
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2006–97 

 

 
A NON-COOPERATIVE APPROACH TO THE COMPENSATION 

RULES FOR PRIMEVAL GAMES 
 

By Yuan Ju, Peter Borm 
 

September 2006 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6651544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Non-cooperative Approach to the Compensation

Rules for Primeval Games1

Yuan Ju2 Peter Borm3

September 2006

1We thank Eric van Damme and David Wettstein for helpful suggestions and discussions. We
also appreciate the comments from the participants at the 2nd Spain Italy Netherlands Meeting
on Game Theory in Foggia, Italy.

2Corresponding author. School of Economic and Management Studies, Keele University,
Keele, Staffordshire, ST5 5BG, UK. Tel: +44-1782-583095, Fax: +44-1782-717577, E-mail:
Y.Ju@keele.ac.uk.

3CentER for Economic Research and Department of Econometrics and Operations Research,
Tilburg University, the Netherlands.



Abstract

To model inter-individual externalities and analyze the associated compensation issue,
Ju and Borm (2005) introduces a new game-theoretic framework, primeval games, and
proposes, from a cooperative perspective, three compensation rules as solution concepts for
primeval games: the marginalistic rule, the concession rule, and the primeval rule. In this
paper, we provide a non-cooperative approach to address these problems more specifically.
Inspired by the generalized bidding approach (Ju and Wettstein (2006)) for TU games,
we design various bidding mechanisms to fit the model of primeval games and show that
each implements the corresponding compensation rule in subgame perfect equilibrium.
These mechanisms require nearly no condition on the game environment and obtain each
solution itself rather than in expected terms. Moreover, since the various mechanisms
share a common basic structure, this paper offers a non-cooperative benchmark to compare
different axiomatic solutions, which, in return, may advance the axiomatic study of the
issue by constructing alternative compensation rules.

JEL classification codes: C71; C72; D62; D63.
Subject classification: 91A06; 91A10; 91A12.
Keywords: externality; compensation; primeval games; marginalistic rule; concession
rule; primeval rule; bidding mechanism; implementation.



1 Introduction

This paper provides a non-cooperative game theoretic approach to analyze the compensa-

tion issue in environments features by inter-individual externalities.

A negative externality arises when an (economic) agent undertakes an action that has

an effect that turns out to be a cost imposed on another agent. When agents benefit from

an activity in which they are not directly involved, the effect is called a positive externality.

An associated fundamental question in real life is how to compensate the losses incurred by

the negative externalities. Despite relatively less attention, the issue of paying for positive

externalities is not trivial, as suggested by free-rider problems.

In economics, the issue of externality has been studied, to name a few, by Pigou (1920),

Coase (1960)), Arrow (1970), and Varian (1994), which mainly aims to attain efficiency

rather than focusing on normative standards.

The game theory literature on externality begins with Thrall and Lucas (1963) by the

concept of partition function form games : a partition function assigns a value to each pair

consisting of a coalition and a coalition structure which includes that coalition. Therefore,

solving an externality-incurred compensation problem boils down to recommending rules or

solutions for such games, which stresses the normative aspects of the issue. Some existing

solution concepts can be found, among others, in Myerson (1977), Bolger (1986), Feldman

(1994), Potter (2000), Pham Do and Norde (2002), Maskin (2003), Macho-Stadler, Pérez-

Castrillo, and Wettstein (2004), and Ju (2004).

As one may observe, however, the framework of partition function form games does not

model the externalities among individuals but restrict to specific coalitional effects. This

is due to the fact, as is argued in Ju and Borm (2005), that both partition function form

games and the standard TU (transferable utility) games always assume that all players in

the player set N are present even if they do not form a coalition.

To deal with this open problem, i.e., how to compensate agents in the context of inter-

individual externalities, Ju and Borm (2005) constructs a new class of games, primeval

games. By considering a player’s initial situation (no other players, in an absolute stand-

alone sense) and other similar situations where only a subgroup of players are present

(being active), primeval games model the externalities among individual players in all

possible cases with respect to the active players. Employing an axiomatic approach, Ju

and Borm (2005) proposes three compensation rules: the marginalistic rule, the conces-

sion rule, and the primeval rule, which may serve as specific benchmarks to solve the

externality-associated compensation problems. Ju and Borm (2005) further characterizes

the marginalistic rule and the concession rule. By discussing several desirable properties

and comparing it with the first two rules, they argue that the primeval rule is more promis-
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ing in the context of primeval games although a full axiomatic characterization remains

open.

In this paper, we study the compensation problem within the framework of primeval

games from a non-cooperative perspective. Inspired by the bidding mechanism first intro-

duced by Pérez-Castrillo and Wettstein (2001) and the idea of generalized bidding approach

(cf. Ju and Wettstein (2006)) to implement cooperative solutions for TU games, we con-

struct a non-cooperative foundation to the above three compensation rules by designing

various bidding mechanisms, adapting to primeval games, that differ in the role played

(that is, the responsibility for externality effects assumed) by the proposer chosen through

a bidding process. A desirable feature of these mechanisms is that they require nearly no

condition on the game environment. Furthermore, these mechanisms obtain in subgame

perfect equilibrium the prescribed outcome of each compensation rule itself rather than in

expected terms.

To employ such a strategic approach not only helps to make the analysis of the com-

pensation issue more specific, but also highlights the different “non-cooperative” rationales

underlying the various compensation rules. Since these bidding mechanisms share a simi-

lar basic structure and same spirit in the game design but vary in details according to the

specific compensation rule being implemented, they constitute a consistent benchmark for

analyzing and comparing different normative solutions for primeval games from a strategic

point of view.

In addition to this section introducing the paper briefly, the remaining part has the

following structure. The next section presents the general model of primeval games and

the compensation rules to be implemented. In Section 3, we describe the various bidding

mechanisms and show that they implement the different compensation rules in subgame

perfect equilibrium. The final section concludes the paper by briefly discussing the possible

extensions of the mechanisms, which offers a direction to find new compensation rules.

2 Primeval games and the compensation rules

A primeval game, according to Ju and Borm (2005), is defined as follows. Let N =

{1, 2, ..., n} be the finite set of players. A subset S of N is called a group of individuals

(in short, a group1 S). A pair (i, S) that consists of a player i and a group S of N to

which i belongs is called an embedded player in S. The set of embedded players is denoted

by E(N) =
{
(i, S) ∈ N × 2N |i ∈ S

}
. A mapping u : E(N) −→ R that assigns a real

1Here the term of group is used in order to be distinguished from the usual concept of coalition in the
framework of TU games.
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value u(i, S) to each embedded player (i, S) is an individual-group function or a primeval

function. The ordered pair (N, u) is called a primeval game. The set of primeval games

with player set N is denoted by PRIN .

The value u(i, S) represents the payoff, or utility, of player i, given that all players in

S are present while all players in N\S are absent. Hence, the model of primeval games

does not consider the phenomenon of cooperation and, therefore, the individual numbers

with respect to subgroups are not the result of internal negotiations among the players

involved: They just model the consequences of individual externalities due to the presence

of others. For a given group S and an individual-group function u, let ū(S) denote the

vector (u(i, S))i∈S. We call ū(N) the status quo of a primeval game u, and u(i, {i}) the

absolute stand-alone payoff, or the Rubinson Crusoe payoff (in short, R-C payoff) of player

i in game u.

The model of primeval games assumes that all players have the right to be in a game,

which, however, does not necessarily mean that a player has the right to affect the others.

Therefore, ū(N) is the situation in question within the context of primeval games: Players

have to accommodate each other but may not be satisfied with the status quo due to the

presence of externalities. To smooth out the possible conflicts, allowing players to make

compensations according to a reasonable rule would help.

A (compensation) rule on PRIN is a function f , which associates with each primeval

game (N, u) in PRIN a vector f(N, u) = (fi(N, u))i∈N ∈ RN of individual payoffs.

Following an axiomatic approach, Ju and Borm (2005) proposes and analyzes three

compensation rules, the marginalistic rule, the concession rule, and the primeval rule, to

solve the externality associated compensation problem.

For a primeval game u ∈ PRIN , let Π(N) be the set of all bijections σ : {1, ..., |N |} −→
N . For a given σ ∈ Π(N) and k ∈ {1, ..., |N |} we define Sσ

k = {σ(1), ..., σ(k)} and Sσ
0 = ∅.

The marginalistic rule Φ(u) is defined as the average of the marginal vectors, i.e.,

Φ(u) =
1

|N |!
∑

σ∈Π(N)

mσ(u),

where the marginal vector mσ(u) is the vector in RN defined by

mσ
σ(k)(u) =

{
u(σ(1), {σ(1)}) if k = 1

u(σ(k), Sσ
k ) +

∑k−1
j=1

(
u(σ(j), Sσ

k )− u(σ(j), Sσ
k−1)

)
if k ∈ {2, ..., |N |}.

To introduce the concession rule, we first define player σ(k)’s concession payoff for the
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externalities on previous players as

Pσ
σ(k)(u) =

k−1∑
j=1

u(σ(j), Sσ
k )− u(σ(j), Sσ

k−1)

2

and his concession payoff from the subsequent externalities as

Sσ
σ(k)(u) =

|N |∑

l=k+1

u(σ(k), Sσ
l )− u(σ(k), Sσ

l−1)

2
.

Then, we introduce the concession vector which is the vector in RN defined by

Cσ
σ(k)(u) =





u(σ(1), {σ(1)}) + Sσ
σ(1)(u) if k = 1

u(σ(k), Sσ
k ) + Pσ

σ(k)(u) + Sσ
σ(k)(u) if k = {2, ..., |N | − 1}

u(σ(|N |), N) + Pσ
σ(|N |)(u) if k = |N |.

The concession rule C(u) is defined as the average of the concession vectors, i.e.,

C(u) =
1

|N |!
∑

σ∈Π(N)

Cσ(u).

Ju and Borm (2005) shows that the outcome prescribed by the concession rule turns

out to be the average of the status quo payoff vector and the outcome of the marginalistic

rule. That is, for any game u ∈ PRIN ,

Ci(u) =
1

2
u(i, N) +

1

2
Φi(u) (1)

for all i ∈ N .

To introduce the primeval rule, we define player σ(k)’s loss for compensating negative

externalities as

Lσ
σ(k)(u) =

k−1∑
j=1

max
{
u(σ(j), Sσ

k−1)− u(σ(j), Sσ
k ), 0

}

and his gain from subsequent positive externalities as

Gσ
σ(k)(u) =

|N |∑

l=k+1

max
{
u(σ(k), Sσ

l )− u(σ(k), Sσ
l−1), 0

}
.

Then, we define the primeval vector Bσ(u), a vector in RN , by

Bσ
σ(k)(u) =





u(σ(1), {σ(1)}) + Gσ
σ(1)(u) if k = 1

u(σ(k), Sσ
k )− Lσ

σ(k)(u) + Gσ
σ(k)(u) if k ∈ {2, ..., |N | − 1}

u(σ(|N |), N)− Lσ
σ(|N |)(u) if k = |N |.

The primeval rule ζ(u) is defined as the average of the primeval vectors, i.e.,

ζ(u) =
1

|N |!
∑

σ∈Π(N)

Bσ(u).
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3 Implementing the compensation rules by bidding

mechanisms

In this section, we will study the three compensation rules from a strategic perspective,

inspired by the generalized bidding approach to construct the non-cooperative foundation

for various cooperative solution concepts for TU games as proposed by Ju and Wettstein

(2006). Below we will introduce three main bidding mechanisms and show that each

implements in subgame perfect equilibrium (SPE) a specific compensation rule defined in

the above section.

The basic bidding mechanism can be described informally as follows: At stage 1 the

players bid to choose a proposer. Each player bids by submitting an (|N | − 1)-tuple of

numbers (positive or negative), one number for each player (excluding herself). The player

for whom the net bid (the difference between the sum of bids made by the player and the

sum of bids the other players made to her) is the highest is chosen as the proposer. Before

moving to stage 2, the proposer pays to each player the bid she made. So at this stage,

the net bid is used to measure a player’ willingness to become the proposer (and therefore,

to measure the willingness to make a proposal how to solve the compensation problem).

As a reward to the chosen proposer for her effort (represented by her net bid), she has

the right to make a scheme how to compensate among all the players in the next stage.

At stage 2 the proposer makes such a scheme, i.e., offers a vector of payments to all other

players. The offer is accepted if all the other players agree. In case of acceptance the game

stops such that the proposer collects
∑

i∈N u(i, N) and pays out the offers made. In case

of rejection all the players other than the proposer play a new game which has the same

structure and rule as the previous one whereas the only difference is that the remaining

players bargain over their prescribed payoffs in the situation where the proposer does not

exist, and the proposer gets her status quo payoff and pays all other players their payoff

differences in these two situations, i.e., with the proposer and without the proposer, so as

to compensate the externality effects caused by the existence of the proposer. Hence, the

key feature of this mechanism is that when the offer is rejected, the proposer is required

to assume the full responsibility for any externality, no matter whether it is negative or

positive, on all other players to make sure that they get what they can obtain as if in the

situation without the proposer.

We now formally describe the bidding mechanism (game) that implements the mar-

ginalistic rule.2

2Because of the relationship between the marginalistic rule and the Shapley value as noted by Ju and
Borm (2005), one can find the similarity between this mechanism and the one implementing the Shapley
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Mechanism A. If there is only one player {i}, she receives her R-C payoff, u(i, {i}). When

there are two or more players, the mechanism is defined recursively. Given the rules of

the mechanism for at most |N | − 1 players, the mechanism for N = {1, . . . , n} proceeds in

three stages.

Stage 1: Each player i ∈ N makes |N | − 1 bids bi
j ∈ R with j 6= i. Hence, at this stage, a

strategy for player i is a vector (bi
j)j 6=i.

For each i ∈ N , define the net bid to player i by Bi =
∑

j 6=i b
i
j −

∑
j 6=i b

j
i . Let i∗ =

argmaxi(Bi) where an arbitrary tie-breaking rule is used in case of a non-unique maxi-

mizer. Once the winner i∗ has been chosen, player i∗ pays every player j ∈ N\{i∗}, bi∗
j .

Stage 2: Player i∗ makes a vector of offers xi∗
j ∈ R to every player j ∈ N\{i∗}.

Stage 3: The players other than i∗, sequentially, either accept or reject the offer. If a player

rejects it, then the offer is rejected. Otherwise, the offer is accepted.

If the offer is accepted, which means that all players agree with the proposer on the scheme

of compensating each other, then each player j ∈ N\{i∗} receives xi∗
j at this stage, and

player i∗ receives
∑

k∈N u(k, N) − ∑
j 6=i∗ xi∗

j . Hence, the final payoff to player j 6= i∗ is

xi∗
j + bi∗

j ; player i∗ receives
∑

k∈N u(k,N)−∑
j 6=i∗ xi∗

j −
∑

j 6=i∗ bi∗
j .

If the offer of the proposer i∗ is rejected, i∗ is requested to leave the game with her payoff

u(i∗, N) but pay each of the other players the difference between his or her payoff in the sit-

uation where i∗ does not exist and the current payoff, i.e., u(j,N\{i∗})−u(j,N) for all j ∈
N\{i∗}. Meanwhile, all players other than i∗ proceed to play a similar game with one player

less, i.e., with the set of players N\{i∗} and the status quo as ū(N\{i∗}). Formally, this

game is defined as (N\{i∗}, u|N\{i∗}) where u|N\{i∗}(j, S) = u(j, S) for all S ⊂ N\{i∗} and

j ∈ S. Thus, player i∗ receives u(i∗, N) +
∑

j 6=i∗ (u(j, N)− u(j,N\{i∗})) from this stage.

The final payoff to player i∗ is then u(i∗, N) +
∑

j 6=i∗ (u(j,N)− u(j, N\{i∗}))−∑
j 6=i∗ bi∗

j .

The final payoff to any player j 6= i∗ is the payoff he obtains in the game played by N\{i∗}
plus the bid bi∗

j .

Below we show that for any primeval game, the subgame perfect equilibrium outcomes

of Mechanism A coincide with the payoff vector as prescribed by the marginalistic rule.

value in Ju and Wettstein (2006). However, since the marginalistic rule has a different interpretation and
due to the fact that no counterparts of the concession rule and the primeval rule exist in TU games, it
is necessary to give a full description of this mechanism and provide the complete proof of Theorem 3.1,
which will also help to save spaces when analyzing the other two compensation rules.
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Theorem 3.1 Mechanism A implements in SPE the outcome prescribed by the marginal-

istic rule of an arbitrary primeval game (N, u).

Proof.

The proof proceeds by induction on the number of players |N |. It is easy to see that the

theorem holds for |N | = 1. We assume that it holds for all |M | ≤ |N | − 1 and show that

it is satisfied for |N |.

First we show that the outcome of the marginalistic rule is an SPE outcome. We explicitly

construct an SPE that yields the outcome prescribed by the marginalistic rule as an SPE

outcome. Consider the following strategies:

At stage 1, each player i, i ∈ N , announces bi
j = Φj(N, u) − Φj(N\{i}, u|N\{i}), for

every j ∈ N\{i}.
At stage 2, a proposer, player i∗, offers xi∗

j = Φj(N\{i∗}, u|N\{i∗}) to every j ∈ N\{i∗}.
At stage 3, any player j ∈ N\{i∗} accepts any offer which is greater than or equal to

Φj(N\{i∗}, u|N\{i∗}) and rejects any offer strictly less than Φj(N\{i∗}, u|N\{i∗}).

Clearly these strategies yield the marginalistic rule outcome for any player who is not the

proposer, since bi∗
j + xi∗

j = Φj(N, u), for all j 6= i∗. Moreover, given that following the

strategies the offer is accepted by all players, the proposer also obtains her payoff specified

by the marginalistic rule.

Here we want note that all net bids Bi equal to zero because for all i, j ∈ N

Φi(N, u)− Φi(N\{j}, u|N\{j}) = Φj(N, u)− Φj(N\{i}, u|N\{i}) (2)

which can be readily verified along the same lines to prove the balanced contribution

property (see Myerson (1980)) of the Shapley value for TU games.

To show that the previous strategies constitute an SPE, note first that the strategies at

stages 2 and 3 are best responses:3 In case of rejection a proposer i∗ obtains u(i∗, N) +∑
j 6=i∗ (u(j,N)− u(j, N\{i∗})) and all other players play the bidding mechanism with

player set N\{i∗}. By the induction hypothesis, we have the marginalistic rule out-

come as the equilibrium outcome of this game, i.e., each player j ∈ N\{i∗} receiving

Φj(N\{i∗}, u|N\{i∗}). Consider now the strategies at stage 1. If a player i increases her to-

tal bid, then she will be chosen as the proposer with certainty, but her payoff will decrease.

If she decreases her total bid another player will propose and player i’s payoff would still

3We want to note that this result holds for any arbitrary primeval game (N, u) and does not require
any special condition like the zero-monotonicity on the game environment.
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equal to her payoff prescribed by the marginalistic rule. Finally, any change in her bids

that leaves the total bid constant will influence the identity of the proposer but will not

affect player i’s payoff.

The proof that any SPE yields the marginalistic rule outcome proceeds by a series of claims.

Claim (a). In any SPE, at stage 3, all players other than the proposer i∗ accept the offer

if xi∗
j > Φj(N\{i∗}, u|N\{i∗}) for every j 6= i∗. Otherwise, if xi∗

j < Φj(N\{i∗}, u|N\{i∗}) for

at least some j 6= i∗, then the offer is rejected.

Note that if an offer made by the proposer i∗ is rejected at stage 3, by the induction hypoth-

esis, the payoff to a player j 6= i∗ is Φj(N\{i∗}, u|N\{i∗}). We denote the last player that

has to decide whether to accept or reject the offer by β. If the game reaches β, i.e., there

has been no previous rejection, her optimal strategy involves accepting any offer higher

than Φβ(N\{i∗}, u|N\{i∗}) and rejecting any offer lower than Φβ(N\{i∗}, u|N\{i∗}). The

second to last player, denoted by β − 1, anticipates the reaction of player β. So, β − 1 will

accept the offer when the game reaches him with xi∗
β−1 > Φβ−1(N\{i∗}, u|N\{i∗}) and xi∗

β >

Φβ(N\{i∗}, u|N\{i∗}). If xi∗
β−1 < Φβ−1(N\{i∗}, u|N\{i∗}) and xi∗

β > Φβ(N\{i∗}, u|N\{i∗}),
player β − 1 will reject the offer. If β − 1 observes xi∗

β < Φβ(N\{i∗}, u|N\{i∗}), he will be

indifferent to accepting or rejecting any offer xi∗
β−1. Following this argument till the first

player, Claim (a) is constructed.

Claim (b). For the game that starts at stage 2 there exist two types of SPE. One is that

at stage 2 player i∗ offers xi∗
j = Φj(N\{i∗}, u|N\{i∗}) to all j 6= i∗ and, at stage 3, every

player j 6= i∗ accepts any offer xi∗
j ≥ Φj(N\{i∗}, u|N\{i∗}) and rejects the offer otherwise.

The other is that at stage 2 the proposer offers xi∗
j ≤ Φj(N\{i∗}, u|N\{i∗}) to some players

j 6= i∗ and, at stage 3, any player j ∈ N\{i∗} rejects any offer xi∗
j ≤ Φj(N\{i∗}, u|N\{i∗}).

To verify the first type of SPE, one can check that the proposer has no incentive to increase

any offer, given that all offers are no lower than Φj(N\{i∗}, u|N\{i∗}) for all j 6= i∗, to a

level higher than Φl(N\{i∗}, u|N\{i∗}) to any particular player l 6= i∗, and see that in all

the SPE of this subgame the final payoffs to the proposer i∗ and every other player j 6= i∗

are
∑

k∈N u(k, N)−∑
j∈N\{i∗} u(j, N\{i∗})−∑

j∈N\{i∗} bi∗
j and Φj(N\{i∗}, u|N\{i∗}) + bi∗

j ,

respectively. One can readily understand the second type of SPE by seeing no payoff dif-

ference, compared to the first type of SPE, actually caused on the proposer and all other

8



players when the offer is rejected following the proposed strategies.4

Claim (c). In any SPE, Bi = Bj for all i, j ∈ N , and hence Bi = 0 for all i ∈ N .

Denote Ω = {i ∈ N |Bi = maxj∈N(Bj)}. If Ω = N the claim is satisfied since
∑

i∈N Bi = 0.

Otherwise, we can show that any player i in Ω has the incentive to change her bids so as to

decrease the sum of payments in case she wins. Furthermore, these changes can be made

without altering the set Ω. Hence, the player maintains the same probability of winning

and obtains a higher expected payoff. Take some player j /∈ Ω. Let player i ∈ Ω change

her strategy by announcing b′k
i = bi

k + ε for all k ∈ Ω\{i}, and b′j
i = bi

j − |Ω|ε for j, and

b′l
i = bi

l for all l /∈ Ω ∪ {j}. Then, the new net bids are B′i = Bi − ε, B′k = Bk − ε for all

k ∈ Ω\{i}, B′j = Bj + |Ω|ε and B′l = Bl for all l /∈ Ω ∪ j. If ε is small enough so that

Bj + |Ω|ε < Bi − ε, then B′l < B′i = B′k for all l ∈ Ω (including j) and for all k ∈ Ω.

Therefore, Ω does not change. However,
∑

h6=i b
i
h − ε <

∑
h6=i b

i
h.

Claim (d). In any SPE, each player’s payoff is the same regardless of whom is chosen as

the proposer.

This claim can be readily proved by contradiction. If some player can get extra payoff

given a specific identity of the proposer, then this player will have incentive to adjust her

bids accordingly, which contradicts Claim (c).

Claim (e) In any SPE, the final payment received by each of the players coincides with the

payoff prescribed by the marginalistic rule of the game.

We know that player i’s final payoff will be
∑

k∈N u(k, N)−∑
j∈N\{i} u(j, N\{i})−∑

j 6=i b
i
j

if she is the proposer, and will be Φi(N\{j}, u|N\{j}) + bj
i in case of player j 6= i becoming

the proposer. Then, the sum of the payoffs to player i over all possible choices of the

proposer is

∑

k∈N

u(k, N)−
∑

j∈N\{i}
u(j, N\{i})−

∑

j 6=i

bi
j


 +

∑

j∈N\{i}

(
Φi(N\{j}, u|N\{j}) + bj

i

)

=
∑

k∈N

u(k, N)−
∑

j∈N\{i}
u(j,N\{i}) +

∑

j∈N\{i}
Φi(N\{j}, u|N\{j})− Bi

4Note that the first type of SPE implies an agreement will form among all players in N whereas no
such an agreement will emerge in the second type of SPE. However, each player’s final payoff remains the
same in both type of SPE.
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which, by Equation (2) and the fact that Bi = 0, equals |N | · Φi(N, u). What remains is

obvious due to Claim (d).

As one can see, in order to obtain the marginalistic rule outcome in SPE the above

mechanism takes a rather extreme treatment on the proposer and the remaining players

with respect to the responsibilities of externalities: It requires the proposer chosen through

the bidding stage to fully assume the responsibility of the externalities (i.e., pays the other

players if she causes negative externalities to them and receives from the others if she

imposes positive externalities to them) in case her offer is rejected.

Then, we might be curious about the possible result of an opposite argument: In case

of rejection the proposer is completely free from the responsibility for the externalities but

simply gets her status quo payoff and all other players continue in a similar fashion. This

leads to the following mechanism.

Mechanism B. This mechanism is the same as Mechanism A except the rule when an

offer is rejected at stage 3. Here, if the offer is rejected, the proposer i∗ leaves the game

with her status quo payoff u(i∗, N) from this stage, which implies that the proposer is not

supposed to be responsible for the externalities on the other players. Consequently, any

player j 6= i∗ will have to receive the externality u(j, N)− u(j,N\{i∗}) besides the payoff

u(j, N\{i∗}). That is, in case of proposer i∗’s offer being rejected, any player j 6= i∗ will

still get u(j, N). Thus, all players other than i∗ proceed to play the subgame (N\{i∗}, u−i∗)

defined by u−i∗(j, S) = u(j, N) for S = N\{i∗} and for all j ∈ S, and u−i∗(j, S) = u(j, S)

for all S $ N\{i∗} and j ∈ S. The final payoff to player i∗ is then u(i∗, N) −∑
j 6=i∗ bi∗

j .

The final payoff to any player j 6= i∗ is the payoff he obtains in the game (N\{i∗}, u−i∗)

plus the bid bi∗
j .

Lemma 3.2 Mechanism B implements in SPE the status quo payoff vector of an arbitrary

primeval game (N, u).

Proof. The proof can be constructed along the same lines of that of Theorem 3.1. The

main difference lies in the construction of an SPE that yields the status quo payoff vector

as an SPE outcome:

At stage 1, each player i ∈ N announces bi
j = u(j, N)−u(j,N) = 0, for every j ∈ N\{i}.

At stage 2, a proposer, player i∗, offers xi∗
j = u(j, N) to every j ∈ N\{i}.
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At stage 3, any player j ∈ N\{i∗} accepts any offer greater than or equal to u(j, N)

and rejects any offer strictly smaller than u(j,N).

One can readily verify that these strategies yield the status quo payoff vector and they

constitute an SPE.

Comparing Mechanism A and Mechanism B, one can find that both of them take an

extreme treatment in terms of externality responsibility on the proposer (then also on the

other players) in case her offer is rejected. Then, making a “fair” compromise between the

two seems reasonable and might be practical in reality, which leads to the following option.

Mechanism C. The mechanism is the same as Mechanism A except for the details re-

lated to the case when an offer is rejected at stage 3. Now, suppose an offer is rejected at

stage 3. Then, the proposer i∗ leaves the game and receives her status quo payoff u(i∗, N)

plus half of the externality effect of all other players, i.e., 1
2

∑
j 6=i∗ (u(j, N)− u(j, N\{i∗})),

from this stage. Meanwhile, each of the other players firstly get half of the externali-

ties, i.e., 1
2
(u(j, N)− u(j, N\{i∗})) for all j 6= i∗, and then all of them proceed to play

in the same way a subgame (N\{i∗}, u|N\{i∗}). Hence, the final payoff to player i∗ is

u(i∗, N) + 1
2

∑
j 6=i∗ (u(j, N)− u(j,N\{i∗}))−∑

j 6=i∗ bi∗
j , and the final payoff to any player

j 6= i∗ is the payoff he obtains in the game (N\{i∗}, u|N\{i∗}) plus half of the externality gen-

erated by i∗, i.e., 1
2
(u(j,N)− u(j, N\{i∗})), and the bid bi∗

j . To make the rule clearer, sup-

pose that the next offer by j∗ from the set of players N\{i∗} is also rejected. Then, j∗ will

get u(j∗, N\{i∗}) plus the half externality from i∗, i.e., 1
2
(u(j∗, N)−u(j∗, N\{i∗})) and half

of the externality effect to all other players 1
2

∑
k∈N\{i∗,j∗} (u(k, N\{i∗})− u(k, N\{i∗, j∗})).

Theorem 3.3 Mechanism C implements in SPE the outcome prescribed by the concession

rule of an arbitrary primeval game (N, u).

Proof. The proof is also analogous to that of Theorem 3.1. Therefore, below we only

explicitly construct an SPE that yields the concession rule outcome as an SPE outcome

for illustration:

At stage 1, each player i ∈ N , announces

bi
j = Cj(N, u)−

(
Cj(N\{i}, u|N\{i}) +

1

2
(u(j, N)− u(j,N\{i}))

)

11



for every j ∈ N\{i}.5
At stage 2, a proposer, player i∗, offers

xi∗
j = Cj(N\{i∗}, u|N\{i∗}) +

1

2
(u(j, N)− u(j,N\{i∗}))

to every j ∈ N\{i}.
At stage 3, any player j ∈ N\{i∗} accepts any offer greater than or equal to

Cj(N\{i∗}, u|N\{i∗}) +
1

2
(u(j, N)− u(j, N\{i∗}))

and rejects otherwise.

As is argued in Ju and Borm (2005), the primeval rule seems to fit the framework of

primeval games best. This can also be verified by the bidding approach in this paper. For

example, one might see a difficulty in applying Mechanism A into reality. That is, when

an offer is rejected, the proposer i∗ will take the full responsibility for the externalities. It

is easy to accept that the proposer will compensate the negative externalities to the other

players. However, one might find hard to force the others to transfer the payoffs incurred

by the proposer’s positive externalities back to her. Although the non-proposer players will

not pay such transfers to the proposer by Mechanism B, they will not be compensated for

negative externalities by the proposer either. To a certain extent, the concession rule may

help to overcome this problem as it makes a compromise. However, it seems more desirable

to have a mechanism that in case of an offer being rejected the proposer will compensate

the others for negative externalities but the other need not give back the benefits from the

positive externalities to her, which might be well accepted and applied in practice.

The following mechanism, which looks more complicated, indeed adopts the above idea

and implements the primeval rule.

Mechanism D. When an offer is rejected at stage 3, the proposer i∗ will leave the game

whereas all remaining players proceed. In more detail, any player j ∈ N\{i∗} will get

max{u(j, N)−u(j, N\{i∗}), 0} and then get the outcome of the subgame (N\{i∗}, u|N\{i∗})
played by the remaining players N\{i∗} using the same rule as for the case with player set

N . Thus, the proposer i∗ leaves the game and receives u(i∗, N) +
∑

j∈N\{i∗} min{u(j, N)−
u(j, N\{i∗}), 0} from this stage. To further illustrate the mechanism. Suppose that the

next offer by the second proposer j∗ is rejected again. Then, any player k ∈ N\{i∗, j∗} gets

5Note that by Equation (1) one can simplify the equilibrium bid to be bi
j =

1
2

(
Φj(N,u)− Φj(N\{i}, u|N\{i})

)
. Then, together with Equation (2), one can readily check that

all net bids equal to zero.
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max{u(k, N)−u(k,N\{i∗}), 0}+max{u(k, N\{i∗})−u(k, N\{i∗, j∗}), 0} plus the outcome

of the subgame (N\{i∗, j∗}, u|N\{i∗,j∗}) whereas the proposer j∗ leaves the game and re-

ceives u(j∗, N\{i∗})+max{u(j∗, N)−u(j∗, N\{i∗}), 0}+
∑

k∈N\{i∗,j∗} min{u(k, N\{i∗})−
u(k, N\{i∗, j∗}), 0} from this stage.

Lemma 3.4 For any game u ∈ PRIN we have

∑

j∈N\{i}
ζj(u)−

∑

j∈N\{i}

(
ζj(u|N\{i}) + max{u(j, N)− u(j, N\{i}), 0})

= (|N | − 1)ζi(u)−
∑

j∈N\{i}

(
ζi(u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0})

for all i, j ∈ N .

Proof. By efficiency of the primeval rule, we know that
∑

j∈N\{i} ζj(u) =
∑

k∈N u(k, N)−
ζi(u) and

∑
j∈N\{i} ζj(u|N\{i}) =

∑
j∈N\{i} u(j, u|N\{i}). Therefore, it suffices to show that

∑

k∈N

u(k, N)− |N |ζi(u)

=
∑

j∈N\{i}
u(j, u|N\{i}) +

∑

j∈N\{i}
max{u(j, N)− u(j, N\{i}), 0}

−
∑

j∈N\{i}

(
ζi(u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0}) .

By definition of the primeval rule, we have that

|N |ζi(u) =
1

(|N | − 1)!

∑

σ∈Π(N)

Bσ
i (u)

=
1

(|N | − 1)!

∑

σ∈Π(N), σ(|N |)=i

Bσ
i (u) +

1

(|N | − 1)!

∑

σ∈Π(N), σ(|N |)6=i

Bσ
i (u).

Then, one can readily verify that

∑

k∈N

u(k, N)− 1

(|N | − 1)!

∑

σ∈Π(N), σ(|N |)=i

Bσ
i (u)

=
∑

j∈N\{i}
u(j, u|N\{i}) +

∑

j∈N\{i}
max{u(j,N)− u(j, N\{i}), 0}.

Thus, it remains to show that

1

(|N | − 1)!

∑

σ∈Π(N), σ(|N |)6=i

Bσ
i (u) =

∑

j∈N\{i}

(
ζi(u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0}) .
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This follows from the fact that

1

(|N | − 1)!

∑

σ∈Π(N), σ(|N |)6=i

Bσ
i (u)

=
∑

j∈N\{i}


 1

(|N | − 1)!

∑

σ∈Π(N\{j})

(
Bσ

i (u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0})



=
∑

j∈N\{i}

(
ζi(u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0}) .

Theorem 3.5 Mechanism D implements in SPE the outcome prescribed by the primeval

rule of an arbitrary primeval game (N, u).

Proof.

The proof is, again, analogous to that for Theorem 3.1. the difference lies in the construc-

tion of the SPE strategies and in Claim (e). Here, we explicitly construct an SPE that

yields the primeval rule outcome and show that the Claim (e) (that payoffs must coincide

with the payoffs prescribed by the primeval rule) holds as well.

To construct an SPE yielding the primeval rule outcome consider the following strategies.

At stage 1, each player i ∈ N announces

bi
j = ζj(N, u)− (

ζj(N\{i}, u|N\{i}) + max{u(j, N)− u(j,N\{i}), 0}) ,

for every j ∈ N\{i}.
At stage 2, a proposer, player i∗, offers

xi∗
j = ζj(N\{i∗}, u|N\{i∗}) + max{u(j, N)− u(j, N\{i∗}), 0}

to every j ∈ N\{i}.
At stage 3, any player j ∈ N\{i} accepts any offer that is greater than or equal to

ζj(N\{i∗}, u|N\{i∗}) + max{u(j, N)− u(j, N\{i∗}), 0} and rejects any offer strictly smaller

than ζj(N\{i∗}, u|N\{i∗}) + max{u(j, N)− u(j, N\{i∗}), 0}.

To show that in any SPE each player’s final payoff must coincide with her payoff prescribed

by the primeval rule, we note that if i is the proposer her final payoff is given by

∑

k∈N

u(k, N)−

 ∑

j∈N\{i}
u(j,N\{i}) +

∑

j∈N\{i}
max{u(j, N)− u(j, N\{i}), 0}


−

∑

j 6=i

bi
j,
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and in case of player j 6= i becoming the proposer her final payoff will be

ζi(N\{j}, u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0}+ bj
i .

Then, the sum of the payoffs to player i over all possible choices of the proposer is

∑

k∈N

u(k, N)−

 ∑

j∈N\{i}
u(j, N\{i}) +

∑

j∈N\{i}
max{u(j,N)− u(j, N\{i}), 0}


−

∑

j 6=i

bi
j

+
∑

j∈N\{i}

(
ζi(N\{j}, u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0}+ bj

i

)

=
∑

k∈N

u(k, N)−
∑

j∈N\{i}
u(j, N\{i})−

∑

j∈N\{i}
max{u(j, N)− u(j, N\{i}), 0}

+
∑

j∈N\{i}

(
ζi(N\{j}, u|N\{j}) + max{u(i, N)− u(i, N\{j}), 0})− Bi

which, by the fact that Bi = 0 and Lemma 3.4, can be shown to equal |N | · ζi(N, u). What

remains is obvious due to Claim (d).

Below we provide an extension on the game design to implement these compensa-

tion rules. In the mechanism to implement the outcome prescribed by the marginalis-

tic rule, holding other details unchanged, we reduce the payoff to the rejected proposer

i∗ from u(i∗, N) +
∑

j 6=i∗ (u(j,N)− u(j, N\{i∗})) to any arbitrary level θi∗ ≤ u(i∗, N) +∑
j 6=i∗ (u(j,N)− u(j, N\{i∗})) by taking the decrease as a punishment to i∗ for making

an unacceptable offer, while the rest of the players still get
∑

j 6=i∗(u(j,N) from this stage

if they reach an agreement among them. A more general description is that if the game

continues, after all preceding offers being rejected, to the set of players S ⊂ N , and the

corresponding offer made by the proposer i∗S chosen among S is rejected, then i∗S will get

θi∗S ≤ u(i∗S, S)+
∑

k∈S\{i∗S} (u(k, S)− u(k, S\{i∗S})) from this stage and the remaining play-

ers continue in the same fashion. This mechanism also implements the marginalistic rule of

an arbitrary primeval game (N, u) in SPE. However, we note that in this case, only the first

type of SPE exists in Claim (b) if we have θi∗ < u(i∗, N)+
∑

j 6=i∗ (u(j, N)− u(j, N\{i∗})).
One can readily adapt this idea to other mechanisms and implement the corresponding

compensation rules.

4 Concluding remarks

In this paper, we discuss a non-cooperative approach to the compensation rules for primeval

games. Having the same basic bidding stage, we design different ending rules such that in
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case of an offer being rejected, the proposer is required to assume different responsibilities

for the externalities and make the corresponding compensations. In order to implement

the marginalistic rule, we require the proposer to assume the full responsibility of the

externalities, which implies that if she is rejected all other players should get what they

would have as if the proposer does not exist. An opposite view will lead to implementing the

status quo payoff vector. Making a compromise between the two results in a mechanism to

implement the concession rule. Finally, the primeval rule is implemented via a mechanism

following a practical principle: In case of a proposal being rejected, the proposer will have

to compensate all other players if she causes negative externalities on them but cannot

receive compensation from the others even if she generates positive externalities. We show

that these results hold for any primeval game.

On the applied side, the mechanisms proposed in the paper can help to resolve the real-

life compensation problems. Theoretically, this study highlights the difference between the

compensation rules from a strategic viewpoint and makes the analysis of the issue more

specific. This issue can be further addressed by constructing alternative mechanisms to

implement these rules. For a primeval game with all positive externalities among the players

and that their total payoffs are monotonic with respect to the size of player group, one can

adapt the “re-negotiation” bidding mechanism proposed by Ju and Wettstein (2006) to

obtain alternative mechanisms to implement these rules. In Ju, Borm and Ruys (2004), a

two-level bidding mechanism is discussed to implement the consensus value for TU games

by introducing an exogenously given probability parameter. One can also readily apply

this idea to construct a mechanism to implement the concession rule.

As is seen from the above, different ending rules may result in different equilibrium

outcomes. Therefore, following the basic bidding game, one can look into other reasonable

possibilities in terms of externality compensation when the proposer is rejected and con-

struct new bidding mechanisms. That would lead to new compensation rules, which, in

return, calls for the axiomatic study. Hence, the approach in the paper can help to bridge

the two different perspectives about the issue and gain further insights.

We want to point out that a primeval game usually assumes that the status quo, i.e., all

players exist in the game, is the final state of a game. If we relax such a condition and allow

players to negotiate with each other by compensation to form efficient group structures,

then the existing approaches are not adequate, which suggests a future research topic.
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