
the strong product G ·G′.

3. Isomorphic graphs are cospectral.

4. Let G be a graph with vertex set {v1, . . . , vn} and adjacency matrix
AG. The number of walks of length ` from vi to vj equals A`

G[i, j].

5. The eigenvalues of a graph are real numbers.

6. The adjacency matrix of a graph is diagonalizable.

7. If λ1 ≥ . . . ≥ λn are the eigenvalues of a graph G, then |λi| ≤ λ1. If
λ1 = λ2, then G is disconnected. If λ1 = −λn and G is not empty, then
at least one connected component of G is bipartite.

8. [5, p.87] If λ1 ≥ . . . ≥ λn (n ≥ 2) are the eigenvalues of a graph G,
then G is bipartite if and only if λi = −λn+1−i for i = 1, . . . , n.

9. If G is a simple k-regular graph, then the largest eigenvalue of G equals
k, and the multiplicity of k equals the number of connected components
of G.

10. [5, p.94] If λ1 ≥ . . . ≥ λn are the eigenvalues of a simple graph G
with n vertices and m edges, then

∑
i λ

2
i = 2m ≤ nλ1. Equality holds if

and only if G is regular.

11. [5, p.95] A graph G has a Hoffman polynomial if and only if G is
regular and connected.

12. [6, p.99] Suppose P (x) is the characteristic polynomial of a graph G
with n vertices, r distinct eigenvalues ν1, . . . , νr and main angles β1, . . . , βr,
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then the complement of G has characteristic polynomial

P (x) = (−1)nP (−x− 1)(1− n
r∑

i=1

β2
i /(x + 1 + νi)).

13. [5, p.103], [10, p.179] A connected simple regular graph is strongly
regular if and only if it has just three distinct eigenvalues. The eigen-
values (ν1 > ν2 > ν3) and parameters (n, k, λ, µ) are related by ν1 = k,
ν2ν3 = µ− k and ν2 + ν3 = λ− µ.

14. [4, p.150], [10, p.180] The multiplicities of the three eigenvalues of a
connected strongly regular with parameters (n, k, λ, µ) are 1 and

1
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n− 1± (n− 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)


 .

15. [11, p.190] A simple regular graph with at most four distinct eigen-
values is walk-regular.

16. [6, p.79] Cospectral walk-regular graphs have the same main angles.

17. [18] Almost all trees are cospectral with another tree.

18. [9] The number of graphs on n vertices, not determined by the spec-
trum is asymptotically bounded from below by n3gn−1(

1
24
− o(1)), where

gn−1 denotes the number of non-isomorphic graphs on n− 1 vertices.

19. [9] The complete graph, the cycle, the path, the regular complete bi-
partite graph and their complements are determined by their spectrum.

20. [9] Suppose G is a regular connected simple graph on n vertices,
which is determined by its spectrum. Then also the complement G of G
is determined by its spectrum, and if n + 1 is not a square, also the line
graph L(G) of G is determined by its spectrum.

21. [7, p.7] A generalized line graph has smallest eigenvalue at least −2.

22. [7, p.85] A connected graph with more than 36 vertices and smallest
eigenvalue at least −2 is a generalized line graph.

23. [7, p.90] There are precisely 187 connected regular graphs with small-
est eigenvalue at least −2, that are not a line graph or a cocktail party
graph. Each of these graphs has smallest eigenvalue equal to −2, at most
28 vertices, and degree at most 16.
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Examples:

1. Figure 2 gives a pair of nonisomorphic bipartite graphs with their ad-
jacency matrices. Both matrices have spectrum {2, 03, −2} (exponents
indicate multiplicities), so the graphs are cospectral.
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Figure 2: Two cospectral graphs with their adjacency matrices

2. The main angles of the two graphs of Figure 2 (with the given ordering
of the eigenvalues) are 2/

√
5, 1/

√
5, 0 and 3/

√
10, 0, 1/

√
10, respectively.

3. The spectrum of Kn1,n2 is {√n1n2, 0n−2, −√n1n2}.
4. By Fact 14, the multiplicities of the eigenvalues of any strongly regular
graph with parameters (n, k, 1, 1) would be nonintegral, so no such graph
can exist (this result is known as the Friendship theorem).

5. The Petersen graph has spectrum {3, 15, −24} and Hoffman poly-
nomial (x − 1)(x + 2). It is one of the 187 connected regular graphs
with least eigenvalue −2 which is neither a line graph or a cocktail party
graph.

6. The eigenvalues of the path Pn are 2 cos iπ
n+1

(i = 1, . . . , n).

7. The eigenvalues of the cycle Cn are 2 cos 2iπ
n

(i = 1, . . . , n).

3 Other matrix representations

Definitions:
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Let G be a simple graph with adjacency matrix AG. Suppose D is the
diagonal matrix with the degrees of G on the diagonal (with the same
vertex ordering as in AG). Then LG = D−AG is the Laplacian matrix
of G (often abbreviated to the Laplacian , and also known as admit-
tance matrix ), and the matrix |LG| = D + AG is (sometimes) called
the signless Laplacian matrix .

The Laplacian eigenvalues of a simple graph G are the eigenvalues
of the Laplacian matrix LG.

If µ1 ≤ µ2 ≤ . . . ≤ µn are the Laplacian eigenvalues of G, then µ2 is
called the algebraic connectivity of G. (See Section 6 of the present
Chapter.)

Let G be simple graph with vertex set {v1, . . . , vn}. A symmetric real
matrix M is called a generalized Laplacian of G, whenever M [i, j] < 0
if vi and vj are adjacent, and M [i, j] = 0 if vi and vj are nonadjacent and
distinct (nothing is required for the diagonal entries of M).

Let G be a graph with vertex set {v1, . . . , vn} and edge set {e1, . . . , em}.
The incidence matrix of G is the n×m matrix NG defined by NG[i, j] =
1 if vertex vi is an endpoint of edge ej and NG[i, j] = 0 otherwise.

If AG is the adjacency matrix of a simple graph G, then SG = J−I−2AG

is the Seidel matrix of G.

Let I ′ be a diagonal matrix with ±1 on the diagonal. Then the graph
G′ with Seidel matrix SG′ = I ′SGI ′ is switching equivalent to G. The
graph operation that changes G into G′ is called Seidel switching .

Facts:

If no reference is given, the fact is trivial or a classical result that can be
found in [4].

1. Let G be a simple graph. The Laplacian matrix LG and the signless
Laplacian |LG| are positive semi-definite.

2. The nullity of LG is equal to the number of connected components of
G.

3. The nullity of |LG| is equal to the number of connected components
of G, which are bipartite or consist of a single vertex.

4. [9] If and only if G is bipartite or empty, the Laplacian and the signless
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Laplacian of G have the same spectrum.

5. (Matrix-tree theorem) Let G be a simple graph with Laplacian ma-
trix LG, and let cG denote the number of spanning trees of G, then
adj(LG) = cGJ .

6. Suppose NG is the incidence matrix of a simple graph G, then NGNT
G =

|LG|, and NT
GNG − 2I = AL(G).

7. Suppose NG is the incidence matrix of a simple graph G. Let N ′
G be

any matrix obtained from NG by changing in each column one 1 into a
−1. Then N ′

GN ′T
G = LG.

8. If µ1 ≤ . . . ≤ µn are the Laplacian eigenvalues of a simple graph G,
and µ1 ≤ . . . ≤ µn are the Laplacian eigenvalues of G, then µ1 = µ1 = 0
and µi = n− µn+2−i for i = 2, . . . , n.

9. [9] If µ1 ≤ . . . ≤ µn are the Laplacian eigenvalues of a simple graph G

with n vertices and m edges, then
∑

i µi = 2m ≤
√

n
∑

i µi(µi − 1) with
equality if and only if G is regular.

10. [8] A connected simple graph G has at most three distinct Laplacian
eigenvalues if and only if there exist integers µ and µ, such that any two
distinct nonadjacent vertices have exactly µ common neighbors, and any
two adjacent vertices have exactly µ common nonneighbors.

11. If G is k-regular and v 6∈ span{1}, then the following are equivalent:
• λ is an eigenvalue of AG with eigenvector v,
• k − λ is an eigenvalue of LG, with eigenvector v,
• k + λ is an eigenvalue of |LG|, with eigenvector v,
• −1− 2λ is an eigenvalue of SG with eigenvector v.

12. [9] Consider a simple graph G with n vertices and m edges. Let
ν1 ≤ . . . ≤ νn be the eigenvalues of |LG|, the signless Laplacian of G. Let
λ1 ≥ . . . ≥ λm be the eigenvalues of L(G), the line graph of G. Then
λi = νn−i+1−2 if 1 ≤ i ≤ min{m,n}, and λi = −2 if min{m,n} < i ≤ m.

13. [5, p.184] The Seidel matrices of switching equivalent graphs have
the same spectrum.

Examples:

1. The Laplacian eigenvalues of the Petersen graph are {0, 25, 54}.
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2. The two graphs of Figure 3 are nonisomorphic, but the Laplacian
matrices have the same spectrum. Both Laplacian matrices have 12J as
adjugate, so both have 12 spanning trees. They are not cospectral with
respect to the adjacency matrix, because one is bipartite and the other
one is not.
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Figure 3: Graphs with cospectral Laplacian matrices

3. Figure 4 gives two graphs with cospectral signless Laplacian matrices.
They are not cospectral with respect to the adjacency matrix, because
one is bipartite and the other one is not. They also don’t have cospectral
Laplacian matrices, because the numbers of components differ.
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Figure 4: Graphs with cospectral signless Laplacian matrices

4. The eigenvalues of the Laplacian and the signless Laplacian matrix of
the path Pn are 2 + 2 cos iπ

n
(i = 1, . . . , n).

5. The complete bipartite graph Kn1,n2 is Seidel switching equivalent to
the empty graph on n = n1 + n2 vertices. The Seidel matrices have the
same spectrum, being {n− 1,−1n−1}.

4 Graph parameters

Definitions:

A subgraph G′ on n′ vertices of a simple graph G is a clique if G′ is
isomorphic to the complete graph Kn′ . The largest value of n′ for which
a clique with n′ vertices exists is called the clique number of G and
denoted by ω(G).
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An induced subgraph G′ on n′ vertices of a graph G is a coclique or
independent set of vertices if G′ has no edges. The largest value of
n′ for which a coclique with n′ vertices exists is called the vertex inde-
pendence number of G and denoted by α(G).

The Shannon capacity Θ(G) of a simple graph G is defined by Θ(G) =

sup`

√̀
α(G`)

A vertex coloring of a graph is a partition of the vertex set into co-
cliques. A coclique in such a partition is called a color class .

The chromatic number χ(G) of a graph G is the smallest number of
color classes of any vertex coloring of G.

For a simple graph G = (V, E), the conductance or isoperimetric
number Φ(G) is defined to be the minimum value of δ(V ′)/|V ′| over
any subset V ′ ⊂ V with |V ′| ≤ |V |/2, where δ(V ′) equals the number of
edges in E with one endpoint in V ′ and one endpoint outside V ′.

An infinite family of graphs with constant degree and isoperimetric num-
ber bounded from below is called a family of expanders .

A symmetric real matrix M is said to satisfy the Strong Arnold Hy-
pothesis whenever there exists no symmetric nonzero matrix X with
zero diagonal, such that MX = 0, M ◦X = 0.

The Colin de Verdière parameter µ(G) of a simple graph G is the
largest nullity of any generalized Laplacian M of G satisfying the follow-
ing:
• M has exactly one negative eigenvalue of multiplicity 1.
• The Strong Arnold Hypothesis.

Consider a simple graph G with vertex set {v1, . . . , vn}. The Lovász
parameter ϑ(G) is the minimum value of the largest eigenvalue λ1(M)
of any real symmetric n × n matrix M , which satisfies M [i, j] = 1 if vi

and vj are nonadjacent (including the diagonal).

Consider a simple graph G with vertex set {v1, . . . , vn}. The integer η(G)
is defined to be the smallest rank of any n×n matrix M (over any field),
which satisfies M [i, i] 6= 0 for i = 1, . . . , n and M [i, j] = 0, if vi and vj

are distinct nonadjacent vertices.

Facts:
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1. [2, p.13] A connected graph with r distinct eigenvalues (for the adja-
cency, the Laplacian or the signless Laplacian matrix) has diameter at
most r − 1.

2. [5, p.90-91], [10, p.83] The chromatic number χ(G) of a simple graph G
with adjacency eigenvalues λ1 ≥ . . . ≥ λn satisfies: 1− λ1/λn ≤ χ(G) ≤
1 + λ1.

3. [5, p.88] For a simple graph G with n vertices, let m+ and m− de-
note the number of nonnegative and nonpositive adjacency eigenvalues,
respectively. Then α(G) ≤ min{m+, m−}.
4. [11, p.204] If G is a k-regular simple graph with adjacency eigenvalues

λ1 ≥ . . . ≥ λn then ω(G) ≤ n(λ2+1)
n−k+λ2

and α(G) ≤ −nλn

k−λn
.

5. [16] Suppose G is a simple graph with maximum degree ∆ and al-
gebraic connectivity µ2, then the isoperimetric number Φ(G) satisfies

µ2/2 ≤ Φ(G) ≤
√

µ2(2∆− µ2).

6. [14] The Colin de Verdière parameter µ(G) is minor monotonic, that
is, if H is a minor of G, then µ(H) ≤ µ(G).

7. [14] If G has at least one edge, then µ(G) = max{µ(H) |H is a com-
ponent of G}.
8. [14] The Colin de Verdière parameter µ(G) satisfies the following:
• µ(G) ≤ 1 if and only if G is the disjoint union of paths.
• µ(G) ≤ 2 if and only if G is outerplanar.
• µ(G) ≤ 3 if and only if G is planar.
• µ(G) ≤ 4 if and only if G is linklessly imbeddable.

9. (Sandwich theorems)[15], [12] The parameters ϑ(G) and η(G) satisfy:
α(G) ≤ ϑ(G) ≤ χ(G) and α(G) ≤ η(G) ≤ χ(G).

10. [15], [12] The parameters ϑ(G) and η(G) satisfy: ϑ(G·H) = ϑ(G)ϑ(H),
and η(G ·H) ≤ η(G)η(H).

11. [15], [12] The Shannon capacity Θ(G) of a simple graph G satisfies:
Θ(G) ≤ ϑ(G) and Θ(G) ≤ η(G).

12. [15], [12] If G is a k-regular graph with eigenvalues k = λ1 ≥ . . . ≥ λn,
then ϑ(G) ≤ −nλn/(k − λn). Equality holds if G is strongly regular.

13. [15] The Lovász parameter ϑ(G) can also be defined as the maximum
value of tr(MJn), where M is any positive semi-definite n × n matrix,
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satisfying tr(M) = 1 and M [i, j] = 0 if vi and vj are adjacent vertices in
G.

Examples:

1. Suppose G is the Petersen graph. Then α(G) = 4, ϑ(G) = 4 (By Fact
12). Thus Θ(G) = 4. Moreover χ(G) = 3, χ(G) = 5, µ(G) = 5 (take
M = LG − 2I), and η(G) = 4 (take M = AG + I over the field with two
elements).

2. The isoperimetric number Φ(G) of the Petersen graph equals 1. In-
deed Φ(G) ≥ 1, by Fact 5, and any pentagon gives Φ(G) ≤ 1.

3. µ(Kn) = n− 1 (take M = −J).

4. If G is the empty graph with at least two vertices, then µ(G) = 1
(M must be a diagonal matrix with exactly one negative entry, and the
Strong Arnold Hypothesis forbids two or more diagonal entries to be 0).

5. By Fact 12, ϑ(C5) =
√

5. If (v1, . . . , v2) are the vertices of C5, cycli-
cally ordered, then (v1, v1), (v2, v3), (v3, v5), (v4, v2), (v5, v4) is a coclique
of size 5 in C5 · C5. Therefore Θ(C5) =

√
5.

5 Association schemes

Definitions:

A set of graphs G0, . . . , Gd on a common vertex set V = {v1, . . . , vn} is
an association scheme if the adjacency matrices A0, . . . , Ad satisfy:
• A0 = I,
• ∑d

i=0 Ai = J ,
• span{A0, . . . , Ad} is closed under matrix multiplication.

The numbers pk
i,j defined by AiAj =

∑d
i=0 pk

i,jAk are called the intersec-
tion numbers of the association scheme.

The algebra spanned by A0, . . . , Ad is the Bose-Mesner algebra of the
association scheme.

Consider a connected graph G1 = (V, E1) with diameter d. Define
Gi = (V, Ei) to be the graph wherein two vertices are adjacent if their
distance in G1 equals i. If G0, . . . , Gd is an association scheme, then G1

is a distance-regular graph .
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Let V ′ be a subset of the vertex set V of an association scheme. The
inner distribution a = [a0, . . . , ad]

T of V ′ is defined by ai|V ′| = cT Aic,
where c is the characteristic vector of V ′.

Facts:

Facts 1 to 7 below are standard results on association schemes, that can
be found in any of the following references: [1], [3], [10].

1. Suppose G0, . . . , Gd is an association scheme. For any three integers
i, j, k ∈ {0, . . . , d} and for any two vertices x and y adjacent in Gk, the
number of vertices z adjacent to x in Gi and to y in Gj equals the inter-
section number pk

ij. In particular, Gi is regular of degree ki = p0
ii.

2. The matrices of a Bose-Mesner algebra A can be diagonalized simul-
taneously. In other words, there exist a nonsingular matrix S such that
SAS−1 is a diagonal matrix for every A ∈ A.

3. A Bose-Mesner algebra has a basis {E0 = 1
n
J,E1, . . . , Ed} of idempo-

tents, that is, EiEj = δi,jEi (δi,j is the Kronecker symbol).

4. The change-of-coordinates matrix P defined by Aj =
∑

i P [i, j]Ei sat-
isfies:
• P [i, j] is an eigenvalue of Aj with eigenspace Col(Ei),
• P [i, 0] = 1, P [0, i] = ki (the degree of Gi),
• nkjP

−1[j, i] = miP [i, j], where mi = rank(Ei) (the multiplicity of
eigenvalue P [i, j]) .

5. (Krein condition) The Bose-Mesner algebra of an association scheme
is closed under Hadamard multiplication. The numbers qk

i,j, defined by
Ei ◦ Ej =

∑
k qk

i,jEk are nonnegative.

6. (Absolute bound) The multiplicities m0 = 1,m1, . . . ,md of an associ-
ation scheme satisfy

∑

k:qk
i,j>0

mk ≤ mimj, and
∑

k:qk
i,i>0

mk ≤ mi(mi + 1)/2.

7. A connected strongly regular graph is distance-regular with diameter
two.

8. [3, p.55] Let V ′ be a subset of the vertex set V of an association
scheme with change-of-coordinates matrix P . The inner distribution a
of V ′ satisfies aT P−1 ≥ 0.
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Examples:

1. The change-of-coordinates matrix P of a strongly regular graph with
eigenvalues k, ν2 and ν3 is equal to




1 k n− k − 1
1 ν2 −ν2 − 1
1 ν3 −ν3 − 1


 ,

2. A strongly regular graph with parameters (28, 9, 0, 4) cannot exist,
because it violates Fact 5 and 6.

3. The Hamming association scheme H(d, q) has vertex set V = Qd, the
set of all vectors with d entries from a finite set Q of size q. Two such
vectors are adjacent in Gi if they differ in exactly i coordinate places. The
graph G1 is distance-regular. The matrix P of a Hamming association
scheme can be expressed in terms of Kravčuk polynomials, which gives:

P [i, j] =
j∑

k=0

(−1)k(q − 1)j−k

(
i

k

)(
d− i

j − k

)
.

4. An error correcting code with minimum distance δ is a subset V ′ of the
vertex set V of a Hamming association scheme, such that V ′ induces a
coclique in G1, . . . , Gδ−1. If a is the inner distribution of V ′, then a0 = 1,
a1 = . . . = aδ−1 = 0 and |V ′| = ∑

i ai. Therefore the linear programming
problem ‘Maximize

∑
i≥δ ai, subject to aT P−1 ≥ 0’ leads to an upper

bound for the size of an error correcting code with given minimum dis-
tance. This bound is known as Delsarte’s Linear Programming Bound.

5. The Johnson association scheme J(d, `) has as vertex set V all subsets
of size d of a set of size ` (` ≥ 2d). Two vertices are adjacent in Gi

if the intersection of the two subsets has size d − i. The graph G1 is
distance-regular. The matrix P of a Johnson association scheme can be
expressed in terms of Eberlein polynomials, which gives:

P [i, j] =
j∑

k=0

(−1)k

(
i

k

)(
d− i

j − k

)(
`− d− i

j − k

)
.

17



References

[1] Eiichi Bannai and Tatsuro Ito. Algebraic Combinatorics I: Asso-
ciation Schemes. The Benjamin/Cummings Publisching Company,
London, 1984.

[2] N.L. Biggs, Algebraic graph theory. Cambridge University Press,
Cambridge, 1974. (Second edition 1993.)

[3] A.E. Brouwer, A.M. Cohen and A. Neumaier. Distance-Regular
Graphs. Springer, Heidelberg, 1989.

[4] Richard A. Brualdi and Herbert J. Ryser. Combinatorial Matrix
Theory. Cambridge University Press, Cambridge, 1991.
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spaces of Graphs. Cambridge University Press, Cambridge, 1997.
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